JP5453602B2 - Electroless Cu plating solution and electroless Cu plating method - Google Patents

Electroless Cu plating solution and electroless Cu plating method Download PDF

Info

Publication number
JP5453602B2
JP5453602B2 JP2009065067A JP2009065067A JP5453602B2 JP 5453602 B2 JP5453602 B2 JP 5453602B2 JP 2009065067 A JP2009065067 A JP 2009065067A JP 2009065067 A JP2009065067 A JP 2009065067A JP 5453602 B2 JP5453602 B2 JP 5453602B2
Authority
JP
Japan
Prior art keywords
electroless
plating
cnt
plating film
plating solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009065067A
Other languages
Japanese (ja)
Other versions
JP2010215978A (en
Inventor
進 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinshu University NUC
Original Assignee
Shinshu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinshu University NUC filed Critical Shinshu University NUC
Priority to JP2009065067A priority Critical patent/JP5453602B2/en
Publication of JP2010215978A publication Critical patent/JP2010215978A/en
Application granted granted Critical
Publication of JP5453602B2 publication Critical patent/JP5453602B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、無電解Cuめっき液および無電解Cuめっき方法に関するものである。 The present invention relates to an electroless Cu plating solution and an electroless Cu plating method .

発明者は、めっき液中に分散剤と微細炭素繊維もしくはその誘導体とを添加して、該分散剤によりめっき液中に微細炭素繊維(カーボンナノチューブ:CNT)もしくはその誘導体(以下、これらをCNTと総称する)を分散させ、めっきを施して、基材表面に、微細炭素繊維もしくはその誘導体が混入しているめっき皮膜を形成するめっき方法を提案している(特許文献1)。
そして、この特許文献1では、無電解Cuめっき皮膜中にCNTを混入できることにも言及している。
The inventor adds a dispersing agent and fine carbon fibers or derivatives thereof to the plating solution, and the dispersing agent adds fine carbon fibers (carbon nanotubes: CNT) or derivatives thereof (hereinafter referred to as CNTs). In general, a plating method has been proposed in which a plating film in which fine carbon fibers or derivatives thereof are mixed is formed on the surface of a base material (Patent Document 1).
And this patent document 1 mentions that CNT can be mixed in an electroless Cu plating film.

特開2004−156074号公報JP 2004-156074 A

特許文献1に示されるめっき方法は、好適には、分散剤にポリアクリル酸を用いてCuめっき液中にCNTを分散させ、めっきを施すことによって、Cuめっき皮膜中にCNTを取り込むものである。分散剤にポリアクリル酸を用いることによって、CNTをCuめっき液中に良好に分散させることができる。
しかしながら、無電解Cuめっきの場合には、電解Cuめっきとはめっきの原理が異なり、電解Cuめっきの場合ほどは、Cuめっき皮膜中にCNTを良好に取り込むことはできなかった。
The plating method shown in Patent Document 1 preferably takes CNT into the Cu plating film by dispersing and dispersing CNT in the Cu plating solution using polyacrylic acid as a dispersant. . By using polyacrylic acid as the dispersant, CNT can be favorably dispersed in the Cu plating solution.
However, in the case of electroless Cu plating, the principle of plating is different from that of electrolytic Cu plating, and CNT could not be taken into the Cu plating film as well as in the case of electrolytic Cu plating.

本発明は、上記課題を解決すべくなされたものであり、その目的とするところは、CNTをめっき皮膜中に良好に取り込むことのできる無電解Cuめっき液および無電解Cuめっき方法を提供するにある。   The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide an electroless Cu plating solution and an electroless Cu plating method capable of satisfactorily incorporating CNT into a plating film. is there.

本発明に係る無電解Cuめっき液は、CNTと、該CNTを分散させるトリメチルセチルアンモニウム塩を含むことを特徴とする。
トリメチルセチルアンモニウム塩は、トリメチルセチルアンモニウムクロリドが好適である。
The electroless Cu plating solution according to the present invention includes CNT and a trimethyl cetyl ammonium salt in which the CNT is dispersed.
The trimethyl cetyl ammonium salt is preferably trimethyl cetyl ammonium chloride.

また本発明に係る無電解Cuめっき方法は、上記いずれかの無電解Cuめっき液を用いて無電解めっきを行い、被めっき物に、CNTが埋没した無電解Cuめっき皮膜を形成することを特徴とする。   In addition, the electroless Cu plating method according to the present invention is characterized in that electroless plating is performed using any one of the above electroless Cu plating solutions, and an electroless Cu plating film in which CNTs are buried is formed on an object to be plated. And

また本発明に係る無電解Cuめっき方法は、上記いずれかの無電解Cuめっき液を用いて無電解めっきを行い、被めっき物に、表面にCNTの先端が突出した無電解Cuめっき皮膜を形成することを特徴とする。   In addition, the electroless Cu plating method according to the present invention performs electroless plating using any one of the above electroless Cu plating solutions, and forms an electroless Cu plating film on the surface of which the tip of CNT protrudes. It is characterized by doing.

本発明によれば、無電解めっきであっても、被めっき物に、CNTが埋没した状態や、先端が突出した状態で良好に取り込まれたCuめっき皮膜を形成することができる。この被めっき物は、電磁波シールド性や摺動特性に優れる。
また、無電解Cuめっきであることから、被めっき物が複雑な形状のものであっても均一な膜厚が得られる。
According to the present invention, it is possible to form a Cu plating film that is satisfactorily captured in a state in which CNTs are buried or in a state in which the tip protrudes even in electroless plating. This object to be plated is excellent in electromagnetic shielding properties and sliding properties.
Moreover, since it is electroless Cu plating, a uniform film thickness can be obtained even if the object to be plated has a complicated shape.

図1(A)は、分散剤(TMSAC)を1.7×10−3M添加した場合の無電解Cuめっき膜のSEM写真である。図1(B)は、図1(A)の拡大SEM写真である。FIG. 1 (A) is an SEM photograph of an electroless Cu plating film when 1.7 × 10 −3 M of a dispersant (TMSAC) is added. FIG. 1B is an enlarged SEM photograph of FIG. 図2(A)は、分散剤(TMSAC)を1.7×10−4M添加した場合の無電解Cuめっき膜のSEM写真である。図2(B)は、図2(A)の拡大SEM写真である。FIG. 2 (A) is an SEM photograph of the electroless Cu plating film when 1.7 × 10 −4 M of the dispersant (TMSAC) is added. FIG. 2B is an enlarged SEM photograph of FIG. 図3(A)は、分散剤(TMSAC)を1.7×10−5M添加した場合の無電解Cuめっき膜のSEM写真である。図3(B)は、図3(A)の拡大SEM写真である。FIG. 3 (A) is an SEM photograph of the electroless Cu plating film in the case where 1.7 × 10 −5 M of the dispersant (TMSAC) is added. FIG. 3B is an enlarged SEM photograph of FIG.

以下本発明の好適な実施の形態を添付図面を参照して詳細に説明する。
本実施の形態における無電解Cuめっき液は、CNTと、該CNTを分散させるトリメチルセチルアンモニウム塩を含むことを特徴とする。
トリメチルセチルアンモニウム塩としては、トリメチルセチルアンモニウムクロリドが好適である。
Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
The electroless Cu plating solution in the present embodiment includes CNT and a trimethyl cetyl ammonium salt in which the CNT is dispersed.
As the trimethyl cetyl ammonium salt, trimethyl cetyl ammonium chloride is preferred.

トリメチルセチルアンモニウム塩の添加量は、1.0×10−3M〜2.0×10−3M程度が好適である。
CNTの種類は特に限定されないが、VGCF(商標)のような、太さが100nm〜200nmで、長さが10μm〜20μmの大きなサイズのCNTもめっき皮膜中に取り込むことができる。
このような大きなサイズのCNTは、長さを3〜4μm程度のものに調整したものの方が、めっき皮膜中に良好に取り込むことができた。
なお、本実施の形態において、CNTとは、カーボンナノチューブの他、フッ素化カーボンナノチューブなど、カーボンナノチューブの誘導体も含むものとする。
Amount of trimethyl cetyl ammonium salt, 1.0 × 10 -3 M~2.0 × 10 -3 degree M is preferred.
The type of CNT is not particularly limited, but a large CNT having a thickness of 100 nm to 200 nm and a length of 10 μm to 20 μm, such as VGCF (trademark), can be taken into the plating film.
Such a large-sized CNT having a length adjusted to about 3 to 4 μm could be taken into the plating film better.
Note that in this embodiment, CNT includes carbon nanotube derivatives such as fluorinated carbon nanotubes in addition to carbon nanotubes.

トリメチルセチルアンモニウム塩はカチオン系の界面活性剤である。
このトリメチルセチルアンモニウム塩は、CNTを無電解Cuめっき液中に良好に分散させることができる。
上記のように、トリメチルセチルアンモニウム塩はカチオン系の界面活性剤であって、めっき液中で正に帯電し、直鎖状の長い分子でCNTによく絡みつき、CNTを正に帯電させると考えられる。そして、CNTがこのように正に帯電することから、CNTが無電解Cuめっき皮膜に強く吸着され、この状態でさらにめっき皮膜が積み上がっていくことから、CNTがめっき皮膜中に良好に取り込まれると考えられる。直鎖状の長い分子であることから、VGCF(商標)のような太いCNTであっても、CNTによく絡みつき、CNTが良好にめっき皮膜中に取り込まれる一因となっていると考えられる。なお、VGCF(商標)を3〜4μm程度に短く切断した方が、めっき皮膜中への取り込み性は良好であった。
Trimethyl cetyl ammonium salt is a cationic surfactant.
This trimethyl cetyl ammonium salt can disperse CNTs well in the electroless Cu plating solution.
As described above, trimethylcetylammonium salt is a cationic surfactant, and is considered to be positively charged in the plating solution, entangled with CNTs with long linear molecules, and positively charged with CNTs. . Since the CNT is positively charged in this way, the CNT is strongly adsorbed by the electroless Cu plating film, and the plating film is further piled up in this state, so that the CNT is satisfactorily taken into the plating film. it is conceivable that. Since it is a linear long molecule, even a thick CNT such as VGCF (trademark) is likely to be entangled with the CNT well, and the CNT is well taken into the plating film. In addition, when the VGCF (trademark) was cut to about 3 to 4 μm, the incorporation into the plating film was better.

なお、カチオン系界面活性剤は種々あるが、トリメチルセチルアンモニウム塩が、CNTの分散性、CNTのめっき皮膜中への取り込み性において良好であった。
上記のように、正に帯電したCNTは、一端においてめっき皮膜に強く吸着され、この状態でめっき皮膜が積み上がっていくことから、CNTはめっき皮膜中で斜めに取り込まれるものが多いと考えられる。
Although there are various cationic surfactants, trimethylcetylammonium salt was good in CNT dispersibility and CNT uptake into the plating film.
As described above, positively charged CNTs are strongly adsorbed on the plating film at one end, and the plating film is piled up in this state, so it is considered that CNTs are often taken obliquely in the plating film. .

めっき条件によって、CNTが無電解Cuめっき皮膜内に完全に埋没している状態や、無電解Cuめっき皮膜表面にCNTの先端が突出している状態に調整できる。CNT先端がめっき皮膜表面に突出している場合には、CNTは、摩擦係数が小さいことから、被めっき物表面の摩擦係数も小さく、摺動特性に優れる被めっき物を得ることができる。   Depending on the plating conditions, the CNT can be adjusted to be completely buried in the electroless Cu plating film or the CNT tip can protrude from the surface of the electroless Cu plating film. When the tip of the CNT protrudes from the surface of the plating film, since the CNT has a small friction coefficient, the object to be plated having a small friction coefficient on the surface of the object to be plated and excellent sliding characteristics can be obtained.

また、CNTは導電性に優れ、CNTそれ自体で100MHz〜75GHz程度の高周波の優れた電磁波シールド性を有することから、本実施の形態のように、無電解Cuめっき皮膜中にCNTを取り込ませた場合、2μm程度のめっき皮膜の厚さで、100kHz〜数GHz程度までの高い周波数の電磁波シールド性を有することが期待できる。   Moreover, since CNT is excellent in electrical conductivity and has excellent electromagnetic shielding properties of high frequency of about 100 MHz to 75 GHz by itself, the CNT is taken into the electroless Cu plating film as in this embodiment. In this case, it can be expected to have a high frequency electromagnetic shielding property of about 100 kHz to several GHz with a thickness of the plating film of about 2 μm.

また、無電解Cuめっきであることから、被めっき物が複雑な形状のものであっても均一な膜厚が得られる。
また、被めっき物が金属、非金属に関わらずめっきが可能であり、各種電気・電子機器における電磁波シールド効果が期待できる。
Moreover, since it is electroless Cu plating, a uniform film thickness can be obtained even if the object to be plated has a complicated shape.
Moreover, regardless of whether the object to be plated is metal or non-metal, plating is possible, and an electromagnetic wave shielding effect in various electric / electronic devices can be expected.

無電解Cuめっき液の組成の一例を下記に示す。
CuSO・5HO 0.06M
CHOCOOH・HO 0.03M
EDTA・2Na 0.1M
分散剤TMSAC 1.7×10−3、1.7×10−4、1.7×10−5
CNT 2g/l
なお、TMSACは、トリメチルセチルアンモニウムクロリドである。
また、CNTは、ILIJIN社製のMWCNT:直径10〜15nm、長さ10〜20μmのものを用いた。
An example of the composition of the electroless Cu plating solution is shown below.
CuSO 4 · 5H 2 O 0.06M
CHOCOOH ・ H 2 O 0.03M
EDTA ・ 2Na 0.1M
Dispersant TMSAC 1.7 × 10 −3 , 1.7 × 10 −4 , 1.7 × 10 −5 M
CNT 2g / l
TMSAC is trimethylcetylammonium chloride.
As the CNT, MWCNT manufactured by ILIJIN: diameter 10 to 15 nm and length 10 to 20 μm was used.

めっき条件は次のとおり。
基板
銅板(3.3cm×3cm)
前処理
通常法(酸性SnCl溶液を用いた感受性化+酸性PdCl溶液を用いた活性化)
めっき条件
温度:50℃、pH:12.1、時間:120分、攪拌:スターラー攪拌(1500rpm)
膜の評価
微細構造:FE−SEM(電界放出型走査電子顕微鏡)
The plating conditions are as follows.
Substrate copper plate (3.3cm x 3cm)
Normal method of pretreatment (sensitization using acidic SnCl 2 solution + activation using acidic PdCl 2 solution)
Plating conditions Temperature: 50 ° C., pH: 12.1, Time: 120 minutes, Stirring: Stirrer stirring (1500 rpm)
Evaluation microstructure of film : FE-SEM (field emission scanning electron microscope)

図1に分散剤添加量の違いによる無電解Cuめっき皮膜のSEM写真を示す。
図1(A)は、分散剤(TMSAC)を1.7×10−3M添加したもので、図1(B)はその拡大写真である。図1(B)に示されるように、CNTは、めっき膜表面に露出気味ではあるが、Cuめっき膜中に取り込まれている。
FIG. 1 shows SEM photographs of the electroless Cu plating film depending on the amount of the dispersant added.
FIG. 1 (A) shows a dispersion agent (TMSAC) added with 1.7 × 10 −3 M, and FIG. 1 (B) is an enlarged photograph thereof. As shown in FIG. 1 (B), CNTs appear to be exposed on the plating film surface, but are taken into the Cu plating film.

図1(C)は、分散剤(TMSAC)を1.7×10−4M添加したもので、図1(D)はその拡大写真である。図1(D)に示されるように、CNTは、めっき膜表面に若干露出気味ではあるが、Cuめっき膜中に取り込まれている。
図1(E)は、分散剤(TMSAC)を1.7×10−5M添加したもので、図1(F)はその拡大写真である。図1(F)に示されるように、CNTは、Cuめっき膜中に取り込まれている。
FIG. 1 (C) shows a dispersion (TMSAC) added with 1.7 × 10 −4 M, and FIG. 1 (D) is an enlarged photograph thereof. As shown in FIG. 1D, the CNT is slightly exposed on the surface of the plating film, but is taken into the Cu plating film.
FIG. 1 (E) shows a dispersion (TMSAC) added with 1.7 × 10 −5 M, and FIG. 1 (F) is an enlarged photograph thereof. As shown in FIG. 1 (F), the CNTs are taken into the Cu plating film.

上記実施例では、被めっき物に銅板を用いたが、ABS樹脂等の樹脂材の表面にも同様に良好な無電解Cuめっき皮膜を形成することができた。   In the above example, a copper plate was used as the object to be plated, but a good electroless Cu plating film could be formed on the surface of a resin material such as ABS resin as well.

なお、比較例として、分散剤に、カチオン系界面活性剤の一種である、ベンジルセチルジメチルアンモニウムクロリドを用い、実施例と同様にしてCNTを無電解Cuめっき液中に分散させたが、CNTの分散性は良好なものの、CNTのめっき皮膜中への取り込みはほとんどなかった。
また、カチオン系ではないが、ポリエチレングリコールモノ−p−ノニルフェニルエーテルや、ポリアクリルアミドを分散剤として用いたところ、CNTを無電解Cuめっき液中に良好に分散させることはできなかった。
As a comparative example, benzyl cetyldimethylammonium chloride, which is a kind of cationic surfactant, was used as a dispersant, and CNT was dispersed in an electroless Cu plating solution in the same manner as in the examples. Although the dispersibility was good, CNT was hardly taken into the plating film.
Moreover, although not cationic, when polyethylene glycol mono-p-nonylphenyl ether or polyacrylamide was used as a dispersant, CNT could not be well dispersed in the electroless Cu plating solution.

Claims (4)

無電解Cuめっき液において、
CNTと、
該CNTを分散させるトリメチルセチルアンモニウム塩を含むことを特徴とする無電解Cuめっき液。
In electroless Cu plating solution,
CNT,
An electroless Cu plating solution comprising a trimethylcetylammonium salt in which the CNT is dispersed.
トリメチルセチルアンモニウム塩がトリメチルセチルアンモニウムクロリドであることを特徴とする請求項1記載の無電解Cuめっき液。 2. The electroless Cu plating solution according to claim 1, wherein the trimethyl cetyl ammonium salt is trimethyl cetyl ammonium chloride. 請求項1または2記載の無電解Cuめっき液を用いて無電解めっきを行い、被めっき物に、CNTが埋没した無電解Cuめっき皮膜を形成することを特徴とする無電解Cuめっき方法。 3. An electroless Cu plating method, wherein electroless plating is performed using the electroless Cu plating solution according to claim 1 or 2 , and an electroless Cu plating film in which CNTs are buried is formed on an object to be plated. 請求項1または2記載の無電解Cuめっき液を用いて無電解めっきを行い、被めっき物に、表面にCNTの先端が突出した無電解Cuめっき皮膜を形成することを特徴とする無電解Cuめっき方法。 Electroless Cu plating using the electroless Cu plating solution according to claim 1 or 2 to form an electroless Cu plating film having a CNT tip projecting on the surface of the object to be plated. Plating method.
JP2009065067A 2009-03-17 2009-03-17 Electroless Cu plating solution and electroless Cu plating method Expired - Fee Related JP5453602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009065067A JP5453602B2 (en) 2009-03-17 2009-03-17 Electroless Cu plating solution and electroless Cu plating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009065067A JP5453602B2 (en) 2009-03-17 2009-03-17 Electroless Cu plating solution and electroless Cu plating method

Publications (2)

Publication Number Publication Date
JP2010215978A JP2010215978A (en) 2010-09-30
JP5453602B2 true JP5453602B2 (en) 2014-03-26

Family

ID=42975111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009065067A Expired - Fee Related JP5453602B2 (en) 2009-03-17 2009-03-17 Electroless Cu plating solution and electroless Cu plating method

Country Status (1)

Country Link
JP (1) JP5453602B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5736270B2 (en) * 2010-09-14 2015-06-17 新光電気工業株式会社 Heat dissipation component and manufacturing method thereof
US10316424B2 (en) 2016-02-23 2019-06-11 Samsung Electronics Co., Ltd. Flexible electrically conductive structure, flexible wiring board, production method thereof, and electronic device includng the same
CN107460458B (en) * 2017-06-21 2019-07-16 昆明理工大学 A kind of method of multi-walled carbon nanotube electroless copper

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4599565B2 (en) * 2006-10-23 2010-12-15 国立大学法人信州大学 Electrolytic plating method and electrolytic plating solution

Also Published As

Publication number Publication date
JP2010215978A (en) 2010-09-30

Similar Documents

Publication Publication Date Title
Xing et al. Highly flexible and ultra-thin Ni-plated carbon-fabric/polycarbonate film for enhanced electromagnetic interference shielding
Ji et al. Lightweight and flexible electrospun polymer nanofiber/metal nanoparticle hybrid membrane for high-performance electromagnetic interference shielding
Aradhana et al. A review on epoxy-based electrically conductive adhesives
Kumaran et al. Ag induced electromagnetic interference shielding of Ag-graphite/PVDF flexible nanocomposites thinfilms
Kanzaki et al. Fabrication of conductive copper films on flexible polymer substrates by low-temperature sintering of composite Cu ink in air
Pavithra et al. A new electrochemical approach for the synthesis of copper-graphene nanocomposite foils with high hardness
JP5270632B2 (en) Method for producing composite material of nanocarbon and metal or ceramic
Huang et al. Preparation and study of electromagnetic interference shielding materials comprised of Ni-Co coated on web-like biocarbon nanofibers via electroless deposition
Khondoker et al. Synthesis and characterization of conductive silver ink for electrode printing on cellulose film
JP4999072B2 (en) Surface coating material
Oh et al. Functionalized nano-silver particles assembled on one-dimensional nanotube scaffolds for ultra-highly conductive silver/polymer composites
Oh et al. Silver-plated carbon nanotubes for silver/conducting polymer composites
Nair et al. Direct-writing of circuit interconnects on cellulose paper using ultra-long, silver nanowires based conducting ink
Yin et al. Highly stable and AC electric field-activated electrorheological fluid based on mesoporous silica-coated graphene nanosheets
US20170274453A1 (en) Silver-coated copper powder, and conductive paste, conductive coating material and conductive sheet each of which uses same
JP5453601B2 (en) Electroless Ni-P plating solution and electroless Ni-P plating method
JP7129402B2 (en) Integrally-formed body and composite material, electrical contact terminal and printed wiring board having said integrally-formed body
JP5453602B2 (en) Electroless Cu plating solution and electroless Cu plating method
Chaudhary et al. Scalable development of a multi-phase thermal management system with superior EMI shielding properties
Yang et al. Microstructure and electrical property of copper films on a flexible substrate formed by an organic ink with 9.6% of Cu content
KR100956405B1 (en) A pre-treatment method of carbon nanotube for carbon nanotube/polymer composites, a manufacturing method for carbon nanotube/polymenr composites, and carbon nanotube/polymenr composites using the pretreatment method of carbon nanotue
Seong et al. An Ultradurable and Uniform Cu Electrode by Blending Carbon Nanotube Fillers in Copper‐Based Metal–Organic Decomposition Ink for Flexible Printed Electronics
Ankireddy et al. Thermal analysis of silver nanoparticles for flexible printed antenna fabrication
JP5453605B2 (en) Electroless Cu plating solution and electroless Cu plating method
JP2007211305A (en) Composite foil of electrolytic copper, and production method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131211

R150 Certificate of patent or registration of utility model

Ref document number: 5453602

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees