JP5440802B2 - リソース割当方法、特定方法、無線通信システム、基地局、移動局、及びプログラム - Google Patents

リソース割当方法、特定方法、無線通信システム、基地局、移動局、及びプログラム Download PDF

Info

Publication number
JP5440802B2
JP5440802B2 JP2010517974A JP2010517974A JP5440802B2 JP 5440802 B2 JP5440802 B2 JP 5440802B2 JP 2010517974 A JP2010517974 A JP 2010517974A JP 2010517974 A JP2010517974 A JP 2010517974A JP 5440802 B2 JP5440802 B2 JP 5440802B2
Authority
JP
Japan
Prior art keywords
resource
allocation
resource block
information
allocated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010517974A
Other languages
English (en)
Other versions
JPWO2009154270A1 (ja
Inventor
憲治 小柳
高道 井上
楽 劉
義一 鹿倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2010517974A priority Critical patent/JP5440802B2/ja
Publication of JPWO2009154270A1 publication Critical patent/JPWO2009154270A1/ja
Application granted granted Critical
Publication of JP5440802B2 publication Critical patent/JP5440802B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • H04L1/0029Reduction of the amount of signalling, e.g. retention of useful signalling or differential signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • H04L5/0039Frequency-contiguous, i.e. with no allocation of frequencies for one user or terminal between the frequencies allocated to another
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • H04L5/0041Frequency-non-contiguous
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Description

本発明は、スケジューリング時におけるリソース割り当て情報を通知する技術に関する。
3GPP(3rd Generation Partnership Project)のLTE(Long Term Evolution)の上りリンクではPAPR(Peak to Average Power Ratio)の増大を回避し、広いカバレッジを実現するために、無線アクセス方式としてSC(Single Carrier)‐FDMA(Frequency Division Multiple Access)方式が採用されている。このSC‐FDMAでは、1伝送タイムインターバル(TTI:Transmit Time Interval)内において、周波数軸上で連続なリソースブロック(リソースブロック:複数のサブキャリアから構成される)から構成される周波数ブロックを1移動局あたり1個のみ割り当てることができる。このように周波数ブロック数が少ない場合には、木構造ベース(Tree-Based)(非特許文献1参照)の方法によりリソース割り当ての情報量を最小化できる。このため、LTE上りリンクのスケジューリング時における上りリンクリソース割り当て情報(Uplink Scheduling Grant)の通知には、Tree-Basedが用いられている。
3GPP R1-070881 NEC Group, NTT DoCoMo"Uplink Resource Allocation for E-UTRA", 2007年2月
広帯域の無線通信では、複数の遅延パスの影響により周波数軸上において伝搬路品質(Channel Quality Indicator:CQI)が変動する周波数選択性フェージングが発生する。また、基地局が複数の移動局と通信をするマルチアクセスを考えると、移動局が基地局と通信をする環境はそれぞれ異なるので、それぞれの移動局の周波数領域のCQIは異なる。以上の背景から、LTEでは、それぞれの移動局における周波数領域のCQIを比較し、CQIの優れたサブキャリアをそれぞれの移動局に割り当てるスケジューリング(伝搬路依存の周波数スケジューリング:Frequency domain channel dependent scheduling)によりスループットの向上が図られている。
SC‐FDMAにおいて伝搬路依存の周波数スケジューリングを行う場合、1TTIにおいて、1台の移動局にはCQIの良好な周波数ブロック(周波数ブロック:周波数軸上で少なくとも1つ以上の連続したリソースブロオク)が1つのみ割り当てられる。一方、LTEの下りリンクのアクセス方式として採用されているOFDM(Orthogonal Frequency Division Multiplexing)のように非連続なサブキャリア割り当てを行って周波数ブロックの数を増やせば、更なるマルチダイバーシチ効果を実現できスループットが向上する。しかしながら、周波数ブロックの数を大きくする場合、リソースブロック割り当て情報(Scheduling Grant)の通知によるオーバヘッドが大きくなることが考えられる。
実際、LTEの下りリンクのリソースブロック割り当て情報(Downlink Scheduling Grant)の通知には、Bit Map(周波数ブロック数が大きい場合に適した方法)の採用が検討されている。Bit Mapは、LTEの上りリンクのRB割り当て情報(Uplink Scheduling Grant)の通知に用いられているTree-Based(周波数ブロック数が少ない場合に適した方法)よりもオーバヘッドが大きくなっている。具体的には、100 RBの中で、リソース割り当てを行う場合、Bit Mapを用いると、周波数ブロックの数によらず100bitsのスケジューリング情報が必要となる。
一方、Tree-Basedを用いると、周波数ブロック数が1つの場合、log2100(100+1)/2=13bitsのScheduling Grantで良いが、周波数ブロック数が大きくなると、周波数ブロック数が1つの場合と比較して、周波数ブロック数倍の情報量が必要になる。具体的には、周波数ブロック数=1の場合でTree-basedを用いるときのオーバヘッドを上述の13ビットとすると、周波数ブロック数=2の場合は13×2=26ビット、周波数ブロック数=4の場合は13×4=52ビットに増加する。このように、一般的に、周波数ブロック数を大きくすることにより、RBの割り当てパターンは多くなるので、Uplink Scheduling Grantの情報量は大きくなる。従って、周波数スケジューリングの効果を上げようとすると、周波数ブロック数が少ない場合に対しシグナリングオーバヘッドが増大する問題がある。
そこで、本発明が解決しようとする課題は、マルチユーザダイバーシチの効果を増大させることによって生じるスケジューリング情報のシグナリングオーバヘッドを防ぐ技術を提供することにある。
上記課題を解決するための本発明は、リソース割当方法であって、端末にリソースブロックを割り当てるにあたって、周波数軸に対して少なくとも1以上連続したリソースブロックから構成されるリソースブロック群の数決定し、前記決定したリソースブロック群の数に応じた所定数のリソースブロックを、前記リソースブロックの割り当て単位である割り当て分解能として、前記リソースブロックを割り当てることを特徴とする。
上記課題を解決するための本発明は、リソース割当方法であって、周波数軸に対して少なくとも1以上連続したリソースブロックから構成されるリソースブロック群の数を示す割り当て情報受信し、前記割当情報に基づいて、前記リソースブロックの割り当て単位である割り当て分解能と、前記割り当て分解能に基づいて割り当てられたリソースブロックを特定することを特徴とする。
上記課題を解決するための本発明は、無線システムであって、端末にリソースブロックを割り当てるにあたって、周波数軸に対して少なくとも1以上連続したリソースブロックから構成されるリソースブロック群の数決定するスケジュール手段を有し、前記スケジュール手段は、前記決定したリソースブロック群の数に応じた所定数のリソースブロックを前記リソースブロックの割り当て単位である割り当て分解能として前記リソースブロックを割り当てることを特徴とする。
上記課題を解決するための本発明は、基地局であって、端末にリソースブロックを割り当てるにあたって、周波数軸に対して少なくとも1以上連続したリソー図ブロックから構成されるリソースブロック群の数決定するスケジュール手段を有し、前記スケジュール手段は前記決定したリソースブロック群の数に応じた所定数のリソースブロックを前記リソースブロックの割り当て単位である割り当て分解能として前記リソースブロックを割り当てることを特徴とする。
上記課題を解決するための本発明は、移動局であって、周波数軸に対して少なくとも1以上のリソースブロックから構成されるリソースブロック群の数示す割当情報を受信する受信手段と、前記割当情報に基づいて、前記リソースブロックの割り当て単位である割り当て分解能と、前記割り当て分解能に基づいて、割り当てられたリソースブロックを特定する制御手段とを有することを特徴とする。
上記課題を解決するための本発明は、基地局のプログラムであって、前記プログラムは前記基地局に、端末にリソースブロックを割り当てるにあたって、周波数軸に対して少なくとも1以上連続したリソー図ブロックから構成されるリソースブロック群の数決定する処理と、前記決定したリソースブロック群の数に応じた所定数のリソースブロックを前記リソースブロックの割り当て単位である割り当て分解能として前記リソースブロックを割り当てる処理とを実行させることを特徴とする。
上記課題を解決するための本発明は、移動局のプログラムであって、前記プログラムは前記移動局に、周波数軸に対して少なくとも1以上のリソースブロックから構成されるリソースブロック群の数示す割当情報を受信する処理と、前記割当情報に基づいて、前記リソースブロックの割り当て単位である割り当て分解能と、前記割り当て分解能に基づいて、割り当てられたリソースブロックを特定する処理とを実行させることを特徴とする。
本発明によると、状況に応じて適切な割り当て分解能を決定し、これに応じてTree-Basedの構造を変更して割り当てたRBの情報をTree-Basedを用いて示しているため、周波数ブロック数の増大に伴うシグナリング量の増大を防ぐことが出来る。
第1の実施の形態による無線通信システムにおける基地局のブロック図である。 第1の実施の形態による無線通信システムにおける移動局のブロック図である。 周波数ブロックと割り当て分解能との対応表の一例である。 移動局に割り当てられたRBの例を示した図である。 UE1に割り当てられたRBとUL Scheduling Grantの例を示した図である。 UE2に割り当てられたRBとUL Scheduling Grantの例を示した図である。 UE3に割り当てられたRBとUL Scheduling Grantの例を示した図である。 UE4に割り当てられたRBとUL Scheduling Grantの例を示した図である。 割り当て分解能によって変更するTree Basedを説明する図である。 第1の実施の形態のフロー図である。 最大周波数ブロックと割り当て分解能に対しリソース割り当て情報のビット数を示した図である。 第2の実施の形態のフロー図である。 第3の実施の形態による無線通信システムにおける基地局のブロック図である。 第3実施の形態による無線通信システムにおける移動局のブロック図である。 第3の実施の形態のフロー図である。 第3の実施の形態による無線通信システムにおける基地局の別のブロック図である。 第3実施の形態による無線通信システムにおける移動局の別のブロック図である。 第3の実施の形態による無線通信システムにおける基地局の別のブロック図である。 第3実施の形態による無線通信システムにおける移動局の別のブロック図である。 リソースブロックの割り当てを説明するための図である。 リソースブロックの割り当てを説明するための図である。 第4の実施の形態のフロー図である。 周波数ブロックを説明するための図である。
100 基地局
101 受信部
102 上りRS分離部
103 上りCQI測定部
104 上りスケジュール部
105 最大周波数ブロック数決定部
106 上りデータ信号分離部
107 上りデータ信号復調部
108 上り制御信号分離部
109 上り制御信号復調部
110 下りスケジュール部
111 下り制御信号生成部
112 下りRS信号生成部
113 下りデータ信号生成部
114 多重部
115 送信部
116 UE ID生成部
200 移動局
201 受信部
202 下りRS分離部
203 下りCQI測定部
204 下りデータ信号分離部
205 下りデータ信号復調部
206 下り制御信号分離部
207 下り制御信号復調部
208 下りスケジューリング情報抽出部
209 最大周波数ブロック数抽出部
210 上りスケジューリング情報抽出部
211 上り制御信号生成部
212 上りRS信号生成部
213 上りデータ信号生成部
214 多重部
215 送信部
3rd Generation Partnership Project(3GPP)にて標準化が進められているLong Term Evolution(LTE)では、下りリンクのアクセス方式として、Orthogonal Frequency Division Multiplexing (OFDM)が採用されている。LTEの下りリンクでは、伝搬路依存の周波数スケジューリングが適用され、1伝送タイムインターバル(TTI:Transmit Time Interval)内において周波数軸上で少なくとも1以上の連続なリソースブロック(RB:複数のサブキャリアから構成される)から構成されるリソースブロック群である周波数ブロックを1移動局あたり複数個割り当てることができる。図23にLTEの下りリンクのスケジューリングにおける周波数ブロック割当の例を示す。ここでは、システム帯域において1TTI内に4移動局がスケジューリングされる例である。移動局1(UE1)の周波数ブロック数は3、移動局2(UE2)の周波数ブロック数は2、移動局3(UE3)の周波数ブロックは2、移動局4(UE4)の周波数ブロックは1となる。
本発明は、上記のような、同一移動局に周波数ブロックを複数個割り当てる基地局が各端末にリソースブロックを割り当てる際に、割り当てるリソースブロックの最小単位(以下、割り当て分解能)を決定し、割り当てたリソースブロックを示すTree Basedの構造を決定することを特徴とする。以下に、本発明の詳細を図面を用いて説明する。
<第1の実施の形態>
本実施の形態では、スケジューリング(リソースブロックの割り当て)を行うにあたって決定する周波数ブロックの数に応じて分解能の数を決定する場合について説明する。
本実施の形態における、基地局のブロック図を図1に、移動局のブロック図を図2に示す。
初めに基地局100の構成について説明する。
基地局100の受信部101は、移動局200からの信号を受信し、ガードインターバルを用いて上りリンクの同期を確立し、基地局受信信号SRXBを出力する。
上りRS(Reference Signal)分離部102は、基地局受信信号SRXBから、複数の移動局の上りリンクのRS信号が多重された上りRS信号SURSBを分離し出力する。
上りCQI測定部103は、複数の移動局の上りRS信号SURSBを入力とし、それぞれの移動局におけるRB毎のCQI(Channel Quality Indicator)を算出し、上りCQI情報SUCQBとして出力する。
上りスケジュール部104は、移動局毎に上りリンクのスケジューリングを行う。上りスケジュール部104は、上りCQI情報SUCQBに基づいて割り当てるリソースにおける周波数ブロックの数を決定する。具体的には、CQIが良い状況では周波数ブロック数を大きく決定し、CQIが悪い状況では周波数ブロック数を小さく決定する。この決定された周波数ブロックの数に応じて決定する割り当て分解能で、且つ決定された周波数ブロックの数でRBを割り当てる。割り当て分解能が決定すると、これに応じて、割り当てたRBの位置を示すTree-basedの構造が決定する。割り当てたRBの位置をTree-basedで示した1周波数ブロック毎のリソース割り当て情報と割り当て分解能の値とを1つのスケジューリング情報として、即ちUL Scheduling Grant SUSCB1つ分、決定したTree-basedの構造に応じたビット数で出力する。また、周波数ブロック数をSUDFBとして出力する。
ここで、上りスケジュール部104における、具体的な処理を次に説明する。
上りスケジュール部104では、上りCQI情報SUCQBに基づいて決定した周波数ブロックの数によって、リソース割り当てにおける最小の周波数帯域幅、即ち、リソースブロックの割り当ての最小単位である割り当て分解能を変化させて設定する。詳細には、周波数ブロックの数が大きいほど、割り当て分解能を大きくするように設定する。
以下に、システム帯域を10個のRBとした時に、1ユーザのリソース割り当てに用いるシグナリングBit数が14bits以内に抑えられる場合の具体例を次に述べる。
上りスケジュール部104のリソース割り当てでは、図3に示す周波数ブロック数と割り当て分解能との関係を示した対応表を用いてリソース割り当てを行う。この対応表は、通信環境等に応じて設定する。例えば、周波数ブロックの数が大きいほど、割り当て分解能を大きくするように設定する。この関係を用いることで、周波数ブロック数が4以下におけるシグナリングBit数を割り当て分解能の値の通知(2bit)を含めて14bitsに抑えることが可能である。
UE1、UE2、UE3、UE4の4つの移動局において、UE1に割り当てられる周波数ブロック数は3、UE2に割り当てられる周波数ブロック数は2、UE3に割り当てられる周波数ブロック数は1、UE4に割り当てられる周波数ブロック数は1とする。このとき、図4に示すリソースブロックを左から右に順番にRB0、RB1、・・・RB8、RB9とすると、UE1にはRB0、RB1,RB6、RB7、RB8及びRB9が、UE2にはRB3及びRB6が、UE3にはRB2が、UE4にはRB7がスケジューリングされるとする。図4のスケジューリングと、図3の周波数ブロック数と割り当て分解能の関係を用いた場合について説明する。尚、図5、図6、図7、図8に、UE1、UE2、UE3、UE4それぞれにおける、RBの割り当て例およびTree-Basedを用いたときのUL Scheduling Grantの例を示す。
UE3およびUE4では、周波数ブロック数は1であるため、図3の対応表を用いると割り当て分解能は1RBとなる。従って、UE3およびUE4には、リソースブロックを割り当てる際、リソースブロックを1個ずつ且つ周波数ブロック数が1以内になるようにリソースブロックが割り当てられることになる。そして、割り当て分解能を1RBとし、Tree-Basedで全帯域10RB内における1つの周波数ブロックに対応するリソースを表記するには、1〜55(6bits)におけるいずれかの値が必要である。ここで、図7および図8における1周波数ブロックのリソースを示す1〜55の値は、木構造になるように構成されている。このTree-Basedにおける木構造は、割り当て分解能によって変化する。即ち、UL Scheduling Grantのビット数も変化する。
例えば、図9に示すように、割り当て分解能が1RBの場合、木構造は6bitsで表記可能な1〜55の数列から構成される。また、割り当て分解能が2RBの場合、2リソースブロックを単位にして割り当てられていくので、システム帯域が5個のRBである場合と同様の数列で扱える。そのため、木構造は1〜15の数列から構成される。この木構造を決定された周波数ブロック数と1対1に対応付け、移動局へ割り当て分解能又は周波数ブロック数を通知することにより、Tree-Basedにおける木構造を識別できる。
UE3およびUE4には、周波数ブロック数=1個の周波数ブロックのみがスケジューリングされるため、UE3およびUE4には、割り当て分解能の値の通知を含めると、合計で8bits(=1×6+2bits)必要になる。UE3に通知する、リソースの割り当てに関するスケジューリング情報(UL Scheduling Grant)は8bitsになり、割り当て分解能の値“1”と、割り当てたリソースブロックの位置を木構造で示した場合の位置である“2”(図7中の“2”)が通知される。また、UE4のUL Scheduling Grantは8bitsになり、割り当て分解能の値“1”と、木構造で示した場合の位置である“7”(図8中の“7”)が通知される。
UE2では、周波数ブロック数は2であるため、図3の対応表を用いると割り当て分解能は1RBとなる。割り当て分解能を1RBとし、Tree-Basedで全帯域10RB内における1つの周波数ブロックに対応するリソースを表記するには、6bitsで表記可能な1〜55におけるいずれかの値が必要である。UE2には、周波数ブロックが2個スケジューリングされるため、UE2には割り当て分解能の値の通知を含めると、合計で14bits(=2×6+2bits)必要になる。UE2のUL Scheduling Grantは14bitsになり、割り当て分解能の値“1”と、割り当てたリソースブロックの位置を木構造で示した場合の位置である“3”及び“6”(図6中の“3”及び“6”)が通知される。
また、UE1では、周波数ブロック数は3であるため、図3の対応表を用いると割り当て分解能は2RBとなる。割り当て分解能を2RBとし、Tree-Basedで全帯域10RB内における1つの周波数ブロックに対応するリソースを表記するには、4bitsで表記可能な1〜15におけるいずれかの値が必要である。UE1には、周波数ブロック数が3個スケジューリングされるため、割り当て分解能の値の通知を含めると、合計で14bits(=3×4+2bits)必要になる。UE1のUL Scheduling Grantは14bitsとなり、割り当て分解能の値“2”と、割り当てたリソースブロックの位置を木構造で示した場合の位置である“0”、“2”及び“4”(図5中の“0”、“2”、及び“4”)が通知される。このように、周波数ブロック数が増大しても、割り当て分解能を大きくすることで、リソース割り当て情報量を14bits以内に抑えることが出来る。
次に、一般的な木構造のリソース割り当て情報の生成法を述べる。割り当て分解能がPリソースブロック(Pは1以上)、周波数ブロック数がn(nは1以上)の場合の例を、式1を用いて説明する。ここで、1周波数ブロックをP(割り当て分解能)個の連続したリソースブロックと定義する。リソース割り当て情報は、n個のリソース指示値(RIV)から構成される。第n番目の周波数ブロックのリソース指示値RIVは、開始の周波数ブロック(RBGstart,n)と連続する周波数ブロックの長さ(LCRBGs,n)とを示す。第n番目のリソース指示値RIVは以下の式1で定義される。
(式1)
Figure 0005440802
上記のように生成されたUL Scheduling Grant SUSCBは、下り制御信号生成部111に入力される。下り制御信号生成部111には、他にもDL Scheduling Grant SDSCB、移動局識別情報SUIDBおよび周波数ブロック数が示された周波数ブロック信号SUDFBが入力される。下り制御信号生成部111は、これら入力された信号を多重した下りリンクの制御信号をPDCCH(Physical Downlink Control Channel) SDCCBとして生成し出力する。
下りRS信号生成部112は、下りリンクのRS信号を下りRS信号SDRSBとして生成し出力する。
下りデータ信号生成部113は、DL Scheduling Grant SDSCBを入力とし、DL Scheduling Grant SDSCBが示すRBパターンに従って、複数の移動局の下りリンクのデータ信号を多重し、Physical Downlink Shared Channel(PDSCH) SDDCBを生成し出力する。
多重部114は、PDCCH SDCCB、RS信号SDRSBおよびPDSCH SDDCBを入力とし、これらの信号を多重し、下り多重信号SMUXBとして生成し出力する。
送信部115は、下り多重信号SMUXBを入力とし、送信信号STXBを生成し出力する。
上りデータ信号分離部106は、基地局受信信号SRXBを入力とし、複数の移動局の上りリンクのデータ信号が多重されたPhysical Uplink Shared Channel(PUSCH)SUDCBを抽出し出力する。上りデータ信号復調部は、PUSCH SUDCBを入力し、PUSCH SUDCBを復調し移動局の送信データを再生する。
上り制御信号分離部108は、基地局受信信号SRXBを入力とし、複数の移動局の上りリンクの制御信号が多重されたPhysical Uplink Control Channel(PUCCH) SUCCBを抽出し出力する。上り制御信号復調部109は、PUCCH SUCCBを復調し、複数の移動局が送信した下りリンクのCQIの測定結果である下りCQI測定信号SUCQBを出力する。下りスケジュール部110は、下りCQI測定信号SUCQBを入力とし、複数の移動局の下りリンクのスケジューリングを行い、割り当てられたRBの情報を示すDL Scheduling Grant SDSCBを生成し出力する。
UE ID生成部116は、移動局識別情報SUIDBを生成し、出力する。
続いて、移動局について説明する。図2は本実施の形態の移動局の主要構成を示すブロック図である。
移動局200の受信部201は、基地局100からの信号を受信し、ガードインターバルを用いて下りリンクの同期を確立し、移動局受信信号SRXUを出力する。
下りRS(Reference Signal)信号分離部202は、移動局受信信号SRXUを入力とし、下りリンクのRS信号が多重された下りRS信号SDRSUを分離し出力する。下りCQI測定部203は、下りRS信号SDRSUを入力とし、RB毎のCQIを算出し、下りCQI情報SDCQUとして出力する。
下り制御信号分離部206は、移動局受信信号SRXUを入力とし、複数の移動局の下りリンクの制御信号が多重されたPDCCH SDCCUを分離し出力する。
下り制御信号復調部207は、PDCCH SDCCUを入力とし、PDCCH SDCCUを復調して下りリンクの制御信号を再生し、自移動局に対応する移動局識別情報が多重されている再生結果を分離し、下り制御再生信号SDCMUとして出力する。尚、自移動局に対するPDCCHは1つのみ多重されている。さらに、下り制御信号復調部207は、PDCCH SDCCUを復調して下りリンクの制御信号を再生した結果において、誤りがあるかどうかを判断し、誤りが無ければACKを、誤りがあればNACKを示す信号を、下り制御信号判定信号SDAKUとして生成し出力する。なお、下り制御信号判定信号SDSKUは、移動局200から基地局100へ通知され、下り制御信号判定信号SDAKUがNACKであれば、基地局100は、移動局200に対応するPDCCHを再送する。
下りスケジューリング情報抽出部208は、下り制御再生信号SDCMUを入力とし、下りリンクのリソース割り当て情報に対応する下りRB割り当て判定情報 SDSCUを抽出し出力する。
上りスケジューリング情報抽出部210は、下り制御再生信号SDCMUから、上りリンクのRBが割り当てられた情報を示すUL Scheduling Grantを抽出する。次に、UL Scheduling Grantに含まれている割り当て分解能の値からTree-Basedの木構造を識別し、この木構造において、上りRB割り当て情報が示すRBを特定し、上りRB割り当て判定情報SUSCUとして出力する。
上り制御信号生成部211は、上りRB割り当て判定情報SUSCUと下りCQI情報SDCQUを入力とし、下りCQI情報SDCQUを、上りRB割り当て判定情報SUSCUが示す予め決められた制御信号用のリソースに多重したPhysical Uplink Control Channel(PUCCH) SUCCUを生成し出力する。
上りRS信号生成部212は、上りRB割り当て判定情報SUSCUを入力とし、上りRB割り当て判定情報SUSCUにおいて、予め決められたRS用のリソースを用いて、上りリンクRS送信信号SURSUを生成し出力する。
上りデータ信号生成部213は、上りRB割り当て判定情報SUSCUを入力とし、上りRB割り当て判定情報SUSCUにおいて、予め決められたデータ信号用のリソースを用いて、PhysicalUplink Shared Channel(PUSCH) SUDCUを生成し出力する。
多重部214は、PUCCH SUCCU、上りリンクRS送信信号SURSU、PUSCH SUDCUおよび下り制御信号判定信号SDAKUを入力とし、これらの信号を多重し、移動局多重信号SMUXUを生成し出力する。送信部215は、移動局多重信号SMUXUを入力とし、移動局送信信号SMUXUを生成し、基地局100へ送信する。
下りデータ信号分離部204は、下りRB割り当て受信信号SDSCUと移動局受信信号SRXUを入力とし、下りRB割り当て判定情報SDSCUを基に、自移動局に割り当てられた下りリンクのRBに多重されたPDSCH SDDCUを分離し出力する。下りデータ信号復調部205は、PDSCH SDDCUを入力とし、PDSCH SDDCUを復調し基地局から自移動局への送信データを再生する。
続いて、本実施の形態の動作を図10のフローを用いて説明する。
基地局100の受信部101は、移動局200からの信号を受信し、ガードインターバルを用いて上りリンクの同期を確立し、基地局受信信号SRXBを出力する(ステップS1)。
出力された基地局受信信号SRXBから、上りRS(Reference Signal)分離部102は、複数の移動局の上りリンクのRS信号が多重された上りRS信号SURSBを分離し出力する(ステップS2)。
複数の移動局の上りRS信号SURSBから、上りCQI測定部103がそれぞれの移動局におけるRB毎のCQI(Channel Quality Indicator)を算出し、上りCQI情報SUCQBとして出力する(ステップS3)。
上りスケジュール部104は、移動局毎の上りCQI情報SUCQBに基づいて、各移動局に割り当てるリソースにおける周波数ブロックの数を決定する(ステップS4)。
自装置において保持している図3のような対応表を用いて、決定した周波数ブロックの数に対応付けられている割り当て分解能を決定することによりTree-basedの構造を決定し、UL Scheduling Grantのビット数を決定したTree-basedの構造に応じたビット数になるように設定する(ステップS5)。
決定された割り当て分解能の個数ずつのリソ-スブロックで且つ決定された周波数ブロックの数でRBを割り当てる(ステップS6)。
次に、上りスケジュール部104は、割り当てたRBの位置をTree Basedで示したスケジューリング情報と割り当て分解能の値とをUL Scheduling Grant SUSCBとして設定されたビット数で出力し、周波数ブロック数をSUDFBとして出力する(ステップS7)。
下り制御信号生成部111は、UL Scheduling Grant SUSCB、DL Scheduling Grant SDSCB、移動局識別情報SUIDBおよび周波数ブロック信号SUDFBが入力され、これら入力された信号を多重した下りリンクの制御信号をPDCCH(Physical Downlink Control Channel) SDCCBとして生成し出力する(ステップS8)。
下りRS信号生成部112は、下りリンクのRS信号を下りRS信号SDRSBとして生成し出力し、下りデータ信号生成部113は、DL Scheduling Grant SDSCBを入力とし、DL Scheduling Grant SDSCBが示すRBパターンに従って、複数の移動局の下りリンクのデータ信号を多重し、Physical Downlink Shared Channel(PDSCH) SDDCBを生成し出力する(ステップS9)。
多重部114は、PDCCH SDCCB、RS信号SDRSBおよびPDSCH SDDCBを入力とし、これらの信号を多重し、下り多重信号SMUXBとして生成して出力し、送信部115は、下り多重信号SMUXBを入力として送信信号STXBを生成し出力する(ステップS10)。
移動局200の受信部201は、基地局100からの信号を受信し、ガードインターバルを用いて下りリンクの同期を確立し、移動局受信信号SRXUを出力する(ステップS11)。
下りRS(Reference Signal)信号分離部202は、移動局受信信号SRXUを入力とし、下りリンクのRS信号が多重された下りRS信号SDRSUを分離し、下りCQI測定部203はこの下りRS信号SDRSUを入力としてRB毎のCQIを算出し、下りCQI情報SDCQUとして出力する(ステップS12)。
下り制御信号分離部206は、移動局受信信号SRXUを入力とし、複数の移動局の下りリンクの制御信号が多重されたPDCCH SDCCUを分離し、下り制御信号復調部207はPDCCH SDCCUを復調して下りリンクの制御信号を再生し、自移動局に対応する移動局識別情報が多重されている再生結果を分離し、下り制御再生信号SDCMUとして出力する(ステップS13)。
下りスケジューリング情報抽出部208は、下り制御再生信号SDCMUを入力とし、下りリンクのリソース割り当て情報に対応する下りRB割り当て判定情報 SDSCUを抽出し出力する(ステップS14)。
上りスケジューリング情報抽出部210は、下り制御再生信号SDCMUから、上りリンクのRBが割り当てられた情報を示すUL Scheduling Grantを抽出して割り当て分解能の値を確認する(ステップS15)。
次に、割り当て分解能の値からTree-Basedの木構造を識別し、この木構造において、上りRB割り当て情報が示すRBを特定し、上りRB割り当て判定情報SUSCUとして出力する(ステップS16)。
上り制御信号生成部211は、上りRB割り当て判定情報SUSCUと下りCQI情報SDCQUを入力とし、下りCQI情報SDCQUを上りRB割り当て判定情報SUSCUが示す予め決められた制御信号用のリソースに多重したPhysical Uplink Control Channel(PUCCH) SUCCUを生成し出力する(ステップS17)。
上りRS信号生成部212は、上りRB割り当て判定情報SUSCUを入力とし、上りRB割り当て判定情報SUSCUにおいて、予め決められたRS用のリソースを用いて、上りリンクRS送信信号SURSUを生成し出力する(ステップS18)。
上りデータ信号生成部213は、上りRB割り当て判定情報SUSCUを入力とし、上りRB割り当て判定情報SUSCUにおいて、予め決められたデータ信号用のリソースを用いて、Physical Uplink Shared Channel(PUSCH) SUDCUを生成し出力する(ステップS19)。
多重部214は、PUCCH SUCCU、上りリンクRS送信信号SURSU、PUSCH SUDCUおよび下り制御信号判定信号SDAKUを入力とし、これらの信号を多重し、移動局多重信号SMUXUを生成し、送信部215は移動局送信信号SMUXUを基地局100へ送信する(ステップS20)。
尚、上記実施の形態では、移動局の伝搬路の品質状況(Soundingリファレンス信号で測定したCQI)から周波数ブロック数を決定する形態を用いて説明したが、例えば、セルサイズやシステム帯域幅、基地局のカバレッジ、上りSoundingリファレンス信号の帯域幅、上りデータ送信に用いた帯域幅、上りデータ送信に用いた変調多値数および符号化率、移動局の送受信可能帯域幅(UE capabilityとも言う)、上り送信データの種類(VoIP, HTTP, FTP etc.)等の通信環境に関する情報や、ユーザが契約している料金体系、パワーヘッドルーム(パワーヘッドルームとは移動局の最大送信電力と移動局の実際の送信電力の差である。)、上りパワーコントロールのターゲットSINR等の通信環境に影響を与える情報であってもよい。また、上記のセルサイズは、基地局の位置、基地局間の距離、干渉電力等の通信環境に影響を与える情報によって決定されるため、これらの情報を用いて周波数ブロック数を選択しても良い。
また、上記実施の形態では、移動局の伝搬路の品質状況から周波数ブロック数を決定し、この周波数ブロックに応じて割り当て分解能を設定している構成を用いて説明したが、移動局の伝搬路の品質状況や上記通信環境に関する情報や通信環境に影響を与える情報に応じて割り当て分解能を設定する構成であっても良い。また、上記実施の形態では、周波数ブロック数はPhysical Downlink Control Channel (PDCCH)で通知される場合を用いて説明したが、このほかにもPBCH(Physical Broadcast Channel)、Dynamic BCHと呼ばれるPDSCH(Physical Downlink Shared Channel)等にマッピングされるHigher layerの制御信号で通知される。この場合、基地局の下り制御信号生成部111に設けられているPBCH生成部又はPDSCH生成部(共に図示せず)に周波数ブロック数SUDFBが入力され、PBCH又はPDSCHによって移動局に通知される。また、また、上りリンクおよび下りリンクの制御信号の情報は、1msec程度のフレーム単位で変化するため、これらの変化に合わせて割り当て分解能を変化させると、端末の処理が複雑になる問題がある。このため、割り当て分解能は、複数フレーム周期で変更するように制限を加えても良い。
また、上記実施の形態では、上りスケジュール部104は、決定された割り当て分解能の個数ずつのリソ-スブロックで且つ決定された周波数ブロックの数でRBを割り当てる形態を用いて説明したが、決定された割り当て分解能の個数ずつのリソ-スブロックで且つ決定された周波数ブロックの数以内になるようにRBを割り当てる形態であっても良い。
また、上記では、説明の簡略のため、システム帯域を10個のRBとして説明したが、システム帯域20MHzの実際のLTEシステムの場合におけるビット数削減効果を説明する。複数の周波数ブロックの割り当てが可能なLTEの下りリンクと同様に、システム帯域20MHz(RB数=100)において、Tree Basedを用いて通知する場合の1周波数ブロックに対して必要なビット数はlog2100(100+1)/2=13ビットである。したがって、実際のLTEの下りで規定されているスケジューリング情報の上限である37ビットを超えないように、図3に示されるような周波数ブロック数と割り当て分解能との対応表を設定する。尚、図11には、1〜4の周波数ブロック数それぞれについて、Tree-Basedを用いて周波数ブロック数個の周波数ブロックのRBパターンを通知するために必要なビット数を示している。このように、本発明では、周波数ブロック数と割り当て分解能との対応関係を環境に応じて設定できるので、スケジューリング情報のシグナリングビット数を割り当て分解能の通知(2bit)を含めて、規定されている上限である37bits以下の35bitsに抑えることが可能である。
上述の通り、伝搬路の品質が良い移動局は周波数ブロック数を大きくし、伝搬路の品質が悪い移動局は周波数ブロック数を小さくし、これに応じて割り当て分解能を決定している。これは、伝搬路の品質が良い移動局の場合は低い電力密度で送信するため広い帯域で送信でき、全体的に伝搬路品質が良好なため、周波数ブロック数と共に割り当て分解能を大きくしても伝搬路品質が低下することがないからである。一方、伝搬路の品質が悪い移動局の場合は高い電力密度で送信するため狭い帯域で送信し、全体的に伝搬路品質が劣悪である故に、中でも良好なリソースを正確に選ぶため、周波数ブロック数とともに割り当て分解能も小さくする必要があるからである。このように、割り当て分解能と周波数ブロック数と移動局の伝搬路の品質とを対応付ければ、割り当て分解能を設定することによる受信特性の低下を抑えることが出来る。
<第2の実施の形態>
上記実施の形態では、基地局が割り当て分解能の値をUL Scheduling Grantに記して移動局に通知する場合について説明した。本実施の形態では、基地局が割り当て分解能を周波数ブロック数に1対1に対応付けて設定し、移動局が通知された周波数ブロック数から割り当て分解能を認識する場合について述べる。尚、上記実施の形態と同様の構成については同一番号を付し、詳細な説明は省略する。
基地局100の上りスケジュール部104は、それぞれの移動局毎に上りリンクのスケジューリングを行う。上りスケジュール部104は、上りCQI情報SUCQBに基づいて割り当てるリソースにおける周波数ブロックの数を決定する。この決定された周波数ブロックの数に応じて設定される割り当て分解能で、且つ決定された周波数ブロックの数で、RBを割り当てる。割り当てたRBの位置を示すスケジューリング情報をUL Scheduling Grant SUSCBとして、周波数ブロック数をSUDFBとして出力する。
基地局100の下り制御信号生成部111は、UL Scheduling Grant SUSCB、DL Scheduling Grant SDSCB、移動局識別情報SUIDBおよび周波数ブロック信号SUDFBを入力とし、これらを多重した下りリンクの制御信号をPDCCH(Physical Downlink Control Channel) SDCCBとして生成し出力する。尚、周波数ブロック数は、Physical Downlink Control Channel (PDCCH)で通知されるほかにも、PBCH、PDSCH等で通知される。
移動局200の下り制御信号復調部207は、PDCCH SDCCUを入力とし、PDCCH SDCCUを復調して下りリンクの制御信号を再生し、自移動局に対応する移動局識別情報が多重されている再生結果を分離し、下り制御再生信号SDCMUとして出力する。
移動局200の上りスケジューリング情報抽出部210は、下り制御再生信号SDCMUから、上りリンクのRBが割り当てられた情報を示すUL Scheduling Grantおよび周波数ブロック信号SUDFUを抽出する。次に、周波数ブロック信号SUDFUと自移動局が保持している対応表とから、周波数ブロック数と1対1に対応付けた割り当て分解能を認識する。この割り当て分解能からTree-Basedの木構造を識別し、この木構造において、上りRB割り当て情報が示すRBを特定し、上りRB割り当て判定情報SUSCUとして出力する。
続いて、本実施の形態の動作を図12のフローを用いて説明する。
基地局100の受信部101は、移動局200からの信号を受信し、ガードインターバルを用いて上りリンクの同期を確立し、基地局受信信号SRXBを出力する(ステップS1)。
出力された基地局受信信号SRXBから、上りRS(Reference Signal)分離部102は、複数の移動局の上りリンクのRS信号が多重された上りRS信号SURSBを分離し出力する(ステップS2)。
複数の移動局の上りRS信号SURSBから、上りCQI測定部103がそれぞれの移動局におけるRB毎のCQI(Channel Quality Indicator)を算出し、上りCQI情報SUCQBとして出力する(ステップS3)。
上りスケジュール部104は、移動局毎の上りCQI情報SUCQBに基づいて、各移動局に割り当てるリソースにおける周波数ブロックの数を決定する(ステップS4)。
自装置において保持している図3のような対応表を用いて、決定した周波数ブロックの数に対応付けられている割り当て分解能を決定することによりTree-basedの構造も決定し、UL Scheduling Grantのビット数を決定したTree-basedの構造に応じたビット数になるように設定する(ステップS5)。
決定された割り当て分解能の個数ずつのリソ-スブロックで且つ決定された周波数ブロックの数で、RBを割り当てる(ステップS6)。
次に、上りスケジュール部104は、割り当てたRBの位置をTree Basedで示したスケジューリング情報をUL Scheduling Grant SUSCBとして設定されたビット数で出力し、周波数ブロック数をSUDFBとして出力する(ステップS7−1)。
下り制御信号生成部111は、UL Scheduling Grant SUSCB、DL Scheduling Grant SDSCB、移動局識別情報SUIDBおよび周波数ブロック信号SUDFBが入力され、これら入力された信号を多重した下りリンクの制御信号をPDCCH(Physical Downlink Control Channel) SDCCBとして生成し出力する(ステップS8)。
下りRS信号生成部112は、下りリンクのRS信号を下りRS信号SDRSBとして生成し出力し、下りデータ信号生成部113はDL Scheduling Grant SDSCBを入力とし、DL Scheduling Grant SDSCBが示すRBパターンに従って、複数の移動局の下りリンクのデータ信号を多重し、Physical Downlink Shared Channel(PDSCH) SDDCBを生成し出力する(ステップS9)。
多重部114は、PDCCH SDCCB、RS信号SDRSBおよびPDSCH SDDCBを入力とし、これらの信号を多重し、下り多重信号SMUXBとして生成し出力し、これを送信部115が送信する(ステップS10)。
移動局200の受信部201は、基地局100からの信号を受信し、ガードインターバルを用いて下りリンクの同期を確立し、移動局受信信号SRXUを出力する(ステップS11)。
下りRS(Reference Signal)信号分離部202は、移動局受信信号SRXUを入力とし、下りリンクのRS信号が多重された下りRS信号SDRSUを分離して、下りCQI測定部203は、下りRS信号SDRSUからRB毎のCQIを算出し、下りCQI情報SDCQUとして出力する(ステップS12)。
下り制御信号分離部206は、移動局受信信号SRXUを入力とし、複数の移動局の下りリンクの制御信号が多重されたPDCCH SDCCUを分離し出力し、下り制御信号復調部207は、PDCCH SDCCUを復調して下りリンクの制御信号を再生し、自移動局に対応する移動局識別情報が多重されている再生結果を分離し、下り制御再生信号SDCMUとして出力する(ステップS13)。
下りスケジューリング情報抽出部208は、下り制御再生信号SDCMUを入力とし、下りリンクのリソース割り当て情報に対応する下りRB割り当て判定情報 SDSCUを抽出し出力する(ステップS14)。
上りスケジューリング情報抽出部210は、下り制御再生信号SDCMUから、上りリンクのRBが割り当てられた情報を示すUL Scheduling Grantと周波数ブロック信号SUDFUを抽出し、周波数ブロック信号SUDFUが示す周波数ブロックの数に基づいて割り当て分解能の値を認識する(ステップS15−1)。
次に、割り当て分解能の値からTree-Basedの木構造を識別し、この木構造において、上りRB割り当て情報が示すRBを特定し、上りRB割り当て判定情報SUSCUとして出力する(ステップS16)。
上り制御信号生成部211は、上りRB割り当て判定情報SUSCUと下りCQI情報SDCQUを入力とし、下りCQI情報SDCQUを、上りRB割り当て判定情報SUSCUが示す予め決められた制御信号用のリソースに多重したPhysical Uplink Control Channel(PUCCH) SUCCUを生成し出力する(ステップS17)。
上りRS信号生成部212は、上りRB割り当て判定情報SUSCUを入力とし、上りRB割り当て判定情報SUSCUにおいて、予め決められたRS用のリソースを用いて、上りリンクRS送信信号SURSUを生成し出力する(ステップS18)。
上りデータ信号生成部213は、上りRB割り当て判定情報SUSCUを入力とし、上りRB割り当て判定情報SUSCUにおいて、予め決められたデータ信号用のリソースを用いて、Physical Uplink Shared Channel(PUSCH) SUDCUを生成し出力する(ステップS19)。
多重部214は、PUCCH SUCCU、上りリンクRS送信信号SURSU、PUSCH SUDCUおよび下り制御信号判定信号SDAKUを入力とし、これらの信号を多重し、移動局多重信号SMUXUを生成し、送信部215が移動局送信信号SMUXUを基地局100へ送信する(ステップS20)。
尚、他の方法としては、割り当て分解能を、移動局が基地局に通知した上りリンクの制御信号における下りリンクのCQI情報や移動局の位置情報、基地局が移動局に通知した下りリンクの制御信号におけるMCS(Modulation and Coding Scheme)やパワーコントロールのターゲット値等に1対1に対応付ける方法がある。これらの制御信号における情報と割り当て分解能を対応付けることにより、基地局と移動局とで割り当て分解能を共有できる。また、基地局から通知された周波数ブロック数からTree-Basedの木構造を識別してもよい。
本実施の形態によると、割り当て分解能の値を通知しないので、この割り当て分解能の値の通知分(2bit)のシグナリングBit数を減らすことができる。
<第3の実施の形態>
上記実施の形態では、スケジュール部104が決定した周波数ブロック数に応じて、割り当て分解能を決定する場合を用いて説明した。本実施の形態では、最大周波数ブロック数決定部105が、上りCQIに応じて決定した最大周波数ブロック数に応じて、割り当て分解能を決定する場合について述べる。尚、上記実施の形態と同様の構成については同一番号を付し、詳細な説明は省略する。
図13は、本実施の形態における基地局100のブロック図である。上述の実施形態と比較すると、最大周波数ブロック数決定部105が構成されている点が異なる。
最大周波数ブロック数決定部105は、上りCQI情報SUCQBを入力とし、それぞれの移動局に割り当てるリソースブロックにおける最大の周波数ブロック数を決定し、それぞれの移動局の最大周波数ブロック信号SUDFBを生成し出力する。
例えば、DFT-spread-OFDM(Discrete Fourier Transform ‐ spread - Orthogonal Frequency Division Multiplexing)における送信側のDFT(Discrete Fourier Transform)からの出力を少なくとも1個以上の周波数ブロックに割り当てるMC−FDMAにおいては、周波数ブロック数が大きくなるほどPAPRが大きくなるため、周波数ブロック数に制限を加えなければセル端の移動局のPAPR増大が問題となる。そのため、基地局または移動局のシステム情報などに基づき、許容できる最大周波数ブロック数を基地局(セル)、移動局、又は移動局のグループごとに設定する場合がある。そのため、最大周波数ブロック数決定部105は、マルチユーザダイバーシチ効果を大きくしたい状況(システム帯域が広い、またはCQIが良い状況など)では、最大の周波数ブロック数を大きく設定し、オーバヘッドの増加を抑えたい状況(システム帯域が狭い、またはCQIが悪い状況など)では、最大の周波数ブロック数を小さく設定する。
上りスケジュール部104は、移動局毎に上りリンクのスケジューリングを行う。上りスケジュール部104は、上りCQI情報SUCQBと最大周波数ブロック信号SUDFBとを入力とし、割り当てるリソースブロックにおける最大の周波数ブロック数を最大周波数ブロック信号SUDFBが示す数以内に制限し、最大周波数ブロック信号SUDFBに対応した割り当て分解能で、RBの割り当てを行う。そして、割り当てたRBの位置を示すスケジューリング情報であるスケジューリング情報と最大周波数ブロック数とをUL Scheduling Grant SUSCBとして出力する。
続いて、移動局200について説明する。図14は、本実施の形態における移動局200のブロック図である。上述の実施形態と比較すると、最大周波数ブロック数抽出部209が構成されている点が異なる。
最大周波数ブロック数抽出部209は、下り制御再生信号SDCMUを入力とし、自移動局の最大周波数ブロック受信信号SUDFUを分離し出力する。
上りスケジューリング情報抽出部210は、下り制御再生信号SDCMUから、上りリンクのRBが割り当てられた情報を示すUL Scheduling Grantを抽出する。次に、最大周波数ブロック数抽出部209から出力された最大周波数ブロック受信信号SUDFUから、最大周波数ブロック受信信号SUDFUと1対1に対応付けた割り当て分解能を識別する。この割り当て分解能からTree-Basedの木構造を識別し、この木構造において、上りRB割り当て情報が示すRBを特定し、上りRB割り当て判定情報SUSCUとして出力する。
続いて、本実施の形態の動作を図15のフローを用いて説明する。
基地局100の受信部101は、移動局200からの信号を受信し、ガードインターバルを用いて上りリンクの同期を確立し、基地局受信信号SRXBを出力する(ステップS1)。
出力された基地局受信信号SRXBから、上りRS(Reference Signal)分離部102は、複数の移動局の上りリンクのRS信号が多重された上りRS信号SURSBを分離し出力する(ステップS2)。
複数の移動局の上りRS信号SURSBから、上りCQI測定部103がそれぞれの移動局におけるRB毎のCQI(Channel Quality Indicator)を算出し、上りCQI情報SUCQBとして出力する(ステップS3)。
上りCQI情報SUCQBに基づいて、最大周波数ブロック数決定部105は、それぞれの移動局に割り当てるリソースブロックにおける最大の周波数ブロック数を決定し、それぞれの移動局の最大周波数ブロック信号SUDFBを生成し出力する(ステップS4−1)。
上りスケジュール部104は、自装置において保持している図3のような対応表を用いて、最大周波数ブロック信号SUDFBに示されている最大周波数ブロック数に対応付けられている割り当て分解能を決定することによりTree basedの構造も決定し、UL Scheduling Grantのビット数を決定したTree basedの構造に応じたビット数になるように設定する(ステップS5)。
決定された割り当て分解能の個数ずつのリソ-スブロックで且つ決定された周波数ブロックの数以内になるようにRBを割り当てる(ステップS6)。
次に、上りスケジュール部104は、割り当てたRBの位置を示すスケジューリング情報と最大周波数ブロック数とをUL Scheduling Grant SUSCBとして設定されたビット数で出力する(ステップS7−2)。
下り制御信号生成部111は、UL Scheduling Grant SUSCB、DL Scheduling Grant SDSCB、移動局識別情報SUIDBおよび最大周波数ブロック信号SUDFBが入力され、これら入力された信号を多重した下りリンクの制御信号をPDCCH(Physical Downlink Control Channel) SDCCBとして生成し出力する(ステップS8)。
下りRS信号生成部112は、下りリンクのRS信号を下りRS信号SDRSBとして生成し出力し、下りデータ信号生成部113は、DL Scheduling Grant SDSCBを入力とし、DL Scheduling Grant SDSCBが示すRBパターンに従って、複数の移動局の下りリンクのデータ信号を多重し、Physical Downlink Shared Channel(PDSCH) SDDCBを生成し出力する(ステップS9)。
多重部114は、PDCCH SDCCB、RS信号SDRSBおよびPDSCH SDDCBを入力とし、これらの信号を多重し、下り多重信号SMUXBとして生成し、送信部115は、下り多重信号SMUXBから送信信号STXBを生成し出力する(ステップS10)。
移動局200の受信部201は、基地局100からの信号を受信し、ガードインターバルを用いて下りリンクの同期を確立し、移動局受信信号SRXUを出力する(ステップS11)。
下りRS(Reference Signal)信号分離部202は、移動局受信信号SRXUを入力とし、下りリンクのRS信号が多重された下りRS信号SDRSUを分離し、下りCQI測定部203は、下りRS信号SDRSUを入力とし、RB毎のCQIを算出し、下りCQI情報SDCQUとして出力する(ステップS12)。
下り制御信号分離部206は、移動局受信信号SRXUを入力とし、複数の移動局の下りリンクの制御信号が多重されたPDCCH SDCCUを分離し、下り制御信号復調部207はPDCCH SDCCUを復調して下りリンクの制御信号を再生し、自移動局に対応する移動局識別情報が多重されている再生結果を分離し、下り制御再生信号SDCMUとして出力する(ステップS13)。
下りスケジューリング情報抽出部208は、下り制御再生信号SDCMUを入力とし、下りリンクのリソース割り当て情報に対応する下りRB割り当て判定情報 SDSCUを抽出し出力する(ステップS14)。
最大周波数ブロック数抽出部209は、下り制御再生信号SDCMUを入力とし、自移動局の最大周波数ブロック受信信号SUDFUを分離し出力し、上りスケジューリング情報抽出部210は、最大周波数ブロック受信信号SUDFUから割り当て分解能の値を確認する(ステップS15−2)。
次に、割り当て分解能の値からTree-Basedの木構造を識別し、この木構造において、上りRB割り当て情報が示すRBを特定し、上りRB割り当て判定情報SUSCUとして出力する(ステップS16)。
上り制御信号生成部211は、上りRB割り当て判定情報SUSCUと下りCQI情報SDCQUを入力とし、下りCQI情報SDCQUを上りRB割り当て判定情報SUSCUが示す予め決められた制御信号用のリソースに多重したPhysical Uplink Control Channel(PUCCH) SUCCUを生成し出力する(ステップS17)。
上りRS信号生成部212は、上りRB割り当て判定情報SUSCUを入力とし、上りRB割り当て判定情報SUSCUにおいて、予め決められたRS用のリソースを用いて、上りリンクRS送信信号SURSUを生成し出力する(ステップS18)。
上りデータ信号生成部213は、上りRB割り当て判定情報SUSCUを入力とし、上りRB割り当て判定情報SUSCUにおいて、予め決められたデータ信号用のリソースを用いて、Physical Uplink Shared Channel(PUSCH) SUDCUを生成し出力する(ステップS19)。
多重部214は、PUCCH SUCCU、上りリンクRS送信信号SURSU、PUSCH SUDCUおよび下り制御信号判定信号SDAKUを入力とし、これらの信号を多重し、移動局多重信号SMUXUを生成し、送信部215が移動局送信信号SMUXUを基地局100へ送信する(ステップS20)。
尚、上記において、最大周波数ブロック数がUL Scheduling Grantに含める場合を用いて説明したが、最大周波数ブロック数がセル固有に決まる場合、最大周波数ブロック数は、Physical Broadcast Channel(PBCH)またはDynamic Broadcast Channel(DBCH)とよばれるPhysical Downlink Shared Channel(PDSCH)にマッピングされる信号で通知される。また、UE specificの場合は、PDSCHにマッピングされるHigher layer signallingの情報で通知させる。このような場合には、最大周波数ブロック数は、UL Scheduling Grantに含める必要は無い。
また、上記において、最大周波数ブロック数をUL Scheduling Grantに含める場合を用いて説明したが、最大周波数ブロック数の代わりに割り当て分解能の情報を含めても良い。この場合、上りスケジューリング情報抽出部210は、下り制御再生信号SDCMUからUL Scheduling Grantを抽出して割り当て分解能を識別する構成となる。
また、上記において、最大周波数ブロックを上りCQIに応じて決定する場合を用いて説明したが、別の方法で最大周波数ブロックを決定する場合について以下で説明する。
まず、最大周波数ブロック数決定部が、最大の周波数ブロック数を移動局と基地局との位置によって決定する場合の構成について説明する。
図16は、最大の周波数ブロック数を移動局と基地局との位置によって決定する場合の基地局100のブロック図である。
基地局100において、上り制御信号復調部109は、PUCCH SUCCBを復調し、複数の移動局が送信した下りリンクのCQIの測定結果である下りCQI測定信号SUCQBと移動局の位置を示す移動局位置受信情報SULCBを出力する。
最大周波数ブロック数決定部105−1は、移動局位置受信情報SULCBを入力とし、移動局位置受信情報SULCBが示す移動局の位置から、それぞれの移動局に割り当てる周波数リソースにおける最大の周波数ブロック数を決定し、それぞれの移動局の最大周波数ブロック信号SUDFBを生成し出力する。具体的には、最大の周波数ブロック数は、基地局から遠いユーザほど小さくなるように決定されて生成される。
図17は、最大の周波数ブロック数を移動局と基地局との位置によって決定する場合の移動局200のブロック図である。
移動局200において、位置測定部416は、GPS信号衛星からの信号を用いて移動局の位置を測定する機能を有し、GPS衛星からの信号を受信し、移動局200の位置を測定し、移動局位置情報SULCUを生成し出力する。
上り制御信号生成部211−1は、上りRB割り当て判定情報SUSCU、下りCQI情報SDCQUと移動局位置情報SULCUを入力とし、下りCQI情報SDCQUと移動局位置情報SULCBを、上りRB割り当て判定情報SUSCUが示すリソースにおいて予め決められた制御信号用のリソースを用いてPUCCH SUCCUを生成し出力する。
上記の構成により、最大の周波数ブロック数が小さい移動局には割り当て分解能を小さくしてRBを割り当て、最大の周波数ブロック数が大きい移動局には割り当て分解能を大きくしてRBを割り当てる。
続いて、最大周波数ブロック数決定部が、移動局において増大可能な送信電力を示したパワーヘッドルームに応じて最大の周波数ブロック数を決定する場合について説明する。
図18は、最大の周波数ブロック数を移動局において増大可能な送信電力を示したパワーヘッドルームに応じて決定する場合の基地局100のブロック図である。
基地局100において、上り送信電力決定部517は、上りCQI情報SUCQBを入力とし、所用受信電力を満たすために必要な、移動局の送信電力値を算出し、上り送信電力設定情報SUPWBとして生成し出力する。
上り制御信号復調部109は、上り制御信号SUCCBを復調し、複数の移動局が送信した下りリンクのCQIの測定結果である下りCQI測定信号SUCQBと移動局パワーヘッドルーム受信情報SUHRBを出力する。
最大周波数ブロック数決定部105−2は、パワーヘッドルーム受信情報SUHRBを入力とし、パワーヘッドルーム受信情報SUHRBを基に、それぞれの移動局に割り当てる周波数リソースにおける最大の周波数ブロック数を決定し、移動局の最大周波数ブロック信号SUDFBとして生成し出力する。具体的には、例えば、最大の周波数ブロック数の初期値を1にし、パワーヘッドルーム受信情報SUHRBが示す値が閾値電力PDFUPを(PDFUPは正の実数)を超えていれば、最大の周波数ブロック数の値を1増大させる。パワーヘッドルーム受信情報SUHRBが示す値が0で、最大の周波数ブロック数が2以上であれば、最大の周波数ブロック数の値を1減少させる。即ち、送信電力に余裕があれば、最大の周波数ブロック数を大きくして割り当て可能な周波数ブロック数を増やし、伝搬路依存の周波数スケジューリングにおける利得を増大させる。また、送信電力に余裕がなく、パワーリミテッドな場合には、最大の周波数ブロック数を小さくしてより高い電力密度で信号を送信するようにする。
下り制御信号生成部511は、移動局識別情報SUIDB、UL Scheduling Grant SUSCB、DL Scheduling Grant SDSCB、最大周波数ブロック信号SUDFBおよび上り送信電力設定情報SUPWBを入力とし、これらを多重した下りリンクの制御信号を、PDCCH SDCCBとして生成し出力する。
図19は、最大の周波数ブロック数を移動局において増大可能な送信電力を示したパワーヘッドルームに応じて決定する場合の移動局200のブロック図である。
移動局200において、上り送信電力情報抽出部616は、下り制御再生信号 SDCMUから、基地局から通知された、移動局における上りリンクの送信電力値が示された上り送信電力設定値受信情報SUPWUを抽出し出力する。
パワーヘッドルーム算出部617は、上り送信電力設定値受信情報SUPWUを入力とし、移動局が送信可能な最大送信電力値から上り送信電力設定値受信情報SUPWUを差し引いた値を、移動局パワーヘッドルーム情報SUHRUとして出力する。移動局パワーヘッドルーム情報SUHRUは、上り送信電力設定値受信情報SUPWUが示す電力で送信後において、移動局が更に送信可能な余剰電力を示す。
上り制御信号生成部211−2は、上りRB割り当て判定情報SUSCU、下りCQI情報SDCQUと移動局パワーヘッドルーム情報SUHRUを入力とし、下りCQI情報SDCQUと移動局パワーヘッドルーム情報SUHRUを、上りRB割り当て判定情報SUSCUが示すリソースにおいて予め決められた制御信号用のリソースを用いて、PUCCH SUCCUを生成し出力する。
上記の構成により、最大の周波数ブロック数が小さい移動局には、割り当て分解能を小さくしてRBを割り当て、最大の周波数ブロック数が大きい移動局には、割り当て分解能を大きくしてRBを割り当てる
上記の通り、本実施の形態によると、Tree-Basedにおいて、最大の周波数ブロック数が小さい移動局には割り当て分解能を小さくしてRBの割り当てを行い、最大の周波数ブロック数が大きい移動局には割り当て分解能を大きくしてRBの割り当てを行っているため、周波数ブロック数の増大に伴うシグナリング量の増大を防ぐことが出来る。
<第4の実施の形態>
上記第1及び第2の実施の形態ではスケジュール部が決定した周波数ブロック数に応じて割り当て分解能を決定する場合について説明し、第3の実施の形態では最大周波数ブロック数決定部が決定した最大周波数ブロックの数に応じて割り当て分解能を決定する場合について説明した。本実施の形態では、上記実施の形態によって割り当てられたリソースブロックの並びを確認し、割り当てたリソースブロックを示す情報を決定したビット数より少ないビット数で送信できる場合には少ないビット数で送信することを特徴とする。尚、上記実施の形態と同様の構成については同一番号を付し、詳細な説明は省略する。
例えば、周波数ブロック数又は最大周波数ブロック数が1とされた場合、図3の対応表を用いると、割り当て分解能は1と設定される。このとき、スケジュール部が周波数ブロック数が1で、割り当て分解能を1としてリソースブロックを割り当てた結果が、図20に示すように“2”、“3”、“4”、“5”の位置のリソースブロックが割り当てられたとする。この場合、上記実施の形態では、1〜55(6bits)における“32”の値を用いてTree-Basedで表記することになる。
しかしながら、実際には、図21に示すように、4bitsで表記可能な1〜15における“6”の値を用いてTree-Basedで表記することができる。即ち、少ないビット数でリソースブロックの割り当てをTree-Basedで表記することができる。
本実施の形態の上りスケジューリング部104は、割り当てたリソースブロックの並びを確認し、割り当てたリソースブロックを示す情報を決定したビット数より少ないビット数で送信できる場合には、1度決定された割り当て分解能の値を更新し、更新した割り当て分解能の値に応じたビット数でUL Scheduling Grantを出力する。
続いて、本実施の形態の動作を図22のフローを用いて説明する。尚、以下の説明では、第1の実施の形態を基にして説明するが、第3の実施の形態に基づいても良い。
基地局100の受信部101は、移動局200からの信号を受信し、ガードインターバルを用いて上りリンクの同期を確立し、基地局受信信号SRXBを出力する(ステップS1)。
出力された基地局受信信号SRXBから、上りRS(Reference Signal)分離部102は、複数の移動局の上りリンクのRS信号が多重された上りRS信号SURSBを分離し出力する(ステップS2)。
複数の移動局の上りRS信号SURSBから、上りCQI測定部103がそれぞれの移動局におけるRB毎のCQI(Channel Quality Indicator)を算出し、上りCQI情報SUCQBとして出力する(ステップS3)。
上りスケジュール部104は、移動局毎の上りCQI情報SUCQBに基づいて、各移動局に割り当てるリソースにおける周波数ブロックの数を決定する(ステップS4)。自装置において保持している図3のような対応表を用いて、決定した周波数ブロックの数に対応付けられている割り当て分解能を決定する(ステップS5)。
決定された割り当て分解能の個数ずつのリソ-スブロックで且つ決定された周波数ブロックの数でRBを割り当てる(ステップS6)。
割り当てたRBの並びから、割り当てたリソースブロックを示す情報を決定したビット数より少ないビット数で送信できるかを判定する(ステップS21)。割り当てたリソースブロックを示す情報を決定したビット数より少ないビット数で送信できる場合には、1度決定された割り当て分解能の値を更新し、UL Scheduling Grantのビット数を更新した割り当て分解能に応じたビット数になるように設定する(ステップS22)。一方、割り当てたリソースブロックを示す情報を決定したビット数より少ないビット数で送信できない場合には、ステップS7−1へ。
次に、上りスケジュール部104は、割り当てたRBの位置を示すスケジューリング情報と割り当て分解能の値とをUL Scheduling Grant SUSCBとして設定されたビット数で出力し、周波数ブロック数をSUDFBとして出力する(ステップS7−1)。
下り制御信号生成部111は、UL Scheduling Grant SUSCB、DL Scheduling Grant SDSCB、移動局識別情報SUIDBおよび周波数ブロック信号SUDFBが入力され、これら入力された信号を多重した下りリンクの制御信号をPDCCH(Physical Downlink Control Channel) SDCCBとして生成し出力する(ステップS8)。
下りRS信号生成部112は、下りリンクのRS信号を下りRS信号SDRSBとして生成し、下りデータ信号生成部113はDL Scheduling Grant SDSCBが示すRBパターンに従って、複数の移動局の下りリンクのデータ信号を多重し、Physical Downlink Shared Channel(PDSCH) SDDCBを生成し出力する(ステップS9)。
多重部114は、PDCCH SDCCB、RS信号SDRSBおよびPDSCH SDDCBを入力とし、これらの信号を多重し、下り多重信号SMUXBとして生成し、送信部115は下り多重信号SMUXBから送信信号STXBを生成し送信する(ステップS10)。
移動局200の受信部201は、基地局100からの信号を受信し、ガードインターバルを用いて下りリンクの同期を確立し、移動局受信信号SRXUを出力する(ステップS11)。
下りRS(Reference Signal)信号分離部202は、移動局受信信号SRXUを入力とし、下りリンクのRS信号が多重された下りRS信号SDRSUを分離し出力し、下りCQI測定部203は下りRS信号SDRSUからRB毎のCQIを算出し、下りCQI情報SDCQUとして出力する(ステップS12)。
下り制御信号分離部206は、移動局受信信号SRXUを入力とし、複数の移動局の下りリンクの制御信号が多重されたPDCCH SDCCUを分離し、下り制御信号復調部207はPDCCH SDCCUを復調して下りリンクの制御信号を再生し、自移動局に対応する移動局識別情報が多重されている再生結果を分離し、下り制御再生信号SDCMUとして出力する(ステップS13)。
下りスケジューリング情報抽出部208は、下り制御再生信号SDCMUを入力とし、下りリンクのリソース割り当て情報に対応する下りRB割り当て判定情報 SDSCUを抽出し出力する(ステップS14)。
上りスケジューリング情報抽出部210は、下り制御再生信号SDCMUから、上りリンクのRBが割り当てられた情報を示すUL Scheduling Grantを抽出して割り当て分解能の値を確認する(ステップS15)。
次に、割り当て分解能の値からTree-Basedの木構造を識別し、この木構造において、上りRB割り当て情報が示すRBを特定し、上りRB割り当て判定情報SUSCUとして出力する(ステップS16)。
上り制御信号生成部211は、上りRB割り当て判定情報SUSCUと下りCQI情報SDCQUを入力とし、下りCQI情報SDCQUを上りRB割り当て判定情報SUSCUが示す予め決められた制御信号用のリソースに多重したPhysical Uplink Control Channel(PUCCH) SUCCUを生成し出力する(ステップS17)。
上りRS信号生成部212は、上りRB割り当て判定情報SUSCUを入力とし、上りRB割り当て判定情報SUSCUにおいて、予め決められたRS用のリソースを用いて、上りリンクRS送信信号SURSUを生成し出力する(ステップS18)。
上りデータ信号生成部213は、上りRB割り当て判定情報SUSCUを入力とし、上りRB割り当て判定情報SUSCUにおいて、予め決められたデータ信号用のリソースを用いて、Physical Uplink Shared Channel(PUSCH) SUDCUを生成し出力する(ステップS19)。
多重部214は、PUCCH SUCCU、上りリンクRS送信信号SURSU、PUSCH SUDCUおよび下り制御信号判定信号SDAKUを入力とし、これらの信号を多重し、移動局多重信号SMUXUを生成し、送信部215が移動局送信信号SMUXUを基地局100へ送信する(ステップS20)。
尚、上記説明では、決定された割り当て分解能でリソースブロックを割り当てた後に、割り当てたリソースブロックを示す情報を少ないビット数で送信できるかを確認する構成を用いて説明したが、ただ単に、リソースブロックを割り当てた後に、割り当てたリソースブロックを示す情報を少ないビット数で送信できるかを確認する構成であっても良い。
本実施の形態によると、割り当てられたリソースブロックの並びを確認し、割り当てたリソースブロックを示す情報を決定したビット数より少ないビット数で送信できるかを確認しているので、UL Scheduling Grantを確実に少ないビット数で送信することができる。
尚、上述した各実施の形態では、上りリンクのリソースブロックを割り当てる形態を用いて説明したが、下りリンクのリソースブロックを割り当てる形態であってもよい。このような場合、周波数ブロック数又は最大周波数ブロック数は、例えば、セルサイズ、システム帯域幅、基地局のカバレッジ、下りリファレンス信号により測定された伝搬路品質情報、下りデータ信号の帯域幅、下りデータ信号の変調多値数や符号化率等の通信環境によって変化する情報であっても良い。また、上記のセルサイズは、基地局の位置、基地局間の距離、干渉電力等の通信環境に影響を与える情報によって決定されるため、これらの情報を用いて周波数ブロック数を選択しても良い。
また、上りリンクのリソースブロックを割り当てる形態と下りリンクのリソースブロックを割り当てる形態とを組み合わせて実行する形態であっても良い。
また、上述した本発明の移動局と基地局とは、上記説明からも明らかなように、ハードウェアで構成することも可能であるが、コンピュータプログラムにより実現することも可能である。
プログラムメモリに格納されているプログラムで動作するプロセッサによって、上述した実施の形態と同様の機能、動作を実現させる。尚、上述した実施の形態の一部の機能をコンピュータプログラムにより実現することも可能である。
以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明の範囲内で当業者が理解し得る様々な変更をすることが出来る。
本出願は、2008年6月20日に出願された日本出願特願2008−161752号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (33)

  1. リソース割当方法であって、
    端末にリソースブロックを割り当てるにあたって、周波数軸に対して少なくとも1以上連続したリソースブロックから構成されるリソースブロック群の数を決定し、
    前記決定したリソースブロック群の数に応じた所定数のリソースブロックを、前記リソースブロックの割当単位である割り当て分解能として、前記リソースブロックを割り当てる
    ことを特徴とするリソース割当方法。
  2. 前記決定したリソースブロック群の数に応じて、前記所定数のリソースブロックを、前記割当単位として決定することを特徴とする請求項1に記載のリソース割当方法。
  3. 前記決定したリソースブロック群の数に応じて、前記所定数のリソースブロックを、前記割当単位として決定し、
    前記周波数帯域幅が増加するに従って、前記割当単位とするリソースブロック数を増やす
    ことを特徴とする請求項1に記載のリソース割当方法。
  4. 端末に割り当てることができるリソースブロック群の最大の数に応じて、前記割当単位とするリソースブロック数を決定することを特徴とする請求項1に記載のリソース割当方法。
  5. リソースブロック群の数に応じて、前記割当単位とするリソースブロック数を決定することを特徴とする請求項1から請求項4のいずれかに記載のリソース割当方法。
  6. 基地局又は端末の通信環境に関する情報、通信環境に影響を与える情報、若しくは通信能力に基づいて、前記割当単位とするリソースブロック数を決定することを特徴とする請求項1から請求項5のいずれかに記載のリソース割当方法。
  7. 決定した前記割当単位とするリソースブロック数で、リソースブロックを割り当てることを特徴とする請求項1から請求項6のいずれかに記載のリソース割当方法。
  8. 決定した前記割当単位とするリソースブロック数で割り当てたリソースブロックをTree Basedで示すためにそのTree Basedの構造を決定する
    ことを特徴とする請求項1から請求項7のいずれかに記載のリソース割当方法。
  9. 割り当てたリソースブロックを示す情報のビット数を、Tree Basedの構造に応じて変更することを特徴とする請求項1から請求項8のいずれかに記載のリソース割当方法。
  10. 割り当てたリソースブロックを示す情報と前記割当単位とするリソースブロック数の情報とを有するスケジューリング情報を端末に通知することを特徴とする請求項1から請求項9のいずれかに記載のリソース割当方法。
  11. 基地局から送信されたスケジューリング情報の前記割当単位とするリソースブロック数からTree Basedの構造を識別して、スケジューリング情報に示されている、割り当てられたリソースブロックを端末が特定することを特徴とする請求項10に記載のリソース割当方法。
  12. 割り当てたリソースブロックを示す情報と、割り当てたリソースブロック群の数を示す情報又は端末に割り当てることができるリソースブロック群の最大の数を示す情報とを端末に通知することを特徴とする請求項1乃至9のいずれかに記載のリソース割当方法。
  13. 送信されたリソースブロック群の数又はリソースブロック群の最大の数に基づいてTree Basedの構造を識別して、割り当てたリソースブロックを示す情報に示されている、割り当てられたリソースブロックを特定することを特徴とする請求項12に記載のリソース割当方法。
  14. リソース割当方法であって、
    周波数軸に対して少なくとも1以上連続したリソースブロックから構成されるリソースブロック群の数を示す割当情報を受信し、
    前記割当情報に基づいて、前記リソースブロックの割当単位である割り当て分解能と、前記割て分解能に基づいて割り当てられたリソースブロックとを特定する
    ことを特徴とするリソース割当方法。
  15. 無線通信システムであって、
    端末にリソースブロックを割り当てるにあたって、周波数軸に対して少なくとも1以上連続したリソースブロックから構成されるリソースブロック群の数決定するスケジュール手段を有し、
    前記スケジュール手段は、前記決定したリソースブロック群の数に応じた所定数のリソースブロックを前記リソースブロックの割当単位である割り当て分解能として前記リソースブロックを割り当てる
    ことを特徴とする無線通信システム。
  16. 前記スケジュール手段は、前記決定したリソースブロック群の数に応じて、前記所定数のリソースブロックを、前記割当単位として決定することを特徴とする請求項15に記載の無線通信システム。
  17. 前記スケジュール手段は、前記決定したリソースブロック群の数に応じて、前記所定数のリソースブロックを、前記割当単位として決定し、前記周波数帯域幅が増加するに従って、前記割当単位とするリソースブロック数を増やすことを特徴とする請求項15に記載の無線通信システム。
  18. 前記スケジュール手段は、端末に割り当てることができるリソースブロック群の最大の数に応じて、前記割当単位とするリソースブロック数を決定することを特徴とする請求項15に記載の無線通信システム。
  19. 前記スケジュール手段は、リソースブロック群の数に応じて、前記割当単位とするリソースブロック数を決定することを特徴とする請求項15から請求項18のいずれかに記載の無線通信システム。
  20. 前記スケジュール手段は、基地局又は移動局の通信環境に関する情報、通信環境に影響を与える情報、若しくは通信能力に基づいて、前記割当単位とするリソースブロック数を決定することを特徴とする請求項15から請求項19のいずれかに記載の無線通信システム。
  21. 前記スケジュール手段は、決定した前記割当単位とするリソースブロック数で、リソースブロックを割り当てることを特徴とする請求項15から請求項20のいずれかに記載の無線通信システム。
  22. 前記スケジュール手段は、決定した前記割当単位とするリソースブロック数で割り当てたリソースブロックをTree Basedで示すためにそのTree Basedの構造を決定することを特徴とする請求項15から請求項21のいずれかに記載の無線通信システム。
  23. 前記スケジュール手段は、割り当てたリソースブロックを示す情報を有するスケジューリング情報のビット数を、Tree Basedの構造に応じて変更することを特徴とする請求項15から請求項22のいずれかに記載の無線通信システム。
  24. 割り当てたリソースブロックを示す情報と前記割当単位とするリソースブロック数の情報とを有するスケジューリング情報を、端末に通知する通知手段を有することを特徴とする請求項15から請求項23のいずれかに記載の無線通信システム。
  25. 基地局から送信されたスケジューリング情報の前記割当単位とするリソースブロック数からTree Basedの構造を識別して、スケジューリング情報に示されている、割り当てられたリソースブロックを端末が特定する手段を有することを特徴とする請求項24に記載の無線通信システム。
  26. 割り当てたリソースブロックを示す情報と、割り当てたリソースブロック群の数を示す情報又は端末に割り当てることができるリソースブロック群の最大の数を示す情報とを、端末に通知する通知手段を有することを特徴とする請求項15から請求項24のいずれかに記載の無線通信システム。
  27. 送信されたリソースブロック群の数又はリソースブロック群の最大の数に基づいてTree Basedの構造を識別して、スケジューリング情報に示されている、割り当てられたリソースブロックを特定する手段を有することを特徴とする請求項26に記載の無線通信システム。
  28. 基地局であって、
    端末にリソースブロックを割り当てるにあたって、周波数軸に対して少なくとも1以上連続したリソースブロックから構成されるリソースブロック群の数決定するスケジュール手段を有し、
    前記スケジュール手段は、前記決定したリソースブロック群の数に応じた所定数のリソースブロックを、前記リソースブロックの割当単位である割り当て分解能として前記リソースブロックを割り当てる
    ことを特徴とする基地局。
  29. 移動局であって、
    周波数軸に対して少なくとも1以上連続したリソースブロックから構成されるリソースブロック群の数を示す割当情報を受信する受信手段と、
    前記割当情報に基づいて、前記リソースブロックの割当単位である割り当て分解能と、前記割て分解能に基づいて割り当てられたリソースブロックとを特定する制御手段
    を有することを特徴とする移動局。
  30. 前記制御手段は、前記決定したリソースブロック群の数に応じて前記割当単位として決定されたリソースブロックの数を特定することを特徴とする請求項29に記載の移動局。
  31. 前記制御手段は、前記決定したリソースブロック群の数が増加するに従って増加するように決定された、前記割当単位であるリソースブロックの数を特定することを特徴とする請求項29に記載の移動局。
  32. 基地局のプログラムであって、前記プログラムは前記基地局に、
    端末にリソースブロックを割り当てるにあたって、周波数軸に対して少なくとも1以上連続したリソースブロックから構成されるリソースブロック群の数決定する処理と、
    前記決定したリソースブロック群の数に応じた所定数のリソースブロックを、前記リソースブロックの割当単位である割り当て分解能として前記リソースブロックを割り当てる処理と
    を実行させることを特徴とするプログラム。
  33. 移動局のプログラムであって、前記プログラムは前記移動局に、
    周波数軸に対して少なくとも1以上連続したリソースブロックから構成されるリソースブロック群の数を示す割当情報を受信する処理と、
    前記割当情報に基づいて、前記リソースブロックの割当単位である割り当て分解能と、前記割て分解能に基づいて割り当てられたリソースブロックとを特定する処理と
    を実行させることを特徴とするプログラム。
JP2010517974A 2008-06-20 2009-06-19 リソース割当方法、特定方法、無線通信システム、基地局、移動局、及びプログラム Active JP5440802B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010517974A JP5440802B2 (ja) 2008-06-20 2009-06-19 リソース割当方法、特定方法、無線通信システム、基地局、移動局、及びプログラム

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008161752 2008-06-20
JP2008161752 2008-06-20
JP2010517974A JP5440802B2 (ja) 2008-06-20 2009-06-19 リソース割当方法、特定方法、無線通信システム、基地局、移動局、及びプログラム
PCT/JP2009/061194 WO2009154270A1 (ja) 2008-06-20 2009-06-19 リソース割当方法、特定方法、無線通信システム、基地局、移動局、及びプログラム

Publications (2)

Publication Number Publication Date
JPWO2009154270A1 JPWO2009154270A1 (ja) 2011-12-01
JP5440802B2 true JP5440802B2 (ja) 2014-03-12

Family

ID=41434182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010517974A Active JP5440802B2 (ja) 2008-06-20 2009-06-19 リソース割当方法、特定方法、無線通信システム、基地局、移動局、及びプログラム

Country Status (7)

Country Link
US (7) US9350485B2 (ja)
EP (4) EP3358780B1 (ja)
JP (1) JP5440802B2 (ja)
KR (1) KR101228052B1 (ja)
CN (1) CN102067694B (ja)
ES (2) ES2905580T3 (ja)
WO (1) WO2009154270A1 (ja)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2450458C (en) 2001-06-13 2015-04-07 Interdigital Acquisition Corp. System and method for coordination of wireless maintenance channel power control
TWI332326B (en) * 2002-10-17 2010-10-21 Interdigital Tech Corp Power control for communications systems utilizing high speed shared channels
JP2009231976A (ja) * 2008-03-19 2009-10-08 Nec Corp 異なる無線アクセス方式間のハンドオーバ方法および無線通信システム
EP3358780B1 (en) 2008-06-20 2021-11-10 NEC Corporation Resource allocation method, base station and mobile station
EP3595233B1 (en) 2008-06-20 2021-09-01 NEC Corporation Resource allocation method, identification method, base station, and mobile station
JP5330843B2 (ja) * 2009-01-28 2013-10-30 京セラ株式会社 無線基地局および通信制御方法
PT2400807T (pt) * 2009-02-18 2018-11-05 Sun Patent Trust Aparelho de escalonamento e método de escalonamento
KR101260814B1 (ko) 2009-03-17 2013-05-06 닛본 덴끼 가부시끼가이샤 무선 기지국 장치, 무선 통신 시스템, 무선 통신 방법, 및 프로그램
JP5528123B2 (ja) 2010-01-05 2014-06-25 シャープ株式会社 通信装置、通信装置の制御プログラムおよび集積回路
US8867459B2 (en) * 2010-03-08 2014-10-21 Broadcom Corporation Mobile subscriber information transmission over multiple uplink frames
US9236975B2 (en) 2010-03-08 2016-01-12 Broadcom Corporation Mobile subscriber information transmission over multiple uplink frames
US20130121278A1 (en) * 2010-06-01 2013-05-16 Lg Electronics Inc. Method and apparatus for allocating resources in a wireless communication system
US8488529B2 (en) * 2011-01-05 2013-07-16 Telefonaktiebolaget Lm Ericsson (Publ) Efficient information mapping for transmission grants
CN102056306B (zh) * 2011-01-14 2013-10-16 大唐移动通信设备有限公司 上行共享信道资源分配的方法、装置及一种通信***
WO2012150762A2 (ko) * 2011-05-02 2012-11-08 주식회사 팬택 자원할당정보의 전송장치 및 방법
WO2012173385A2 (ko) * 2011-06-13 2012-12-20 엘지전자 주식회사 무선통신 시스템에서 자원 할당 방법 및 장치
CN102891710B (zh) 2011-07-20 2015-12-02 华为技术有限公司 一种获取信道状态信息的方法及装置
US20140169316A1 (en) * 2011-07-27 2014-06-19 Lg Electronics Inc. Method and apparatus for signal transceiving in wireless communication system
CN103733560B (zh) 2011-08-12 2017-08-11 交互数字专利控股公司 用于无线***中灵活的带宽操作的下行链路资源分配
KR101964349B1 (ko) * 2012-03-19 2019-04-01 한국전자통신연구원 통신 시스템에서 자원 할당 장치 및 방법
JP2015019177A (ja) * 2013-07-09 2015-01-29 京セラ株式会社 ネットワーク装置及び通信制御方法
CN103500124A (zh) * 2013-10-22 2014-01-08 中国农业银行股份有限公司 一种向多图形处理器分配数据的方法和***
CN104363659B (zh) 2014-10-24 2018-09-21 上海华为技术有限公司 一种资源分配装置、***及方法
CN105992354B (zh) * 2015-01-30 2021-05-11 中兴通讯股份有限公司 一种资源分配的指示方法及装置
CN105636211B (zh) * 2015-06-30 2019-03-22 宇龙计算机通信科技(深圳)有限公司 资源分配的指示方法及指示装置、基站和终端
US10492181B2 (en) * 2016-01-20 2019-11-26 Qualcomm Incorporated Communication of uplink control information
US10433283B2 (en) * 2016-01-26 2019-10-01 Huawei Technologies Co., Ltd. System and method for bandwidth division and resource block allocation
WO2017155323A1 (ko) * 2016-03-10 2017-09-14 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신하기 위한 방법 및 이를 위한 장치
EP3796732B1 (en) * 2016-05-13 2023-07-26 Sony Group Corporation Communications device and infrastructure equipment
EP3499982B1 (en) 2016-08-08 2021-06-23 LG Electronics Inc. Method and device for reporting power headroom
KR102208074B1 (ko) 2016-08-24 2021-01-27 텔레폰악티에볼라겟엘엠에릭슨(펍) V2x 통신에서 효율적인 시그널링 방법
CN110226352B (zh) * 2017-01-25 2021-12-31 华为技术有限公司 一种资源分配方法及第一节点、第二节点
CN110351849B (zh) * 2018-04-04 2023-07-04 大唐移动通信设备有限公司 资源分配方法及装置、基站和终端

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7016319B2 (en) 2003-03-24 2006-03-21 Motorola, Inc. Method and apparatus for reducing co-channel interference in a communication system
KR100798664B1 (ko) 2003-12-24 2008-01-28 닛본 덴끼 가부시끼가이샤 무선 통신 시스템, 무선 통신 장치 및 그것에 이용하는리소스 할당 방법
DE602005023068D1 (de) * 2005-06-15 2010-09-30 Huawei Tech Co Ltd Verfahren und system zur zuweisung von kommunikationsressourcen
US8077690B2 (en) * 2005-08-24 2011-12-13 Motorola Mobility, Inc. Resource allocation in cellular communication systems
US20110065468A1 (en) * 2006-01-18 2011-03-17 Stefan Parkvall Localized and distributed transmission
KR101221821B1 (ko) 2006-04-21 2013-01-14 삼성전자주식회사 주파수 분할 다중 접속 시스템에서 자원 할당 정보 시그널링 방법
CN101064903B (zh) 2006-04-25 2011-12-21 华为技术有限公司 一种通信***资源分配指示方法、基站及用户设备
CN101119277A (zh) 2006-08-03 2008-02-06 北京三星通信技术研究有限公司 传输控制信令的设备和方法
JP5077525B2 (ja) 2006-08-22 2012-11-21 日本電気株式会社 無線通信システムにおけるリファレンス信号多重方法および無線通信装置
US20080049613A1 (en) 2006-08-24 2008-02-28 Motorola, Inc. Method and system for providing a quality of service change warning at a user equipment
JP4904994B2 (ja) * 2006-08-25 2012-03-28 富士通東芝モバイルコミュニケーションズ株式会社 移動無線端末装置
JP4940867B2 (ja) 2006-09-29 2012-05-30 日本電気株式会社 移動通信システムにおける制御信号およびリファレンス信号の多重方法、リソース割当方法および基地局
KR100910707B1 (ko) 2006-10-19 2009-08-04 엘지전자 주식회사 제어신호 전송 방법
JP5092350B2 (ja) * 2006-10-26 2012-12-05 富士通株式会社 パイロット信号伝送方法及び移動通信システム
KR101478356B1 (ko) 2006-11-01 2014-12-31 삼성전자주식회사 패킷 데이터 통신 시스템에서 패킷 데이터를 위한 제어정보 송수신 방법 및 장치
KR101319877B1 (ko) * 2006-11-01 2013-10-18 엘지전자 주식회사 자원 할당 방법 및 자원 할당 정보 전송 방법
US7924809B2 (en) * 2006-11-22 2011-04-12 Intel Corporation Techniques to provide a channel quality indicator
US7957759B2 (en) * 2006-12-08 2011-06-07 Texas Instruments Incorporated Wideband reference signal transmission in SC-FDMA communication systems
JP5147233B2 (ja) 2006-12-27 2013-02-20 川崎エンジニアリング株式会社 ガスの脱硫方法および脱硫設備
US9295003B2 (en) * 2007-03-19 2016-03-22 Apple Inc. Resource allocation in a communication system
JP5100747B2 (ja) * 2007-03-20 2012-12-19 株式会社エヌ・ティ・ティ・ドコモ 移動通信システムで使用される基地局装置、ユーザ装置及び方法
KR101468490B1 (ko) 2007-05-02 2014-12-10 삼성전자주식회사 무선 통신 시스템에서 제어 채널들의 집합을 한정하여 송수신하는 방법 및 장치
US7933350B2 (en) 2007-10-30 2011-04-26 Telefonaktiebolaget Lm Ericsson (Publ) Channel-dependent frequency-domain scheduling in an orthogonal frequency division multiplexing communications system
EP3595233B1 (en) 2008-06-20 2021-09-01 NEC Corporation Resource allocation method, identification method, base station, and mobile station
EP3358780B1 (en) 2008-06-20 2021-11-10 NEC Corporation Resource allocation method, base station and mobile station

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6013033870; NEC Group: 'DL Unicast Resource Allocation Signalling using L1L2 control channels' 3GPP TSG-RAN WG1#51 R1-075055 , 20071109 *
JPN6013033872; NEC Group: 'DL Unicast Resource Allocation Signalling using L1L2 control channels' 3GPP TSG-RAN WG1#49Bis R1-072832 , 20070629 *

Also Published As

Publication number Publication date
US20220295460A1 (en) 2022-09-15
US20160234817A1 (en) 2016-08-11
US20200314825A1 (en) 2020-10-01
WO2009154270A1 (ja) 2009-12-23
US20230337248A1 (en) 2023-10-19
US11395285B2 (en) 2022-07-19
EP2291042B1 (en) 2018-05-30
US10091779B2 (en) 2018-10-02
US12004188B2 (en) 2024-06-04
US9668256B2 (en) 2017-05-30
US9350485B2 (en) 2016-05-24
US10716106B2 (en) 2020-07-14
KR101228052B1 (ko) 2013-01-31
EP2291042A1 (en) 2011-03-02
EP3358780A1 (en) 2018-08-08
EP4247091A3 (en) 2023-11-22
EP4247091A2 (en) 2023-09-20
EP2291042A4 (en) 2014-08-27
EP3567790B1 (en) 2023-09-06
JPWO2009154270A1 (ja) 2011-12-01
KR20110021908A (ko) 2011-03-04
ES2685481T3 (es) 2018-10-09
CN102067694A (zh) 2011-05-18
US20170230949A1 (en) 2017-08-10
ES2905580T3 (es) 2022-04-11
US20180359736A1 (en) 2018-12-13
US20110110322A1 (en) 2011-05-12
CN102067694B (zh) 2015-04-29
EP3358780B1 (en) 2021-11-10
EP3567790A1 (en) 2019-11-13

Similar Documents

Publication Publication Date Title
JP5440802B2 (ja) リソース割当方法、特定方法、無線通信システム、基地局、移動局、及びプログラム
US11405901B2 (en) Resource allocation method, identification method, base station, mobile station, and program
JP2014209736A (ja) 通信システム、無線通信方法、基地局、移動局

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131203

R150 Certificate of patent or registration of utility model

Ref document number: 5440802

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150