JP5446057B2 - Zinc-based galvanized steel sheet for chemical conversion treatment, method for producing the same, and chemical conversion treated steel sheet - Google Patents

Zinc-based galvanized steel sheet for chemical conversion treatment, method for producing the same, and chemical conversion treated steel sheet Download PDF

Info

Publication number
JP5446057B2
JP5446057B2 JP2005081172A JP2005081172A JP5446057B2 JP 5446057 B2 JP5446057 B2 JP 5446057B2 JP 2005081172 A JP2005081172 A JP 2005081172A JP 2005081172 A JP2005081172 A JP 2005081172A JP 5446057 B2 JP5446057 B2 JP 5446057B2
Authority
JP
Japan
Prior art keywords
chemical conversion
steel sheet
layer
conversion treatment
galvanized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005081172A
Other languages
Japanese (ja)
Other versions
JP2006265578A (en
Inventor
真司 大塚
聡 安藤
芳春 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005081172A priority Critical patent/JP5446057B2/en
Publication of JP2006265578A publication Critical patent/JP2006265578A/en
Application granted granted Critical
Publication of JP5446057B2 publication Critical patent/JP5446057B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、家電製品、自動車部品、あるいは建材として使用できる、化成処理用亜鉛系めっき鋼板およびその製造方法、並びに化成処理鋼板に関するものである。   The present invention relates to a galvanized steel sheet for chemical conversion treatment, a method for producing the same, and a chemical conversion treated steel sheet, which can be used as home appliances, automobile parts, or building materials.

防錆鋼板に使用されている亜鉛めっき皮膜は、塩素イオンの存在する湿潤環境で白錆とよばれる腐食を生じやすいため、外観を著しく損ねる場合がある。これを防止するため、従来は、亜鉛めっきの表面を6価クロムイオン含有処理液で処理する、いわゆるクロメート処理が行われてきた。この6価クロムは処理工程においてクローズドシステムで処理され、完全に還元・回収されて自然界に放出されていないこと、また、有機皮膜によるシーリング作用によってクロメート皮膜中からクロム溶出もほぼゼロにできることから、実質的には6価クロムによって環境や人体が汚染されることはほとんどない。しかしながら、最近の地球環境問題から、6価クロムを含めた重金属の使用を削減しようとする動きが高まりつつある。   The galvanized film used for the rust-proof steel sheet is liable to cause corrosion called white rust in a humid environment where chlorine ions are present, so that the appearance may be remarkably impaired. In order to prevent this, conventionally, a so-called chromate treatment in which the surface of galvanizing is treated with a hexavalent chromium ion-containing treatment solution has been performed. This hexavalent chromium is processed in a closed system in the treatment process, is completely reduced and recovered and is not released into the natural world, and chromium elution from the chromate film can be made almost zero by the sealing action by the organic film. The environment and the human body are hardly contaminated by hexavalent chromium. However, due to recent global environmental problems, there is an increasing trend to reduce the use of heavy metals including hexavalent chromium.

このような背景の中、亜鉛系めっき鋼板の白錆の発生を防止するために、クロメート処理によらない処理技術、所謂クロムフリー化成処理技術が数多く提案されている。例えば、無機化合物、有機化合物、有機高分子材料、あるいはこれらを組み合わせた溶液を用い、浸漬、塗布、電解処理などの方法により薄膜を生成させる方法等が多数出願公開されている。   In such a background, in order to prevent the occurrence of white rust on the zinc-based plated steel sheet, a number of treatment techniques not based on chromate treatment, so-called chromium-free chemical conversion treatment techniques, have been proposed. For example, a number of applications have been published that use an inorganic compound, an organic compound, an organic polymer material, or a solution combining these to form a thin film by a method such as dipping, coating, or electrolytic treatment.

本願発明者らはクロムフリー化成処理技術に関して鋭意研究した結果、以下の知見を得て、先に特許出願を行った(特許文献1)。すなわち表面より1μm以内のめっき表層部にFe、CoNiMn、Mg、Al、Ce、In、SiTiMo、Zrを1種又は2種以上の成分を含有させることにより耐白錆性に優れた化成処理鋼板を得るものである。しかしながら、上記特許文献1において、より詳細な検討を進めるうちに、表面にFe、CoNiMn、Mg、Al、Ce、In、SiTiMo、Zrを1種又は2種以上の成分を含有させる層が厚すぎる場合、化成処理時の化成処理皮膜と鋼板の反応性が低くなることがあり、化成処理皮膜と亜鉛系めっき層の密着性が劣化し、プレス加工を受けた場合に化成処理皮膜の一部が欠落し、良好な耐白錆性が得られないことが明らかとなった。 As a result of earnest research on the chromium-free chemical conversion treatment technology, the present inventors obtained the following knowledge and filed a patent application first (Patent Document 1). Anti i.e. Fe in the plating surface layer portion within 1μm from the surface, Co, Ni, Mn, Mg , Al, Ce, In, Si, Ti, V, Mo, by the inclusion of one or more components of Zr The chemical conversion treatment steel plate excellent in white rust property is obtained. However, in Patent Document 1, while proceeding with the more detailed investigation, Fe on the surface, Co, Ni, Mn, Mg , Al, Ce, In, Si, Ti, V, Mo, 1 or 2 or a Zr If the layer containing the above components is too thick, the reactivity between the chemical conversion film and the steel sheet during chemical conversion treatment may be low, and the adhesion between the chemical conversion film and the zinc-based plating layer may deteriorate, resulting in press working. In this case, it was revealed that a part of the chemical conversion coating film was missing and good white rust resistance could not be obtained.

したがって、本発明の目的は、上記課題を解決し、アルカリ脱脂によってもその耐食性が低下しない耐白錆性に優れた化成処理用亜鉛系めっき鋼板およびその製造方法、並びに耐白錆性に優れた化成処理鋼板を提供することにある。   Accordingly, the object of the present invention is to solve the above-mentioned problems and to provide a zinc-plated steel sheet for chemical conversion treatment excellent in white rust resistance that does not deteriorate its corrosion resistance even by alkaline degreasing, and its manufacturing method, and also excellent in white rust resistance. It is providing the chemical conversion treatment steel plate.

本発明者らは上記課題を解決するために、クロムフリー化成処理鋼板について、鋭意検討を重ねた結果、亜鉛めっきと化成処理皮膜との界面に特定の成分を特定量含有させることによりアルカリ脱脂後も優れた耐白錆性を示すことが明らかとなった。具体的には、成分としては、CoNiMn、Mg、Al、Ce、In、SiTiMo、Zrの酸化物が特に有効であり、これら酸化物の1種又は2種以上を、亜鉛めっきと化成処理皮膜との平均厚さ0.2μmの界面部に2〜100mg/m含有させることが有効であることを見出した。更に亜鉛めっきと化成処理皮膜との平均厚さ0.2μmの界面部に2〜100mg/m含有させるためには、鋼板表面より深さ50nm以内の亜鉛めっき層に、CoNiMn、Mg、Al、Ce、In、SiTiMo、Zrの酸化物からなる1種又は2種以上を合計で2〜100mg/m含有させて化成処理を行なえばよいことを見出した。なお、鋼板表面より深さ50nm超えの亜鉛めっき層は化成処理において処理液と反応することが無く、上記の酸化物を存在させる必要は無いため、亜鉛及び可避的不純物からなるめっき層とする。さらに、亜鉛めっき鋼板を、硝酸イオン、硫酸イオンを上記成分と共に有する酸性溶液に接触させることにより、鋼板表面より深さ50nm以内の亜鉛めっき層に、CoNiMn、Mg、Al、Ce、In、SiTiMo、Zrの酸化物からなる1種又は2種以上を合計で2〜100mg/m含有させることが出来ることを見出した。 In order to solve the above-mentioned problems, the present inventors have made extensive studies on a chromium-free chemical conversion treated steel sheet. As a result, a specific amount of a specific component is contained in the interface between the galvanizing and the chemical conversion treatment film, after alkali degreasing. It was also revealed that it exhibits excellent white rust resistance. Specifically, as the components, oxides of Co , Ni , Mn, Mg, Al, Ce, In, Si , Ti , V , Mo, and Zr are particularly effective, and one or two of these oxides are used. It has been found that it is effective to contain 2 to 100 mg / m 2 of the above in the interface part having an average thickness of 0.2 μm between the zinc plating and the chemical conversion treatment film. Further, in order to contain 2 to 100 mg / m 2 at the interface part having an average thickness of 0.2 μm between the galvanizing and the chemical conversion coating, the Co , Ni , Mn, Mg are added to the galvanized layer within a depth of 50 nm from the steel sheet surface. It has been found that the chemical conversion treatment may be carried out by containing one or two or more of oxides of Al, Ce, In, Si , Ti , Ti , V , Mo, and Zr in a total of 2 to 100 mg / m2. Incidentally, the zinc plated layer exceeds the depth 50nm from the surface of the steel sheet is not able to react with the treatment liquid in the chemical treatment, since it is not necessary to present the above oxide, the plating layer composed of zinc and not avoidable impurities and To do. Furthermore, by bringing the galvanized steel sheet into contact with an acidic solution having nitrate ions and sulfate ions together with the above components, a Co , Ni , Mn, Mg, Al, Ce, It has been found that 2 to 100 mg / m 2 of one or more of oxides of In, Si , Ti , V , Mo, and Zr can be contained in total.

本発明は、以上の知見に基づきなされたもので、その要旨は以下のとおりである。   The present invention has been made based on the above findings, and the gist thereof is as follows.

[1]鋼板表面より深さ50nm以内の亜鉛めっき層に、CoNiMn、Mg、Al、Ce、In、SiTiMo、Zrの酸化物からなる1種又は2種以上を合計で2〜100mg/m含有し、鋼板表面より深さ50nm超えの亜鉛めっき層はZn及び可避的不純物からなることを特徴とする化成処理用亜鉛系めっき鋼板。 [1] One or more kinds of oxides of Co , Ni , Mn, Mg, Al, Ce, In, Si , Ti , V , Mo, and Zr are formed on a galvanized layer within a depth of 50 nm from the steel sheet surface. the containing 2 to 100 mg / m 2 in total, the zinc plated layer exceeds the depth 50nm from the surface of the steel sheet is Zn and chemically treated for zinc-based plated steel sheet characterized by comprising the non-avoidable impurities.

[2]前記[1]に記載の化成処理用亜鉛系めっき鋼板を製造するにあたり、亜鉛めっき鋼板を、CoNiMn、Mg、Al、Ce、In、SiTiMo、Zrの1種又は2種以上と、硝酸イオン及び硫酸イオンを含み、pH0.5以上pH3.5以下である酸性溶液に、鋼板と酸性溶液との相対流速が0.5m/秒以上で、接触時間が0.5〜20秒間、接触させた後、水洗することを特徴とする化成処理用亜鉛系めっき鋼板の製造方法。 [2] In producing the galvanized steel sheet for chemical conversion treatment according to [1], the galvanized steel sheet is made of Co , Ni , Mn, Mg, Al, Ce, In, Si , Ti , V , Mo, Zr. In an acidic solution containing one or more of the above, nitrate ions and sulfate ions and having a pH of 0.5 or more and a pH of 3.5 or less, the relative flow rate between the steel plate and the acidic solution is 0.5 m / sec or more, and the contact time. Is made for 0.5 to 20 seconds, and then washed with water. A method for producing a zinc-based plated steel sheet for chemical conversion treatment.

[3]亜鉛めっき鋼板上に化成処理皮膜が存在し、亜鉛めっきと化成処理皮膜との平均厚さ0.2μmの界面部にCoNiMn、Mg、Al、Ce、In、SiTiMo、Zrの酸化物の、1種又は2種以上を2〜100mg/m含有することを特徴とする化成処理鋼板。 [3] A chemical conversion treatment film exists on the galvanized steel sheet, and Co , Ni , Mn, Mg, Al, Ce, In, Si , Ti , and the like are present at the interface portion having an average thickness of 0.2 μm between the galvanization and the chemical conversion treatment film . A chemical conversion treated steel sheet containing 2 to 100 mg / m 2 of one or more of oxides of V 1 , Mo and Zr.

本発明によれば、耐白錆性に優れた化成処理用亜鉛系めっき鋼板を得ることができる。また、アルカリ脱脂によっても耐食性が低下することがなく、産業上有益な化成処理鋼板を提供することになる。   According to the present invention, a galvanized steel sheet for chemical conversion treatment having excellent white rust resistance can be obtained. Moreover, corrosion resistance does not fall by alkaline degreasing, and an industrially useful chemical conversion treated steel sheet is provided.

以下、詳細に本発明の特徴について述べる。   Hereinafter, the features of the present invention will be described in detail.

本発明者らは上記課題を解決するために、まず、クロムフリー化成処理鋼板が実際に用いられる際の、アルカリ脱脂による鋼板のクロムフリー化成処理皮膜損傷及び耐白錆性の低下ついて検討を行った。通常、アルカリ脱脂とは、鋼板にpH9〜11程度の強いアルカリ性の脱脂剤をスプレー処理する。さらに脱脂性を高めるため、脱脂剤の温度も40〜50℃程度と高い。この結果、耐アルカリ性に優れ、バリア性の高いクロムフリー皮膜を鋼板に被覆しても、クロムフリー層と亜鉛めっき層の界面にアルカリ性の脱脂液が浸透し、局部的な皮膜剥離が生じる場合が多い。さらに検討した結果、この局部的な皮膜剥離は、亜鉛が高pH領域で溶解しやすいため、亜鉛とクロムフリー層の界面での結合が弱まり、結果的に界面での剥離が生じることに起因するということが新たに明らかとなった。   In order to solve the above-mentioned problems, the present inventors first studied the chromium-free chemical conversion film damage and white rust resistance reduction of the steel sheet due to alkaline degreasing when the chromium-free chemical conversion steel sheet was actually used. It was. Usually, alkaline degreasing is a spray treatment of a strong alkaline degreasing agent having a pH of about 9 to 11 on a steel sheet. Furthermore, in order to improve degreasing property, the temperature of a degreasing agent is as high as about 40-50 degreeC. As a result, even if a chromium-free coating with excellent alkali resistance and high barrier properties is coated on the steel sheet, the alkaline degreasing solution may penetrate the interface between the chromium-free layer and the galvanized layer, resulting in local peeling of the coating. Many. As a result of further investigation, this local film peeling is caused by the fact that zinc is easily dissolved in a high pH region, so that bonding at the interface between zinc and the chromium-free layer is weakened, resulting in peeling at the interface. It became newly clear.

そして、その機構は以下のように推定される。   The mechanism is estimated as follows.

クロムフリー化成処理層とめっき層の界面には極わずかの厚みで、めっき成分と化成処理層中の成分とが反応する層(以下、反応層と称す)が形成されている。この反応層としては、(1)化成処理層中の成分(以下、化成処理層成分と称す)とめっきの亜鉛金属とが反応して生成する化合物のみならず、(2)めっき金属上に化成処理層成分が化学吸着することにより形成される吸着層、あるいは(3)めっき金属上の亜鉛水酸化物などの表面酸化層と化成処理層成分との化合物なども含まれる。そして、この反応層は、化成処理層成分により、その性質、存在形態、組成などを変えるが、めっき層上に形成されるため、かならず亜鉛などのめっき層成分を含む。亜鉛は両性金属であり、アルカリ域でも溶解しやすい。従って、亜鉛を主成分とする以上、クロムフリー化成処理鋼板では、クロムフリー化成処理層とめっき層の界面に形成される反応層が、必然的にアルカリに溶解しやすく、アルカリ脱脂後、皮膜がめっき層ごと脱離し、結果的に脱脂後の耐食性が大きく低下する。この傾向は、特に化成処理層を薄くし、導電性などを高めた皮膜に顕著である。   At the interface between the chromium-free chemical conversion treatment layer and the plating layer, a layer (hereinafter referred to as a reaction layer) in which the plating component reacts with the components in the chemical conversion treatment layer is formed with a very small thickness. This reaction layer includes not only (1) compounds formed by reaction of components in the chemical conversion layer (hereinafter referred to as chemical conversion layer components) and zinc metal of plating, but also (2) chemical conversion on the plating metal. An adsorption layer formed by chemical adsorption of the treatment layer component, or (3) a compound of a surface oxidation layer such as zinc hydroxide on the plating metal and a chemical conversion treatment layer component is also included. And although this reaction layer changes the property, a presence form, a composition, etc. with a chemical conversion treatment layer component, since it forms on a plating layer, it always contains plating layer components, such as zinc. Zinc is an amphoteric metal and is easily dissolved even in the alkaline region. Therefore, as long as zinc is the main component, in the chromium-free chemical conversion treated steel sheet, the reaction layer formed at the interface between the chromium-free chemical conversion treated layer and the plating layer is necessarily easily dissolved in an alkali. The entire plating layer is detached, and as a result, the corrosion resistance after degreasing is greatly reduced. This tendency is particularly noticeable in a film in which the chemical conversion treatment layer is thinned and conductivity is increased.

そこで、亜鉛めっき層の表層、反応層の耐アルカリ性を強化するという目的で、アルカリ域での耐溶解性を高める成分について検討した。その結果、亜鉛めっき表層に特定の成分を含有させることによりアルカリ脱脂後も優れた耐白錆性を示すことが明らかとなった。具体的には、CoNiMn、Mg、Al、Ce、In、SiTiMo、Zrの酸化物がアルカリ域での耐溶解性を高める成分として特に有効であることが明らかとなった。これらが有効である理由は十分明らかでないが、まず上記CoNiMn、Mg、Al、Ce、Inについては、これらの金属の酸化物はいずれも亜鉛が溶解するアルカリ域で難溶性であり、アルカリ域での亜鉛の耐溶解性を高めているものと推定される。さらに、これらの成分が、クロムフリー化成処理層とめっき層の界面に存在することにより、界面層=反応層の耐アルカリ性も強化しているものと推定される。 Therefore, for the purpose of enhancing the alkali resistance of the surface layer of the galvanized layer and the reaction layer, a component for improving the dissolution resistance in the alkaline region was examined. As a result, it was revealed that the white rust resistance was excellent even after alkaline degreasing by adding a specific component to the galvanized surface layer. Specifically, it is clear that oxides of Co , Ni , Mn, Mg, Al, Ce, In, Si , Ti , Ti , V , Mo, and Zr are particularly effective as components that enhance dissolution resistance in the alkaline region. It became. The reason why these are effective is not sufficiently clear. First, for the above Co 2 , Ni 2 , Mn, Mg, Al, Ce, and In, all of these metal oxides are hardly soluble in the alkaline region where zinc dissolves. It is presumed that the dissolution resistance of zinc in the alkaline region is enhanced. Furthermore, since these components are present at the interface between the chromium-free chemical conversion treatment layer and the plating layer, it is presumed that the alkali resistance of the interface layer = reaction layer is also enhanced.

SiTiMo、Zrの酸化物については、いずれも中性域で安定であり、腐食環境でも安定に存在できる。そして、酸化物表面に存在する水酸基を介し亜鉛が保持されるため、亜鉛溶解が抑制されるものと考えられる。さらに、アルカリ液との接触によりpHが上昇しても、酸化物微粒子に保持されているため、亜鉛が溶解しがたくなるものと考えられる。 The oxides of Si , Ti , V , Mo, and Zr are all stable in the neutral region and can exist stably even in a corrosive environment. And since zinc is hold | maintained through the hydroxyl group which exists on the oxide surface, it is thought that zinc melt | dissolution is suppressed. Furthermore, even if the pH increases due to contact with the alkaline solution, it is considered that zinc is difficult to dissolve because it is retained in the oxide fine particles.

また、これらの酸化物が亜鉛めっき表層に存在することによって、クロムフリー化成処理を行うことにより形成される反応層に酸化物微粒子として広く分散することが明らかとなった。その結果、クロムフリー化成処理鋼板が腐食環境に曝されたときに、腐食の基点となる局部的な腐食が起こりにくく、耐白錆性が向上すると考えられる。また、亜鉛めっき層表層に残存した酸化物は、酸化物表面に存在する水酸基がクロムフリー化成処理層との密着性を高めることで耐食性向上に寄与するものと推定される。   Further, it has been clarified that these oxides are widely dispersed as oxide fine particles in the reaction layer formed by performing the chromium-free chemical conversion treatment due to the presence of these oxides in the galvanized surface layer. As a result, when the chromium-free chemical conversion treated steel sheet is exposed to a corrosive environment, it is considered that local corrosion that becomes a base point of corrosion hardly occurs and white rust resistance is improved. Moreover, it is estimated that the oxide which remain | survived in the zinc plating layer surface layer contributes to corrosion resistance improvement because the hydroxyl group which exists in the oxide surface raises adhesiveness with a chromium free chemical conversion treatment layer.

以上のように、CoNiMn、Mg、Al、Ce、In、及びSiTi,Mo、Zrの酸化物を亜鉛めっき層に共存させることでその効果が得られるが、特性を十分発現させるには、めっき表層0.2μmに2〜100mg/m含有することが必要である。2mg/m未満だと、耐食性、特にアルカリ脱脂を行った際の耐食性向上の効果が十分でない。一方、100mg/mを超えると逆にアルカリ脱脂をしない状態での耐食性が特に劣化する傾向がある。これは、100mg/mを超えることにより、めっき層の特性が亜鉛と大きく変化するため、本来亜鉛上の処理として設計されたクロムフリー化成処理層が十分な特性を発揮しないためであると考えられる。 As described above, Co, Ni, Mn, Mg , Al, Ce, In, and Si, Ti, V,, Mo , but its effect can be obtained by the coexistence galvanized layer of an oxide of Zr, characteristics In order to fully express the above, it is necessary to contain 2 to 100 mg / m 2 in 0.2 μm of the plating surface layer. If it is less than 2 mg / m 2 , the corrosion resistance, especially the effect of improving the corrosion resistance when alkali degreasing is performed is not sufficient. On the other hand, when it exceeds 100 mg / m 2 , the corrosion resistance in a state where alkali degreasing is not performed tends to deteriorate. This is because the characteristics of the plating layer are greatly changed from zinc by exceeding 100 mg / m 2 , so that the chromium-free chemical conversion treatment layer originally designed as a treatment on zinc does not exhibit sufficient characteristics. It is done.

また、本発明では、耐白錆性をめっき層表層と化成処理層との界面層=反応層の制御により向上させるものであるため、これら成分のめっき表層における存在領域を規定することにより、さらに耐白錆性の効果は顕著に表れる。すなわち、亜鉛めっき鋼板の表面より50nm以内のめっき表層部にCoNiMn、Mg、Al、Ce、In、SiTiMo、Zrの酸化物を2〜100mg/m含有させることが特に有効である。ここで、有効成分の存在量を規定する深さ領域を表面より深さ方向へ50nm以内とするのは、この領域の成分が、化成処理層との界面制御に特に有効に作用するためである。なお、この場合のめっき表面とは、クロムフリー化成処理層を施す対象となる層で、クロムフリー化成処理を施す前の表面を指し、上記のCoNiMn、Mg、Al、Ce、InおよびSiTiMo、Zrの酸化物を含む亜鉛めっき層表面、あるいは、亜鉛めっき層上に、浸漬、スプレー処理などで形成されるCoNiMn、Mg、Al、Ce、In及びSiTiMo、Zrの酸化物を含む層の表面を意味する。 Moreover, in the present invention, the white rust resistance is improved by controlling the interface layer = reaction layer between the plating layer surface layer and the chemical conversion treatment layer. The effect of white rust resistance is prominent. That is, Co , Ni , Mn, Mg, Al, Ce, In, Si , Ti , V , Mo, and Zr oxides are contained in the plating surface layer portion within 50 nm from the surface of the galvanized steel sheet in an amount of 2 to 100 mg / m 2 . Is particularly effective. Here, the reason why the depth region that defines the abundance of the active component is set to be within 50 nm in the depth direction from the surface is that the component in this region acts particularly effectively on the interface control with the chemical conversion treatment layer. . In this case, the plating surface is a layer to which a chromium-free chemical conversion treatment layer is applied, and refers to a surface before the chromium-free chemical conversion treatment, and the above Co 2 , Ni 2 , Mn, Mg, Al, Ce, In And Co , Ni , Mn, Mg, Al, Ce, In formed on the surface of the galvanized layer containing oxides of Si , Ti , V , Mo, and Zr, or on the galvanized layer by dipping, spraying, etc. , And the surface of a layer containing oxides of Si , Ti , V , Mo, and Zr.

めっき表面より50nm以内のこれら成分の存在形態は特に規定されず、十数ナノメーターの微粒子の凝集体や、ネットワークを形成した無機高分子のような形態であっても良い。さらに、これら成分の分布状態は特に規定されないが、均一分布がより好ましい。具体的には、表層からEPMA(電子線マイクロアナライザ)等でこれら成分の二次元分布を観察した場合、数十μm四方の範囲で二次元方向の分布に偏りが無いことが好ましい。また、仮に分布に偏りがあったとしても、これが規則的に二次元方向に繰り返されていることが好ましい。   The existence form of these components within 50 nm from the plating surface is not particularly defined, and may be a form such as an aggregate of fine particles of several tens of nanometers or an inorganic polymer forming a network. Furthermore, the distribution state of these components is not particularly defined, but a uniform distribution is more preferable. Specifically, when the two-dimensional distribution of these components is observed from the surface layer with an EPMA (electron beam microanalyzer) or the like, it is preferable that the distribution in the two-dimensional direction is not biased within a range of several tens of μm square. Moreover, even if there is a bias in the distribution, it is preferable that this is regularly repeated in the two-dimensional direction.

CoNiMn、Mg、Al、Ce、InおよびSiTiMo、Zrの酸化物存在量の測定方法としては、まず、所定面積の本発明のめっき層を塩酸水溶液などの酸性溶液で溶解させ、溶解液中のCoNiMn、Mg、Al、Ce、InSiTiMo、Zr、成分をICP(誘導結合プラズマ発光分光分析法)などにより検量線法により定量し、表層部を含むめっき層すべてのこれら成分の単位面積あたりの存在量を測定する。また、表層より50nm以内でのこれら成分の存在量を定量する場合には、以下のようにすると良い。まず、上記のとおりICPにより、全皮膜中のこれら成分量を単位面積あたりの量として測定する。引き続き、GDS(グロー放電発光分析法)により、これら成分の存在割合の深さ方向分布を測定する。表層より深さ方向の距離とスパッタ時間との関係をあらかじめ測定しておき、スパッタ時間より、表層からの深さ方向への距離のCoNiMn、Mg、Al、Ce、InSiTiMo、Zrの酸化物の存在割合を算出する。この比率を、ICP法により測定した皮膜トータルに含まれるこれら成分に乗じ、深さ方向の0.2μmの範囲内でのこれら成分の存在量を算出すると良い。 Co , Ni , Mn, Mg, Al, Ce, In, and Si , Ti , V , Mo, Zr oxide abundance measurement method, first, the plating layer of the present invention of a predetermined area is acidified with a hydrochloric acid aqueous solution or the like Calibration with the solution of Co , Ni , Mn, Mg, Al, Ce, In , Si , Ti , V , Mo, Zr, components in the solution by ICP (Inductively Coupled Plasma Emission Spectroscopy) etc. To determine the abundance per unit area of all of the components of the plating layer including the surface layer portion. Moreover, when quantifying the abundance of these components within 50 nm from the surface layer, the following is preferable. First, as described above, the amount of these components in the entire film is measured as an amount per unit area by ICP. Subsequently, the distribution in the depth direction of the existence ratio of these components is measured by GDS (glow discharge emission spectrometry). The relationship between the distance in the depth direction from the surface layer and the sputtering time is measured in advance, and the distance from the surface time to the depth direction from the sputtering time, Co , Ni , Mn, Mg, Al, Ce, In , Si , The ratio of oxides of Ti , V , Mo, and Zr is calculated. This ratio is preferably multiplied by these components included in the total film measured by the ICP method, and the abundance of these components in the depth range of 0.2 μm may be calculated.

また、亜鉛めっき層は、めっき表面より深さ方向50nm以内の領域に所定量のCoNiMn、Mg、Al、Ce、InSiTiMo、Zrの酸化物が存在し、
さらにそれより深い方向にはその他のめっき層がZn及び可避的不純物のみから構成することとする。
The zinc plating layer has a predetermined amount of oxides of Co , Ni , Mn, Mg, Al, Ce, In , Si , Ti , V , Mo, and Zr in a region within 50 nm in the depth direction from the plating surface. ,
Further deeper than the direction to the other plating layer is composed only Zn and not avoidable impurities.

以上のようにめっき鋼板表層に上記成分を所定領域に所定量形成させるためには、例えば電気めっき法により所定量の亜鉛めっきを鋼板上に形成させた後、引き続き、亜鉛めっき鋼板を、CoNiMn、Mg、Al、Ce、In、SiTiMo、Zrの少なくとも1種又は2種以上の成分を含有し、硝酸イオンと硫酸イオンを共に有する酸性溶液に接触させる。すなわち、上記の成分を有効に亜鉛めっき層表層に形成させるためには、硝酸イオンと硫酸イオンを上記成分と共に有する酸性溶液に亜鉛めっき鋼板を接触させることが必要である。これは本発明において重要であり、また、これは以下の機構によるものと推定している。 In order to form a predetermined amount of the above components in a predetermined region on the surface of the plated steel plate as described above, for example, after a predetermined amount of galvanization is formed on the steel plate by electroplating, the galvanized steel plate is subsequently replaced with Co 2 , Ni , Mn, Mg, Al, Ce, In, Si , Ti , V , Mo, and Zr are contained in at least one or two or more components and are brought into contact with an acidic solution having both nitrate ions and sulfate ions. That is, in order to effectively form the above components on the surface of the galvanized layer, it is necessary to contact the galvanized steel sheet with an acidic solution having nitrate ions and sulfate ions together with the above components. This is important in the present invention and is presumed to be due to the following mechanism.

まず酸性溶液によりめっきとして形成していた亜鉛が溶解し、水素発生にともなってめっき表層近傍の溶液のpHが上昇する。これにより、金属の水酸化物もしくは酸化物がめっき表層に沈殿し表層に複合酸化物を形成する。このとき硝酸イオンは溶液中の複合酸化物形成に有効な酸化剤として働く。しかし硝酸イオンが多く存在しすぎると鋼板に形成した亜鉛の酸化が進行しすぎ、黒く変色し白色度が低下するだけでなく、その後に続く化成処理液との反応性を劣化させるために耐食性が劣化する。すなわち、酸化物層が厚くなり、その後のクロムフリー化成処理液とめっき鋼板との反応量が減少し、耐食性に有効な反応層を形成することができなくなる。そのため、硝酸イオンの酸化作用を抑制する目的で溶液中に硫酸イオンを共存させることが有効となる。硝酸イオンと硫酸イオンを共存させることにより、硝酸イオンの酸化作用を抑制しつつ、硝酸イオンの、溶液中の酸化物形成に有効な酸化剤としての効果を得ることになる。このような理由から、酸性溶液中の硝酸イオンと硫酸イオンの存在比率は0.5:9.5〜8:2とすることが好ましい。上記比率とすることで、耐食性に有効な皮膜を亜鉛めっき表層に形成することが出来る。さらに好まし硝酸イオンと硫酸イオンの比率は、1:9〜6:4である。   First, zinc formed as plating by the acidic solution is dissolved, and the pH of the solution in the vicinity of the plating surface layer increases as hydrogen is generated. Thereby, a metal hydroxide or oxide precipitates on the plating surface layer to form a composite oxide on the surface layer. At this time, the nitrate ions act as an effective oxidizing agent for forming a complex oxide in the solution. However, if too much nitrate ions are present, the oxidation of the zinc formed on the steel sheet will proceed too much, discoloring it black and reducing its whiteness, as well as reducing the reactivity with the subsequent chemical conversion treatment solution. to degrade. That is, the oxide layer becomes thick, the amount of reaction between the chromium-free chemical conversion treatment liquid and the plated steel sheet is reduced, and a reaction layer effective for corrosion resistance cannot be formed. Therefore, it is effective to allow sulfate ions to coexist in the solution for the purpose of suppressing the oxidation action of nitrate ions. By allowing nitrate ions and sulfate ions to coexist, the effect of nitrate ions as an oxidant effective for forming oxides in the solution can be obtained while suppressing the oxidation action of nitrate ions. For this reason, the ratio of nitrate ions to sulfate ions in the acidic solution is preferably 0.5: 9.5 to 8: 2. By setting it as the above ratio, a coating effective for corrosion resistance can be formed on the galvanized surface layer. Further, the ratio of nitrate ion to sulfate ion is preferably 1: 9 to 6: 4.

また、酸化物含有水溶液中にリン酸イオンを共存させて、酸化物成分とリン酸成分を含む表面層を形成させることも可能である。   It is also possible to form a surface layer containing an oxide component and a phosphoric acid component by coexisting phosphate ions in the oxide-containing aqueous solution.

亜鉛めっきと接触させる酸性溶液のpHはpH3.5以下pH0.5以上とする。pH3.5より高いと亜鉛めっき表層に酸化物を形成することが出来ず、pH0.5未満であると接触時間が短時間であっても亜鉛めっき層の溶解量が多くなり、亜鉛めっき本来の目的とする母材の鋼板の腐食を抑制することが出来なくなる為である。より好ましくはpH2.5以下pH1以上の酸性溶液である。   The pH of the acidic solution brought into contact with the galvanizing is set to pH 3.5 or less and pH 0.5 or more. If the pH is higher than 3.5, an oxide cannot be formed on the surface of the galvanized layer. If the pH is lower than 0.5, the dissolved amount of the galvanized layer increases even if the contact time is short, This is because it becomes impossible to suppress the corrosion of the target base steel sheet. An acidic solution having a pH of 2.5 or less and a pH of 1 or more is more preferable.

また酸化物形成、亜鉛めっき層の保護の観点から亜鉛めっき鋼板と酸性溶液との接触時間は0.5秒〜20秒とする。0.5秒未満であると酸化物が亜鉛めっき鋼板の表層に形成できず、20秒より長くなると亜鉛めっき層の溶解量が多くなるためである。より好ましくは1秒〜10秒である。   From the viewpoint of oxide formation and protection of the galvanized layer, the contact time between the galvanized steel sheet and the acidic solution is 0.5 to 20 seconds. If the time is less than 0.5 seconds, the oxide cannot be formed on the surface layer of the galvanized steel sheet, and if the time is longer than 20 seconds, the amount of dissolution of the galvanized layer increases. More preferably, it is 1 second to 10 seconds.

さらに、鋼板と溶液との相対流速は、金属及び酸化物を均一に形成させることや外観ムラを抑制する目的により0.5m/秒以上とする。   Furthermore, the relative flow rate between the steel plate and the solution is set to 0.5 m / second or more for the purpose of forming the metal and oxide uniformly and suppressing the appearance irregularity.

酸性溶液に接触させる方法は、特に限定せず、浸漬、及びスプレー処理などの方法が挙げられる。   The method of contacting with an acidic solution is not particularly limited, and examples thereof include dipping and spraying.

酸性処理液の具体例としては、(1)CoNiMn、Mg、Al、Ce、InSiTiMo、Zrの少なくとも1種又は2種以上の成分の硝酸塩、酢酸塩、硫酸塩、塩化物、リン酸塩などと硫酸塩又は硝酸塩を添加し、硫酸および硝酸でpHを調整した
水溶液、(2)AlSiTiMo、Zrの酸化物微粒子を水分散性のゾルとして存在させ、かつ硝酸イオン、硫酸イオンを混合させた水溶液、(3)モリブデン酸、バナジン酸を含み、かつ硝酸イオン、硫酸イオンを混合させた水溶液等があげられる。
Specific examples of the acidic treatment liquid include (1) Co , Ni , Mn, Mg, Al, Ce, In , Si , Ti , V , Mo, and Zr. Nitrate and acetate of at least one component. , Sulfate, chloride, phosphate, etc. and sulfate or nitrate added, pH adjusted with sulfuric acid and nitric acid, (2) Al , Si , Ti , V , Mo, Zr oxide fine particles in water Examples thereof include an aqueous solution in which nitrate ions and sulfate ions are mixed and present as a dispersible sol, and (3) an aqueous solution containing molybdic acid and vanadic acid and in which nitrate ions and sulfate ions are mixed.

本発明では、酸性溶液に浸漬した後、水洗工程を行う。酸性処理液に浸漬した後の鋼板表面には、可溶性成分が残存し、化成処理工程において化成処理液への混入し化成処理液の寿命が短くなるだけではなく、化成処理皮膜中に可溶性成分が残存し、耐食性を大幅に劣化させることが考えられる。また鋼板表面に酸性処理液が残存していると局部的な溶解、酸化の進行など目視で認められる外観ムラが発生し、電気亜鉛めっき鋼板が有する美麗な外観を損なうことになる。このような耐食性劣化、外観ムラ発生を防止するため、酸性溶液に浸漬した後、水洗を行う。   In this invention, after being immersed in an acidic solution, a water washing process is performed. Soluble components remain on the surface of the steel plate after being immersed in the acid treatment liquid, and not only the chemical conversion treatment solution is mixed with the chemical conversion treatment process but the life of the chemical conversion treatment liquid is shortened, but there is also a soluble component in the chemical conversion treatment film. It is considered that it remains and the corrosion resistance is greatly deteriorated. Moreover, when the acidic treatment liquid remains on the steel sheet surface, visually uneven appearance such as local dissolution and progress of oxidation occurs, and the beautiful appearance of the electrogalvanized steel sheet is impaired. In order to prevent such deterioration of corrosion resistance and appearance unevenness, the substrate is immersed in an acidic solution and then washed with water.

酸性処理液浸漬後、15秒以内に水洗することにより、ムラや局部的な溶解を進行させることを防ぐことが出来る。より好ましくは10秒以内である。尚、酸性処理液浸漬後から水洗までの時間は短くても良く、酸性処理液浸漬直後に水洗、即ち0秒で水洗しても良い。水洗の方法はいずれの方法でも良く、例えば浸漬法、スプレー法、ブラッシング法などでもよい。   By rinsing with water within 15 seconds after immersion in the acidic treatment liquid, it is possible to prevent unevenness and local dissolution from proceeding. More preferably, it is within 10 seconds. In addition, the time from the acid treatment liquid immersion to the water washing may be short, and the water washing immediately after the acid treatment liquid immersion may be performed, that is, the water washing may be performed in 0 seconds. The washing method may be any method, for example, an immersion method, a spray method, a brushing method, or the like.

以上により、本発明の化成処理用亜鉛系めっき鋼板が得られる。   By the above, the galvanized steel sheet for chemical conversion treatment of this invention is obtained.

また、以上により得られためっき鋼板に、例えば、クロムフリー化成処理化成処理を施し、化成処理鋼板とすることができる。クロムフリー化成処理層については特に規定されない。単層又は複層のいずれのクロムフリー化成処理皮膜でも良い。好ましくは、亜鉛めっき層に直接接触する層中にP成分を含む皮膜が良い。これは、P成分が特に亜鉛と反応しやすく、さらに反応により形成されるリン酸亜鉛などの化合物が塩素イオン存在環境下で比較的安定であるため、耐白錆性を向上させる上で有効であるためである。さらに、本発明の特徴であるアルカリ脱脂後の耐白錆性を向上させるという目的においても、化成処理層中にP成分を含む皮膜が好ましい。これは、亜鉛とPより形成される化合物中に、さらにCoNiMn、Mg、Al、Ce、In、SiTiMo、Zrの酸化物を含有させることにより、化合物の耐アルカリ性が向上するためである。 Moreover, the plating steel plate obtained by the above can be made into a chemical conversion treatment steel plate, for example by performing a chromium free chemical conversion treatment. The chromium-free chemical conversion treatment layer is not particularly specified. Either a single layer or multiple layers of chromium-free chemical conversion coating may be used. Preferably, a film containing a P component in a layer that is in direct contact with the galvanized layer is preferable. This is effective in improving the white rust resistance because the P component is particularly easy to react with zinc, and compounds such as zinc phosphate formed by the reaction are relatively stable in the presence of chloride ions. Because there is. Furthermore, the film | membrane which contains P component in a chemical conversion treatment layer is preferable also in the objective of improving the white rust resistance after alkali degreasing which is the characteristics of this invention. This is because the compound formed from zinc and P further contains oxides of Co , Ni , Mn, Mg, Al, Ce, In, Si , Ti , V , Mo, and Zr. This is because alkalinity is improved.

P成分としては、めっき層に化成処理層を形成する際に塗布、あるいは浸漬、スプレー処理などに用いられる処理液中に含まれる、水溶性リン酸化合物、水分散性のリン酸コロイド、有機リン酸などがあげられる。水溶性リン酸化合物としては、オルトリン酸、縮合リン酸あるいはこれらの塩、亜リン酸、次亜リン酸あるいはこれらの塩などがあげられる。また、水分散性のリン酸コロイドとしては、金属イオンと反応させて形成するリン酸鉄コロイドなどがあげられ、有機リン酸としては、リン酸エステル、亜リン酸エステル、ホスホニウム塩、ジアルキルジチオリン酸などがあげられる。   As the P component, a water-soluble phosphate compound, a water-dispersible phosphate colloid, an organic phosphorus contained in a treatment solution used for coating, dipping, spraying, etc. when forming the chemical conversion treatment layer on the plating layer Examples include acids. Examples of the water-soluble phosphoric acid compound include orthophosphoric acid, condensed phosphoric acid or salts thereof, phosphorous acid, hypophosphorous acid or salts thereof. Examples of water-dispersible phosphate colloids include iron phosphate colloids formed by reaction with metal ions. Examples of organic phosphates include phosphate esters, phosphite esters, phosphonium salts, and dialkyldithiophosphates. Etc.

先にも述べたように、Pを含有するものであれば、クロムフリー化成処理層については特に規定されるものではなく、ウレタン系樹脂、エポキシ樹脂、アクリル系樹脂、ポリエチレン、ポリプロピレン、エチレンーアクリル酸共重合体などのオレフィン系樹脂、ポリスチレンなどのスチレン系樹脂、ポリエステルあるいはこれらの共重合物や変成物などの有機系樹脂、あるいはこれらの基体樹脂にシリカや、固体潤滑剤、架橋剤などを組み合わせた有機系樹脂皮膜。水ガラス、リチウムシリケート、ケイ酸塩などを塗布乾燥して得られる、Si含有無機皮膜。さらには上記以外にも、水分散性、あるいは水溶性の樹脂成分及びリン酸、金属イオンなどから構成される水溶液成分を塗布乾燥して得られる皮膜など、如何なるクロムフリー化成処理層も本発明の効果を得ることができる。   As mentioned above, if it contains P, the chromium-free chemical conversion treatment layer is not particularly defined, and urethane resin, epoxy resin, acrylic resin, polyethylene, polypropylene, ethylene-acrylic. Olefin resins such as acid copolymers, styrene resins such as polystyrene, polyesters or organic resins such as copolymers or modified products thereof, or base resins such as silica, solid lubricants, crosslinking agents, etc. Combined organic resin film. A Si-containing inorganic film obtained by applying and drying water glass, lithium silicate, silicate, or the like. Furthermore, in addition to the above, any chromium-free chemical conversion treatment layer such as a film obtained by applying and drying an aqueous component composed of a water-dispersible or water-soluble resin component and phosphoric acid, metal ions, etc. An effect can be obtained.

本発明のめっき層の上層に被覆するクロムフリー化成処理層の形成方法については特に制限されるものではなく、ロールコーターによる塗布、スプレー法、浸漬法による処理、あるいは、スプレー処理、浸漬処理の後リンガーロールによる絞り、など如何なる方法も可能である。さらに、クロムフリー化成処理液塗布、あるいはクロムフリー化成処理液との接触に引き続き、水洗、乾燥(又は焼き付け)あるいは、水洗することなく直接乾燥(又は焼き付け)する如何なる方法も可能である。乾燥時の温度も特に制限されることなく、化成処理層が形成できる温度であれば良い。   The method for forming the chromium-free chemical conversion treatment layer to be coated on the upper layer of the plating layer of the present invention is not particularly limited, and is applied after application by a roll coater, spray method, dipping method, or spray treatment, dipping treatment. Any method such as squeezing with a ringer roll is possible. Further, any method of applying the chromium-free chemical conversion treatment solution or contacting with the chromium-free chemical conversion treatment solution, followed by water washing, drying (or baking), or direct drying (or baking) without washing with water is possible. The temperature during drying is not particularly limited as long as the chemical conversion treatment layer can be formed.

なお、母材の鋼板としては、通常の冷延鋼板を用いることが好ましいが、これに限定されること無く、熱延鋼板などでも構わない。鋼板の材質についても特に制限されるものではない。   In addition, although it is preferable to use a normal cold-rolled steel plate as a base material steel plate, it is not limited to this, A hot-rolled steel plate etc. may be used. The material of the steel plate is not particularly limited.

母材鋼板上に形成される本発明の亜鉛めっき皮膜としては、電気めっき法に限られる。これは、溶融めっき法の場合は電気めっき法に比べ白色度が低く、美麗な外観を得ることが出来ないためである。また蒸着めっき法は電気めっき法に比べコストが高くなりすぎる欠点がある。   The galvanized film of the present invention formed on the base material steel plate is limited to the electroplating method. This is because the hot-dip plating method has a lower whiteness than the electroplating method, and a beautiful appearance cannot be obtained. Further, the vapor deposition plating method has a drawback that the cost is too high compared to the electroplating method.

下記実施例により本発明を具体的に説明する。   The following examples illustrate the present invention.

基体(電気亜鉛めっき鋼板)
板厚0.7mmの冷延鋼板(軟質材)に電解によりアルカリ脱脂した後、硫酸70g/リットルの水溶液中で5秒間酸洗した。その後、液循環型のめっき実験装置を用い、めっき量を20g/mとした。なお、めっき液は、硫酸亜鉛7水和物が400g/リットル、pHを硫酸にて1.4とし、50℃の硫酸酸性めっき浴を調整したものを用い、めっき浴と鋼板の相対流速は1.5m/sとした。
Base (electrogalvanized steel sheet)
A cold-rolled steel plate (soft material) having a thickness of 0.7 mm was alkali degreased by electrolysis and then pickled in an aqueous solution of 70 g / liter sulfuric acid for 5 seconds. Thereafter, the plating amount was set to 20 g / m 2 using a liquid circulation type plating experimental apparatus. The plating solution used was zinc sulfate heptahydrate 400 g / liter, pH adjusted to 1.4 with sulfuric acid, and a 50 ° C. sulfuric acid acidic plating bath was prepared. The relative flow rate between the plating bath and the steel sheet was 1 It was set to 5 m / s.

硝酸アルミニウム、硝酸インジウム、硝酸コバルト、硫酸バナジウム、硫酸ニッケルをそれぞれイオン交換水に溶解させ、それぞれの溶液に60%硝酸および98%硫酸を添加し、硝酸イオンと硫酸イオンの比率が2:8になるようにしてpH2に調整し、得られた酸性溶液を上記基体(電気亜鉛めっき鋼板)に接触させた。このとき鋼板と酸性溶液との相対流速は0m/秒〜1.5m/秒、接触時間は5秒とした。その後、浸漬法により水洗を行い引き続き乾燥した。   Aluminum nitrate, indium nitrate, cobalt nitrate, vanadium sulfate, and nickel sulfate are dissolved in ion exchange water, 60% nitric acid and 98% sulfuric acid are added to each solution, and the ratio of nitrate ion to sulfate ion is 2: 8. Thus, the pH was adjusted to pH 2, and the obtained acidic solution was brought into contact with the substrate (electrogalvanized steel sheet). At this time, the relative flow rate between the steel sheet and the acidic solution was 0 m / second to 1.5 m / second, and the contact time was 5 seconds. Then, it washed with water by the immersion method and continued drying.

得られた亜鉛めっき鋼板に対し、鋼板めっき層を2N塩酸水溶液で溶解し、ICP法にてAlIn、CoV、Niをそれぞれ定量したところ、それぞれの金属換算にて0.5〜200mg/m形成された。次に、GDSにより、深さ方向分析を行ったところ、表面より50nmに相当する深さですでにAlIn、Co、V、Niの存在は認められなかった。 The obtained galvanized steel sheet was dissolved in a 2N hydrochloric acid aqueous solution with a 2N hydrochloric acid aqueous solution, and Al , In, Co , V, and Ni were each quantified by ICP, and 0.5 to 200 mg in terms of each metal. / m 2 was formed. Next, when a depth direction analysis was performed by GDS, Al , In, Co, V, and Ni were not already present at a depth corresponding to 50 nm from the surface.

引き続き、上記亜鉛めっき鋼板上に、クロムフリー化成処理を施し、化成処理鋼板を得た。施した化成処理層は、下記記載の3種類(クロムフリ−化成処理層その1〜その3)の方法により処理した。また、比較例として、亜鉛めっきを形成した後、表層酸化物層の形成を行わずに、そのまま化成処理層を同一条件で形成させたサンプルも作成した。   Subsequently, a chromium-free chemical conversion treatment was performed on the galvanized steel sheet to obtain a chemical conversion-treated steel sheet. The applied chemical conversion treatment layer was processed by the following three methods (chrome-free chemical conversion treatment layers 1 to 3). In addition, as a comparative example, a sample in which a chemical conversion treatment layer was formed under the same conditions as it was without forming a surface oxide layer after galvanization was formed.

(1)クロムフリー化成処理層その1
0.1M/Lの第1リン酸Mn、0.3M/Lのコロイダルシリカ及び0.2M/Lのオルトトリリン酸からなる処理液(皮膜組成物)をバーコーターで塗布し、140℃で加熱乾燥させて第1層皮膜を形成させた。この第1層皮膜の膜厚は、処理液の固形分(加熱残分)により調整した。次いで、防錆添加成分としてケイ酸Ca+トリポリリン酸二水素Al(配合比1:1):リンMo酸Al:テトラエチルチウラムジスルフィド=10:10:10と、ポリエチレンワックス(三井石油化学(株)製「ケミパ−ル」)および表1に示す樹脂等を用い、表2に示す組み合わせにて塗料組成物をバーコーターにより塗布し、140℃で加熱乾燥して第2層皮膜を形成させた。第2層皮膜の膜厚は、塗料組成物の固形分(加熱残分)により調整した。
(1) Chrome-free chemical conversion treatment layer 1
A treatment liquid (coating composition) consisting of 0.1M / L primary phosphoric acid Mn, 0.3M / L colloidal silica and 0.2M / L orthotriphosphoric acid was applied with a bar coater and heated and dried at 140 ° C. A single layer film was formed. The film thickness of this first layer film was adjusted by the solid content (heating residue) of the treatment liquid. Next, as an anti-rust additive component, silicate Ca + tripolyphosphate dihydrogen Al (mixing ratio 1: 1): phosphorus Mo acid Al: tetraethyl thiuram disulfide = 10:10:10, polyethylene wax (Mitsui Petrochemical Co., Ltd. " Using the resin shown in Table 1 and the combination shown in Table 1, the coating composition was applied by a bar coater and dried at 140 ° C. to form a second layer film. The film thickness of the second layer film was adjusted by the solid content (heating residue) of the coating composition.

Figure 0005446057
Figure 0005446057

Figure 0005446057
Figure 0005446057

(2)クロムフリー化成処理層その2
表面処理組成物用の樹脂組成物(A)と、カチオン性ウレタン樹脂(旭電化工業(株)製「アデカボンタイタ−HUX−670」)(B)、シランカップリング剤として3−メルカプトプロピルトリメトキシシラン(C)、TiおよびZr化合物として硝酸ジルコニウム(D)、酸化合物として硝酸(E)を表3に示すような割合で配合し、攪拌機を用いて所要時間攪拌し、表面処理剤を調製した。ここで、樹脂組成物(A)には式(1)で表される水分散性樹脂を用いた。式(1)中、ベンゼン環に結合しているY1およびY2は、それぞれ互いに独立に水素、又は式(2)により表されるZ基である。樹脂組成を表4に示す。
(2) Chrome-free chemical conversion treatment layer 2
Resin composition (A) for surface treatment composition, cationic urethane resin ("Adekabon titer-HUX-670" manufactured by Asahi Denka Kogyo Co., Ltd.) (B), 3-mercaptopropyltrimethoxysilane as silane coupling agent (C), zirconium nitrate (D) as a Ti and Zr compound, and nitric acid (E) as an acid compound were blended in proportions as shown in Table 3, and stirred for a required time using a stirrer to prepare a surface treating agent. Here, the water dispersible resin represented by Formula (1) was used for the resin composition (A). In formula (1), Y1 and Y2 bonded to the benzene ring are each independently hydrogen or a Z group represented by formula (2). Table 4 shows the resin composition.

家電、建材、自動車部品用の有機被覆鋼板を得るため、板厚0.6〜1.2mmの冷延鋼板に各種亜鉛系めっきまたはアルミニウム系めっきを施しためっき鋼板を処理原板として用い、このめっき鋼板の表面をアルカリ脱脂処理及び水洗乾燥した後、所定の上記表面処理剤をロールコーターにより塗布し、水洗することなく130℃で加熱乾燥した。皮膜の付着量は、表面処理組成物の固形分(加熱残分)により調整した。   In order to obtain organic-coated steel sheets for home appliances, building materials, and automotive parts, the surface of this plated steel sheet is obtained by using a plated steel sheet with various zinc-based plating or aluminum-based plating applied to a cold-rolled steel sheet with a thickness of 0.6 to 1.2 mm as a processing base plate. After the alkaline degreasing treatment and washing with water and drying, a predetermined surface treatment agent was applied by a roll coater and dried by heating at 130 ° C. without washing with water. The adhesion amount of the film was adjusted by the solid content (heating residue) of the surface treatment composition.

Figure 0005446057
Figure 0005446057

Figure 0005446057
Figure 0005446057

Figure 0005446057
Figure 0005446057

Figure 0005446057
Figure 0005446057

(3)クロムフリー化成処理層その3
表面処理組成物用の樹脂組成物として下記に示す水性エポキシ樹脂分散液の製造にて得られたE1を用い、これにシランカップリング剤としてγ−アミノプロピルトリエトキシシラン(信越化学社(株)製「KBE-903」)、リン酸またはヘキサフルオロ金属酸としてリン酸、水溶性リン酸塩としてリン酸Al([カチオン]/[P2O5]=0.90)、非クロム系防錆添加剤としてカルシウム交換シリカ、固形潤滑剤としてポリエチレンワックス(日本精蝋(株)製「LUVAX1151」)を、表5に示すように適宜配合し、さらにアンモニア水、硝酸、酢酸、硫酸、リン酸、ヘキサフルオロ金属酸等でpHが0.5〜6にした後、攪拌機を用いて所要時間攪拌し、表面処理剤を調製した。
(3) Chrome-free chemical conversion treatment layer 3
As the resin composition for the surface treatment composition, E1 obtained by the production of the aqueous epoxy resin dispersion shown below was used, and γ-aminopropyltriethoxysilane (Shin-Etsu Chemical Co., Ltd.) was used as the silane coupling agent. "KBE-903"), phosphoric acid or phosphoric acid as hexafluorometal acid, phosphoric acid Al as water-soluble phosphate ([cation] / [P 2 O 5 ] = 0.90), non-chromium rust preventive additive Calcium exchanged silica as a solid lubricant and polyethylene wax (“LUVAX1151” manufactured by Nippon Seiwa Co., Ltd.) as a solid lubricant are appropriately blended as shown in Table 5, and further ammonia water, nitric acid, acetic acid, sulfuric acid, phosphoric acid, hexafluoro After the pH was adjusted to 0.5 to 6 with a metal acid or the like, the surface treatment agent was prepared by stirring for a required time using a stirrer.

上記表面処理剤をロールコーターにより、前記めっき鋼板に塗布し、水洗することなく130℃で加熱乾燥した。皮膜の付着量は、表面処理組成物の固形分(加熱残分)により調整した。   The surface treatment agent was applied to the plated steel sheet by a roll coater, and dried by heating at 130 ° C. without washing with water. The adhesion amount of the film was adjusted by the solid content (heating residue) of the surface treatment composition.

なお、水性エポキシ樹脂分散液E1は下記の方法にて製造した。   The aqueous epoxy resin dispersion E1 was produced by the following method.

温度計、撹拌機、冷却管を備えたガラス製4ツ口フラスコに、数平均分子量4,000のポリエチレングリコール1688gとメチルエチルケトン539g加え、60℃で撹拌混合し均一透明になった後、トリレンジイソシアネート171gを加え、2時間反応させた後、エピコート834X90(エポキシ樹脂、シェルジャパン社製、エポキシ当量250) 1121g、ジエチレングリコーリエチルエーテル66g及び1%ジブチルチンジラウレート溶液1.1gを添加しさらに2時間反応させた。その後80℃まで昇温し、3時間反応させてイソシアネート価が0.6以下になったことを確認した。その後90℃まで昇温し、減圧蒸留により固形分濃度が81.7%になるまでメチルエチルケトンを除去した。除去後、プロピレングリコールモノメチルエーテル659g、脱イオン水270gを加えて希釈し、固形分濃度76%のポリアルキレングリコール変性エポキシ樹脂溶液A1を得た。   To a glass four-necked flask equipped with a thermometer, a stirrer, and a condenser tube, 1688 g of polyethylene glycol having a number average molecular weight of 4,000 and 539 g of methyl ethyl ketone were added and stirred and mixed at 60 ° C., and then tolylene diisocyanate. After adding 171 g and reacting for 2 hours, Epicoat 834X90 (epoxy resin, manufactured by Shell Japan, epoxy equivalent 250) 1121 g, diethylene glycol ethyl ether 66 g and 1% dibutyltin dilaurate solution 1.1 g were further added for 2 hours. Reacted. Thereafter, the temperature was raised to 80 ° C. and reacted for 3 hours to confirm that the isocyanate value was 0.6 or less. Thereafter, the temperature was raised to 90 ° C., and methyl ethyl ketone was removed by distillation under reduced pressure until the solid content concentration reached 81.7%. After removal, 659 g of propylene glycol monomethyl ether and 270 g of deionized water were added and diluted to obtain a polyalkylene glycol-modified epoxy resin solution A1 having a solid content concentration of 76%.

次いで、EP1004(エポキシ樹脂、油化シェルエポキシ社製,エポキシ当量1000)2029gとプロピレングリコールモノブチルエーテル697gを四つ口フラスコに仕込み、110℃まで昇温して1時間で完全にエポキシ樹脂を溶解した。このものに、製造例1で得たポリアルキレングリコール変性エポキシ樹脂溶液A1を1180g及び3−アミノ−1,2,4−トリアゾール(分子量84)311.7g加えて100℃で5時間反応させた後、プロピレングリコールモノブチルエーテル719.6gを加えて樹脂溶液D1を得た。   Next, 2029 g of EP1004 (epoxy resin, manufactured by Yuka Shell Epoxy Co., Ltd., epoxy equivalent 1000) and 697 g of propylene glycol monobutyl ether were charged into a four-necked flask and heated to 110 ° C. to completely dissolve the epoxy resin in 1 hour. . After 1180 g of the polyalkylene glycol-modified epoxy resin solution A1 obtained in Production Example 1 and 311.7 g of 3-amino-1,2,4-triazole (molecular weight 84) were added to this product and reacted at 100 ° C. for 5 hours. Then, 719.6 g of propylene glycol monobutyl ether was added to obtain a resin solution D1.

該樹脂溶液D1を257.6gにMF−K60X(イソシアネート硬化剤、旭化成工業社製)50g及びScat24(硬化触媒)0.3gを混合しよく攪拌した後、水692.1gを少しずつ滴下・混合撹拌し、水性エポキシ樹脂分散液E1を得た。   257.6 g of the resin solution D1 was mixed with 50 g of MF-K60X (isocyanate curing agent, manufactured by Asahi Kasei Kogyo Co., Ltd.) and 0.3 g of Scat24 (curing catalyst), and then 692.1 g of water was dropped and mixed little by little. The mixture was stirred to obtain an aqueous epoxy resin dispersion E1.

Figure 0005446057
Figure 0005446057

上記により得られたクロムフリー化成処理に対して、目視、白色度などめっき皮膜の状態観察し、外観として評価した。また、脱脂前、脱脂後の塩水噴霧試験を行い、白錆面積率を求めた。各測定方法および評価基準は以下のとおりである。
外観
○ :基体より変化無し、又は白色度向上
× :亜鉛めっき皮膜の溶解が顕著、又は外観ムラ、又は白色度低下
脱脂前白錆面積率
各サンプルについて、塩水噴霧試験(JIS−Z−2371)を施し、144時間経過後の白錆面積率で評価した。
評価基準は以下の通りである。
With respect to the chromium-free chemical conversion treatment obtained as described above, the state of the plating film such as visual observation and whiteness was observed and evaluated as the appearance. Moreover, the salt spray test before degreasing and after degreasing was performed and the white rust area ratio was calculated | required. Each measurement method and evaluation criteria are as follows.
Appearance ○: No change from substrate or whiteness improvement ×: Dissolving of galvanized film is remarkable, or appearance unevenness, or whiteness is decreased. White rust area ratio before degreasing Each salt spray test (JIS-Z-2371) And the white rust area ratio after 144 hours was evaluated.
The evaluation criteria are as follows.

◎ :白錆面積率5%未満
○ :白錆面積率5%以上、10%未満
○−:白錆面積率10%以上、25%未満
△ :白錆面積率25%以上、50%未満
× :白錆面積率50%以上、100%以下
脱脂後白錆面積率
また、各サンプルを日本パーカライジング(株)製のアルカリ脱脂液CLN364S(60℃、スプレー2分)で処理した後、塩水噴霧試験(JIS−Z−2371)を実施、144時間経過後の白錆面積率で評価した。
評価基準は以下の通りである。
◎: White rust area ratio less than 5% ○: White rust area ratio 5% or more and less than 10% ○-: White rust area ratio 10% or more and less than 25% △: White rust area ratio 25% or more and less than 50% × : White rust area ratio 50% or more, 100% or less White rust area ratio after degreasing Further, each sample was treated with an alkaline degreasing solution CLN364S (60 ° C, spray 2 minutes) manufactured by Nihon Parkerizing Co., Ltd., and then a salt spray test (JIS-Z-2371) was carried out, and the white rust area ratio after 144 hours was evaluated.
The evaluation criteria are as follows.

◎ :白錆面積率5%未満
○ :白錆面積率5%以上、10%未満
○−:白錆面積率10%以上、25%未満
△ :白錆面積率25%以上、50%未満
× :白錆面積率50%以上、100%以下
得られた結果を表6に示す。
◎: White rust area ratio less than 5% ○: White rust area ratio 5% or more and less than 10% ○-: White rust area ratio 10% or more and less than 25% △: White rust area ratio 25% or more and less than 50% × : White rust area ratio 50% or more and 100% or less Table 6 shows the obtained results.

Figure 0005446057
Figure 0005446057

表6より、本発明例である実施例では、外観ムラがなく、脱脂前、脱脂後共に、白錆面積率が低く耐白錆性に優れていることがわかる。   From Table 6, it can be seen that in the examples of the present invention, there is no appearance unevenness, and the white rust area ratio is low and the white rust resistance is excellent both before and after degreasing.

一方、酸性溶液に接触する際の相対流速が本発明範囲外である比較例は、外観が劣っていた。表層酸化物層の形成を行わずに、そのまま化成処理層を同一条件で形成させた比較例では、脱脂前、脱脂後共に、白錆が高い割合で発生していた。   On the other hand, the comparative example in which the relative flow rate when contacting the acidic solution is outside the range of the present invention was inferior in appearance. In the comparative example in which the chemical conversion treatment layer was formed under the same conditions without forming the surface oxide layer, white rust was generated at a high rate both before and after degreasing.

硫酸アルミニウムまたは硝酸アルミニウムをイオン交換水に溶解させた溶液に60%硝酸と98%硫酸の添加量を種々変更して添加してpHを調整した。得られた酸性溶液に実施例1で用いた基体(電気亜鉛めっき鋼板)を、接触時間を5秒間、相対流速1m/秒で接触させた。次いで、浸漬法による水洗、乾燥を行った。
引き続き、この亜鉛めっき鋼板上に、クロムフリー化成処理を施し。化成処理鋼板を得た。施した化成処理層は、上記記載のクロムフリー化成処理層その3の方法により処理した。
The pH was adjusted by adding various amounts of 60% nitric acid and 98% sulfuric acid to a solution in which aluminum sulfate or aluminum nitrate was dissolved in ion-exchanged water. The substrate (electrogalvanized steel sheet) used in Example 1 was brought into contact with the obtained acidic solution at a relative flow rate of 1 m / sec for 5 seconds. Next, washing and drying were carried out by an immersion method.
Subsequently, this galvanized steel sheet was subjected to chromium-free chemical conversion treatment. A chemical conversion treated steel sheet was obtained. The applied chemical conversion treatment layer was processed by the above-described chromium-free chemical conversion treatment layer 3 method.

また比較例1として硫酸アルミニウムを添加せずに硝酸イオンと硫酸イオンの比率を2:8としてpH2に調整した液を作成し、この液に実施例1で用いた基体(電気亜鉛めっき鋼板)を、接触時間を5秒間、相対流速を1m/秒で接触させた。次いで、浸漬法による水洗、乾燥を行った。   Further, as Comparative Example 1, a solution adjusted to pH 2 with a ratio of nitrate ion to sulfate ion of 2: 8 without adding aluminum sulfate was prepared, and the substrate (electrogalvanized steel plate) used in Example 1 was added to this solution. The contact time was 5 seconds, and the relative flow rate was 1 m / second. Next, washing and drying were carried out by an immersion method.

引き続き、この亜鉛めっき鋼板上に、クロムフリー化成処理を施し、化成処理鋼板を得た(表7中−含有成分なしと記載)。施した化成処理層は、上記記載のクロムフリー化成処理層その3の方法により処理した。   Subsequently, a chromium-free chemical conversion treatment was performed on the galvanized steel sheet to obtain a chemical conversion-treated steel sheet (described in Table 7 as “no contained component”). The applied chemical conversion treatment layer was processed by the above-described chromium-free chemical conversion treatment layer 3 method.

さらに比較例2として、亜鉛めっきを形成した後、表面酸化物層の形成を行わずにそのまま化成処理層を実施例2と同一条件で形成させたサンプルを作成した(表7中−含有成分無処理と記載)。   Further, as Comparative Example 2, after forming the galvanized plate, a sample in which the chemical conversion treatment layer was formed as it was under the same conditions as in Example 2 without forming the surface oxide layer was prepared (in Table 7, no component included). Processing and description).

上記により得られたクロムフリー化成処理に対して、目視、白色度などめっき皮膜の状態観察し、外観として評価した。また、脱脂前、脱脂後の塩水噴霧試験を行い、白錆面積率を求めた。各測定方法および評価基準は実施例1と同様である。得られた結果を表7に示す。   With respect to the chromium-free chemical conversion treatment obtained as described above, the state of the plating film such as visual observation and whiteness was observed and evaluated as the appearance. Moreover, the salt spray test before degreasing and after degreasing was performed and the white rust area ratio was calculated | required. Each measurement method and evaluation criteria are the same as in Example 1. The results obtained are shown in Table 7.

Figure 0005446057
Figure 0005446057

表7より、本発明例である実施例では、外観ムラがなく、脱脂前、脱脂後共に、白錆面積率が低く耐白錆性に優れていることがわかる。   From Table 7, it can be seen that in the examples of the present invention, there is no appearance unevenness, and the white rust area ratio is low and excellent in white rust resistance both before and after degreasing.

一方、酸性溶液のpHが本発明範囲外である比較例、表層酸化物層の形成を行わず(含有成分なし、含有成分無処理)にそのまま化成処理層を同一条件で形成させた比較例ではは、外観が劣るか、脱脂前、脱脂後共に、白錆が高い割合で発生していた。   On the other hand, in the comparative example in which the pH of the acidic solution is outside the range of the present invention, in the comparative example in which the chemical conversion treatment layer is formed under the same conditions without forming the surface oxide layer (no component contained, no component contained) The appearance was poor, or white rust was generated at a high rate both before and after degreasing.

硫酸アルミニウムをイオン交換水に溶解させた溶液に60%の硝酸と98%硫酸を用いて硝酸イオンと硫酸イオンの比率が2:8になるようにしてpHを2に調整した。得られた酸性溶液に、実施例1で用いた基体(電気亜鉛めっき鋼板)を、接触時間を0秒(無処理)〜30秒間、相対流速1m/秒で接触させ。次いで、浸漬法による水洗、乾燥を行った。   The solution in which aluminum sulfate was dissolved in ion-exchanged water was adjusted to pH 2 using 60% nitric acid and 98% sulfuric acid so that the ratio of nitrate ion to sulfate ion was 2: 8. The substrate (electrogalvanized steel sheet) used in Example 1 was brought into contact with the obtained acidic solution at a relative flow rate of 1 m / sec for a contact time of 0 seconds (no treatment) to 30 seconds. Next, washing and drying were carried out by an immersion method.

引き続き、この亜鉛めっき鋼板上に、クロムフリー化成処理を施し、化成処理鋼板を得た。施した化成処理層は、上記記載のクロムフリー化成処理層その3の方法により処理した。   Subsequently, the galvanized steel sheet was subjected to chromium-free chemical conversion treatment to obtain a chemical conversion-treated steel sheet. The applied chemical conversion treatment layer was processed by the above-described chromium-free chemical conversion treatment layer 3 method.

なお、実施例3においては、溶解液との接触時間を5秒としたサンプルの化成処理前と化成処理後の各元素の含有率をオージェ電子分光(AES)により測定し、所定の深さまでArスパッタリングをした後、AESにより皮膜中の各元素の含有率の測定行い、これを繰り返すことにより、深さ方向の各元素の組成分布を測定した。尚、予備処理として30秒のArスパッタリングを行って、供試材表面のコンタミネイションレイヤーを除去した。その結果、表層に形成したAlが化成処理皮膜内にAlが分散していることを確認した。   In Example 3, the content of each element before and after the chemical conversion treatment of the sample with a contact time of 5 seconds with the solution was measured by Auger electron spectroscopy (AES), and Ar was reduced to a predetermined depth. After sputtering, the content of each element in the film was measured by AES, and the composition distribution of each element in the depth direction was measured by repeating this. In addition, as a pretreatment, Ar sputtering was performed for 30 seconds to remove the contamination layer on the surface of the test material. As a result, it was confirmed that Al formed on the surface layer was dispersed in the chemical conversion film.

さらに比較例として、亜鉛めっきを形成した後、表面酸化物層の形成を行わずにそのまま化成処理層を実施例3と同一条件で形成させたサンプルを作成した(表8中−含有成分無処理と記載)。   Further, as a comparative example, after forming the zinc plating, a sample in which the chemical conversion treatment layer was formed as it was under the same conditions as in Example 3 without forming the surface oxide layer was prepared (in Table 8,-no component included treatment) Described).

上記により得られたクロムフリー化成処理に対して、目視、白色度などめっき皮膜の状態観察し、外観として評価した。また、脱脂前、脱脂後の塩水噴霧試験を行い、白錆面積率を求めた。各測定方法および評価基準は実施例1と同様である。得られた結果を表8に示す。   With respect to the chromium-free chemical conversion treatment obtained as described above, the state of the plating film such as visual observation and whiteness was observed and evaluated as the appearance. Moreover, the salt spray test before degreasing and after degreasing was performed and the white rust area ratio was calculated | required. Each measurement method and evaluation criteria are the same as in Example 1. Table 8 shows the obtained results.

Figure 0005446057
Figure 0005446057

表8より、本発明例である実施例では、外観ムラがなく、脱脂前、脱脂後共に、白錆面積率が低く耐白錆性に優れていることがわかる。   From Table 8, it can be seen that in the examples of the present invention, there was no uneven appearance, and the white rust area ratio was low and excellent in white rust resistance both before and after degreasing.

一方、酸性溶液との接触時間が本発明範囲外である比較例では、外観が劣るか、脱脂前、脱脂後共に、白錆が高い割合で発生していた。   On the other hand, in the comparative example in which the contact time with the acidic solution is outside the range of the present invention, the appearance is poor, or white rust is generated at a high rate both before and after degreasing.

家電製品、自動車部品、あるいは建材等の耐食性、耐白錆が必要かつ不可欠な用途に適用できる。   It can be used in applications where corrosion resistance and white rust resistance are necessary and indispensable for home appliances, automobile parts, and building materials.

Claims (4)

鋼板表面より深さ50nm以内の亜鉛めっき層に、Mn、Mg、Al、Ce、In、Si、Ti、V、Zrの酸化物からなる1種又は2種以上を合計で2〜100mg/m含有し、
鋼板表面より深さ50nm超えの亜鉛めっき層はZn及び不可避的不純物からなることを特徴とする化成処理用亜鉛系めっき鋼板。
A total of 2 to 100 mg / m 2 of one or more of oxides of Mn, Mg, Al, Ce, In, Si, Ti, V, and Zr is applied to a galvanized layer having a depth of 50 nm or less from the steel sheet surface. Contains,
A galvanized steel sheet for chemical conversion treatment, characterized in that a galvanized layer having a depth exceeding 50 nm from the steel sheet surface is composed of Zn and inevitable impurities.
亜鉛めっき鋼板を、Mn、Mg、Al、Ce、In、Si、Ti、V、Zrの1種又は2種以上と、硝酸イオン及び硫酸イオンを含み、前記硝酸イオンと前記硫酸イオンの存在比率が0.5:9.5〜8:2であり、pH0.5以上pH3.5以下である酸性溶液に、鋼板と酸性溶液との相対流速が0.5m/秒以上で、接触時間が0.5〜20秒間、接触させた後、水洗することを特徴とする請求項1に記載の化成処理用亜鉛系めっき鋼板の製造方法。   The galvanized steel sheet includes one or more of Mn, Mg, Al, Ce, In, Si, Ti, V, and Zr, and nitrate ions and sulfate ions, and the abundance ratio of the nitrate ions and the sulfate ions is 0.5: 9.5 to 8: 2, and an acidic solution having a pH of 0.5 or more and a pH of 3.5 or less has a relative flow rate of 0.5 m / sec or more between the steel plate and the acidic solution, and a contact time of 0.5. The method for producing a galvanized steel sheet for chemical conversion treatment according to claim 1, wherein the galvanized steel sheet for chemical conversion treatment is washed with water after contacting for 5 to 20 seconds. 請求項1に記載の化成処理用亜鉛系めっき鋼板と、
該化成処理用亜鉛系めっき鋼板上に形成されたクロムフリー化成処理層と、を有することを特徴とする化成処理鋼板。
The zinc-based plated steel sheet for chemical conversion treatment according to claim 1,
And a chromium-free chemical conversion treatment layer formed on the galvanized steel plate for chemical conversion treatment.
亜鉛めっき鋼板を、Mn、Mg、Al、Ce、In、Si、Ti、V、Zrの1種又は2種以上と、硝酸イオン及び硫酸イオンを含み、前記硝酸イオンと前記硫酸イオンの存在比率が0.5:9.5〜8:2であり、pH0.5以上pH3.5以下である酸性溶液に、鋼板と酸性溶液との相対流速が0.5m/秒以上で、接触時間が0.5〜20秒間、接触させた後、水洗し、次いで、化成処理することを特徴とする請求項3に記載の化成処理鋼板の製造方法。   The galvanized steel sheet includes one or more of Mn, Mg, Al, Ce, In, Si, Ti, V, and Zr, and nitrate ions and sulfate ions, and the abundance ratio of the nitrate ions and the sulfate ions is In an acidic solution having a pH of 0.5 to 9.5 to 8: 2 and a pH of 0.5 or more and a pH of 3.5 or less, the relative flow rate between the steel plate and the acidic solution is 0.5 m / second or more, and the contact time is 0.00. The method for producing a chemical conversion treated steel sheet according to claim 3, wherein the steel sheet is contacted for 5 to 20 seconds, washed with water, and then subjected to chemical conversion treatment.
JP2005081172A 2005-03-22 2005-03-22 Zinc-based galvanized steel sheet for chemical conversion treatment, method for producing the same, and chemical conversion treated steel sheet Expired - Fee Related JP5446057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005081172A JP5446057B2 (en) 2005-03-22 2005-03-22 Zinc-based galvanized steel sheet for chemical conversion treatment, method for producing the same, and chemical conversion treated steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005081172A JP5446057B2 (en) 2005-03-22 2005-03-22 Zinc-based galvanized steel sheet for chemical conversion treatment, method for producing the same, and chemical conversion treated steel sheet

Publications (2)

Publication Number Publication Date
JP2006265578A JP2006265578A (en) 2006-10-05
JP5446057B2 true JP5446057B2 (en) 2014-03-19

Family

ID=37201850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005081172A Expired - Fee Related JP5446057B2 (en) 2005-03-22 2005-03-22 Zinc-based galvanized steel sheet for chemical conversion treatment, method for producing the same, and chemical conversion treated steel sheet

Country Status (1)

Country Link
JP (1) JP5446057B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008105052A1 (en) * 2007-02-26 2010-06-03 日本パーカライジング株式会社 Composition and treatment liquid for surface treatment of metal material, surface treatment metal material, painted metal material, and production method thereof
JP4988434B2 (en) * 2007-05-28 2012-08-01 関西ペイント株式会社 Coating composition with excellent corrosion resistance
JP5046799B2 (en) 2007-08-27 2012-10-10 株式会社神戸製鋼所 Non-chromate chemical conversion electroplated steel sheet with excellent white rust resistance
JP5466357B2 (en) 2007-10-09 2014-04-09 インターナショナル・ビジネス・マシーンズ・コーポレーション Apparatus and method for supporting creation of electronic document
JP2009209419A (en) * 2008-03-05 2009-09-17 Nisshin Steel Co Ltd Electrogalvanized steel having excellent color tone and method of manufacturing the same
JP5123052B2 (en) * 2008-05-26 2013-01-16 日本パーカライジング株式会社 Surface chemical conversion solution, chemical conversion metal plate and method for producing the same, and upper-layer metal plate and method for producing the same
JP5638191B2 (en) * 2008-11-05 2014-12-10 日本パーカライジング株式会社 Chemical conversion treated metal plate and manufacturing method thereof
JP5515506B2 (en) * 2009-08-14 2014-06-11 Jfeスチール株式会社 Method for producing electrogalvanized steel sheet
JP2011111633A (en) * 2009-11-24 2011-06-09 Jfe Steel Corp Method for producing zinc based composite electroplated steel sheet
JP5609587B2 (en) * 2010-11-29 2014-10-22 Jfeスチール株式会社 Electrogalvanized steel sheet and method for producing the same
JP5927995B2 (en) * 2012-03-02 2016-06-01 Jfeスチール株式会社 Method for producing galvanized steel sheet
JP2013204054A (en) * 2012-03-27 2013-10-07 Nisshin Steel Co Ltd METHOD OF MANUFACTURING CHEMICAL CONVERSION TREATMENT Zn-BASED PLATED STEEL PLATE, CHEMICAL CONVERSION TREATMENT Zn-BASED PLATED STEEL PLATE OBTAINED BY THE SAME, AND COATING Zn-BASED PLATED STEEL PLATE
JP6115548B2 (en) * 2014-11-13 2017-04-19 Jfeスチール株式会社 Method for producing electrogalvanized steel sheet
JP2016204695A (en) * 2015-04-20 2016-12-08 Jfeスチール株式会社 Manufacturing method of electrogalvanized sheet steel
JP6296210B2 (en) * 2015-12-28 2018-03-20 新日鐵住金株式会社 Hot-dip galvanized steel sheet and manufacturing method thereof
CN108603262B (en) * 2016-01-27 2020-03-20 杰富意钢铁株式会社 High yield ratio type high strength galvanized steel sheet and method for producing same
JP6203924B2 (en) * 2016-10-05 2017-09-27 日新製鋼株式会社 Pre-treated Zn-based plated steel sheet and painted Zn-based plated steel sheet
WO2019189849A1 (en) 2018-03-30 2019-10-03 Jfeスチール株式会社 High-strength galvanized steel sheet, high-strength member, and manufacturing methods therefor
WO2021074672A1 (en) * 2019-10-16 2021-04-22 Arcelormittal Metal sheet treatment method and metal sheet treated with this method

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918477B2 (en) * 1979-10-24 1984-04-27 日本ペイント株式会社 Metal surface chemical conversion treatment method
JPS6029476A (en) * 1983-07-27 1985-02-14 Nippon Paint Co Ltd Phosphation of galvanized steel sheet
JPH0635678B2 (en) * 1989-12-12 1994-05-11 新日本製鐵株式会社 Galvanized steel sheet with excellent pressability and chemical conversion treatability
JPH0696779B2 (en) * 1990-02-28 1994-11-30 新日本製鐵株式会社 Galvanized steel sheet with excellent press formability and chemical conversion treatment
JP2691797B2 (en) * 1990-11-10 1997-12-17 新日本製鐵株式会社 Galvanized steel sheet with excellent press formability and chemical conversion treatment
JPH0696783B2 (en) * 1990-04-03 1994-11-30 新日本製鐵株式会社 Galvanized steel sheet with excellent press formability, chemical conversion treatment and weldability
JPH04301082A (en) * 1991-03-28 1992-10-23 Nippon Parkerizing Co Ltd Chemical conversion treatment of aluminum metal plate with zinc phosphate
JPH04325664A (en) * 1991-04-26 1992-11-16 Nippon Steel Corp Production of zinc surface treated steel sheet excellent in spot weldability
JPH0762554A (en) * 1993-08-20 1995-03-07 Nippon Parkerizing Co Ltd Method for blackening galvanized material
JP3204823B2 (en) * 1993-11-11 2001-09-04 日本パーカライジング株式会社 Method of forming zinc phosphate composite coating layer with excellent high-speed press formability on zinc-containing metal plated steel sheet
JPH07197277A (en) * 1994-01-06 1995-08-01 Nippon Steel Corp Galvanized steel sheet having excellent spot weldability
JPH08218195A (en) * 1995-02-09 1996-08-27 Kobe Steel Ltd Production of zinc-base electroplated steel sheet excellent in chemical convertibility
JP3191647B2 (en) * 1995-11-21 2001-07-23 日本鋼管株式会社 Manufacturing method of galvanized steel sheet
JP3111920B2 (en) * 1997-03-19 2000-11-27 日本鋼管株式会社 Galvanized steel sheet with excellent press formability and adhesion
JP3111921B2 (en) * 1997-03-19 2000-11-27 日本鋼管株式会社 Galvanized steel sheet with excellent press formability
JP3898302B2 (en) * 1997-10-03 2007-03-28 日本パーカライジング株式会社 Surface treatment agent composition for metal material and treatment method
JP3908845B2 (en) * 1998-01-07 2007-04-25 日本パーカライジング株式会社 Surface treatment method for hot dip galvanized steel sheet
JP3903594B2 (en) * 1998-05-20 2007-04-11 Jfeスチール株式会社 Manufacturing method of surface-treated steel sheet with excellent corrosion resistance
JP4258924B2 (en) * 1999-11-29 2009-04-30 Jfeスチール株式会社 Phosphate conversion treatment method for galvanized steel sheet
JP2002047579A (en) * 2000-07-31 2002-02-15 Kobe Steel Ltd Surface-treated metallic material excellent in black appearance
JP4087699B2 (en) * 2002-12-27 2008-05-21 Jfeスチール株式会社 Pre-coated steel sheet with excellent environmental harmony, sliding-part peel resistance and corrosion resistance
JP4079768B2 (en) * 2002-12-27 2008-04-23 Jfeスチール株式会社 Pre-coated steel sheet with excellent environmental harmony and corrosion resistance
JP4079767B2 (en) * 2002-12-27 2008-04-23 Jfeスチール株式会社 Pre-coated steel sheet with excellent environmental harmony, sliding-part peel resistance and corrosion resistance
JP2004263252A (en) * 2003-03-03 2004-09-24 Jfe Steel Kk Chromium-free chemically treated steel sheet excellent in resistance to white rust

Also Published As

Publication number Publication date
JP2006265578A (en) 2006-10-05

Similar Documents

Publication Publication Date Title
JP5446057B2 (en) Zinc-based galvanized steel sheet for chemical conversion treatment, method for producing the same, and chemical conversion treated steel sheet
EP1902157B1 (en) Chrome-free composition of low temperature curing for treating a metal surface and a metal sheet using the same
JP4105765B2 (en) Corrosion-resistant surface-treated metal material and surface treatment agent therefor
EP2940186B1 (en) Surface treatment composition for galvanized steel sheet, surface treatment method for galvanized steel sheet, and galvanised steel sheet
WO2010001861A1 (en) Chemical conversion liquid for metal structure and surface treating method
JP2006213958A (en) Composition for surface treatment of metallic material, and treatment method
JP2010090407A (en) Liquid for treating metal surface, and method for treating metal surface
JP5661238B2 (en) Surface-treated galvanized steel sheet
JP4970773B2 (en) Metal surface treatment agent, metal material surface treatment method and surface treatment metal material
JP2011068996A (en) Composition for surface treatment of metallic material, and treatment method
KR20070103492A (en) Surface-treated metallic material
JPH10251509A (en) Metal surface treating solution and surface treated metal plate
JP4615807B2 (en) Manufacturing method of surface-treated steel sheet, surface-treated steel sheet, and resin-coated surface-treated steel sheet
JP3952198B2 (en) Metal surface treatment method and galvanized steel sheet
JP4509425B2 (en) Paint surface treatment agent, surface treatment method, metal material, processing method, and metal product
JP3903594B2 (en) Manufacturing method of surface-treated steel sheet with excellent corrosion resistance
JP5097311B2 (en) Surface-treated steel sheet and organic resin-coated steel sheet
JP3993729B2 (en) Metal plate material excellent in corrosion resistance, paintability, fingerprint resistance and workability, and manufacturing method thereof
JP4916913B2 (en) Surface-treated steel sheet and organic resin-coated steel sheet
JP4992385B2 (en) Organic resin-coated phosphate-treated zinc-based plated steel sheet and method for producing the same
JPWO2002061175A1 (en) Surface treatment agent for metal material and surface treatment method
JP5101271B2 (en) Surface-treated steel sheet
JPH10337530A (en) Organic surface-treated metal plate and organic metal surface treating liquid
JP4344219B2 (en) Inorganic organic composite-treated zinc-coated steel sheet with excellent corrosion resistance after electrodeposition coating
JP3449283B2 (en) Galvanized steel sheet excellent in press formability and its manufacturing method

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120210

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131216

R150 Certificate of patent or registration of utility model

Ref document number: 5446057

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees