JP5325734B2 - Conductive member and manufacturing method thereof - Google Patents

Conductive member and manufacturing method thereof Download PDF

Info

Publication number
JP5325734B2
JP5325734B2 JP2009231258A JP2009231258A JP5325734B2 JP 5325734 B2 JP5325734 B2 JP 5325734B2 JP 2009231258 A JP2009231258 A JP 2009231258A JP 2009231258 A JP2009231258 A JP 2009231258A JP 5325734 B2 JP5325734 B2 JP 5325734B2
Authority
JP
Japan
Prior art keywords
layer
plating
intermetallic compound
alloy
conductive member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009231258A
Other languages
Japanese (ja)
Other versions
JP2011063875A (en
Inventor
健 櫻井
誠一 石川
賢治 久保田
隆士 玉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Shindoh Co Ltd
Original Assignee
Mitsubishi Shindoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Shindoh Co Ltd filed Critical Mitsubishi Shindoh Co Ltd
Priority to JP2009231258A priority Critical patent/JP5325734B2/en
Publication of JP2011063875A publication Critical patent/JP2011063875A/en
Application granted granted Critical
Publication of JP5325734B2 publication Critical patent/JP5325734B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、電気接続用コネクタ等に用いられ、Cu又はCu合金からなる基材の表面に複数のめっき層を形成した導電部材及びその製造方法に関する。   The present invention relates to a conductive member used for an electrical connection connector or the like, in which a plurality of plating layers are formed on the surface of a base material made of Cu or Cu alloy, and a method for manufacturing the same.

自動車の電気接続用コネクタやプリント基板の接続端子等に用いられる導電部材として、電気接続特性の向上等のために、Cu又はCu合金からなるCu系基材の表面にSn系金属のめっきを施したものが多く使用されている。
そのような導電部材として、例えば特許文献1又は特許文献2記載のものがある。これら特許文献記載の導電部材は、Cu又はCu合金からなる基材の表面にNi、Cu、Snを順にめっきして3層のめっき層を形成した後に、加熱してリフロー処理することにより、最表面層にSn層が形成され、Ni層とSn層との間にCu−Sn金属間化合物層(例えばCuSn)が形成された構成とされている。
As a conductive member used for automobile electrical connectors and printed circuit board connection terminals, Sn-based metal plating is applied to the surface of a Cu-based substrate made of Cu or a Cu alloy for the purpose of improving electrical connection characteristics. Many of them have been used.
Examples of such a conductive member include those described in Patent Document 1 or Patent Document 2. The conductive members described in these patent documents are formed by plating Ni, Cu, Sn on the surface of a base material made of Cu or Cu alloy in order to form a three-layered plating layer, and then heating and performing a reflow treatment. An Sn layer is formed on the surface layer, and a Cu—Sn intermetallic compound layer (for example, Cu 6 Sn 5 ) is formed between the Ni layer and the Sn layer.

また、特許文献3には、このような3層めっきしてリフロー処理した導電部材において、Niめっき相中の酸素濃度が0.3〜1.5質量%としたものが記載されている。この特許文献3の記載によると、Ni相中の酸素濃度はSnめっき材の耐熱性に影響を与えるため、適切な範囲に制御する必要がある。酸素濃度が0.3質量%未満では、母材である銅又は銅合金中のCuがSn相へ拡散し易く、Cu−Sn合金相の成長を助長し、接触抵抗の経時劣化を進行させる。一方、酸素濃度が1.5質量%を超えるとNi相が脆化し、端子等の成型加工時にめっき皮膜にクラックが入り、割れの原因となったり、Ni相とその直上のCu−Sn合金相との密着性が低下し、高温で長時間保持したときにめっきの剥離(熱剥離)が発生したりする。   Patent Document 3 describes a conductive member subjected to such a three-layer plating and reflow treatment in which the oxygen concentration in the Ni plating phase is 0.3 to 1.5% by mass. According to the description in Patent Document 3, the oxygen concentration in the Ni phase affects the heat resistance of the Sn plating material, and thus needs to be controlled within an appropriate range. If the oxygen concentration is less than 0.3% by mass, Cu in the base material or Cu in the copper alloy easily diffuses into the Sn phase, promotes the growth of the Cu—Sn alloy phase, and causes the contact resistance to deteriorate over time. On the other hand, when the oxygen concentration exceeds 1.5% by mass, the Ni phase becomes brittle and cracks occur in the plating film during molding of terminals and the like, causing cracks, or the Ni phase and the Cu—Sn alloy phase immediately above it. The adhesion of the metal is reduced, and peeling of the plating (thermal peeling) occurs when kept at a high temperature for a long time.

特許第3880877号公報Japanese Patent No. 3880877 特許第4090488号公報Japanese Patent No. 4090488 特開2009−97050号公報JP 2009-97050 A

このようなコネクタや端子が自動車のエンジン廻りのような例えば150℃程度にまで達する高温環境下で使用される場合、その高温に長時間さらされることにより、SnとCuとが互いに熱拡散して表面状態が経時変化し易く、接触抵抗が上昇する傾向がある。また、Cu系基材の表面にCuの拡散によってカーケンダルボイドが発生して、剥離が生じるおそれもあり、これらの解決が望まれている。特許文献3記載の導電部材により、ある程度の耐熱性向上は図られるが、さらなる改善が求められる。
一方、コネクタに用いる場合には、回路の高密度化に伴いコネクタも多極化し、自動車配線の組み立て時の挿入力が大きくなってきているため、挿抜力を小さくすることができる導電部材が求められている。
When such a connector or terminal is used in a high-temperature environment such as around an automobile engine, for example, reaching about 150 ° C., Sn and Cu are thermally diffused by being exposed to the high temperature for a long time. The surface state tends to change with time, and the contact resistance tends to increase. Further, Kirkendall voids are generated on the surface of the Cu-based substrate due to the diffusion of Cu, and peeling may occur. These solutions are desired. Although the heat resistance is improved to some extent by the conductive member described in Patent Document 3, further improvement is required.
On the other hand, when used for a connector, as the circuit density increases, the connector also becomes multipolar, and the insertion force at the time of assembling the automobile wiring has increased. Therefore, a conductive member that can reduce the insertion / extraction force is required. ing.

本出願人は、先に特願2009−9752号を出願し、安定した接触抵抗を有するとともに、剥離し難く、また、コネクタとして用いる場合に挿抜力を小さくかつ安定させることができる導電部材及びその製造方法を提供した。   The present applicant has previously filed Japanese Patent Application No. 2009-9752, which has a stable contact resistance, is difficult to peel off, and can be used as a connector to reduce and stabilize the insertion / extraction force and its conductive member A manufacturing method was provided.

本発明はこの出願に係る発明の改良であり、特にNi下地めっき層に着目し、導電部材として更に耐熱性を高めることを目的とし、さらに、柔軟性(曲げ加工性)の向上を図る。   The present invention is an improvement of the invention according to this application. In particular, focusing on the Ni undercoat layer, it aims to further improve the heat resistance as a conductive member, and further improves the flexibility (bending workability).

本発明者らは、耐熱性低下の原因は、高温時に、Ni層中のNiと表面Sn層との相互拡散が起きるためであり、NiがCu−Sn金属間化合物層を介してSn層に拡散するとNi層中に欠陥が生じて母材であるCuの上層への拡散が起き、カーケンダルボイドも生じると考えた。
そこで、従来のめっき表面を分析したところ、従来技術のめっき材の断面は母材の銅又は銅合金、Ni層、CuSn層、Sn系表面層の3層構造となっているが、Ni層の上のごく一部にCuSn層が存在することを確認した。そして、このCuSn層とCuSn層とがNi層の上に所定の状態で混在していることが、高温時の接触抵抗、カーケンダルボイドの発生、コネクタでの使用時の挿抜力に影響することを見出した。
また、バリア層としてさらに強固なNi層を追及するために、Ni層中のX線回折による結晶面の相対X線強度との関係を調べたところ、(220)強度が5〜60%であると、Ni層のNiのCu−Sn金属間化合物層への拡散(移動)が殆んど起きないことを見出した。
In the present inventors, the cause of the decrease in heat resistance is that Ni in the Ni layer and the surface Sn layer occur at high temperatures, and Ni enters the Sn layer via the Cu-Sn intermetallic compound layer. It was considered that when the diffusion occurred, defects were generated in the Ni layer, diffusion to the upper layer of the base material Cu, and Kirkendall voids also occurred.
Therefore, when analyzing the conventional plating surface, the cross section of the plating material of the prior art has a three-layer structure of the base material copper or copper alloy, Ni layer, Cu 6 Sn 5 layer, Sn-based surface layer, It was confirmed that a Cu 3 Sn layer was present in a very small part on the Ni layer. The Cu 6 Sn 5 layer and the Cu 3 Sn layer are mixed in a predetermined state on the Ni layer, so that contact resistance at high temperatures, generation of Kirkendall voids, insertion / removal when used in connectors I found that it affects power.
Further, in order to pursue a stronger Ni layer as a barrier layer, the relationship with the relative X-ray intensity of the crystal plane by X-ray diffraction in the Ni layer was examined, and the (220) intensity was 5 to 60%. Then, it was found that the Ni (Ni) in the Ni layer hardly diffuses (moves) into the Cu-Sn intermetallic compound layer.

更に、バリア層としてNi層中にホウ素が含有されていないものの方が、Ni層の曲げ加工性を著しく向上させ、コネクタ雌端子等の柔軟性を必要とする使用に好適であることがわかった。
即ち、Ni層として、X線回折による結晶面の相対X線強度において(220)強度が5〜60%であり、更に、ホウ素フリーであることにて、バリア層として強固で柔軟な下地層となり得ることがわかった。
また、ホウ素については、最近の排水規制の強化の面からもNiめっき浴中に含まれないことが好ましい。
Further, it has been found that the Ni layer containing no boron as the barrier layer is more suitable for use requiring the flexibility of the connector female terminal and the like because the bending workability of the Ni layer is remarkably improved. .
That is, the Ni layer has a (220) intensity of 5 to 60% in the relative X-ray intensity of the crystal plane by X-ray diffraction, and is boron-free, thereby providing a strong and flexible underlayer as a barrier layer. I knew I would get it.
Further, it is preferable that boron is not included in the Ni plating bath from the viewpoint of strengthening of recent drainage regulations.

このような知見の下本発明の導電部材は、Cu系基材の表面に、Ni系下地層を介して、Cu−Sn金属間化合物層、Sn系表面層がこの順に形成されるとともに、Cu−Sn金属間化合物層はさらに、前記Ni系下地層の上に配置されるCuSn層と、該CuSn層の上に配置されるCuSn層とからなり、これらCuSn層及びCuSn層を合わせた前記Cu−Sn金属間化合物層の前記Sn系表面層と接する面に凹凸を有しており、その凹部の厚さが0.05〜1.5μmとされ、かつ、前記Ni系下地層に対するCuSn層の面積被覆率が60%以上であり、前記Cu−Sn金属間化合物層の前記凹部に対する凸部の厚さの比率が1.2〜5であり、前記CuSn層の平均厚さは0.01〜0.5μmであり、また、前記Ni系下地層のX線回折による結晶面の相対X線強度において、(220)強度が5〜60%であることを特徴とする。 Under such knowledge, the conductive member of the present invention has a Cu-Sn intermetallic compound layer and a Sn-based surface layer formed in this order on the surface of a Cu-based substrate via a Ni-based underlayer. The -Sn intermetallic compound layer further comprises a Cu 3 Sn layer disposed on the Ni-based underlayer and a Cu 6 Sn 5 layer disposed on the Cu 3 Sn layer. These Cu 3 Sn The surface of the Cu-Sn intermetallic compound layer combined with the Cu 6 Sn 5 layer is in contact with the Sn-based surface layer, and the thickness of the recess is 0.05 to 1.5 μm. and, the area coverage of the Cu 3 Sn layer to Ni-based base layer is 60% or more, the thickness ratio of the convex portion to the concave portion of the Cu-Sn intermetallic compound layer at 1.2 to 5 There, the average thickness of the Cu 3 Sn layer 0.01~0.5μm There, and in the relative X-ray intensity of the crystal plane by X-ray diffraction of the Ni-based base layer, characterized in that (220) intensity is 5% to 60%.

この導電部材は、Ni系下地層とSn系表面層との間のCu−Sn金属間化合物層が、CuSn層とCuSn層との二層構造とされ、その下層のCuSn層がNi系下地層を覆い、その上から被さるようにCuSn層が存在している。このCuSn合金層とCuSn層とを合わせたCu−Sn金属間化合物層は、その膜厚が必ずしも一様ではなく、凹凸を有しているが、その凹部の厚さが0.05〜1.5μmであることが重要である。0.05μm未満では、高温時に凹部からSnがNi系下地層へと拡散し、Ni系下地層に欠損が発生するおそれがあり、その欠損により、基材のCuが拡散してCuSn層が表面まで達し、表面にCu酸化物が形成されることにより、接触抵抗が増大することになる。また、このとき、Ni系下地層の欠損部からのCuの拡散により、カーケンダルボイドが発生し易い。一方、凹部の厚さが1.5μmを超えると、Cu−Sn合金層がもろくなり、曲げ加工時にめっき皮膜の剥離が発生しやすくなる。したがって、Cu−Sn金属間化合物層の凹部の厚さは、0.05〜1.5μmが望ましい。 In this conductive member, the Cu—Sn intermetallic compound layer between the Ni-based underlayer and the Sn-based surface layer has a two-layer structure of a Cu 3 Sn layer and a Cu 6 Sn 5 layer, and the lower Cu 3 layer. The Cu 6 Sn 5 layer is present so that the Sn layer covers the Ni-based underlayer and covers it. The Cu—Sn intermetallic compound layer formed by combining the Cu 3 Sn alloy layer and the Cu 6 Sn 5 layer is not necessarily uniform in film thickness and has irregularities, but the thickness of the recesses is 0. It is important that the thickness is 0.05 to 1.5 μm. If it is less than 0.05 μm, Sn diffuses from the recesses to the Ni-based underlayer at high temperatures, and there is a risk of defects occurring in the Ni-based underlayer. Due to the defects, Cu of the base material diffuses to form Cu 6 Sn 5. When the layer reaches the surface and Cu oxide is formed on the surface, the contact resistance is increased. Further, at this time, Kirkendall voids are likely to be generated due to diffusion of Cu from the defect portion of the Ni-based underlayer. On the other hand, when the thickness of the recess exceeds 1.5 μm, the Cu—Sn alloy layer becomes brittle, and the plating film is easily peeled off during bending. Therefore, the thickness of the concave portion of the Cu—Sn intermetallic compound layer is desirably 0.05 to 1.5 μm.

そして、このように所定の厚さのCu−Sn金属間化合物層がSn系表面層の下層に配置されることにより、柔軟なSnの下地を硬くして、多極コネクタなどで使用したときの挿抜力の低減及びそのバラツキの抑制を図ることができる。
また、Ni系下地層に対するCuSn層の面積被覆率が60%以上としたのは、その被覆率が低いと、被覆されていない部分から高温時にNi系下地層のNi原子がCuSn層に拡散して、Ni系下地層に欠損が発生し、その欠損部分から基材のCuが拡散することにより上記の場合と同様に接触抵抗の増大やカーケンダルボイドの発生を招くからである。この高温時の接触抵抗の増大やカーケンダルボイドの発生を防止して、従来技術以上の耐熱性を実現するためには、Ni系下地層が少なくとも60%以上被覆されていることが必要であり、さらに80%以上の面積被覆率とすることが望ましい。
And when the Cu—Sn intermetallic compound layer having a predetermined thickness is arranged in the lower layer of the Sn-based surface layer in this way, the flexible Sn base is hardened and used in a multipolar connector or the like. Reduction of insertion / extraction force and suppression of variation thereof can be achieved.
The reason why the area coverage of the Cu 3 Sn layer with respect to the Ni-based underlayer is 60% or more is that when the coverage is low, the Ni atoms in the Ni-based underlayer are Cu 6 Sn at high temperatures from the uncoated portion. This is because the Ni-based underlayer is deficient in five layers and the Cu of the base material diffuses from the deficient portion, resulting in increased contact resistance and generation of Kirkendall voids as in the above case. is there. In order to prevent this increase in contact resistance at high temperatures and the generation of Kirkendall voids and to achieve heat resistance higher than that of the prior art, it is necessary that the Ni-based underlayer is coated at least 60% or more. Further, it is desirable that the area coverage is 80% or more.

また、Cu−Sn金属間化合物層の凹部に対する凸部の厚さの比率が小さくなってCu−Sn金属間化合物層の凹凸が少なくなると、コネクタ使用時の挿抜力が低減して好ましいが、これが1.2未満であると、Cu−Sn金属間化合物層の凹凸がほとんどなくなってCu−Sn金属間化合物層が著しく脆くなり、曲げ加工時に皮膜の剥離が発生し易くなるため好ましくない。また、5を超え、Cu−Sn金属間化合物層の凹凸が大きくなると、コネクタとして用いたときの挿抜時にCu−Sn金属間化合物層の凹凸が抵抗となるため、挿抜力を低減する効果が乏しい。
また、Ni系下地層を被覆しているCuSn層の平均厚みが0.01μm未満であると、Ni系下地層の拡散を抑える効果が乏しい。また、CuSn層の厚みが0.5μmを超えると、高温時にCuSn層がCuSn層に変化し、Sn系表面層を減少させ、接触抵抗が高くなるため好ましくない。
この平均厚さは、CuSn層の部分で、その厚さを複数個所測定したときの平均値である。
Moreover, when the ratio of the thickness of the convex portion to the concave portion of the Cu-Sn intermetallic compound layer is reduced and the unevenness of the Cu-Sn intermetallic compound layer is reduced, the insertion / extraction force during use of the connector is reduced, which is preferable. When the ratio is less than 1.2, the unevenness of the Cu—Sn intermetallic compound layer is almost eliminated, the Cu—Sn intermetallic compound layer becomes extremely brittle, and peeling of the film easily occurs during bending, which is not preferable. Moreover, when the unevenness of the Cu—Sn intermetallic compound layer exceeds 5, and the unevenness of the Cu—Sn intermetallic compound layer becomes resistance during insertion / extraction when used as a connector, the effect of reducing the insertion / extraction force is poor. .
Further, if the average thickness of the Cu 3 Sn layer covering the Ni-based underlayer is less than 0.01 μm, the effect of suppressing the diffusion of the Ni-based underlayer is poor. On the other hand, if the thickness of the Cu 3 Sn layer exceeds 0.5 μm, the Cu 3 Sn layer changes to a Cu 6 Sn 5 layer at a high temperature, which decreases the Sn-based surface layer and increases the contact resistance.
This average thickness is an average value when the thickness of the Cu 3 Sn layer portion is measured at a plurality of locations.

このような導電部材において、Ni系下地層中のX線回折による結晶面の相対X線強度において、(220)強度が5〜60%であるとNi系下地層のNiがCu−Sn金属間化合物層へ拡散(移動)することを防止することができ、Cu−Sn金属間化合物層を介してSn系表面層へ拡散することも殆んど防止できる。そのX線強度が30%未満では効果がなく、60%を超えるとNi系下地層自体の強度及び平滑性が悪くなる。
しかも、前述したように二層構造のCu−Sn金属間化合物層によりNi系下地層の欠損を防止していることと相俟って、バリア機能の高いNi系下地層となり、NiとSnとの反応は殆ど起きることはない。
In such a conductive member, in the relative X-ray intensity of the crystal plane by X-ray diffraction in the Ni-based underlayer, when the (220) intensity is 5 to 60%, Ni in the Ni-based underlayer is between the Cu and Sn metals. Diffusion (migration) to the compound layer can be prevented, and diffusion to the Sn-based surface layer via the Cu—Sn intermetallic compound layer can be almost prevented. If the X-ray intensity is less than 30%, there is no effect, and if it exceeds 60%, the strength and smoothness of the Ni-based underlayer itself deteriorate.
In addition, as described above, the Ni-based underlayer having a high barrier function is combined with the fact that the Ni-based underlayer is prevented from being damaged by the Cu-Sn intermetallic compound layer having a two-layer structure. This reaction hardly occurs.

また、本発明の導電部材は、Ni系下地層がホウ素を含有していないのが好ましい。
Ni系下地層中にホウ素が含有されていないものの方が、Ni層の曲げ加工性を向上させ、コネクタ雌端子等の柔軟性を必要とする使用に好適だからである。
ホウ素は従来からNiめっき浴の成分として使用され、Niめっき層への混在にてめっき皮膜強度を高くし、Niの上層への拡散を防ぐ効果もあるが、逆にめっき皮膜の柔軟性をなくし、最近の排水規制の強化の面からも使用が制限される。
In the conductive member of the present invention, the Ni-based underlayer preferably does not contain boron.
This is because the Ni-based underlayer containing no boron is more suitable for use in which the Ni layer bending workability is improved and flexibility such as connector female terminals is required.
Boron has traditionally been used as a component of Ni plating baths, and when mixed with the Ni plating layer, it has the effect of increasing the plating film strength and preventing diffusion to the upper layer of Ni, but conversely, the plating film is not flexible. The use is also restricted in view of the recent tightening of drainage regulations.

また、本発明の導電部材において、前記Cu系基材のX線回折による結晶面の相対X線強度において、(220)強度が50%以上であると好都合である。
母材のCu系基材のX線回折による結晶面の相対X線強度において、(220)強度が50%以上あり、かつ、Ni系下地層中のX線回折による結晶面の相対X線強度において、(220)強度が30〜60%であると、Cu系基材のNi系下地層中への拡散が殆んど起きない。即ち、母材のCu系基材はNi系下地層と殆んど反応を起さない。
In the conductive member of the present invention, it is advantageous that the (220) intensity is 50% or more in the relative X-ray intensity of the crystal plane by X-ray diffraction of the Cu-based substrate.
In the relative X-ray intensity of the crystal plane by X-ray diffraction of the base Cu-based substrate, the (220) intensity is 50% or more, and the relative X-ray intensity of the crystal plane by X-ray diffraction in the Ni-based underlayer When the (220) strength is 30 to 60%, the Cu base material hardly diffuses into the Ni base layer. That is, the base Cu-based substrate hardly reacts with the Ni-based underlayer.

そして、本発明の導電部材の製造方法は、Cu系基材の表面に、Ni又はNi合金、Cu又はCu合金、Sn又はSn合金をこの順にめっきしてそれぞれのめっき層を形成した後、加熱してリフロー処理することにより、前記Cu系基材の上に、Ni系下地層、Cu−Sn金属間化合物層、Sn系表面層を順に形成した導電部材を製造する方法であって、前記Ni又はNi合金によるめっき層をpHが1.0〜2.0のめっき浴にて電流密度が20〜50A/dmの電解めっきにより形成し、前記Cu又はCu合金によるめっき層を電流密度が20〜60A/dmの電解めっきにより形成し、前記Sn又はSn合金によるめっき層を電流密度が10〜30A/dmの電解めっきにより形成し、前記リフロー処理は、前記めっき層を形成してから1〜15分経過した後に、めっき層を20〜75℃/秒の昇温速度で240〜300℃のピーク温度まで加熱する加熱工程と、前記ピーク温度に達した後、30℃/秒以下の冷却速度で2〜10秒間冷却する一次冷却工程と、一次冷却後に100〜250℃/秒の冷却速度で冷却する二次冷却工程とを有することを特徴とする。 And the manufacturing method of the electrically-conductive member of this invention heats, after plating the surface of Cu base material, Ni or Ni alloy, Cu or Cu alloy, Sn or Sn alloy in this order, and forming each plating layer And reflow treatment to produce a conductive member in which a Ni-based underlayer, a Cu-Sn intermetallic compound layer, and a Sn-based surface layer are formed in this order on the Cu-based substrate. Alternatively, a plating layer made of Ni alloy is formed by electrolytic plating having a current density of 20 to 50 A / dm 2 in a plating bath having a pH of 1.0 to 2.0, and the plating layer made of Cu or Cu alloy has a current density of 20 was formed by electrolytic plating ~60A / dm 2, current density plating layer by the Sn or Sn alloy is formed by electroplating 10~30A / dm 2, the reflow process, form the plating layer After 1 to 15 minutes have elapsed, a heating step of heating the plating layer to a peak temperature of 240 to 300 ° C. at a temperature rising rate of 20 to 75 ° C./second, and after reaching the peak temperature, 30 ° C. / It has a primary cooling step of cooling for 2 to 10 seconds at a cooling rate of less than 1 second and a secondary cooling step of cooling at a cooling rate of 100 to 250 ° C./second after the primary cooling.

Niめっきの電流密度を20A/dm以上とすることにより、結晶粒が微細化しリフローや製品化された後の加熱時にNi原子がSnや金属間化合物に拡散し難くなり、Niめっき欠損が減り、カーケンダルボイドの発生を防ぐことができる。一方、電流密度が50A/dmを超えると、電解時のめっき表面での水素発生が激しくなり、気泡付着により皮膜にピンホールが発生し、これを起点として下地のCu系基材が拡散しカーケンダルボイドが発生し易くなる。このため、Niめっきの電流密度を20〜50A/dmとするのが望ましい。 By setting the current density of Ni plating to 20 A / dm 2 or more, Ni atoms are less likely to diffuse into Sn and intermetallic compounds during heating after refining and commercializing crystal grains and reducing Ni plating defects. , Can prevent the occurrence of Kirkendall void. On the other hand, when the current density exceeds 50 A / dm 2 , hydrogen generation on the plating surface during electrolysis becomes intense, and pinholes are generated in the film due to air bubbles adhering, and the underlying Cu-based substrate diffuses starting from this. Kirkendall void is likely to occur. For this reason, it is desirable that the current density of Ni plating be 20 to 50 A / dm 2 .

そして、この場合、めっき浴のpHを1.0〜2.0とすることにより、Ni系下地層中のX線回折による結晶面の相対X線強度において、(220)強度が5〜60%とすることができ、高電流密度による効果と相俟ってバリア性の高いNi系下地層を得ることができる。また、このNiめっき浴のpHを1.0〜2.0とすることにより、めっき時の水素発生により生成する水酸化ニッケルを溶解し、次のCu,Snめっきの付着性を良くすることができる。
また、Cuめっきにおいても、高電流密度でのCuめっきは粒界密度を増加させ、均一な合金層形成を助けると同時に被覆率の高いCuSn層を形成することが可能となる。
In this case, by setting the pH of the plating bath to 1.0 to 2.0, the (220) intensity is 5 to 60% in the relative X-ray intensity of the crystal plane by X-ray diffraction in the Ni-based underlayer. In combination with the effect of high current density, a Ni-based underlayer having high barrier properties can be obtained. In addition, by setting the pH of this Ni plating bath to 1.0 to 2.0, it is possible to dissolve nickel hydroxide produced by hydrogen generation during plating and improve the adhesion of the next Cu and Sn plating. it can.
Also in Cu plating, Cu plating at a high current density increases the grain boundary density, helps to form a uniform alloy layer, and at the same time forms a Cu 3 Sn layer having a high coverage.

Cuめっきの電流密度を20〜60A/dmとしたのは、電流密度が20A/dm未満ではCuめっき結晶の反応活性が乏しいため、合金化する際に平滑な金属間化合物を形成する効果が乏しく、一方、電流密度が60A/dmを超えると、Cuめっき層の平滑性が低くなるため、平滑なCu−Sn金属間化合物層を形成することができないからである。
また、Snめっきの電流密度を10〜30A/dmとしたのは、電流密度が10A/dm未満ではSnの粒界密度が低くなって、合金化する際に平滑なCu−Sn金属間化合物層を形成する効果が乏しく、一方、電流密度が30A/dmを超えると、電流効率が著しく低下するため望ましくないからである。
The reason why the current density of Cu plating is set to 20 to 60 A / dm 2 is that when the current density is less than 20 A / dm 2 , the reaction activity of the Cu plating crystal is poor, and thus the effect of forming a smooth intermetallic compound when alloying is performed. On the other hand, when the current density exceeds 60 A / dm 2 , the smoothness of the Cu plating layer is lowered, and therefore, a smooth Cu—Sn intermetallic compound layer cannot be formed.
Also, to that the current density of the Sn-plated with 10~30A / dm 2, taken low grain boundary density of Sn is the current density is less than 10A / dm 2, between smooth Cu-Sn metal when alloyed This is because the effect of forming the compound layer is poor, and on the other hand, if the current density exceeds 30 A / dm 2 , the current efficiency is remarkably lowered, which is undesirable.

また、高電流密度で電析したCuとSnは安定性が低く、室温においても合金化や結晶粒肥大化が発生し、リフロー処理で所望の金属間化合物構造をつくることが困難になる。このため、めっき処理後、速やかにリフロー処理を行うことが望ましい。具体的には15分以内、望ましくは5分以内にリフロー処理を行うと良い。
従来技術よりも高電流密度でCu又はCu合金とSn又はSn合金のめっき処理を行い、なおかつ、めっき後、速やかにリフロー処理を行うことにより、リフロー時にCuとSnが活発に反応し、CuSn層によりNi系下地層を多く被覆し、均一なCuSn層が生成される。
Further, Cu and Sn electrodeposited at a high current density are low in stability, and alloying and grain enlargement occur even at room temperature, making it difficult to form a desired intermetallic compound structure by reflow treatment. For this reason, it is desirable to perform the reflow process immediately after the plating process. Specifically, the reflow process may be performed within 15 minutes, preferably within 5 minutes.
When Cu or Cu alloy is plated with Sn or Sn alloy at a higher current density than in the prior art, and reflow treatment is performed immediately after plating, Cu and Sn react actively during reflow, and Cu 3 A large amount of the Ni-based underlayer is covered with the Sn layer, and a uniform Cu 6 Sn 5 layer is generated.

また、リフロー処理においては、加熱工程における昇温速度が20℃/秒未満であると、Snめっきが溶融するまでの間にCu原子がSnの粒界中を優先的に拡散し粒界近傍で金属間化合物が異常成長するため、被覆率の高いCuSn層が形成され難い。一方、昇温速度が75℃/秒を超えると、金属間化合物の成長が不十分かつCuめっきが過剰に残存し、その後の冷却において所望の金属間化合物層を得ることができない。
また、加熱工程でのピーク温度が240℃未満であると、Snが均一に溶融せず、ピーク温度が300℃を超えると、金属間化合物が急激に成長しCu−Sn金属間化合物層の凹凸が大きくなるので好ましくない。
Further, in the reflow process, if the rate of temperature increase in the heating step is less than 20 ° C./second, Cu atoms preferentially diffuse in the Sn grain boundary until Sn plating melts, and in the vicinity of the grain boundary. Since the intermetallic compound grows abnormally, it is difficult to form a Cu 3 Sn layer having a high coverage. On the other hand, if the rate of temperature rise exceeds 75 ° C./second, the growth of the intermetallic compound is insufficient and the Cu plating remains excessively, and a desired intermetallic compound layer cannot be obtained in the subsequent cooling.
In addition, when the peak temperature in the heating process is less than 240 ° C., Sn does not melt uniformly, and when the peak temperature exceeds 300 ° C., the intermetallic compound grows rapidly and the unevenness of the Cu—Sn intermetallic compound layer Is unfavorable because of the increase.

さらに、冷却工程においては、冷却速度の小さい一次冷却工程を設けることにより、Cu原子がSn粒内に穏やかに拡散し、所望の金属間化合物構造で成長する。この一次冷却工程の冷却速度が30℃/秒を超えると、急激に冷却される影響で金属間化合物は滑らかな形状に成長することができず、凹凸が大きくなる。冷却時間が2秒未満であっても同様に金属間化合物は滑らかな形状に成長することができない。冷却時間が10秒を超えると、CuSn層の成長が過度に進み、CuSn層の被覆率が低下する。この一次冷却工程は空冷が適切である。 Further, in the cooling step, by providing a primary cooling step with a low cooling rate, Cu atoms diffuse gently in the Sn grains and grow with a desired intermetallic compound structure. When the cooling rate in the primary cooling step exceeds 30 ° C./second, the intermetallic compound cannot grow into a smooth shape due to the effect of rapid cooling, and unevenness increases. Similarly, even when the cooling time is less than 2 seconds, the intermetallic compound cannot grow into a smooth shape. When the cooling time exceeds 10 seconds, the growth of the Cu 6 Sn 5 layer proceeds excessively and the coverage of the Cu 3 Sn layer decreases. Air cooling is appropriate for this primary cooling step.

そして、この一次冷却工程の後、二次冷却工程によって急冷して金属間化合物層の成長を所望の構造で完了させる。この二次冷却工程の冷却速度が100℃/秒未満であると、金属間化合物がより進行し、所望の金属間化合物形状を得ることができない。
このようにめっきの電析条件とリフロー条件を緻密に制御することによって、二層構造で凹凸が少なくCuSn層による被覆率の高いCu−Sn金属間化合物層を得ることができる。
Then, after the primary cooling step, the secondary cooling step is rapidly cooled to complete the growth of the intermetallic compound layer with a desired structure. When the cooling rate in the secondary cooling step is less than 100 ° C./second, the intermetallic compound further proceeds, and a desired intermetallic compound shape cannot be obtained.
Thus, by precisely controlling the electrodeposition conditions and the reflow conditions for plating, a Cu—Sn intermetallic compound layer having a two-layer structure with less unevenness and a high coverage with the Cu 3 Sn layer can be obtained.

本発明によれば、二層構造のCu−Sn金属間化合物層のうち、下層を構成するCuSn層がNi系下地層を適切に被覆するとともに、その上にさらにCuSn層が形成されることにより、Ni系下地層の欠損を防止し、かつ、Ni系下地層中のX線回折による結晶面の相対X線強度において、(220)強度を5〜60%とすることにより、バリア性が高いNi系下地層を得ることができる。これにより、抜群の耐熱性を発揮して、高温時のCuの拡散を防止し、表面状態を良好に維持して接触抵抗の増大を抑制することができ、めっき皮膜の剥離やカーケンダルボイドの発生を防止することができる。更に、Ni系下地層をホウ素フリーとすることにより、曲げ加工性が良好な導電部材が得られる。 According to the present invention, among the Cu-Sn intermetallic compound layers having a two-layer structure, the Cu 3 Sn layer constituting the lower layer appropriately covers the Ni-based underlayer, and a Cu 6 Sn 5 layer is further formed thereon. By being formed, defects in the Ni-based underlayer are prevented, and in the relative X-ray intensity of the crystal plane by X-ray diffraction in the Ni-based underlayer, the (220) intensity is set to 5 to 60%. A Ni-based underlayer having a high barrier property can be obtained. As a result, it exhibits outstanding heat resistance, prevents diffusion of Cu at high temperatures, maintains a good surface condition and suppresses an increase in contact resistance, and prevents plating film peeling and Kirkendall voids. Occurrence can be prevented. Furthermore, by making the Ni-based underlayer boron-free, a conductive member having good bending workability can be obtained.

本発明に係る導電部材の一実施形態の表層部分をモデル化して示した断面図である。It is sectional drawing which modeled and showed the surface layer part of one Embodiment of the electrically-conductive member which concerns on this invention. 本発明の製造方法に係るリフロー条件の温度と時間の関係をグラフにした温度プロファイルである。It is the temperature profile which made the relationship between the temperature of reflow conditions and time concerning the manufacturing method of this invention a graph. 導電部材の表層部分における断面顕微鏡写真であり、(a)が本実施例、(b)が比較例を示す。It is a cross-sectional microscope picture in the surface layer part of an electroconductive member, (a) shows a present Example and (b) shows a comparative example. 導電部材の動摩擦係数を測定するための装置を概念的に示す正面図である。It is a front view which shows notionally the apparatus for measuring the dynamic friction coefficient of an electrically-conductive member. 本実施例及び比較例の各導電部材における接触抵抗の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the contact resistance in each electrically-conductive member of a present Example and a comparative example.

以下、本発明の実施形態を説明する。
この実施形態の導電部材10は、例えば自動車の車載用コネクタの端子に用いられるものであり、図1に示すように、Cu系基材1の表面に、Ni系下地層2を介して、Cu−Sn金属間化合物層3、Sn系表面層4がこの順に形成されるとともに、Cu−Sn金属間化合物層3はさらに、CuSn層5とCuSn層6とから構成されている。
Embodiments of the present invention will be described below.
The conductive member 10 of this embodiment is used for, for example, a terminal of an in-vehicle connector of an automobile. As shown in FIG. 1, a Cu base material 1 is provided with a Ni base layer 2 on the surface of a Cu base material 1. The -Sn intermetallic compound layer 3 and the Sn-based surface layer 4 are formed in this order, and the Cu-Sn intermetallic compound layer 3 further includes a Cu 3 Sn layer 5 and a Cu 6 Sn 5 layer 6. .

Cu系基材1は、Cu又はCu合金から構成された例えば板状のものである。Cu合金としては、その材質は必ずしも限定されないが、Cu−Zn系合金、Cu−Ni−Si系(コルソン系)合金、Cu−Cr−Zr系合金、Cu−Mg−P系合金、Cu−Fe−P
系合金、Cu−Sn−P系合金が好適であり、例えば、三菱伸銅株式会社製MSP1,MZC1,MAX251C,MAX375,MAX126が好適に用いられる。
The Cu-based substrate 1 is, for example, a plate-like one made of Cu or a Cu alloy. The material of the Cu alloy is not necessarily limited, but Cu—Zn alloy, Cu—Ni—Si (Corson) alloy, Cu—Cr—Zr alloy, Cu—Mg—P alloy, Cu—Fe -P
Alloys such as Cu-Sn-P alloys are preferred, and for example, MSP1, MZC1, MAX251C, MAX375, MAX126 manufactured by Mitsubishi Shindoh Co., Ltd. are suitably used.

Ni系下地層2は、Ni又はNi合金を電解めっきして形成されたものであり、Cu系基材1の表面に、例えば0.1〜0.5μmの厚さに形成される。このNi系下地層2が0.1μm未満と少ないと、Cu系基材1のCuの拡散防止機能が十分でなく、また、0.5μmを超えると、歪みが大きくなって剥離し易いとともに、曲げ加工時に割れが生じ易くなる。   The Ni-based underlayer 2 is formed by electrolytic plating of Ni or a Ni alloy, and is formed on the surface of the Cu-based substrate 1 to a thickness of, for example, 0.1 to 0.5 μm. If this Ni-based underlayer 2 is less than 0.1 μm, the Cu diffusion prevention function of the Cu-based substrate 1 is not sufficient, and if it exceeds 0.5 μm, the strain becomes large and is easy to peel off. Cracks are likely to occur during bending.

このNi系下地層2は、X線回折による結晶面の相対X線強度において、(220)強度が5〜60%であると、Ni系下地層2のNiが後述のCu−Sn金属間化合物層3へ拡散(移動)することを防止することができ、Cu−Sn金属間化合物層3を介してSn系表面層4へ拡散することも殆んど防止できる。そのX線強度が5%未満では効果がなく、60%を超えるとNi系下地層2自体の強度及び平滑性が悪くなる。
(220)強度とは結晶面が(220)面のX線強度であり、相対X線強度とは、X線回折により結晶面(111)、(200)、(220)、(311)面の回折ピーク強度の相対比率をいい、これら(111)、(200)、(220)、(311)面の各ピーク強度の合計に対する比率である。
When this Ni-based underlayer 2 has a (220) intensity of 5 to 60% in the relative X-ray intensity of the crystal plane by X-ray diffraction, Ni in the Ni-based underlayer 2 is a Cu—Sn intermetallic compound described later. Diffusion (migration) to the layer 3 can be prevented, and diffusion to the Sn-based surface layer 4 via the Cu—Sn intermetallic compound layer 3 can be almost prevented. If the X-ray intensity is less than 5%, there is no effect, and if it exceeds 60%, the strength and smoothness of the Ni-based underlayer 2 itself deteriorate.
The (220) intensity is the X-ray intensity when the crystal plane is the (220) plane, and the relative X-ray intensity is the X-ray diffraction of the crystal plane (111), (200), (220), (311) plane. It refers to the relative ratio of diffraction peak intensities, and is the ratio to the sum of the peak intensities of these (111), (200), (220) and (311) planes.

更に、Ni系下地層2は、ホウ素が含有されていない。ホウ素をめっき液の成分として使用しないこととすると、Ni系下地層2にホウ素が含有されず、めっき皮膜の柔軟性を向上させ、最近の排水規制の強化の面からも使用の制限を受けることなく好都合だからである。極微量含有のホウ素の検出は難しいが、本発明では、TEM−EDSによる定量分析にて含有の有無を確認し、検出されなかったものを実質的に含有なしと判断した。   Furthermore, the Ni-based underlayer 2 does not contain boron. If boron is not used as a component of the plating solution, the Ni-based underlayer 2 does not contain boron, improves the flexibility of the plating film, and is subject to use restrictions from the standpoint of recent strengthening of drainage regulations. Because it is convenient. Although it is difficult to detect a trace amount of boron, in the present invention, the presence or absence of content was confirmed by quantitative analysis with TEM-EDS, and the material that was not detected was judged to be substantially free.

また、Cu系基材1においても、X線回による結晶面(111)、(200)、(220)、(311)面のX線強度で、(220)面が最も強く、その相対X線強度が50%以上であるものを使用するのが好ましい。Ni系下地層2中の(220)強度が30〜60%で、かつこのCu系基材1の(220)強度が50%以上であると、Cu系基材1中のCuのNi系下地層2中への拡散が殆んど起きなくなる。   Also in the Cu-based substrate 1, the X-ray intensity of the crystal planes (111), (200), (220), and (311) by X-ray rotation is the strongest (220) plane, and the relative X-rays thereof. It is preferable to use one having a strength of 50% or more. When the (220) strength in the Ni-based base layer 2 is 30 to 60% and the (220) strength of the Cu-based substrate 1 is 50% or more, the Ni-based Cu in the Cu-based substrate 1 Almost no diffusion into the formation 2 occurs.

Cu−Sn金属間化合物層3は、後述するようにNi系下地層2の上にめっきしたCuと表面のSnとがリフロー処理によって拡散して形成された合金層である。このCu−Sn金属間化合物層3は、さらに、Ni系下地層2の上に配置されるCuSn層5と、該CuSn層5の上に配置されるCuSn層6とから構成されている。この場合、Cu−Sn金属間化合物層3全体としては凹凸が形成されており、その凹部7におけるCuSn層5とCuSn層6とを合わせた厚さXは、0.05〜1.5μmとされる。
この凹部7の厚さXが0.05μm未満では、高温時に凹部7からSnがNi系下地層2へと拡散し、Ni系下地層2に欠損が発生するおそれがある。表面層4を形成しているSnは、端子の接触抵抗を低く維持するものであるが、Ni系下地層2に欠損が生じると、Cu系基材1のCuが拡散してCu−Sn合金層3が成長し、そのCuSn層6が導電部材10の表面まで達し、これにより、表面にCu酸化物が形成され、接触抵抗を増大させることになる。また、このとき、Ni系下地層2の欠損部からのCuの拡散により、これらの界面にカーケンダルボイドも発生し易い。したがって、凹部7の厚さXは最低0.05μm必要であり、より好ましくは0.1μmあるとよい。
一方、凹部7におけるCuSn層5とCuSn合金層6とを合わせた厚さXが1.5μmを超えると、Cu−Sn金属間化合物層3がもろくなり、曲げ加工時にめっき皮膜の剥離が発生しやすくなる。
The Cu-Sn intermetallic compound layer 3 is an alloy layer formed by diffusing Cu plated on the Ni-based underlayer 2 and Sn on the surface by a reflow process, as will be described later. The Cu—Sn intermetallic compound layer 3 further includes a Cu 3 Sn layer 5 disposed on the Ni-based underlayer 2, and a Cu 6 Sn 5 layer 6 disposed on the Cu 3 Sn layer 5. It is composed of In this case, the Cu—Sn intermetallic compound layer 3 as a whole has irregularities, and the combined thickness X of the Cu 3 Sn layer 5 and the Cu 6 Sn 5 layer 6 in the recess 7 is 0.05 to 1.5 μm.
If the thickness X of the concave portion 7 is less than 0.05 μm, Sn diffuses from the concave portion 7 to the Ni-based underlayer 2 at a high temperature, and the Ni-based underlayer 2 may be damaged. Sn forming the surface layer 4 keeps the contact resistance of the terminal low. However, when a defect occurs in the Ni-based underlayer 2, Cu in the Cu-based substrate 1 diffuses to form a Cu-Sn alloy. The layer 3 grows, and the Cu 6 Sn 5 layer 6 reaches the surface of the conductive member 10, thereby forming Cu oxide on the surface and increasing the contact resistance. At this time, Kirkendall voids are also likely to be generated at these interfaces due to the diffusion of Cu from the defect portion of the Ni-based underlayer 2. Therefore, the thickness X of the concave portion 7 needs to be at least 0.05 μm, and more preferably 0.1 μm.
On the other hand, if the combined thickness X of the Cu 3 Sn layer 5 and the Cu 6 Sn 5 alloy layer 6 in the recess 7 exceeds 1.5 μm, the Cu—Sn intermetallic compound layer 3 becomes brittle, and a plating film is formed during bending. Peeling easily occurs.

また、このCu−Sn金属間化合物層3の凹部7に対する凸部8の厚さの比率は1.2〜5とされている。この比率が小さくなってCu−Sn金属間化合物層3の凹凸が少なくなると、コネクタ使用時の挿抜力が低減して好ましいが、これが1.2未満であると、Cu−Sn金属間化合物層3の凹凸がほとんどなくなってCu−Sn金属間化合物層3が著しく脆くなり、曲げ加工時に皮膜の剥離が発生し易くなる。また、凹部7に対する凸部8の厚さの比率が5を超えるほどに凹凸が大きくなると、コネクタとして用いたときの挿抜時にCu−Sn金属間化合物層3の凹凸が抵抗となるため、挿抜力を低減する効果が乏しい。
この凹部7に対する凸部8の比率は、例えば、凹部7の厚さXが0.3μmで、凸部8の厚さYが0.5μmであると、その比率(Y/X)は、1.67である。この場合、CuSn層5とCuSn層6とを合わせたCu−Sn金属間化合物層3の厚さは、最大で2μmとするのが望ましい。
Moreover, the ratio of the thickness of the convex part 8 with respect to the concave part 7 of this Cu-Sn intermetallic compound layer 3 is set to 1.2-5. If this ratio is reduced and the unevenness of the Cu—Sn intermetallic compound layer 3 is reduced, the insertion / extraction force during use of the connector is preferably reduced, but if this is less than 1.2, the Cu—Sn intermetallic compound layer 3 The Cu—Sn intermetallic compound layer 3 becomes extremely fragile, and the film is easily peeled off during bending. In addition, when the unevenness becomes so large that the ratio of the thickness of the protrusion 8 to the recess 7 exceeds 5, the unevenness of the Cu-Sn intermetallic compound layer 3 becomes a resistance during insertion / extraction when used as a connector. The effect of reducing is poor.
For example, when the thickness X of the concave portion 7 is 0.3 μm and the thickness Y of the convex portion 8 is 0.5 μm, the ratio (Y / X) is 1 .67. In this case, the thickness of the Cu—Sn intermetallic compound layer 3 including the Cu 3 Sn layer 5 and the Cu 6 Sn 5 layer 6 is desirably 2 μm at the maximum.

また、このCu−Sn金属間化合物層3のうちの下層に配置されるCuSn層5は、Ni系下地層2を覆っており、その面積被覆率が60〜100%とされている。この面積被覆率が60%未満となって低いと、被覆されていない部分から高温時にNi系下地層2のNi原子がCuSn層6に拡散して、Ni系下地層2に欠損が発生するおそれがある。そして、その欠損部分からCu系基材1のCuが拡散することにより、Cu−Sn金属間化合物層3が成長して導電部材10の表面まで達し、これにより、表面にCu酸化物が形成され、接触抵抗が増大する。また、Ni系下地層2の欠損部からのCuの拡散により、カーケンダルボイドも発生し易い。 Further, Cu 3 Sn layer 5 which is arranged under one of the Cu-Sn intermetallic compound layer 3 covers the Ni-based base layer 2, the area coverage is 60 to 100%. When the area coverage is less than 60%, Ni atoms in the Ni-based underlayer 2 diffuse into the Cu 6 Sn 5 layer 6 at a high temperature from the uncovered portion, and the Ni-based underlayer 2 has defects. May occur. Then, Cu of the Cu-based substrate 1 diffuses from the defect portion, so that the Cu—Sn intermetallic compound layer 3 grows to reach the surface of the conductive member 10, thereby forming Cu oxide on the surface. , Contact resistance increases. Further, Kirkendall voids are also likely to occur due to the diffusion of Cu from the defect portion of the Ni-based underlayer 2.

Ni系下地層2の少なくとも60%以上がCuSn層5によって被覆されていることにより、高温時の接触抵抗の増大やカーケンダルボイドの発生を防止することができる。より望ましくは80%以上が被覆されているとよい。
この面積被覆率は、皮膜を集束イオンビーム(FIB;Focused Ion Beam)により断面加工し、走査イオン顕微鏡(SIM;Scanning Ion Microscope)で観察した表面の走査イオン像(SIM像)から確認することができる。
By covering at least 60% or more of the Ni-based underlayer 2 with the Cu 3 Sn layer 5, it is possible to prevent an increase in contact resistance at high temperatures and generation of Kirkendall voids. More preferably, 80% or more is covered.
This area coverage can be confirmed from a surface scanning ion image (SIM image) obtained by observing a cross-section of the film with a focused ion beam (FIB) and observing with a scanning ion microscope (SIM). it can.

このNi系下地層2に対する面積被覆率が60%以上ということは、面積被覆率が100%満たない場合に、Ni系下地層2の表面には局部的にCuSn層5が存在しない部分が生じることになるが、その場合でも、Cu−Sn金属間化合物層3の凹部7におけるCuSn層5とCuSn層6とを合わせた厚さが0.05〜1.5μmとされているので、CuSn層6が0.05〜1.5μmの厚さでNi系下地層2を覆っていることになる。 When the area coverage is less than 100%, the area coverage with respect to the Ni-based underlayer 2 is a portion where the Cu 3 Sn layer 5 is not locally present on the surface of the Ni-based underlayer 2. Even in this case, the combined thickness of the Cu 3 Sn layer 5 and the Cu 6 Sn 5 layer 6 in the recess 7 of the Cu—Sn intermetallic compound layer 3 is 0.05 to 1.5 μm. Therefore, the Cu 6 Sn 5 layer 6 covers the Ni-based underlayer 2 with a thickness of 0.05 to 1.5 μm.

また、Cu−Sn金属間化合物層3の下層を構成しているCuSn層5においては、その平均厚さは0.01〜0.5μmとされる。このCuSn層5は、Ni系下地層2を覆っている層であるので、その平均厚さが0.01μm未満と少ない場合には、Ni系下地層2の拡散を抑える効果が乏しくなる。また、0.5μmを超えると、高温時にCuSn層5がSnリッチのCuSn層6に変化し、その分、Sn系表面層4を減少させ、接触抵抗が高くなるため好ましくない。この平均厚さは、CuSn層5が存在する部分で、その厚さを複数個所測定したときの平均値である。 In the Cu 3 Sn layer 5 constituting the lower layer of Cu-Sn intermetallic compound layer 3, the average thickness is set to 0.01 to 0.5 [mu] m. Since this Cu 3 Sn layer 5 is a layer covering the Ni-based underlayer 2, when the average thickness is as small as less than 0.01 μm, the effect of suppressing the diffusion of the Ni-based underlayer 2 becomes poor. . On the other hand, if the thickness exceeds 0.5 μm, the Cu 3 Sn layer 5 changes to a Sn-rich Cu 6 Sn 5 layer 6 at a high temperature, and accordingly, the Sn-based surface layer 4 is reduced and the contact resistance is increased. . This average thickness is a portion where the Cu 3 Sn layer 5 is present, and is an average value when the thickness is measured at a plurality of locations.

なお、このCu−Sn金属間化合物層3は、Ni系下地層2の上にめっきしたCuと表面のSnとが拡散することにより合金化したものであるから、リフロー処理等の条件によっては下地となったCuめっき層の全部が拡散してCu−Sn金属間化合物層3となる場合もあるが、そのCuめっき層が残る場合もある。このCuめっき層が残る場合は、そのCuめっき層は例えば0.01〜0.1μmの厚さとされる。   In addition, since this Cu-Sn intermetallic compound layer 3 is alloyed by diffusion of Cu plated on the Ni-based underlayer 2 and Sn on the surface, depending on conditions such as reflow processing, In some cases, the entire Cu plating layer is diffused to form the Cu—Sn intermetallic compound layer 3, but the Cu plating layer may remain. When this Cu plating layer remains, the Cu plating layer has a thickness of 0.01 to 0.1 μm, for example.

最表面のSn系表面層4は、Sn又はSn合金を電解めっきした後にリフロー処理することによって形成されたものであり、例えば0.05〜2.5μmの厚さに形成される。このSn系表面層4の厚さが0.05μm未満であると、高温時にCuが拡散して表面にCuの酸化物が形成され易くなることから接触抵抗が増加し、また、はんだ付け性や耐食性も低下する。一方、2.5μmを超えると、柔軟なSn系表面層4の下層に存在するCu−Sn金属間化合物層3による表面の下地を硬くする効果が薄れ、コネクタとしての使用時の挿抜力が増大し、コネクタの多ピン化に伴う挿抜力の低減を図り難い。   The outermost Sn-based surface layer 4 is formed by performing reflow treatment after electrolytic plating of Sn or an Sn alloy, and is formed to a thickness of, for example, 0.05 to 2.5 μm. When the thickness of the Sn-based surface layer 4 is less than 0.05 μm, Cu diffuses at high temperatures and Cu oxide is easily formed on the surface, so that contact resistance increases, solderability and Corrosion resistance also decreases. On the other hand, if it exceeds 2.5 μm, the effect of hardening the surface base by the Cu—Sn intermetallic compound layer 3 existing in the lower layer of the flexible Sn-based surface layer 4 is weakened, and the insertion / extraction force during use as a connector increases However, it is difficult to reduce the insertion / extraction force associated with the increase in the number of pins of the connector.

次に、このような導電部材を製造する方法について説明する。
まず、Cu系基材として、Cu又はCu合金の板材を用意する。このCu系基材は前述したように結晶面(111)、(200)、(220)、(311)面のX線強度で、(220)面が最も強く、その相対X線強度が50%以上であるものを使用する。これを脱脂、酸洗等によって表面を清浄にした後、Niめっき、Cuめっき、Snめっきをこの順序で順次行う。また、各めっき処理の間には、酸洗又は水洗処理を行う。
Next, a method for manufacturing such a conductive member will be described.
First, a Cu or Cu alloy plate is prepared as a Cu-based substrate. As described above, this Cu-based substrate has the X-ray intensity of the crystal planes (111), (200), (220), and (311), the (220) plane being the strongest, and the relative X-ray intensity being 50%. Use what is above. After the surface is cleaned by degreasing, pickling, etc., Ni plating, Cu plating, and Sn plating are sequentially performed in this order. In addition, pickling or rinsing is performed between the plating processes.

Niめっきの条件としては、めっき浴に、硫酸ニッケル(NiSO)、クエン酸を主成分としたクエン酸浴が用いられる。酸化反応を起こし易くする塩類として塩化ニッケル(NiCl)などが加えられる場合もある。また、めっき温度は45〜55℃、電流密度は20〜50A/dmとされる。Cuめっきの条件としては、めっき浴に硫酸銅(CuSO)及び硫酸(HSO)を主成分とした硫酸銅浴が用いられ、レベリングのために塩素イオン(Cl)が添加される。めっき温度は35〜55℃、電流密度は20〜60A/dmとされる。Snめっきの条件としては、めっき浴に硫酸(HSO)と硫酸第一錫(SnSO)を主成分とした硫酸浴が用いられ、めっき温度は15〜35℃、電流密度は10〜30A/dmとされる。 As conditions for Ni plating, a citric acid bath containing nickel sulfate (NiSO 4 ) and citric acid as main components is used for the plating bath. In some cases, nickel chloride (NiCl 2 ) or the like is added as a salt that easily causes an oxidation reaction. The plating temperature is 45 to 55 ° C., and the current density is 20 to 50 A / dm 2 . As the conditions for Cu plating, a copper sulfate bath containing copper sulfate (CuSO 4 ) and sulfuric acid (H 2 SO 4 ) as main components is used in the plating bath, and chlorine ions (Cl ) are added for leveling. . The plating temperature is 35 to 55 ° C., and the current density is 20 to 60 A / dm 2 . As the conditions for Sn plating, a sulfuric acid bath mainly composed of sulfuric acid (H 2 SO 4 ) and stannous sulfate (SnSO 4 ) is used as a plating bath, the plating temperature is 15 to 35 ° C., and the current density is 10 to 10. 30 A / dm 2 .

いずれのめっき処理も、一般的なめっき技術よりも高い電流密度で行われる。その場合に、めっき液の攪拌技術が重要となるが、めっき液を処理板に向けて高速で噴きつける方法やめっき液を処理板と平行に流す方法などとすることにより、処理板の表面に新鮮なめっき液を速やかに供給し、高電流密度によって均質なめっき層を短時間で形成することができる。そのめっき液の流速としては、処理板の表面において0.5m/秒以上とすることが望ましい。また、この従来技術よりも一桁高い電流密度でのめっき処理を可能とするために、陽極には、アノード限界電流密度の高い酸化イリジウム(IrO)を被覆したTi板等の不溶性陽極を用いることが望ましい。
これらの各めっき条件をまとめると、以下の表1〜表3に示す通りとなる。
All the plating processes are performed at a higher current density than a general plating technique. In this case, the plating solution agitation technology is important. However, by using a method of spraying the plating solution at a high speed toward the processing plate or a method of flowing the plating solution in parallel with the processing plate, A fresh plating solution can be supplied quickly, and a uniform plating layer can be formed in a short time with a high current density. The flow rate of the plating solution is desirably 0.5 m / second or more on the surface of the treatment plate. In addition, in order to enable the plating process at a current density that is an order of magnitude higher than that of the prior art, an insoluble anode such as a Ti plate coated with iridium oxide (IrO 2 ) having a high anode limit current density is used as the anode. It is desirable.
These plating conditions are summarized as shown in Tables 1 to 3 below.

そして、この三種類のめっき処理を施した後、加熱してリフロー処理を行う。そのリフロー処理としては、図2に示す温度プロファイルとする条件が望ましい。
すなわち、リフロー処理はCO還元性雰囲気にした加熱炉内でめっき後の処理材を20〜75℃/秒の昇温速度で240〜300℃のピーク温度まで2.9〜11秒間加熱する加熱工程と、そのピーク温度に達した後、30℃/秒以下の冷却速度で2〜10秒間冷却する一次冷却工程と、一次冷却後に100〜250℃/秒の冷却速度で0.5〜5秒間冷却する二次冷却工程とを有する処理とする。一次冷却工程は空冷により、二次冷却工程は10〜90℃の水を用いた水冷により行われる。
And after giving these three types of plating processes, it heats and performs a reflow process. As the reflow process, the temperature profile shown in FIG. 2 is desirable.
In other words, the reflow treatment is a heating step in which the treated material after plating is heated to a peak temperature of 240 to 300 ° C. for 2.9 to 11 seconds at a temperature rising rate of 20 to 75 ° C. in a heating furnace having a CO reducing atmosphere. And a primary cooling step of cooling for 2 to 10 seconds at a cooling rate of 30 ° C./second or less after reaching the peak temperature, and cooling for 0.5 to 5 seconds at a cooling rate of 100 to 250 ° C./second after the primary cooling. And a secondary cooling step. The primary cooling step is performed by air cooling, and the secondary cooling step is performed by water cooling using 10 to 90 ° C. water.

このリフロー処理を還元性雰囲気で行うことによりSnめっき表面に溶融温度の高いすず酸化物皮膜が生成するのを防ぎ、より低い温度かつより短い時間でリフロー処理を行うことが可能となり、所望の金属間化合物構造を作製することが容易となる。また、冷却工程を二段階とし、冷却速度の小さい一次冷却工程を設けることにより、Cu原子がSn粒内に穏やかに拡散し、所望の金属間化合物構造で成長する。そして、その後に急冷を行うことにより金属間化合物層の成長を止め、所望の構造で固定化することができる。   By performing this reflow treatment in a reducing atmosphere, it is possible to prevent the formation of a tin oxide film having a high melting temperature on the surface of the Sn plating, and to perform the reflow treatment at a lower temperature and in a shorter time. It becomes easy to produce an intermetallic compound structure. Further, by providing a cooling process in two stages and providing a primary cooling process with a low cooling rate, Cu atoms diffuse gently in the Sn grains and grow with a desired intermetallic compound structure. Then, by performing rapid cooling after that, the growth of the intermetallic compound layer can be stopped and fixed in a desired structure.

ところで、高電流密度で電析したCuとSnは安定性が低く室温においても合金化や結晶粒肥大化が発生し、リフロー処理で所望の金属間化合物構造を作ることが困難になる。このため、めっき処理後速やかにリフロー処理を行うことが望ましい。具体的には15分以内、望ましくは5分以内にリフローを行う必要がある。めっき後の放置時間が短いことは問題とならないが、通常の処理ラインでは構成上1分後程度となる。   By the way, Cu and Sn electrodeposited at a high current density are low in stability, and alloying and crystal grain enlargement occur at room temperature, making it difficult to produce a desired intermetallic compound structure by reflow treatment. For this reason, it is desirable to perform the reflow process immediately after the plating process. Specifically, it is necessary to perform reflow within 15 minutes, preferably within 5 minutes. A short standing time after plating does not cause a problem, but in a normal processing line, it is about one minute after construction.

以上のように、Cu系基材1の表面に表1〜表3に示すめっき条件により三層のめっきを施した後、図2に示す温度プロファイル条件でリフロー処理することにより、図1に示すように、Cu系基材1の表面に形成したNi系下地層2がCuSn層5によって覆われ、その上にさらにCuSn層6が形成され、最表面にSn系表面層4が形成される。また、そのNi系下地層2においては、X線回折による結晶面(111)、(200)、(220)、(311)面のX線強度のうち、(220)面の相対強度が30〜60%で、且つ、ホウ素フリーとなっており、Cu系基材1に(220)面の相対X線強度が50%以上のものを使用していることにより、Ni系下地層2のバリア機能が良好に発揮され、このNi系下地層2を覆うCuSn層5及びCuSn層6の二層構造のCu−Sn金属間化合物層3との効果と相俟って、CuのSn系表面層4への拡散を確実に防止し、優れた耐熱性を発揮することができる。 As described above, after three-layer plating is performed on the surface of the Cu-based substrate 1 under the plating conditions shown in Tables 1 to 3, reflow treatment is performed under the temperature profile conditions shown in FIG. As described above, the Ni-based underlayer 2 formed on the surface of the Cu-based substrate 1 is covered with the Cu 3 Sn layer 5, and the Cu 6 Sn 5 layer 6 is further formed thereon, and the Sn-based surface layer 4 is formed on the outermost surface. Is formed. Further, in the Ni-based underlayer 2, the relative intensity of the (220) plane is 30 to 30 of the X-ray intensities of crystal planes (111), (200), (220), and (311) planes by X-ray diffraction. The barrier function of the Ni-based underlayer 2 is 60% and is boron-free, and the Cu-based substrate 1 has a (220) plane relative X-ray intensity of 50% or more. In combination with the effect of the Cu—Sn intermetallic compound layer 3 having a two-layer structure of the Cu 3 Sn layer 5 and the Cu 6 Sn 5 layer 6 covering the Ni-based underlayer 2, Diffusion to the Sn-based surface layer 4 can be reliably prevented and excellent heat resistance can be exhibited.

次に本発明の実施例を説明する。
Cu合金板(Cu系基材)として、厚さ0.25mmの三菱伸銅株式会社製MAX251C材を用い、これにNi、Cu、Snの各めっき処理を順次行った。この場合、表4に示すように、各めっき処理の電流密度を変えて複数の試料を作成した。各めっき層の目標厚さについては、Niめっき層の厚さは0.3μm、Cuめっき層の厚さは0.3μm、Snめっき層の厚さは1.5μmとした。また、これら三種類の各めっき工程間には、処理材表面からめっき液を洗い流すための水洗工程を入れた。
本実施例におけるめっき処理では、Cu合金板にめっき液を高速で噴きつけ、なおかつ酸化イリジウムを被覆したTi板の不溶性陽極を用いた。
上記の三種類のめっき処理を行った後、その処理材に対してリフロー処理を行った。このリフロー処理は、最後のSnめっき処理をしてから1分後に行い、加熱工程、一次冷却工程、二次冷却工程について種々の条件で行った。
以上の試験条件を表4にまとめた。
Next, examples of the present invention will be described.
As the Cu alloy plate (Cu-based substrate), a MAX251C material manufactured by Mitsubishi Shindoh Co., Ltd. having a thickness of 0.25 mm was used, and Ni, Cu, and Sn plating treatments were sequentially performed thereon. In this case, as shown in Table 4, a plurality of samples were prepared by changing the current density of each plating treatment. Regarding the target thickness of each plating layer, the thickness of the Ni plating layer was 0.3 μm, the thickness of the Cu plating layer was 0.3 μm, and the thickness of the Sn plating layer was 1.5 μm. Further, a water washing step for washing the plating solution from the surface of the treatment material was inserted between these three types of plating steps.
In the plating treatment in this example, an insoluble anode of a Ti plate coated with iridium oxide was sprayed on the Cu alloy plate at a high speed.
After performing the above three types of plating treatments, a reflow treatment was performed on the treated material. This reflow process was performed 1 minute after the last Sn plating process, and the heating process, the primary cooling process, and the secondary cooling process were performed under various conditions.
The above test conditions are summarized in Table 4.

試料1〜12の処理材断面は、透過電子顕微鏡を用いたエネルギー分散型X線分光分析(TEM−EDS分析)の結果、Cu系基材、Ni系下地層、CuSn層、CuSn層、Sn系表面層の4層構造となっており、なおかつCuSn層の表面には凹凸があり、その凹部の厚さが0.05μm以上であった。またCuSn層とNi系下地層の界面には不連続なCuSn層があり、集束イオンビームによる断面の走査イオン顕微鏡(FIB−SIM像)から観察されるCuSn層のNi系下地層に対する表面被覆率は60%
以上であった。
Cross sections of the samples 1 to 12 are Cu-based substrate, Ni-based underlayer, Cu 3 Sn layer, and Cu 6 Sn as a result of energy dispersive X-ray spectroscopic analysis (TEM-EDS analysis) using a transmission electron microscope. It has a four-layer structure of five layers and a Sn-based surface layer, and the surface of the Cu 6 Sn 5 layer had irregularities, and the thickness of the concave portions was 0.05 μm or more. The Cu 6 at the interface Sn 5 layer and the Ni-based base layer has discontinuous Cu 3 Sn layer, Ni of Cu 3 Sn layer observed from a scanning ion microscope of a cross section by focused ion beam (FIB-SIM image) 60% surface coverage for the underlayer
That was all.

これらの試料のうち、本実施例について試料2、比較例について試料29の断面観察を行った結果を図3に示す。図3(a)が試料2、(b)が試料29の断面顕微鏡写真である。本実施例の試料2ではCuSn層が成長しているものの、Sn系表面層がまだ残存している。一方、試料29の断面では、Ni系下地層が破損しSn系表面層がほとんど残存しておらず、CuSn層が表面まで達し、Cu酸化物が端子表面を覆っている。 Among these samples, FIG. 3 shows the results of cross-sectional observation of Sample 2 for this example and Sample 29 for Comparative Example. 3A is a cross-sectional micrograph of sample 2 and FIG. In the sample 2 of this example, although the Cu 6 Sn 5 layer has grown, the Sn-based surface layer still remains. On the other hand, in the cross section of the sample 29, the Ni-based underlayer is broken and the Sn-based surface layer hardly remains, the Cu 6 Sn 5 layer reaches the surface, and the Cu oxide covers the terminal surface.

表4のように作製した試料について、175℃×1000時間経過後の接触抵抗、剥離の有無、カーケンダルボイドの有無を測定した。また、動摩擦係数も測定した。
接触抵抗は、試料を175℃×1000時間放置した後、山崎精機株式会社製電気接点シミュレーターを用い荷重0.49N(50gf)摺動有りの条件で測定した。
剥離試験は、9.8kNの荷重にて90°曲げ(曲率半径R:0.7mm)を行った後、大気中で160℃×250時間保持し、曲げ戻して、曲げ部の剥離状況の確認を行った。また、断面観察により、剥離の原因となるNi系下地層とその下のCu系基材界面におけるカーケンダルボイドの有無を確認した。
For the samples prepared as shown in Table 4, the contact resistance after 175 ° C. × 1000 hours, the presence or absence of peeling, and the presence or absence of Kirkendall void were measured. The dynamic friction coefficient was also measured.
The contact resistance was measured under the condition of sliding with a load of 0.49 N (50 gf) using an electrical contact simulator manufactured by Yamazaki Seiki Co., Ltd. after the sample was left at 175 ° C. for 1000 hours.
In the peel test, 90 ° bending (curvature radius R: 0.7 mm) was performed with a load of 9.8 kN, then held in the atmosphere at 160 ° C. for 250 hours, bent back, and the peeled state of the bent portion was confirmed. Went. In addition, cross-sectional observation confirmed the presence or absence of Kirkendall voids at the Ni-based underlayer that causes peeling and the Cu-based substrate interface therebelow.

動摩擦係数については、嵌合型のコネクタのオス端子とメス端子の接点部を模擬するように、各試料によって板状のオス試験片と内径1.5mmの半球状としたメス試験片とを作成し、アイコーエンジニアリング株式会社製の横型荷重測定器(Model−2152NRE)を用い、両試験片間の摩擦力を測定して動摩擦係数を求めた。図4により説明すると、水平な台21上にオス試験片22を固定し、その上にメス試験片23の半球凸面を置いてめっき面どうしを接触させ、メス試験片23に錘24によって4.9N(500gf)の荷重Pをかけてオス試験片22を押さえた状態とする。この荷重Pをかけた状態で、オス試験片22を摺動速度80mm/分で矢印で示す水平方向に10mm引っ張ったときの摩擦力Fをロードセル25によって測定した。その摩擦力Fの平均値Favと荷重Pより動摩擦係数(=Fav/P)を求めた。
これらの結果を表5に示す。
As for the dynamic friction coefficient, a plate-shaped male test piece and a hemispherical female test piece having an inner diameter of 1.5 mm are prepared for each sample so as to simulate the contact portion of the male terminal and female terminal of the fitting type connector. Then, using a horizontal load measuring device (Model-2152NRE) manufactured by Aiko Engineering Co., Ltd., the frictional force between the two test pieces was measured to obtain the dynamic friction coefficient. Referring to FIG. 4, a male test piece 22 is fixed on a horizontal base 21, a hemispherical convex surface of a female test piece 23 is placed on the male test piece 22, and the plating surfaces are brought into contact with each other. The load P of 9N (500 gf) is applied and the male test piece 22 is pressed. With the load P applied, the frictional force F when the male test piece 22 was pulled 10 mm in the horizontal direction indicated by the arrow at a sliding speed of 80 mm / min was measured by the load cell 25. A dynamic friction coefficient (= Fav / P) was obtained from the average value Fav of the friction force F and the load P.
These results are shown in Table 5.

この表5から明らかなように、試料1〜12の導電部材においては、高温時の接触抵抗が小さく、剥離やカーケンダルボイドの発生がなく、かつ動摩擦係数も小さいことから、コネクタ使用時の挿抜力も小さく良好であると判断できる。
また、接触抵抗に関しては、試料6と試料29について、175℃×1000時間の加熱中の経時変化も測定した。その結果を図5に示す。
この図5に示すように、本発明の試料6では高温時に長時間さらされても接触抵抗の上昇はわずかであるのに対して、従来技術の試料29の場合は、1000時間経過で接触抵抗が10mΩ以上にまで上昇した。前述したように、本発明の試料6では、Sn系表面層が残存した4層構造となっているのに対して、従来技術の試料29では、Ni系下地層が破損して、Cu酸化物が表面を覆ってしまっており、このことが接触抵抗の上昇の主因となったと考えられる。
As is apparent from Table 5, the conductive members of Samples 1 to 12 have low contact resistance at high temperatures, no peeling or Kirkendall voids, and a small coefficient of dynamic friction. It can be judged that the force is small and good.
Regarding the contact resistance, Sample 6 and Sample 29 were also measured for changes over time during heating at 175 ° C. × 1000 hours. The result is shown in FIG.
As shown in FIG. 5, in the sample 6 of the present invention, the increase in contact resistance is slight even when exposed to a long time at a high temperature, whereas in the case of the sample 29 of the prior art, the contact resistance increases after 1000 hours. Increased to 10 mΩ or more. As described above, the sample 6 of the present invention has a four-layer structure in which the Sn-based surface layer remains, whereas in the sample 29 of the prior art, the Ni-based underlayer is broken and Cu oxide Covered the surface, which is considered to be the main cause of the increase in contact resistance.

次に、めっき処理後リフロー処理するまでの間の放置時間によるめっき剥離性について実験した。めっき条件、リフロー条件は、表4の試料7と同じとした。剥離試験は前述と同じように、9.8kNの荷重にて90°曲げ(曲率半径R:0.7mm)を行った後、大気中で160℃、250時間保持し、曲げ戻して、曲げ部の剥離状況の確認を行った。また、断面観察により、剥離の原因となるNi系下地層とその下のCu系基材界面におけるカーケンダルボイドの有無を確認した。その結果を表6に示す。   Next, an experiment was conducted on the plating peelability depending on the standing time between the plating treatment and the reflow treatment. The plating conditions and reflow conditions were the same as those of Sample 7 in Table 4. As described above, the peel test was performed by bending 90 ° with a load of 9.8 kN (curvature radius R: 0.7 mm), holding in the atmosphere at 160 ° C. for 250 hours, bending back, The peeling state of was confirmed. In addition, cross-sectional observation confirmed the presence or absence of Kirkendall voids at the Ni-based underlayer that causes peeling and the Cu-based substrate interface therebelow. The results are shown in Table 6.

この表6からわかるように、めっき後の放置時間が長くなると剥離やカーケンダルボイドが発生する。これは、放置時間が長いことにより、高電流密度で析出したCu結晶粒が肥大化すると共に自然にCuとSnが反応することによりCuSnを生成し、リフロー時の平滑なCuSnとCuSnとの合金化を妨げるからと考えられる。平滑なCu−Sn金属間化合物層が存在しないと、加熱時にNi系下地層に欠損が生じ、そこから基材のCu原子が流出しカーケンダルボイドを発生しやすくなるのである。 As can be seen from Table 6, peeling and Kirkendall voids occur when the standing time after plating becomes long. This is because Cu crystal grains precipitated at a high current density are enlarged due to a long standing time, and Cu and Sn react spontaneously to form Cu 6 Sn 5, and smooth Cu 6 Sn during reflowing. This is thought to be because the alloying between 5 and Cu 3 Sn is hindered. If a smooth Cu—Sn intermetallic compound layer does not exist, defects occur in the Ni-based underlayer during heating, and Cu atoms in the base material flow out from the Ni base layer, thereby making it easy to generate Kirkendall voids.

本発明においては、これら実験から得られた高電流密度によるめっき処理後の特定条件のリフロー処理によって、二層構造のCu−Sn金属間化合物層を得て、良好な耐熱性、挿抜性を得ることができるとの前提の下、Niめっき浴のpHを1.0〜2.0とすることで、Ni系下地層のX線回析強度を(220)面の相対強度を5〜60%とし、更に耐熱性を高めるものであり、Ni下地層を実質的にホウ素フリーとすることにて、コネクタ雌端子等の使用時に必要な曲げ加工性(柔軟性)を更に向上させるものである。   In the present invention, a Cu-Sn intermetallic compound layer having a two-layer structure is obtained by reflow treatment under specific conditions after plating treatment with high current density obtained from these experiments, and good heat resistance and insertion / extraction properties are obtained. Under the premise that the pH of the Ni plating bath is 1.0 to 2.0, the X-ray diffraction intensity of the Ni-based underlayer is set to 5 to 60% of the (220) plane relative intensity. In order to further improve the heat resistance, the Ni underlayer is made substantially boron-free, thereby further improving the bending workability (flexibility) required when using the connector female terminal or the like.

そこで、Ni系下地層について、Niめっき浴のpHを変えて、更に、Niめっき浴にクエン酸及びホウ素を使用して実験をした。pH、クエン酸及びホウ素以外のめっき電流密度、リフロー条件等は表4の試料6の条件とした。
そして、得られた導電部材について、Ni系下地層のX線回析を行い、前述と同様の175℃×1000時間経過後の接触抵抗、動摩擦係数を測定した。
また、曲げ加工性については、試験片を圧延方向が長手となるように切出し、JISH3110に規定されるW曲げ試験治具を用い、圧延方向に対して直角方向となるように9.8×10Nの荷重で曲げ加工を施した。その後、ミクロトーム法にて、断面を切出し観察を行った。曲げ加工性評価は、試験後の曲げ加工部に発生したクラックが銅合金母材とNi層との界面にまで伝播しないレベルを○と評価し、銅合金母材とNi層との界面にまでクラックが伝播するが、銅合金母材にはクラックが発生していないレベルを△、銅合金母材へ伝播し銅合金母材にクラックが発生するレベルを×と評価した。
また、Ni系下地層中のホウ素についてはTEM−EDSによる定量分析にて含有の有無を確認し、検出されたものを○、検出されなかったものを×とした。
その結果を表7に示す。また、試料Aについて、175℃×1000時間の加熱中の経時変化も測定し、図5に○印で示した
Therefore, the Ni-based underlayer was tested by changing the pH of the Ni plating bath and further using citric acid and boron in the Ni plating bath. The conditions of Sample 6 in Table 4 were the same as pH, plating current density other than citric acid and boron, and reflow conditions.
And about the obtained electrically-conductive member, the X-ray diffraction of Ni type | system | group base layer was performed, and the contact resistance and dynamic friction coefficient after 175 degreeC x 1000 time passage similar to the above were measured.
As for the bending workability, the test piece was cut out so that the rolling direction was long, and a W bending test jig defined in JISH3110 was used, and 9.8 × 10 so as to be perpendicular to the rolling direction. 3 was subjected to bending at a load of N. Then, the cross section was cut out and observed by the microtome method. Bending workability evaluation evaluates the level at which cracks generated in the bent part after the test do not propagate to the interface between the copper alloy base material and the Ni layer as ◯, and reaches the interface between the copper alloy base material and the Ni layer. The level at which cracks propagate, but no cracks occurred in the copper alloy base material, was evaluated as Δ, and the level at which cracks occurred in the copper alloy base material when propagated to the copper alloy base material was evaluated as x.
Moreover, about the boron in Ni type | system | group base layer, the presence or absence was confirmed by the quantitative analysis by TEM-EDS, what was detected was set to (circle), and what was not detected was set to x.
The results are shown in Table 7. Sample A was also measured for changes over time during heating at 175 ° C. for 1000 hours, and indicated by a circle in FIG.

この表7及び図5の結果によれば、Ni系下地層の結晶面(111)、(200)、(220)、(311)面のX線強度のうち、(220)面の相対強度がNiめっき浴のpHに関連しており、Niめっき浴のpHが1.0〜2.0であると、(220)面の相対強度が5〜60%の範囲内となり、特に耐熱性が良いことがわかる。
また、いずれの試料も、曲げ加工性試験において、銅合金母材にクラックが発生したものはなかったが、実質的にホウ素フリーであると曲げ加工性がさらに良好となることもわかる。
According to the results of Table 7 and FIG. 5, the relative intensity of the (220) plane is the X-ray intensity of the crystal planes (111), (200), (220), and (311) planes of the Ni-based underlayer. This is related to the pH of the Ni plating bath. When the pH of the Ni plating bath is 1.0 to 2.0, the relative strength of the (220) plane is in the range of 5 to 60%, and particularly heat resistance is good. I understand that.
In addition, none of the samples had cracks in the copper alloy base material in the bending workability test, but it can also be seen that the bending workability is further improved when substantially free of boron.

以上の研究の結果、CuSn層とCuSn層には、Ni系下地層とSn系表面層との反応を防ぐ効果があり、その中でもCuSn合金層の方がその効果がより高い。また、CuSn層の凹部からSn原子がNiに拡散しSnとNiが反応するため、CuSn層に凹凸が比較的少なく、なおかつCuSn層がよりNi系下地層の表面を多く被覆することにより、加熱時の接触抵抗劣化を防ぐとともに、剥離やカーケンダルボイドの発生を防止し、さらにコネクタ使用時の挿抜力を低減することが可能となることがわかった。また、Ni系下地層中のX線回折による結晶面の相対X線強度において、(220)強度が所定の範囲(5〜60%)であると、Ni系下地層のNiのCu−Sn金属間化合物層への拡散を防止し、抜群の耐熱性を発揮することができ、更に、Ni系下地層がホウ素フリーであると、環境にも優しく、優れた曲げ加工性を有することがわかった。 As a result of the above research, the Cu 6 Sn 5 layer and the Cu 3 Sn layer have the effect of preventing the reaction between the Ni-based underlayer and the Sn-based surface layer, and among these, the Cu 3 Sn alloy layer is more effective. taller than. In addition, Sn atoms diffuse into Ni from the concave portion of the Cu 6 Sn 5 layer and Sn and Ni react with each other. Therefore, the Cu 6 Sn 5 layer has relatively few irregularities, and the Cu 3 Sn layer has a surface of the Ni-based underlayer. It was found that the coating of a large amount prevents contact resistance deterioration during heating, prevents peeling and generation of Kirkendall voids, and further reduces the insertion / extraction force when using the connector. Further, in the relative X-ray intensity of the crystal plane by X-ray diffraction in the Ni-based underlayer, when the (220) intensity is within a predetermined range (5 to 60%), the Ni-Cu-Sn metal of the Ni-based underlayer It was found that diffusion to the intermetallic compound layer can be prevented, and outstanding heat resistance can be exhibited. Furthermore, when the Ni-based underlayer is boron-free, it is environmentally friendly and has excellent bending workability. .

なお、前述のTEM−EDS分析により、CuSn層内に0.76〜5.32重量%のNiの混入が認められており、本発明においては、Cu−Sn金属間化合物層内にわずかな量のNiが混入しているものも含むものとする。 In addition, according to the above-mentioned TEM-EDS analysis, 0.76 to 5.32% by weight of Ni was recognized in the Cu 6 Sn 5 layer. In the present invention, in the Cu—Sn intermetallic compound layer. It shall also include those in which a slight amount of Ni is mixed.

1 Cu系基材
2 Ni系下地層
3 Cu−Sn金属間化合物層
4 Sn系表面層
5 CuSn層
6 CuSn
7 凹部
8 凸部
10 導電部材
DESCRIPTION OF SYMBOLS 1 Cu type | system | group base material 2 Ni type | system | group base layer 3 Cu-Sn intermetallic compound layer 4 Sn type | system | group surface layer 5 Cu 3 Sn layer 6 Cu 6 Sn 5 layer 7 Concave part 8 Convex part 10 Conductive member

Claims (6)

Cu系基材の表面に、Ni系下地層を介して、Cu−Sn金属間化合物層、Sn系表面層がこの順に形成されるとともに、Cu−Sn金属間化合物層はさらに、前記Ni系下地層の上に配置されるCuSn層と、該CuSn層の上に配置されるCuSn層とからなり、これらCuSn層及びCuSn層を合わせた前記Cu−Sn金属間化合物層の前記Sn系表面層と接する面に凹凸を有しており、その凹部の厚さが0.05〜1.5μmとされ、かつ、前記Ni系下地層に対するCuSn層の面積被覆率が60%以上であり、前記Cu−Sn金属間化合物層の前記凹部に対する凸部の厚さの比率が1.2〜5であり、前記CuSn層の平均厚さは0.01〜0.5μmであり、前記Ni系下地層のX線回折による結晶面の相対X線強度において、(220)強度が5〜60%であることを特徴とする導電部材。 A Cu-Sn intermetallic compound layer and a Sn-based surface layer are formed in this order on the surface of the Cu-based substrate via a Ni-based underlayer, and the Cu-Sn intermetallic compound layer further includes the Ni-based underlayer. and Cu 3 Sn layer disposed over the formation consists of a Cu 6 Sn 5 layer disposed on the said Cu 3 Sn layer, the the combined these Cu 3 Sn layer and Cu 6 Sn 5 layer Cu- The surface of the Sn intermetallic compound layer that is in contact with the Sn-based surface layer has irregularities, the thickness of the concave portion is 0.05 to 1.5 μm, and the Cu 3 Sn layer with respect to the Ni-based underlayer The area coverage of the Cu—Sn intermetallic compound layer is 1.2 to 5 in the ratio of the thickness of the convex portion to the concave portion, and the average thickness of the Cu 3 Sn layer is 0. 0.01 to 0.5 μm, which is determined by X-ray diffraction of the Ni-based underlayer. In the relative X-ray intensity of the crystal plane, the conductive member, characterized in that (220) intensity is 5% to 60%. 前記Ni系下地層がホウ素を含有していないこと特徴とする請求項1に記載の導電部材。 The conductive member according to claim 1, wherein the Ni-based underlayer does not contain boron. 前記Cu系基材のX線回折による結晶面の相対X線強度において、(220)強度が50%以上であることを特徴とする請求項1に記載の導電部材。   2. The conductive member according to claim 1, wherein (220) intensity is 50% or more in relative X-ray intensity of a crystal plane by X-ray diffraction of the Cu-based substrate. Cu系基材の表面に、Ni又はNi合金、Cu又はCu合金、Sn又はSn合金をこの順にめっきしてそれぞれのめっき層を形成した後、加熱してリフロー処理することにより、前記Cu系基材の上に、Ni系下地層、Cu−Sn金属間化合物層、Sn系表面層を順に形成した導電部材を製造する方法であって、
前記Ni又はNi合金によるめっき層を電流密度が20〜50A/dm、pHが1.0〜2.0なる電解めっきにより形成し、
前記Cu又はCu合金によるめっき層を電流密度が20〜60A/dmの電解めっきにより形成し、前記Sn又はSn合金によるめっき層を電流密度が10〜30A/dmの電解めっきにより形成し、前記リフロー処理は、前記めっき層を形成してから1〜15分経過した後に、めっき層を20〜75℃/秒の昇温速度で240〜300℃のピーク温度まで加熱する加熱工程と、前記ピーク温度に達した後、30℃/秒以下の冷却速度で2〜10秒間冷却する一次冷却工程と、一次冷却後に100〜250℃/秒の冷却速度で冷却する二次冷却工程とを有することを特徴とする導電部材の製造方法。
The surface of the Cu-based substrate is plated with Ni or Ni alloy, Cu or Cu alloy, Sn or Sn alloy in this order to form each plating layer, and then heated and reflowed, whereby the Cu-based substrate is obtained. A method for producing a conductive member in which a Ni-based underlayer, a Cu-Sn intermetallic compound layer, and a Sn-based surface layer are sequentially formed on a material,
Forming a plating layer of the Ni or Ni alloy by electrolytic plating with a current density of 20 to 50 A / dm 2 and a pH of 1.0 to 2.0;
Forming a plated layer of Cu or Cu alloy by electrolytic plating with a current density of 20 to 60 A / dm 2 ; forming a plated layer of Sn or Sn alloy by electrolytic plating with a current density of 10 to 30 A / dm 2 ; The reflow treatment is performed by heating the plating layer to a peak temperature of 240 to 300 ° C. at a temperature rising rate of 20 to 75 ° C./second after 1 to 15 minutes have elapsed since the formation of the plating layer, After reaching the peak temperature, it has a primary cooling step of cooling at a cooling rate of 30 ° C./second or less for 2 to 10 seconds, and a secondary cooling step of cooling at a cooling rate of 100 to 250 ° C./second after the primary cooling. The manufacturing method of the electrically-conductive member characterized by these.
前記Ni又はNi合金によるめっきは、ホウ素を含有していない酸を主成分とするめっき浴を使用して行われることを特徴とする請求項4記載の導電部材の製造方法。   5. The method for producing a conductive member according to claim 4, wherein the plating with Ni or Ni alloy is performed using a plating bath mainly composed of an acid not containing boron. 請求項4又は5に記載の製造方法により製造された導電部材。   The electrically-conductive member manufactured by the manufacturing method of Claim 4 or 5.
JP2009231258A 2009-08-18 2009-10-05 Conductive member and manufacturing method thereof Active JP5325734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009231258A JP5325734B2 (en) 2009-08-18 2009-10-05 Conductive member and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009188972 2009-08-18
JP2009188972 2009-08-18
JP2009231258A JP5325734B2 (en) 2009-08-18 2009-10-05 Conductive member and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011063875A JP2011063875A (en) 2011-03-31
JP5325734B2 true JP5325734B2 (en) 2013-10-23

Family

ID=43950406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009231258A Active JP5325734B2 (en) 2009-08-18 2009-10-05 Conductive member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5325734B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5635794B2 (en) * 2010-04-09 2014-12-03 三菱伸銅株式会社 Conductive member and manufacturing method thereof
JP5278630B1 (en) * 2012-01-26 2013-09-04 三菱マテリアル株式会社 Tin-plated copper alloy terminal material excellent in insertion / extraction and manufacturing method thereof
EP3150745A4 (en) * 2014-05-30 2018-07-11 The Furukawa Electric Co., Ltd. Electric contact material, electric contact material manufacturing method, and terminal
JP6160582B2 (en) * 2014-09-11 2017-07-12 三菱マテリアル株式会社 Tin-plated copper alloy terminal material and manufacturing method thereof
JP6579980B2 (en) * 2016-03-09 2019-09-25 Jx金属株式会社 Ni-plated copper or copper alloy material, connector terminal, connector and electronic component using the same
JP6821148B1 (en) * 2020-02-25 2021-01-27 住友電気工業株式会社 Metallic materials and methods for manufacturing metallic materials

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100467896B1 (en) * 1995-12-18 2005-05-13 올린 코포레이션 Cladding including copper substrate, tin cladding layer and electroplated barrier layer
JP4666134B2 (en) * 2004-09-13 2011-04-06 株式会社村田製作所 Nickel plating bath and electronic parts
JP4653133B2 (en) * 2006-03-17 2011-03-16 古河電気工業株式会社 Plating material and electric / electronic component using the plating material
JP4503620B2 (en) * 2007-01-25 2010-07-14 株式会社神戸製鋼所 Conductive material for connecting parts and method for manufacturing the same
EP2157668B9 (en) * 2007-04-09 2016-02-17 Furukawa Electric Co., Ltd. Connector and metallic material for connector
JP5101235B2 (en) * 2007-10-18 2012-12-19 Jx日鉱日石金属株式会社 Sn plating material for electronic parts and electronic parts
JP4319247B1 (en) * 2009-01-20 2009-08-26 三菱伸銅株式会社 Conductive member and manufacturing method thereof
JP4372835B1 (en) * 2009-04-14 2009-11-25 三菱伸銅株式会社 Conductive member and manufacturing method thereof
JP5280957B2 (en) * 2009-07-28 2013-09-04 三菱伸銅株式会社 Conductive member and manufacturing method thereof

Also Published As

Publication number Publication date
JP2011063875A (en) 2011-03-31

Similar Documents

Publication Publication Date Title
JP5280957B2 (en) Conductive member and manufacturing method thereof
JP4319247B1 (en) Conductive member and manufacturing method thereof
JP4372835B1 (en) Conductive member and manufacturing method thereof
JP5498710B2 (en) Conductive member and manufacturing method thereof
WO2010084532A1 (en) Conductive member and method for producing the same
US8940404B2 (en) Tin-plated copper-alloy material for terminal and method for producing the same
JP5025387B2 (en) Conductive material for connecting parts and method for manufacturing the same
JP5355935B2 (en) Metal materials for electrical and electronic parts
JP5319101B2 (en) Sn plating material for electronic parts
WO2010119489A1 (en) Conductive member and manufacturing method thereof
EP1281789A1 (en) A plated copper alloy material and process for production thereof
JP2010248616A (en) Sn-PLATED COPPER OR COPPER ALLOY HAVING EXCELLENT HEAT RESISTANCE AND MANUFACTURING METHOD THEREOF
JP5325734B2 (en) Conductive member and manufacturing method thereof
TW201413068A (en) Tin-plated copper alloy terminal member with outstanding insertion and removal characteristics and method of manufacturing the same
JP5313773B2 (en) Plated copper strip and method for producing the same
JP5635794B2 (en) Conductive member and manufacturing method thereof
JP5442316B2 (en) Manufacturing method of conductive member
JP7272224B2 (en) Terminal materials for connectors
TW202100810A (en) Anti-corrosion terminal material, terminal, and electrical wire end section structure
JP5442385B2 (en) Conductive member and manufacturing method thereof
JP7302364B2 (en) Connector terminal materials and connector terminals
JP2019011504A (en) Anticorrosion terminal material, manufacturing method thereof, anticorrosion terminal and wire terminal part structure
US11901659B2 (en) Terminal material for connectors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130722

R150 Certificate of patent or registration of utility model

Ref document number: 5325734

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250