JP5439706B2 - Method for suppressing generation of metal carbonyl and fuel cell system - Google Patents

Method for suppressing generation of metal carbonyl and fuel cell system Download PDF

Info

Publication number
JP5439706B2
JP5439706B2 JP2007078007A JP2007078007A JP5439706B2 JP 5439706 B2 JP5439706 B2 JP 5439706B2 JP 2007078007 A JP2007078007 A JP 2007078007A JP 2007078007 A JP2007078007 A JP 2007078007A JP 5439706 B2 JP5439706 B2 JP 5439706B2
Authority
JP
Japan
Prior art keywords
catalyst
metal
nickel
carbonyl
ruthenium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007078007A
Other languages
Japanese (ja)
Other versions
JP2008237955A (en
Inventor
斉也 小林
真司 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2007078007A priority Critical patent/JP5439706B2/en
Publication of JP2008237955A publication Critical patent/JP2008237955A/en
Application granted granted Critical
Publication of JP5439706B2 publication Critical patent/JP5439706B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Description

本発明は炭化水素と水蒸気とを混合し反応させる炭化水素分解反応において、改質反応を妨げることなく金属カルボニルを安全且つ効率良く抑制する触媒の提供を目的とする。   An object of the present invention is to provide a catalyst for safely and efficiently suppressing metal carbonyls in a hydrocarbon cracking reaction in which a hydrocarbon and steam are mixed and reacted without interfering with the reforming reaction.

本発明は炭化水素を分解し金属カルボニルを抑制する触媒として、より安価であり、炭化水素の分解・除去に対して優れた触媒活性を示し、硫黄被毒に優れた耐久性を有する触媒の提供を目的とする。   The present invention provides a catalyst that is more inexpensive as a catalyst that decomposes hydrocarbons and suppresses metal carbonyls, exhibits excellent catalytic activity for hydrocarbon decomposition and removal, and has excellent durability against sulfur poisoning With the goal.

また、本発明は前記触媒を用いることによって、効果的に炭化水素を分解・除去するとともに、水素を製造することを目的とする。   Another object of the present invention is to effectively decompose and remove hydrocarbons and produce hydrogen by using the catalyst.

近年、地球環境の問題により新エネルギーの早期実用化技術が脚光を浴びている。その手段の一つとして燃料電池が注目されている。この燃料電池は、水素と酸素を電気化学的に反応させることにより、化学エネルギーを電気エネルギーに変化するものであって、エネルギー効率が高いという特徴を有しており、民生用、産業用あるいは自動車用等として、実用化研究が積極的になされている。   In recent years, technology for early practical application of new energy has been in the spotlight due to global environmental problems. As one of the means, fuel cells are attracting attention. This fuel cell is characterized in that chemical energy is changed to electric energy by electrochemically reacting hydrogen and oxygen, and has high energy efficiency. For practical use, practical research has been actively conducted.

燃料電池の原料となる水素は、都市ガス13A、LPG、灯油、ガソリン、ナフサ等の炭化水素含有燃料を改質して製造する。改質の方法にはSR(スチーム改質)、POX(部分酸化)、SR+POX(オートサーマル)等の技術がある。このような改質技術の中、高い水素濃度の改質ガスを得られることから、SRのコージェネレーションへの適用検討に最も力点が置かれている   Hydrogen used as a fuel cell raw material is produced by reforming hydrocarbon-containing fuels such as city gas 13A, LPG, kerosene, gasoline, and naphtha. Examples of reforming methods include SR (steam reforming), POX (partial oxidation), and SR + POX (autothermal). Among these reforming technologies, the reformed gas with high hydrogen concentration can be obtained, so the most emphasis is placed on the study of application to SR cogeneration.

現在、スチーム改質触媒における活性金属種として、卑金属系ではNi、Co、Fe等が用いられ、貴金属系ではPt,Rh,Ru,Ir,Pd等が用いられている。このうち、触媒活性の高さから、Ni、Ruの金属元素を担持した触媒が主に使用されている。卑金属系元素のNiでは比較的炭素析出を起こしやすいため、水蒸気を理論組成よりも過剰に添加した水蒸気/炭素比が高い条件下で使用する必要があり、運転操作が複雑になる他、水蒸気原単位が増加して効果的でない。さらにシステムの連続運転可能条件が狭められ、これを全うするために高価な制御システムが必要になるばかりでなく、システム全体が非常に複雑になるため、製造コストとメンテナンスの面において経済的ではない。
また、貴金属系元素Ru等では、水蒸気/炭素比が低い条件下でも炭素析出を起こしにくいが、原料中に含まれる硫黄分によって、容易に硫化被毒されて触媒活性が短時間で劣化してしまう。硫化被毒された触媒上には炭素析出が極めて起こり易く、硫黄被毒が炭素析出の引き金になる欠点を持っている。また、貴金属が高価であることから、これを用いた燃料電池システムの値段は非常に高価になってしまい、燃料電池システムのより一層の普及を妨げる要因になりうる。
At present, Ni, Co, Fe and the like are used for the active metal species in the steam reforming catalyst, and Pt, Rh, Ru, Ir, Pd and the like are used for the noble metal type. Among these, the catalyst which supported the metal element of Ni and Ru is mainly used from the height of a catalyst activity. Since the base metal element Ni is relatively easy to cause carbon precipitation, it is necessary to use it under conditions where the water vapor / carbon ratio is higher than the theoretical composition, and the operation is complicated. The unit increases and is not effective. In addition, the system can be operated continuously, and not only an expensive control system is required to meet this requirement, but the overall system becomes very complex, which is not economical in terms of manufacturing cost and maintenance. .
In addition, the noble metal element Ru or the like is unlikely to cause carbon precipitation even under a low water vapor / carbon ratio, but it is easily poisoned by sulfur due to sulfur contained in the raw material, and the catalytic activity deteriorates in a short time. End up. Carbon deposition is extremely likely to occur on the sulfur poisoned catalyst, and sulfur poisoning has the disadvantage of triggering carbon deposition. In addition, since the precious metal is expensive, the price of the fuel cell system using the noble metal becomes very expensive, which may be a factor preventing further spread of the fuel cell system.

これらのことから、炭化水素を分解する触媒としては、より安価であり、機能面では優れた炭化水素を分解除去する触媒活性を示し、低スチーム下においても耐コーキング性を有し、優れた耐硫黄被毒性を有する触媒が望まれている。   From these facts, it is cheaper as a catalyst for cracking hydrocarbons, has a catalytic activity that decomposes and removes hydrocarbons in terms of function, has coking resistance even under low steam, and has excellent resistance to cracking. A catalyst having sulfur poisoning is desired.

また、ニッケルを含んだ触媒を使用する場合に、一酸化炭素がある一定量以上存在すると150℃以下においてニッケルカルボニルが生成することが一般に知られている。生成量はガス中の一酸化炭素濃度と温度によってほぼ支配されている。例えば、100℃付近での化学平衡から求められるニッケルカルボニルの生成量は、ガス中に含まれる一酸化炭素濃度が1%の場合にはニッケルカルボニルはおよそ3×10−3ppmであり、炭化水素を600〜700℃で水蒸気改質反応した混合ガスに含まれる一酸化炭素量に近い10%下では30ppmとなる。 In addition, when a catalyst containing nickel is used, it is generally known that nickel carbonyl is generated at 150 ° C. or lower when a certain amount or more of carbon monoxide is present. The amount produced is largely governed by the concentration of carbon monoxide and the temperature in the gas. For example, the amount of nickel carbonyl obtained from chemical equilibrium near 100 ° C. is approximately 3 × 10 −3 ppm of nickel carbonyl when the concentration of carbon monoxide contained in the gas is 1%, and hydrocarbons Is 10 ppm below 10% close to the amount of carbon monoxide contained in the gas mixture subjected to the steam reforming reaction at 600 to 700 ° C.

金属カルボニルとしては、ニッケルカルボニル、鉄カルボニルの他に、コバルトカルボニル、タングステンカルボニル、バナジウムカルボニル、モリブデンカルボニル、クロムカルボニルなどがあり、これらは有毒ガス扱いとなっている。例えば、ニッケルカルボニルでは、作業環境許容最大濃度(8時間)は0.001ppm、致死濃度(30分)は30ppmという数字が挙げられている。   In addition to nickel carbonyl and iron carbonyl, there are cobalt carbonyl, tungsten carbonyl, vanadium carbonyl, molybdenum carbonyl, chromium carbonyl, etc., and these are treated as toxic gases. For example, for nickel carbonyl, the work environment allowable maximum concentration (8 hours) is 0.001 ppm, and the lethal concentration (30 minutes) is 30 ppm.

従来から、金属カルボニルを除去する方法として、(A)一酸化炭素ガスを極限まで低減する方法、(B)一酸化炭素及び金属カルボニルを同時に除去する方法、及び(C)金属カルボニルだけを極限まで低減する方法が検討されてきている(特許文献1〜6)。   Conventionally, as a method for removing metal carbonyl, (A) a method for reducing carbon monoxide gas to the limit, (B) a method for simultaneously removing carbon monoxide and metal carbonyl, and (C) only a metal carbonyl to the limit A method of reducing has been studied (Patent Documents 1 to 6).

上記(A)一酸化炭素を極限まで低減する方法としては、活性炭や無機多孔質吸着材を使用する方法や、白金、パラジウム、マンガン、セリウムなどをアルミナ担体に担持させた触媒を利用した一酸化炭素の分解除去法、フォージャサイト型ゼオライト及び/又は二酸化マンガン−酸化第二銅系化合物を用いた一酸化炭素吸着/分解除去法がある。金属カルボニル生成の原料となる一酸化炭素を除去することで金属カルボニルの生成を抑制する手法である。   As a method of reducing the carbon monoxide to the limit (A), a method using activated carbon or an inorganic porous adsorbent, or a monoxide using a catalyst in which platinum, palladium, manganese, cerium or the like is supported on an alumina carrier. There are carbon decomposition and removal methods, carbon monoxide adsorption / decomposition removal methods using faujasite-type zeolite and / or manganese dioxide-cupric oxide compounds. This is a technique for suppressing the formation of metal carbonyl by removing carbon monoxide, which is a raw material for producing metal carbonyl.

一方、上記(B)一酸化炭素及び金属カルボニルを同時に除去する方法としては、パラジウム担持した二酸化マンガン−酸化第二銅による分解除去方法がある。   On the other hand, as a method of simultaneously removing (B) carbon monoxide and metal carbonyl, there is a decomposition removal method using palladium-supported manganese dioxide-cupric oxide.

上記(C)金属カルボニルだけを極限まで低減する方法としては、Y型ゼオライトを利用した吸着除去方法がある。Si/Al比と細孔径の最適なY型ゼオライトを選択することで金属カルボニルだけを吸着除去する手法である。   As a method for reducing only the metal carbonyl (C), there is an adsorption removal method using Y-type zeolite. In this method, only metal carbonyl is adsorbed and removed by selecting an optimum Y-type zeolite having a Si / Al ratio and a pore diameter.

また、生成した金属カルボニル量を分析評価する手法としては、以前は原子吸光分光光度計による解析が行われていたが、より低濃度域での分析精度が求められ最近ではフーリエ変換赤外分光光度計による方法が一般化してきている(特開2003−26415号公報、特開2003−66019号公報、特開2005−265116号公報)。   In addition, as a method for analyzing and evaluating the amount of metal carbonyl produced, analysis using an atomic absorption spectrophotometer was previously performed, but analysis accuracy in a lower concentration range is required, and recently, Fourier transform infrared spectrophotometry is required. A method using a meter has been generalized (Japanese Patent Laid-Open Nos. 2003-26415, 2003-66019, and 2005-265116).

これまでは、一酸化炭素及び/又は金属カルボニルが生成した“その場”での吸着/分解処理することは行われず、反応場から別の箇所に被処理物を移動させてから吸着/分解処理を行ったり、専用の吸着/分解処理箇所を反応場に設置しそこに被処理物を循環させ吸着/分解処理を行ったりしていた。これらの方法によって、より確実に一酸化炭素及び/又は金属カルボニルを除去していた。   Up to now, the adsorption / decomposition process in which carbon monoxide and / or metal carbonyl is generated has not been performed, but the adsorption / decomposition process is performed after moving the object to be processed from the reaction field to another location. Or a dedicated adsorption / decomposition treatment site was installed in the reaction field, and the object to be treated was circulated thereto for adsorption / decomposition treatment. By these methods, carbon monoxide and / or metal carbonyl was more reliably removed.

ところが、やむを得ず反応場において一酸化炭素及び/又は金属カルボニルを除去する必要性が出る場合がある。例えば、吸着/分解処理設備の設置場所がない場合や、コスト面で不利な点が挙げられる。   However, it may be unavoidable to remove carbon monoxide and / or metal carbonyl in the reaction field. For example, there are cases where there is no place for installing the adsorption / decomposition processing equipment, and there are disadvantages in cost.

吸着/分解処理の設備を設置する場所がない例としては、近年であれば、小型化された家庭用燃料電池システムがある。   As an example where there is no place to install the adsorption / decomposition equipment, in recent years, there is a miniaturized household fuel cell system.

このシステムは一戸建てやマンションなどへの設置を考慮した非常にコンパクトなサイズに仕上げることが一つの大きなコンセプトとなっている。また、システムのトータルコストダウンのためには設備の補器や機器の点数を減らす必要がある。このため、上記のような吸着/分解処理設備の設置は不可能である。   One big concept of this system is to finish it in a very compact size considering installation in a detached house or condominium. In order to reduce the total cost of the system, it is necessary to reduce the number of auxiliary equipment and equipment. For this reason, it is impossible to install the adsorption / decomposition equipment as described above.

燃料電池システムでは、改質反応によって水素と一酸化炭素、二酸化炭素が生成する。ニッケル改質触媒を用いた場合には、この改質ガス組成において温度条件さえ合致すればニッケルカルボニルが生成することになる。しかし、現在のところ家庭用燃料電池システムでのニッケルカルボニル生成に対してほとんど生成抑制のための対策がとられていない。   In the fuel cell system, hydrogen, carbon monoxide, and carbon dioxide are generated by the reforming reaction. In the case where a nickel reforming catalyst is used, nickel carbonyl is produced if even the temperature condition is met in this reformed gas composition. However, at present, little measures have been taken to suppress the formation of nickel carbonyl in household fuel cell systems.

特開2001−146406号公報JP 2001-146406 A 特開昭62−14944号公報JP-A-62-14944 特開昭62−136239号公報JP 62-136239 A 特開平8−281063号公報JP-A-8-281063 特開2004−82034号公報JP 2004-82034 A 特表2002−520423号公報Japanese translation of PCT publication No. 2002-520423

前記特許文献1の技術は、α―アルミナを担体に、Ruを活性金属種として炭化水素を含む燃料の水蒸気改質にて水素の製造方法を示している。しかし、Ru系触媒は原料中に含まれる硫黄分によって硫化し、その硫化によりコーキングが促され触媒活性を失ってしまうと考えられる。   The technique of Patent Document 1 shows a method for producing hydrogen by steam reforming of a fuel containing hydrocarbons using α-alumina as a carrier and Ru as an active metal species. However, it is considered that the Ru-based catalyst is sulfided by the sulfur content contained in the raw material, and coking is promoted by the sulfuration and the catalytic activity is lost.

上記特許文献2乃至6記載の技術では、反応場での金属カルボニル生成抑制が行えない。   With the techniques described in Patent Documents 2 to 6, metal carbonyl production cannot be suppressed in the reaction field.

反応場で金属カルボニルを生成抑制あるいは吸着/分解除去する技術は、今後燃料電池システムを始め多くのニーズが発生する可能性が高い。   There is a high possibility that many technologies such as a fuel cell system will occur in the future in the technology for suppressing the generation or adsorption / decomposition and removal of metal carbonyl in the reaction field.

前記技術的課題は、次の通りの本発明によって達成できる。   The technical problem can be achieved by the present invention as follows.

即ち、本発明は、150℃以下の反応場において、金属カルボニルを抑制する触媒を用いて一酸化炭素を含むガス中で金属カルボニルの発生を抑制する方法であって、前記金属カルボニルを抑制する触媒が、マグネシウム、アルミニウム、ニッケルを構成元素とし、且つ、ルテニウムを含有するとともに、前記触媒に対して重量対比で1〜50%の粘土鉱物を存在させ、前記粘土鉱物に平均粒径が50nm以下のルテニウム、ロジウム、イリジウム、白金、金、銀、パラジウム、ニッケル、コバルト、銅、鉄、亜鉛、バナジウム、マンガンから選ばれた一種又は二種の元素を担持させた触媒体であり、金属ルテニウム微粒子の平均粒子径が0.5nm〜10nmであり、金属ルテニウムの含有量が前記触媒体に対して0.05〜5.0wt%であることを特徴とする金属カルボニルの発生を抑制する方法である(本発明1)。 That is, the present invention is a method for suppressing the generation of metal carbonyl in a gas containing carbon monoxide using a catalyst for suppressing metal carbonyl in a reaction field of 150 ° C. or lower, the catalyst suppressing the metal carbonyl. However, it contains magnesium, aluminum and nickel as constituent elements and contains ruthenium, and 1-50% by weight of clay mineral is present with respect to the catalyst, and the clay mineral has an average particle size of 50 nm or less. Ruthenium, rhodium, iridium, platinum, gold, silver, palladium, nickel, cobalt, copper, iron, zinc, vanadium, a catalyst that supports one or two elements selected from manganese , The average particle diameter is 0.5 nm to 10 nm, and the content of metal ruthenium is 0.05 to 5.0 wt% with respect to the catalyst body. A method of inhibiting the occurrence of metal carbonyl, characterized in that (present invention 1).

また、本発明は、本発明1記載の金属カルボニルの発生を抑制する方法に用いる金属カルボニルを抑制する触媒の金属ニッケル微粒子の平均粒子径が1〜20nmであって、金属ニッケルの含有量が金属カルボニルを抑制する触媒に対して0.1〜20wt%であることを特徴とする金属カルボニルの発生を抑制する方法である(本発明2)。
Further, in the present invention, the average particle diameter of the metal nickel fine particles of the catalyst for suppressing metal carbonyl used in the method for suppressing the generation of metal carbonyl according to the present invention 1 is 1 to 20 nm, and the content of metal nickel is metal This is a method for suppressing the generation of metal carbonyl, which is 0.1 to 20 wt% with respect to the catalyst for suppressing carbonyl (Invention 2).

また、本発明は、本発明1又は2に記載の金属カルボニルの発生を抑制する方法を用いることを特徴とする燃料電池システムである(本発明)。 Further, the present invention is a fuel cell system using the method for suppressing generation of metal carbonyl according to the first or second aspect of the present invention (Invention 3 ).

本発明に係る金属カルボニルを抑制する触媒は、金属ニッケルが非常に微細な粒子の状態で担持されているため、活性金属種である金属ニッケルの炭化水素及び水蒸気に接触する面積が増大し、優れた触媒活性を有する。また金属カルボニルであるニッケルカルボニルの発生量を限り無くゼロにするために活性金属種であるニッケルの含有量を減らしても、ルテニウムを添加することにより優れた触媒活性を維持することができる。   Since the catalyst for suppressing metal carbonyl according to the present invention is supported in a state of very fine particles of metal nickel, the area in contact with hydrocarbons and water vapor of metal nickel which is an active metal species is increased and excellent. Have high catalytic activity. Further, even if the content of nickel as an active metal species is reduced in order to make the generation amount of nickel carbonyl as a metal carbonyl as zero as possible, excellent catalytic activity can be maintained by adding ruthenium.

本発明に係る金属カルボニルを抑制する触媒は、原料ガス中に含まれる硫黄分に対して優れた耐性を示し、長期に亘り優れた触媒活性を維持することができる   The catalyst for suppressing metal carbonyl according to the present invention exhibits excellent resistance to sulfur contained in the raw material gas, and can maintain excellent catalytic activity over a long period of time.

また、本発明に係る金属カルボニルを抑制する触媒は、反応に際して炭素の析出が少なく、耐コーキング性に優れた触媒である。   In addition, the catalyst for suppressing metal carbonyl according to the present invention is a catalyst that has little carbon deposition during the reaction and is excellent in coking resistance.

本発明に係る改質反応を妨げることなく金属カルボニルを“その場”除去する改質触媒は、金属カルボニルを安全且つ効率良く抑制できる触媒である。また該触媒を用いた炭化水素の改質及び金属カルボニルの“その場”除去方法、燃料電池システムでの使用方法を提供するものである。   A reforming catalyst that removes metal carbonyls "in situ" without interfering with the reforming reaction according to the present invention is a catalyst that can suppress metal carbonyls safely and efficiently. The present invention also provides a method of reforming hydrocarbons using the catalyst and removing metal carbonyls “in situ” and using them in fuel cell systems.

先ず、本発明に係る改質反応を妨げることなく金属カルボニルを抑制する触媒について述べる。   First, a catalyst for suppressing metal carbonyl without hindering the reforming reaction according to the present invention will be described.

本発明に係る金属カルボニルを抑制する触媒は、マグネシウム及びアルミニウムからなる複合酸化物に金属ニッケル及び金属ルテニウム微粒子が存在するものである。   The catalyst for suppressing metal carbonyl according to the present invention is one in which metal nickel and metal ruthenium fine particles are present in a composite oxide composed of magnesium and aluminum.

本発明に係るマグネシウム、アルミニウム、ニッケルを構成元素とし、且つ、ルテニウムを含有する触媒体の金属ルテニウム微粒子の平均粒子径は10nm以下であり、水素製造に最適で優れた触媒活性を有する。平均粒子径が10nmを超える金属ルテニウム微粒子を有する触媒では炭化水素ガスと水蒸気とを混合して水素を製造するスチーム改質において触媒活性が低下してしまう。好ましくは9nm以下、より好ましくは8nm以下である。平均粒子径の下限値は0.5nm程度である。   The average particle size of the metal ruthenium fine particles of the catalyst body containing magnesium, aluminum and nickel according to the present invention and containing ruthenium is 10 nm or less, and has an excellent catalytic activity which is optimal for hydrogen production. In a catalyst having metal ruthenium fine particles having an average particle diameter exceeding 10 nm, the catalytic activity is reduced in steam reforming in which hydrogen is produced by mixing hydrocarbon gas and water vapor. Preferably it is 9 nm or less, More preferably, it is 8 nm or less. The lower limit of the average particle diameter is about 0.5 nm.

本発明に係るマグネシウム、アルミニウム、ニッケルを構成元素とし、且つ、ルテニウムを含有する触媒体の金属ルテニウムの含有量は、該触媒に対して0.05〜5.0wt%である。金属ルテニウムの含有量が0.05wt%未満の場合は炭化水素の転化率が低下する。また5.0wt%を超える場合は触媒が高価になってしまい、実用的ではない。好ましくは0.05〜4.5wt%である。   The content of metal ruthenium in the catalyst body containing magnesium, aluminum, and nickel as constituent elements and containing ruthenium according to the present invention is 0.05 to 5.0 wt% with respect to the catalyst. When the content of metal ruthenium is less than 0.05 wt%, the conversion rate of hydrocarbons decreases. Moreover, when it exceeds 5.0 wt%, a catalyst will become expensive and it is not practical. Preferably it is 0.05-4.5 wt%.

本発明に係るマグネシウム、アルミニウム、ニッケルを構成元素とし、且つ、ルテニウムを含有する触媒体の金属ニッケル微粒子の平均粒子径は20nm以下が好ましく、水素製造において優れた触媒活性を有する。平均粒子径が20nmを超える金属ニッケル微粒子を有する触媒では、炭化水素ガスと水蒸気とを混合して水素を製造するスチーム改質において炭化水素の転化率が低下してしまう。さらにニッケルカルボニルの発生量も増加してしまう。また20nmを超える金属ニッケル微粒子を有する触媒では触媒体の耐コーキングが著しく低下する。好ましくは10nm以下、より好ましくは8nm以下である。平均粒子径の下限値は0.5nm程度である。   The average particle diameter of the metal nickel fine particles of the catalyst body containing magnesium, aluminum and nickel according to the present invention and containing ruthenium is preferably 20 nm or less, and has excellent catalytic activity in hydrogen production. In a catalyst having metal nickel fine particles having an average particle diameter of more than 20 nm, the conversion rate of hydrocarbon is lowered in steam reforming in which hydrogen is produced by mixing hydrocarbon gas and water vapor. Furthermore, the amount of nickel carbonyl generated increases. Further, in the case of a catalyst having metallic nickel fine particles exceeding 20 nm, the coking resistance of the catalyst body is remarkably lowered. Preferably it is 10 nm or less, More preferably, it is 8 nm or less. The lower limit of the average particle diameter is about 0.5 nm.

本発明に係るマグネシウム、アルミニウム、ニッケルを構成元素とし、且つ、ルテニウムを含有する触媒体の金属ニッケルの含有量は、該触媒に対して0.1〜20wt%が好ましい。金属ニッケルの含有量が0.10wt%未満の場合には炭化水素の転化率が低下する。20wt%を超える場合には金属ニッケル微粒子の粒子サイズが20nmを超え、耐コーキング性が著しく低下してしまう。さらに、ニッケルカルボニル発生量を抑制する効果も低下する。好ましくは0.2wt%〜18wt%である。   The content of metallic nickel in the catalyst body containing magnesium, aluminum and nickel according to the present invention and containing ruthenium is preferably 0.1 to 20 wt% with respect to the catalyst. When the content of metallic nickel is less than 0.10 wt%, the conversion rate of hydrocarbons decreases. When it exceeds 20 wt%, the particle size of the metal nickel fine particles exceeds 20 nm, and the coking resistance is significantly lowered. Furthermore, the effect of suppressing the amount of nickel carbonyl generated is also reduced. Preferably it is 0.2 wt%-18 wt%.

本発明に係るマグネシウム、アルミニウム、ニッケルを構成元素とし、且つ、ルテニウムを含有する触媒体において、金属ニッケル及び金属ルテニウムは、触媒体を構成する粒子の表面近傍に存在することが好ましい。また、本発明に係る本発明に係るグネシウム、アルミニウム、ニッケルを構成元素とし、且つ、ルテニウムを含有する触媒体は、造粒して成形体の状態で用いることが好ましく、金属ニッケル及び金属ルテニウムが前記成形体の表面近傍に存在させてもよい。   In the catalyst body containing magnesium, aluminum and nickel as constituent elements and containing ruthenium according to the present invention, the nickel metal and the ruthenium metal are preferably present in the vicinity of the surface of the particles constituting the catalyst body. Further, the catalyst body containing gnesium, aluminum and nickel according to the present invention and containing ruthenium is preferably granulated and used in the form of a molded body. You may make it exist in the surface vicinity of the said molded object.

本発明に係るマグネシウム、アルミニウム、ニッケルを構成元素とし、且つ、ルテニウムを含有する触媒体のマグネシウムとアルミニウムとの比率は特に限定されないが、アルミニウムに対してマグネシウムが多い方が好ましく、マグネシウムとアルミニウムのモル比はMg:Al=4:1〜1.2:1が好ましい。マグネシウムが前記範囲を超える場合には十分な強度を有する成形体を容易に得ることが困難となり、前記範囲未満の場合には多孔質担体としての特性が得られ難くなる。   The ratio of magnesium and aluminum in the catalyst body containing magnesium, aluminum and nickel according to the present invention and containing ruthenium is not particularly limited. The molar ratio is preferably Mg: Al = 4: 1 to 1.2: 1. When magnesium exceeds the above range, it is difficult to easily obtain a molded article having sufficient strength, and when it is less than the above range, it is difficult to obtain the characteristics as a porous carrier.

本発明に係るマグネシウム、アルミニウム、ニッケルを構成元素とし、且つ、ルテニウムを含有する触媒体の比表面積値は5〜320m/gが好ましい。5m/g未満では高い空間速度において転化率が低下してしまう。320m/gを超える場合は工業的な生産が困難となる。より好ましくは10m/g〜250m/gである。 The specific surface area value of the catalyst body containing magnesium, aluminum and nickel according to the present invention and containing ruthenium is preferably 5 to 320 m 2 / g. If it is less than 5 m 2 / g, the conversion rate decreases at a high space velocity. When it exceeds 320 m 2 / g, industrial production becomes difficult. More preferably 10m 2 / g~250m 2 / g.

次に、本発明に係る本発明に係るグネシウム、アルミニウム、ニッケルを構成元素とし、且つ、ルテニウムを含有する触媒体の製造方法について述べる。   Next, a method for producing a catalyst body according to the present invention, which contains ruthenium with gnesium, aluminum and nickel as constituent elements will be described.

前記触媒体の製造方法はマグネシウム、アルミニウム、ニッケル及びルテニウムを含有するものであれば、特に限定されない。例えば、マグネシウムとアルミニウムからなる担体にニッケル及びルテニウムを通常の沈殿法、加熱含浸法、常温含浸法、真空含浸法、平衡吸着法、蒸発乾固法、競争吸着法、イオン交換、スプレー法又は塗布法等により担持する方法、また、ニッケルをマグネシウムとアルミニウムからなるスピネル結晶構造化合物として固溶させ、熱処理によって金属ニッケルをマグネシウムとアルミニウムからなるスピネル担体に析出させる方法である。前述する方法の中でも、スピネル結晶構造化合物を経由する方法が好ましい。   The method for producing the catalyst body is not particularly limited as long as it contains magnesium, aluminum, nickel and ruthenium. For example, nickel and ruthenium are supported on a carrier made of magnesium and aluminum by the usual precipitation method, heat impregnation method, room temperature impregnation method, vacuum impregnation method, equilibrium adsorption method, evaporation to dryness method, competitive adsorption method, ion exchange, spray method or coating. A method in which nickel is solid-solved as a spinel crystal structure compound composed of magnesium and aluminum, and metal nickel is deposited on a spinel carrier composed of magnesium and aluminum by heat treatment. Among the methods described above, a method via a spinel crystal structure compound is preferable.

本発明に係るマグネシウム、アルミニウム、ニッケルを構成元素とし、且つ、ルテニウムを含有する触媒体は、前駆体として構成する元素を共沈反応によって層状複水水酸化物粒子を製造した後、加熱焼成して多孔質の酸化物粒子粉末とし、次いで、加熱還元して作製してもよい。   The catalyst body containing magnesium, aluminum, and nickel as constituent elements and containing ruthenium according to the present invention is manufactured by heating and firing after producing layered double hydroxide particles by coprecipitation reaction with the element constituting the precursor. It is possible to prepare a porous oxide particle powder, and then heat reduction.

また、層状複水水酸化物粒子粉末を焼成して複合酸化物を得、次いで、該複合酸化物をアニオンを含有する水溶液によって水和して層状複水水酸化物粒子粉末を得る方法が知られている。本発明においては、下記製造方法によってニッケル及びルテニウムを担持しても良い。ニッケル及びルテニウムを担持した層状複水水酸化物粒子粉末は、必要により加熱焼成を行った後、加熱還元すればよい。   Also known is a method of firing layered double hydroxide particle powder to obtain a composite oxide, and then hydrating the composite oxide with an aqueous solution containing anions to obtain layered double hydroxide particle powder. It has been. In the present invention, nickel and ruthenium may be supported by the following production method. The layered double hydroxide particle powder supporting nickel and ruthenium may be heat-reduced after being heated and fired if necessary.

即ち、マグネシウム及びアルミニウムのみからなる層状複水水酸化物粒子粉末を成形、焼成後に多孔質酸化物成形体とし、次いで、ニッケル及びルテニウムを含む溶液に含浸させることにより、多孔質酸化物粉末あるいは成形体の表面近傍にニッケル及びルテニウムを含む層状複水水酸化物粒子相を再生させる方法を用いて担持しても良い。   That is, a layered double hydroxide particle powder made only of magnesium and aluminum is formed, and after being fired, a porous oxide formed body is formed, and then impregnated with a solution containing nickel and ruthenium to form a porous oxide powder or formed You may carry | support using the method of reproducing | regenerating the layered double hydroxide particle phase containing nickel and ruthenium near the surface of the body.

また、前記製造法に従って粒子表面にニッケルが存在する層状複水水酸化物粒子粉末を得て、成形、焼成して多孔質酸化物成形体とし、ルテニウムを含む溶液に含浸させることにより、多孔質酸化物粉末あるいは成形体の表面近傍にニッケル、また成形体の表面近傍にルテニウムを含む層状複水水酸化物粒子相を再生させる方法を用いて担持しても良い。   In addition, a layered double hydroxide particle powder in which nickel is present on the particle surface is obtained in accordance with the above production method, molded and fired to form a porous oxide molded body, and impregnated with a solution containing ruthenium, The oxide powder or the powder may be supported by a method of regenerating a layered double hydroxide particle phase containing nickel near the surface of the compact and ruthenium near the surface of the compact.

また、前記製造法に従って粒子表面にルテニウムが存在する層状複水水酸化物粒子粉末を得て、成形、焼成して多孔質酸化物成形体とし、ニッケルを含む溶液に含浸させることにより、多孔質酸化物粉末あるいは成形体の表面近傍にルテニウム、また成形体の表面近傍にニッケルを含む層状複水水酸化物粒子相を再生させる方法を用いて担持しても良い。   Further, a layered double hydroxide particle powder in which ruthenium is present on the particle surface is obtained according to the above production method, molded and fired to form a porous oxide molded body, and impregnated with a solution containing nickel, It may be supported by a method of regenerating a layered double hydroxide particle phase containing ruthenium near the surface of the oxide powder or the molded body and nickel near the surface of the molded body.

また、前記製造法に従って粒子表面にニッケル及びルテニウムが存在する層状複水水酸化物粒子粉末を得て、成形、焼成して多孔質酸化物成形体とし、さらにニッケル及びルテニウムを含む溶液に含浸させることにより、多孔質酸化物粉末あるいは成形体の表面近傍にニッケル、ルテニウム、また成形体の表面近傍にニッケル、ルテニウムを含む層状複水水酸化物粒子相を再生させる方法を用いて担持しても良い。   Also, a layered double hydroxide particle powder in which nickel and ruthenium are present on the particle surface is obtained according to the above production method, molded and fired to form a porous oxide molded body, and further impregnated with a solution containing nickel and ruthenium. Thus, nickel or ruthenium can be supported in the vicinity of the surface of the porous oxide powder or molded body, and the layered double hydroxide particle phase containing nickel and ruthenium can be supported in the vicinity of the surface of the molded body. good.

上記のようにして獲られた粉末状の触媒は、使用する各用途に合わせて成形しても良い。形状やサイズは特に限定されないが、例えば球状や円柱状、管状、ハニカム体への塗布などの形状でも良い。通常、球状や円柱状、管状の形状を持つ触媒体の場合のサイズは0.1〜50mm程度が好適である。条件によっては有機物や無機物などの各種バインダーを添加することで成形体の強度や細孔分布密度を調整しても良い。なお、本発明においては熱処理前に造粒・成形しても良い。   The powdered catalyst obtained as described above may be molded according to each application to be used. The shape and size are not particularly limited, but may be, for example, a spherical shape, a cylindrical shape, a tubular shape, or a shape applied to a honeycomb body. In general, the size of a catalyst body having a spherical, cylindrical, or tubular shape is preferably about 0.1 to 50 mm. Depending on conditions, the strength and pore distribution density of the molded body may be adjusted by adding various binders such as organic substances and inorganic substances. In the present invention, granulation and molding may be performed before the heat treatment.

本発明においては、前記本発明1又は2の触媒とアルミナビーズとを混合して用いてもよい。アルミナビーズを併用することによって金属カルボニルをより抑制することができる。
また、併用するアルミナビーズには、ルテニウム、ロジウム、イリジウム、白金、金、銀、パラジウム、ニッケル、コバルト、銅、鉄、亜鉛、バナジウム、マンガンから選ばれた一種又は二種以上の活性金属種を担持させてもよく、好ましくは銅である。前記活性金属種の担持量は、アルミナビーズに対して1〜15wt%が好ましい。
本発明1又は2の触媒とアルミナビーズとの混合割合は、本発明1又は2の触媒に対して重量比で1〜50%が好ましい。
In the present invention, the catalyst of the present invention 1 or 2 and alumina beads may be mixed and used. By using alumina beads in combination, metal carbonyl can be further suppressed.
The alumina beads to be used in combination include one or more active metal species selected from ruthenium, rhodium, iridium, platinum, gold, silver, palladium, nickel, cobalt, copper, iron, zinc, vanadium, and manganese. It may be supported, preferably copper. The supported amount of the active metal species is preferably 1 to 15 wt% with respect to the alumina beads.
The mixing ratio of the catalyst of the present invention 1 or 2 and alumina beads is preferably 1 to 50% by weight with respect to the catalyst of the present invention 1 or 2.

本発明に係る触媒に対して、重量比で1〜50%の粘土鉱物を存在させてもよく、粘土鉱物を存在させることでより一層の金属カルボニルを抑制できる。粘土鉱物の存在量が1%未満では、添加する効果が薄い。50%以上の粘土鉱物を存在させると、有効体積中の改質触媒量が減るため、触媒活性を保つためにガス流量を減らす必要があり、結果、触媒層をより大きな容積にする必要が発生する。好ましくは2.5〜45%、より好ましくは5〜40%である。   With respect to the catalyst according to the present invention, 1 to 50% by weight of clay mineral may be present, and further metal carbonyl can be suppressed by the presence of the clay mineral. If the amount of clay mineral present is less than 1%, the effect of addition is small. When 50% or more of clay mineral is present, the amount of reforming catalyst in the effective volume decreases, so it is necessary to reduce the gas flow rate in order to maintain the catalytic activity. As a result, the catalyst layer needs to have a larger volume. To do. Preferably it is 2.5 to 45%, More preferably, it is 5 to 40%.

含まれる粘土鉱物としては、ゼオライト、セピオライト、モンモリロナイトなどが挙げられる。ゼオライトの構造は特に限定しないが、フォージャサイトが好ましく、フォージャサイト系のうちY型ゼオライトがより好ましい。   Examples of the clay mineral contained include zeolite, sepiolite, and montmorillonite. The structure of the zeolite is not particularly limited, but faujasite is preferable, and Y-type zeolite is more preferable among the faujasite systems.

粘土鉱物は、触媒に包含されても、別々の触媒若しくは触媒成形体として触媒層に混在されても、別々の触媒成形体として触媒層に分割して置いてもよい。   The clay mineral may be included in the catalyst, may be mixed in the catalyst layer as a separate catalyst or catalyst formed body, or may be divided into the catalyst layer as a separate catalyst formed body.

粘土鉱物の形状やサイズは特に限定されないが、例えば、円柱状、球状、円筒状などの形状で1〜5mm程度のサイズでよい。   The shape and size of the clay mineral are not particularly limited, but may be, for example, a columnar shape, a spherical shape, a cylindrical shape, or the like and a size of about 1 to 5 mm.

別にハニカム状とする場合には、必要に応じて自由に手法を選択すればよい。   In the case of forming a honeycomb shape separately, a method may be freely selected as necessary.

本発明3に係る触媒の粘土鉱物に、平均粒径が50nm以下のルテニウム、ロジウム、イリジウム、白金、金、銀、パラジウム、ニッケル、コバルト、銅、鉄、亜鉛、バナジウム、マンガンから選ばれた一種又は二種以上の活性金属種を担持させてもよく(本発明4)、活性金属種を担持させることで、さらにより一層の金属カルボニルの“その場”除去の効果が得られる。   A kind selected from ruthenium, rhodium, iridium, platinum, gold, silver, palladium, nickel, cobalt, copper, iron, zinc, vanadium, and manganese having an average particle diameter of 50 nm or less as the clay mineral of the catalyst according to the present invention 3 Alternatively, two or more kinds of active metal species may be supported (Invention 4). By supporting the active metal species, a further “in situ” removal effect of metal carbonyl can be obtained.

ルテニウム、ロジウム、イリジウム、白金、金、銀、パラジウム、ニッケル、コバルト、銅、鉄、亜鉛、バナジウム、マンガンなどの活性金属種の平均粒径が50nmを超えると粘土鉱物に担持する効果が得られにくくなる。好ましくは35nm、より好ましくは20nmである。   When the average particle size of the active metal species such as ruthenium, rhodium, iridium, platinum, gold, silver, palladium, nickel, cobalt, copper, iron, zinc, vanadium, and manganese exceeds 50 nm, the effect of supporting on the clay mineral is obtained. It becomes difficult. Preferably it is 35 nm, More preferably, it is 20 nm.

粘土鉱物に担持された活性金属種の状態は、金属、酸化物いずれでもよい。   The state of the active metal species supported on the clay mineral may be either a metal or an oxide.

粘土鉱物に担持される活性金属種の量は、担持する活性金属種の種類や担持する粘土鉱物の種類によって異なるので、特に限定されないが、例えば、粘土鉱物に対して重量対比で0.01〜30wt%でよい。   The amount of the active metal species supported on the clay mineral is not particularly limited because it varies depending on the type of the active metal species to be supported and the type of the clay mineral to be supported. 30 wt% may be sufficient.

次に、本発明に係る炭化水素から水素を含む混合ガスを製造する方法について述べる。   Next, a method for producing a mixed gas containing hydrogen from the hydrocarbon according to the present invention will be described.

本発明1〜4のいずれかからなる触媒は、炭化水素と接触させることで水素を含んだ混合改質ガスを得ることができる。   The catalyst which consists of any of this invention 1-4 can obtain the mixed reformed gas containing hydrogen by making it contact with hydrocarbon.

本発明に係る炭化水素から水素を含む混合ガスを製造する方法は、反応温度が250℃〜850℃であり、水蒸気と炭化水素とのモル比(S/C)が1.0〜6.0であり、空間速度(GHSV)が100〜100000h−1である条件下で炭化水素を含む原料ガス、水蒸気を本発明に係る金属カルボニルを抑制する触媒を接触させる。 In the method for producing a mixed gas containing hydrogen from the hydrocarbon according to the present invention, the reaction temperature is 250 ° C. to 850 ° C., and the molar ratio (S / C) of water vapor to hydrocarbon is 1.0 to 6.0. The raw material gas containing hydrocarbon and water vapor are brought into contact with the catalyst for suppressing the metal carbonyl according to the present invention under the condition that the space velocity (GHSV) is 100 to 100,000 h −1 .

反応温度が250℃未満の場合には低級炭化水素の転化率が低く、長時間にわたり反応を行うとコーキングが起こりやすくなり終には触媒活性が失活することもある。850℃を超える場合には活性金属がシンタリングを起こしやすくなり触媒特性が失活することもある。好ましくは300〜700℃、より好ましくは400〜700℃である。   When the reaction temperature is less than 250 ° C., the conversion rate of the lower hydrocarbon is low, and when the reaction is carried out for a long time, coking is likely to occur and the catalytic activity may be deactivated at the end. When the temperature exceeds 850 ° C., the active metal tends to cause sintering and the catalytic properties may be deactivated. Preferably it is 300-700 degreeC, More preferably, it is 400-700 degreeC.

水蒸気と炭化水素のモル比S/Cが1.0未満の場合には耐コーキング性が低下する。またS/Cが6.0を超える場合には水素製造に多量の水蒸気を必要としコストがかさみ現実的ではない。好ましくは1.5〜6.0、より好ましくは1.8〜5.0である。   When the molar ratio S / C of water vapor and hydrocarbon is less than 1.0, the coking resistance is lowered. On the other hand, when S / C exceeds 6.0, a large amount of water vapor is required for hydrogen production, which is expensive and unrealistic. Preferably it is 1.5-6.0, More preferably, it is 1.8-5.0.

なお、空間速度(GHSV)は100〜100000h−1が好ましく、より好ましくは1000〜10000h−1である。 The space velocity (GHSV) is preferably from 100 to 100,000 h −1 , more preferably from 1,000 to 10,000 h −1 .

本発明に使用する炭化水素は特に制限はなく、種々の炭化水素が使用できる。例えば、メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン、シクロヘキサン等の飽和脂肪族炭化水素、エチレン、プロピレン、ブテン等不飽和炭化水素、ベンゼン、トルエン、キシレン等芳香族炭化水素及びこれらの混合物が挙げられる。工業的にしようできる好適な原料としては、都市ガス13A、天然ガス、LPG、灯油、ガソリン、軽油、ナフサ等である。   The hydrocarbon used in the present invention is not particularly limited, and various hydrocarbons can be used. Examples include saturated aliphatic hydrocarbons such as methane, ethane, propane, butane, pentane, hexane, and cyclohexane, unsaturated hydrocarbons such as ethylene, propylene, and butene, aromatic hydrocarbons such as benzene, toluene, and xylene, and mixtures thereof. It is done. Suitable raw materials that can be industrially used are city gas 13A, natural gas, LPG, kerosene, gasoline, light oil, naphtha, and the like.

本発明に使用する炭化水素が灯油、ガソリン、軽油等の室温において液状であるものは気化器を用いて気化させて用いることができる。   If the hydrocarbon used in the present invention is liquid at room temperature, such as kerosene, gasoline, or light oil, it can be vaporized using a vaporizer.

本発明に係る触媒はオートサーマル水蒸気改質法、部分酸化法にも用いてもよい。   The catalyst according to the present invention may be used for autothermal steam reforming and partial oxidation.

本発明に係る触媒を、一酸化炭素を含むガス中でニッケルカルボニルが生成すると一般にいわれる150℃以下の状態に置くことで、金属カルボニルを反応場で除去できる。温度が150℃を超えると一般に一酸化炭素が安定性を増してニッケルカルボニルなどの金属カルボニルガスの生成がない。一酸化炭素の濃度は特に限定されないが、例えば30vol%以下でよい。一酸化炭素の濃度が高く、金属カルボニルの生成をより強く抑制したいときには、銅や粘土鉱物若しくは活性金属を担持した粘土鉱物の相対量を増やせばよい。   By placing the catalyst according to the present invention in a state of 150 ° C. or lower, which is generally said to produce nickel carbonyl in a gas containing carbon monoxide, the metal carbonyl can be removed in the reaction field. When the temperature exceeds 150 ° C., carbon monoxide generally increases stability and there is no generation of metal carbonyl gas such as nickel carbonyl. The concentration of carbon monoxide is not particularly limited, but may be, for example, 30 vol% or less. When the concentration of carbon monoxide is high and it is desired to more strongly suppress the formation of metal carbonyl, the relative amount of copper, clay mineral, or clay mineral carrying an active metal may be increased.

本発明1〜4のいずれかからなる触媒は、燃料電池システムで使用することができる。燃料電池システムの改質反応部やプレ改質反応部及び/又は改質反応部の前後の工程、付属する工程、改質部外に本発明に係る触媒を設置すればよい。好ましくは改質反応部やプレ改質反応部及び/又は改質反応部の前後の工程への設置である。   The catalyst comprising any one of the present inventions 1 to 4 can be used in a fuel cell system. The catalyst according to the present invention may be installed outside the reforming reaction part, the pre-reforming reaction part and / or the reforming reaction part, the attached process, and the reforming part of the fuel cell system. Preferably, it is installed in the process before and after the reforming reaction part, the pre-reforming reaction part and / or the reforming reaction part.

<作用>
本発明に係る金属カルボニルを抑制する触媒が優れた触媒活性、耐硫黄被毒性性を有する理由は未だ明らかではないが、本発明者は次のように推定している。
<Action>
The reason why the catalyst for suppressing metal carbonyl according to the present invention has excellent catalytic activity and sulfur poisoning resistance is not yet clear, but the present inventor presumes as follows.

本発明に係る金属カルボニルを抑制する触媒は、金属ニッケルが非常に微細な粒子の状態で担持されているため、活性金属種である金属ニッケルの炭化水素及び水蒸気に接触する面積が増大し、優れた触媒活性を有する。また金属カルボニルであるニッケルカルボニルの発生量を限り無くゼロにするために活性金属種であるニッケルの含有量を減らしても、ルテニウムを添加することにより優れた触媒活性を維持することができる。   Since the catalyst for suppressing metal carbonyl according to the present invention is supported in a state of very fine particles of metal nickel, the area in contact with hydrocarbons and water vapor of metal nickel which is an active metal species is increased and excellent. Have high catalytic activity. Further, even if the content of nickel as an active metal species is reduced in order to make the generation amount of nickel carbonyl as a metal carbonyl as zero as possible, excellent catalytic activity can be maintained by adding ruthenium.

また、本発明に係る粘土鉱物若しくは活性金属を担持した粘土鉱物を存在させた改質触媒を用いることで金属カルボニルを改質の反応場で抑制する効果が優れる理由は未だ明らかではないが、本発明者は次のように推定している。   The reason why the effect of suppressing metal carbonyl in the reforming reaction field by using the reforming catalyst in which the clay mineral according to the present invention or the clay mineral supporting an active metal is present is not yet clear, The inventor estimates as follows.

金属カルボニル発生の原因となる金属を非常に微粒子で担持していること、またその含有量を低減していることにより、金属カルボニル抑制効果が優れると本発明者は推定している。   The present inventor presumes that the metal carbonyl generation is supported by very fine particles and the content thereof is reduced, so that the metal carbonyl suppression effect is excellent.

さらに、粘土鉱物を混在させた場合には、発生した金属カルボニルに対して、粘土鉱物では吸着作用、活性金属を担持した粘土鉱物では吸着作用と酸化分解の作用とがあるものと本発明者は推定している。   Furthermore, when the clay mineral is mixed, the inventor believes that the generated metal carbonyl has an adsorption action in the clay mineral and an adsorption action and an oxidative decomposition action in the clay mineral supporting the active metal. Estimated.

従って、本発明に係る触媒を用いれば、水素を含む混合改質ガスを得る改質反応を劣化させることなく、金属カルボニルが大量に発生する条件であっても、改質の反応場で、十分な金属カルボニル抑制効果を得ることができる。   Therefore, if the catalyst according to the present invention is used, the reforming reaction field is sufficient even under conditions where a large amount of metal carbonyl is generated without deteriorating the reforming reaction to obtain a mixed reformed gas containing hydrogen. An effective metal carbonyl-inhibiting effect.

本発明の代表的な実施の形態は次の通りである。   A typical embodiment of the present invention is as follows.

担持された活性種金属のサイズは透過型電子顕微鏡(日本電子(株)、JEM−1200EXII)を用いて測定した。   The size of the supported active metal was measured using a transmission electron microscope (JEOL Ltd., JEM-1200EXII).

BET比表面積値は、窒素によるB.E.T.法により測定した。   The BET specific surface area value is the B.B. E. T.A. Measured by the method.

Mg及び活性種金属の含有量は、試料を酸で溶解し、プラズマ発光分光分析装置(セイコー電子工業(株)、SPS4000)を用い分析して求めた。   The contents of Mg and active species metal were obtained by dissolving a sample with an acid and analyzing it using a plasma emission spectroscopic analyzer (Seiko Electronics Co., Ltd., SPS4000).

得られた触媒の活性評価はラボレベルの単管固定床流通式を用いた(反応管容積100cc)。一般に市販されているものでもよいが、自作した装置にて本発明の検討を実施した。改質反応後の成分分析はガスクロマトグラフを用いた。   The activity of the obtained catalyst was evaluated using a lab-level single-tube fixed bed flow system (reaction tube volume 100 cc). Although what is generally marketed may be sufficient, examination of this invention was implemented with the self-made apparatus. The component analysis after the reforming reaction was performed using a gas chromatograph.

得られた触媒の金属カルボニル生成量の分析は特開2003−66019を参照した。具体的には、対象ガスを−150〜−190℃に冷却した捕集管に流通させて金属カルボニルを捕集した後、20〜30℃に昇温して金属カルボニルを捕集管から真空吸引して赤外吸光分析器に導入し分析する手法を用いた。求められた金属カルボニル毎に特定の波長ピーク強度より検量線法による金属カルボニルの定量分析を行った。例えば、ニッケルカルボニルの場合には、2057cm−1のピーク強度を用いて定量分析を行った。特定ピークは、他のガス成分ピークとの重なりやノイズに注意して選択する。検出下限値は、本検討では70ppbとした。 JP-A-2003-66019 was referred to for analysis of the amount of metal carbonyl produced by the obtained catalyst. Specifically, the target gas is circulated through a collection tube cooled to −150 to −190 ° C. to collect metal carbonyl, and then the temperature is raised to 20 to 30 ° C., and the metal carbonyl is vacuumed from the collection tube. Then, the method of introducing into an infrared absorption analyzer and analyzing was used. Quantitative analysis of the metal carbonyl was carried out by the calibration curve method from the specific wavelength peak intensity for each obtained metal carbonyl. For example, in the case of nickel carbonyl, quantitative analysis was performed using a peak intensity of 2057 cm −1 . The specific peak is selected with attention to overlap with other gas component peaks and noise. The lower limit of detection was set to 70 ppb in this study.

本発明の代表的に実施の形態は次の通りである。 A typical embodiment of the present invention is as follows.

実施例1 <触媒の調製>
MgCl・6HO 147.6gとAlCl・6HO 35.06g、NiCl・6HO 42.57gと51g/LのRu金属を含む塩化ルテニウム溶液 1.151mlを溶解させた金属溶解溶液800mlと、NaOH 335.0ml(14mol/L濃度)とNaCO 21.54gを溶解させた1200mlのアルカリ混合溶液を用意した。このアルカリ混合溶液に前記マグネシウム塩、アルミニウム塩、ニッケル塩、ルテニウム塩との混合溶液を加え、95℃で8時間熟成を行って含水複水酸化物を得た。これを濾別分離し、乾燥して、粉末を得た。得た粉末を3mmΦに成形後、さらに熱処理した後、還元処理を行ってニッケル触媒(ビーズ状)を得た。得られた触媒中のニッケルの含有量は19.57wt%であり、金属ニッケル微粒子の大きさは5nmであった。また得られた触媒中のRuの含有量は0.107wt%であり、大きさは1nmであった。 別に、3mmΦのアルミナビーズに硝酸銅を用いて、銅を金属換算で6.82wt%スプレー担持させ、350℃にて3h熱処理した。
この銅を担持したアルミナビーズを上記ニッケル触媒に対して45wt%混合した触媒を用意した。このとき、ニッケル触媒ビーズに対して、銅を担持したアルミナビーズがなるべく均一に散在するようよく混ぜ合わせた。
Example 1 <Preparation of catalyst>
MgCl 2 · 6H 2 O 147.6g and AlCl 3 · 6H 2 O 35.06g, metal melting obtained by dissolving ruthenium chloride solution 1.151ml containing Ru metal NiCl 2 · 6H 2 O 42.57g and 51 g / L 800 ml of a solution, 1200 ml of an alkali mixed solution in which 335.0 ml of NaOH (14 mol / L concentration) and 21.54 g of Na 2 CO 3 were dissolved were prepared. A mixed solution of the magnesium salt, aluminum salt, nickel salt, and ruthenium salt was added to the alkali mixed solution, followed by aging at 95 ° C. for 8 hours to obtain a hydrated double hydroxide. This was separated by filtration and dried to obtain a powder. The obtained powder was molded to 3 mmΦ, further heat-treated, and then subjected to reduction treatment to obtain a nickel catalyst (bead shape). The content of nickel in the obtained catalyst was 19.57 wt%, and the size of the metal nickel fine particles was 5 nm. Further, the Ru content in the obtained catalyst was 0.107 wt%, and the size was 1 nm. Separately, using copper nitrate on 3 mmφ alumina beads, copper was supported by 6.82 wt% in terms of metal and heat treated at 350 ° C. for 3 hours.
A catalyst was prepared by mixing 45 wt% of the alumina beads supporting copper with respect to the nickel catalyst. At this time, the nickel catalyst beads were mixed well so that the alumina beads supporting copper were dispersed as uniformly as possible.

<触媒活性評価>
上記混合後の触媒を用いて、水蒸気改質反応での触媒活性評価を行った。触媒を直径20mmのステンレス製反応管に10cc充填して触媒管を作製した。
この触媒管(反応器)に対して、原料ガス及び水蒸気を、反応温度300℃〜700℃、空間速度を3000h−1として流通させ水蒸気改質反応を行った。尚、原料ガスには都市ガス(13A)及び純メタンガスを用いた。
<Catalyst activity evaluation>
Using the mixed catalyst, the catalytic activity in the steam reforming reaction was evaluated. 10 cc of a 20 mm diameter stainless steel reaction tube was filled with the catalyst to prepare a catalyst tube.
A raw material gas and water vapor were passed through the catalyst tube (reactor) at a reaction temperature of 300 ° C. to 700 ° C. and a space velocity of 3000 h −1 to carry out a steam reforming reaction. As the source gas, city gas (13A) and pure methane gas were used.

触媒性能の評価には、下記式に示したC1転化率及びCn転化率(全炭化水素転化率)を用いた。
例)原料ガスに純メタンガスを用いた場合
C1転化率(全炭化水素転化率)
=(CO+CO)/(CO+CO+CH
例)原料ガスに都市ガス(13A)を用いた場合
都市ガス(13A)には、CH:88.5%、C:4.6%、C:5.4%、C10:1.5%程度含まれており、下記する式にてCn転化率を算出した。
Cn転化率(全炭化水素転化率)
=(CO+CO)/(CO+CO+CH+C+C
For the evaluation of the catalyst performance, the C1 conversion rate and the Cn conversion rate (total hydrocarbon conversion rate) shown in the following formula were used.
Example) When pure methane gas is used as the raw material gas C1 conversion (total hydrocarbon conversion)
= (CO + CO 2 ) / (CO + CO 2 + CH 4 )
When using the city gas (13A) in the city gas (13A) Examples) source gas, CH 4: 88.5%, C 2 H 6: 4.6%, C 3 H 8: 5.4%, C 4 H 10 : About 1.5% was contained, and the Cn conversion rate was calculated by the following formula.
Cn conversion rate (total hydrocarbon conversion rate)
= (CO + CO 2 ) / (CO + CO 2 + CH 4 + C 2 H 6 + C 3 H 8 )

炭化水素を分解する触媒の触媒性能について表1乃至3に示す。
表1には、原料ガスとして純メタンガスを用いGHSVが3000h−1、50000h−1、水蒸気/炭素(S/C)が3.0、反応時間が24hの反応条件における、反応温度(300℃〜700℃)と炭化水の転化率との関係を示す。
表2には、原料ガスとして都市ガス(13A)を用い、GHSVが10000h−1、反応温度が700℃、水蒸気/炭素(S/C)が1.5及び3.0の場合における、反応時間とメタン転化率及び触媒活性測定前後の炭素析出量の関係を示す。
Tables 1 to 3 show the catalytic performance of the catalysts for decomposing hydrocarbons.
Table 1 shows the reaction temperature (300 ° C. to 300 ° C.) under the reaction conditions in which pure methane gas is used as the raw material gas and GHSV is 3000 h −1 , 50000 h −1 , water vapor / carbon (S / C) is 3.0, and the reaction time is 24 h. 700 ° C) and the conversion of carbonized water.
Table 2 shows the reaction time in the case where city gas (13A) is used as the raw material gas, GHSV is 10000 h −1 , the reaction temperature is 700 ° C., and the water vapor / carbon (S / C) is 1.5 and 3.0. And the relationship between the methane conversion rate and the carbon deposition amount before and after the measurement of the catalyst activity.

<耐硫黄被毒性評価>
原料ガスにTBM(ターシャルブチルメルカプタン)を1ppm、または5ppm添加した純メタンガスを用いて水蒸気改質反応を行い、硫黄被毒による触媒活性低下の評価を行った。触媒活性低下の判定基準にはCn転化率が80%以下になった時間で確認した。表3には、S/C=3、GHSV=1000h−1、反応温度700℃にて耐硫黄被毒性評価を行った結果を示す。
<Sulfur poisoning evaluation>
A steam reforming reaction was performed using pure methane gas in which 1 ppm or 5 ppm of TBM (tertiary butyl mercaptan) was added to the raw material gas, and the catalytic activity reduction due to sulfur poisoning was evaluated. The criterion for the decrease in the catalyst activity was confirmed by the time when the Cn conversion rate became 80% or less. Table 3 shows the results of the evaluation of sulfur poisoning resistance at S / C = 3, GHSV = 1000 h −1 , and a reaction temperature of 700 ° C.

<金属カルボニル生成と分析>
得られた触媒ビーズを10cc用いて、水蒸気改質反応をS/C=3、GHSV=1000h−1、反応温度700℃で3時間行った。その後、窒素パージして降温し、100℃とした。次いで650℃、S/C=3での水蒸気改質反応の化学平衡ガス組成の混合ガスをGHSV=1000h−1にて30分間流した。反応管をバルブで封止して100℃にて1時間保持し、その後、室温まで降温して反応管を取り外した。3日間静置した後、ニッケルカルボニル生成量の定量分析を行った結果、検出下限値未満であり、十分な除去効果が得られたことを確認した。
<Metal carbonyl formation and analysis>
Using 10 cc of the obtained catalyst beads, a steam reforming reaction was performed at S / C = 3, GHSV = 1000 h −1 , and a reaction temperature of 700 ° C. for 3 hours. Thereafter, the temperature was lowered by purging with nitrogen to 100 ° C. Subsequently, a mixed gas having a chemical equilibrium gas composition of the steam reforming reaction at 650 ° C. and S / C = 3 was allowed to flow at GHSV = 1000 h −1 for 30 minutes. The reaction tube was sealed with a valve and held at 100 ° C. for 1 hour, and then cooled to room temperature and the reaction tube was removed. As a result of quantitative analysis of the amount of nickel carbonyl produced after standing for 3 days, it was less than the lower limit of detection, and it was confirmed that a sufficient removal effect was obtained.

実施例2
Mg(NO・6HO 112.8gとAl(NO・9HO 27.49g、Ni(NO・6HO 0.341gと51g/LのRu金属を含む硝酸ルテニウム溶液 24.69mlを溶解させた金属溶解溶液500mlと、NaOH 183.0ml(14mol/L濃度)とNaCO 10.88gを溶解させた1500mlのアルカリ混合溶液を用意した。このアルカリ混合溶液に前記マグネシウム塩、アルミニウム塩、ニッケル塩、ルテニウム塩との混合溶液を加え、80℃で5時間熟成を行って含水複水酸化物を得た。これを濾別分離し、乾燥して、粉末を得た。得た粉末を3mmΦに成形後、さらに熱処理した後、還元処理を行ってニッケル触媒(ビーズ状)を得た。得られた触媒中のニッケルの含有量は0.259wt%であり、金属ニッケル微粒子の大きさは1nmであった。また得られた触媒中のRuの含有量は4.747wt%であり、大きさは8nmであった。
別に、3mmΦのアルミナビーズに硝酸銅を用いて、銅を金属換算で6.82wt%スプレー担持させ、300℃にて6h熱処理した。この銅を担持したアルミナビーズを上記ニッケル触媒に対して5wt%混合した触媒を用意した。このとき、ニッケル触媒ビーズに対して、銅を担持したアルミナビーズがなるべく均一に散在するようよく混ぜ合わせた。
Example 2
Contains 112.8 g of Mg (NO 3 ) 2 .6H 2 O, 27.49 g of Al (NO 3 ) 3 .9H 2 O, 0.341 g of Ni (NO 3 ) 2 .6H 2 O and 51 g / L of Ru metal. A metal-dissolved solution 500 ml in which 24.69 ml of a ruthenium nitrate solution was dissolved, and 1500 ml of an alkali mixed solution in which 183.0 ml (14 mol / L concentration) of NaOH and 10.88 g of Na 2 CO 3 were dissolved were prepared. A mixed solution of the magnesium salt, aluminum salt, nickel salt, and ruthenium salt was added to the alkali mixed solution and aged at 80 ° C. for 5 hours to obtain a hydrated double hydroxide. This was separated by filtration and dried to obtain a powder. The obtained powder was molded to 3 mmΦ, further heat-treated, and then subjected to reduction treatment to obtain a nickel catalyst (bead shape). The content of nickel in the obtained catalyst was 0.259 wt%, and the size of the metal nickel fine particles was 1 nm. Further, the Ru content in the obtained catalyst was 4.747 wt%, and the size was 8 nm.
Separately, using copper nitrate on 3 mmφ alumina beads, copper was supported by 6.82 wt% in terms of metal and heat-treated at 300 ° C. for 6 hours. A catalyst was prepared by mixing 5 wt% of the alumina beads supporting copper with respect to the nickel catalyst. At this time, the nickel catalyst beads were mixed well so that the alumina beads supporting copper were dispersed as uniformly as possible.

<金属カルボニル生成と分析>
混合して得られた触媒ビーズを8cc用いて、水蒸気改質反応をS/C=3、GHSV=1000h−1、反応温度700℃で3時間行った。その後、窒素パージして降温し、100℃とした。次いで650℃、S/C=2.5での水蒸気改質反応の化学平衡ガス組成の混合ガスをGHSV=1000h−1にて30分間流した。反応管をバルブで封止して100℃にて1時間保持し、その後、室温まで降温して反応管を取り外した。3日間静置した後、ニッケルカルボニル生成量の定量分析を行った結果、検出下限値未満であり、十分な除去効果が得られたことを確認した。
<Metal carbonyl formation and analysis>
Using 8 cc of catalyst beads obtained by mixing, the steam reforming reaction was performed for 3 hours at S / C = 3, GHSV = 1000 h −1 , and reaction temperature of 700 ° C. Thereafter, the temperature was lowered by purging with nitrogen to 100 ° C. Subsequently, a mixed gas having a chemical equilibrium gas composition of the steam reforming reaction at 650 ° C. and S / C = 2.5 was allowed to flow at GHSV = 1000 h −1 for 30 minutes. The reaction tube was sealed with a valve and held at 100 ° C. for 1 hour, and then cooled to room temperature and the reaction tube was removed. As a result of quantitative analysis of the amount of nickel carbonyl produced after standing for 3 days, it was less than the lower limit of detection, and it was confirmed that a sufficient removal effect was obtained.

実施例3
MgSO・6HO 398.6gとAl(SO・8HO 187.3g、NiSO・6HO 80.99gと120g/LのRu金属を含む塩化ルテニウム溶液 3.244mlを溶解させた金属溶解溶液1500mlと、NaOH 527.0ml(14mol/L濃度)とNaCO 57.16gを溶解させた1000mlのアルカリ混合溶液を用意した。このアルカリ混合溶液に前記マグネシウム塩、アルミニウム塩、ニッケル塩、ルテニウム塩との混合溶液を加え、90℃で10時間熟成を行って含水複水酸化物を得た。これを濾別分離し、乾燥して、粉末を得た。得た粉末を3mmΦに成形後、さらに熱処理した後、還元処理を行ってニッケル触媒(ビーズ状)を得た。得られた触媒中のニッケルの含有量は14.71wt%であり、金属ニッケル微粒子の大きさは3nmであった。また得られた触媒中のRuの含有量は0.317wt%であり、大きさは2nmであった。
別に、3mmΦのアルミナビーズに硝酸銅を用いて、銅を金属換算で6.82wt%スプレー担持させ、400℃にて3h熱処理した。この銅を担持したアルミナビーズを上記ニッケル触媒に対して30wt%混合した触媒を用意した。このとき、ニッケル触媒ビーズに対して、銅を担持したアルミナビーズがなるべく均一に散在するようよく混ぜ合わせた。
Example 3
394.4 g of MgSO 4 · 6H 2 O, 187.3 g of Al 2 (SO 4 ) 3 · 8H 2 O, 80.99 g of NiSO 4 · 6H 2 O and 3.244 ml of ruthenium chloride solution containing 120 g / L of Ru metal A 1000 ml alkaline mixed solution in which 1500 ml of the dissolved metal solution, 527.0 ml of NaOH (14 mol / L concentration) and 57.16 g of Na 2 CO 3 were dissolved was prepared. A mixed solution of the magnesium salt, aluminum salt, nickel salt, and ruthenium salt was added to the alkali mixed solution, followed by aging at 90 ° C. for 10 hours to obtain a hydrated double hydroxide. This was separated by filtration and dried to obtain a powder. The obtained powder was molded to 3 mmΦ, further heat-treated, and then subjected to reduction treatment to obtain a nickel catalyst (bead shape). The content of nickel in the obtained catalyst was 14.71 wt%, and the size of the metal nickel fine particles was 3 nm. Further, the Ru content in the obtained catalyst was 0.317 wt%, and the size was 2 nm.
Separately, using copper nitrate on 3 mmφ alumina beads, copper was supported by 6.82 wt% in terms of metal and heat treated at 400 ° C. for 3 hours. A catalyst was prepared by mixing 30 wt% of the alumina beads supporting copper with respect to the nickel catalyst. At this time, the nickel catalyst beads were mixed well so that the alumina beads supporting copper were dispersed as uniformly as possible.

<金属カルボニル生成と分析>
混合して得られた触媒ビーズを15cc用いて、水蒸気改質反応をS/C=3.0、GHSV=1000h−1、反応温度700℃で3時間行った。その後、窒素パージして降温し、100℃とした。次いで650℃、S/C=2.7での水蒸気改質反応の化学平衡ガス組成の混合ガスをGHSV=1000h−1にて30分間流した。反応管をバルブで封止して100℃にて1時間保持し、その後、室温まで降温して反応管を取り外した。3日間静置した後、ニッケルカルボニル生成量の定量分析を行った結果、12ppmであり除去効果が得られたことを確認した。
<Metal carbonyl formation and analysis>
Using 15 cc of the catalyst beads obtained by mixing, the steam reforming reaction was carried out at S / C = 3.0, GHSV = 1000 h −1 , reaction temperature 700 ° C. for 3 hours. Thereafter, the temperature was lowered by purging with nitrogen to 100 ° C. Next, a mixed gas having a chemical equilibrium gas composition of the steam reforming reaction at 650 ° C. and S / C = 2.7 was allowed to flow for 30 minutes at GHSV = 1000 h −1 . The reaction tube was sealed with a valve and held at 100 ° C. for 1 hour, and then cooled to room temperature and the reaction tube was removed. After standing for 3 days, a quantitative analysis of the amount of nickel carbonyl was performed. As a result, it was confirmed that the removal effect was 12 ppm.

実施例4
実施例3の銅担持アルミナビーズの代わりに、酸化銅、酸化亜鉛、アルミナの混合物からなり、それぞれが重量対比40、40、20(銅含有量は金属銅換算31.94wt%)である成形体を用意した。銅−亜鉛−アルミナ成形体をニッケル触媒ビーズに対して30wt%用意し、ニッケル触媒ビーズになるべく均一に散在するようよく混ぜ合わせた。
また別に、Y型ゼオライトを直径1mm、高さ2〜3mmの成形体を、上記したニッケル触媒ビーズに対して重量対比で10wt%用意した。
ここで、触媒管(反応器)の上層及び下層部にY型ゼオライト成形体を設置し、ニッケル触媒と銅−亜鉛−アルミナ成形体の混合物をその中間に設置した。
Example 4
Instead of the copper-carrying alumina beads of Example 3, a molded body comprising a mixture of copper oxide, zinc oxide and alumina, each having a weight ratio of 40, 40 and 20 (copper content is 31.94 wt% in terms of metallic copper). Prepared. A copper-zinc-alumina molded body was prepared in an amount of 30 wt% with respect to the nickel catalyst beads, and mixed well so as to be dispersed as uniformly as possible in the nickel catalyst beads.
Separately, a Y-type zeolite molded body having a diameter of 1 mm and a height of 2 to 3 mm was prepared in an amount of 10 wt% with respect to the above-described nickel catalyst beads.
Here, the Y-type zeolite compact was installed in the upper layer and the lower layer of the catalyst tube (reactor), and the mixture of the nickel catalyst and the copper-zinc-alumina compact was installed in the middle.

<金属カルボニル生成と分析>
触媒ビーズを6cc用いて、水蒸気改質反応をS/C=3.0、GHSV=1000h−1、反応温度700℃で3時間行った。その後、窒素パージして降温し、100℃とした。次いで650℃、S/C=2.8での水蒸気改質反応の化学平衡ガス組成の混合ガスをGHSV=1000h−1にて30分間流した。反応管をバルブで封止して100℃にて1時間保持し、その後、室温まで降温して反応管を取り外した。3日間静置した後、ニッケルカルボニル生成量の定量分析を行った結果、28ppmであり除去効果が得られたことを確認した。
<Metal carbonyl formation and analysis>
Using 6 cc of catalyst beads, a steam reforming reaction was performed at S / C = 3.0, GHSV = 1000 h −1 , and a reaction temperature of 700 ° C. for 3 hours. Thereafter, the temperature was lowered by purging with nitrogen to 100 ° C. Next, a mixed gas having a chemical equilibrium gas composition of the steam reforming reaction at 650 ° C. and S / C = 2.8 was allowed to flow at GHSV = 1000 h −1 for 30 minutes. The reaction tube was sealed with a valve and held at 100 ° C. for 1 hour, and then cooled to room temperature and the reaction tube was removed. After standing for 3 days, the amount of nickel carbonyl produced was quantitatively analyzed. As a result, it was confirmed that the removal effect was 28 ppm.

実施例5
実施例3の銅担持アルミナビーズの代わりに、Pdを金属換算で1.2wt%担持したY型ゼオライトを直径1mm、高さ2〜3mmの成形体として用意した。担持されたPdの金属サイズは電子顕微鏡より2.5nmであることを確認した。上記したニッケル触媒ビーズに対してPd担持Y型ゼオライトを、重量対比で15wt%用意した。Pd担持Y型ゼオライト成形体は、このニッケル触媒の上層及び下層部に設置した。
Example 5
Instead of the copper-carrying alumina beads of Example 3, Y-type zeolite carrying 1.2 wt% of Pd in terms of metal was prepared as a molded body having a diameter of 1 mm and a height of 2 to 3 mm. The metal size of the supported Pd was confirmed to be 2.5 nm by an electron microscope. 15 wt% of Pd-supported Y-type zeolite was prepared with respect to the above-described nickel catalyst beads by weight. The Pd-supported Y-type zeolite compact was placed in the upper and lower layers of this nickel catalyst.

<金属カルボニル生成と分析>
触媒ビーズを10cc用いて、水蒸気改質反応をS/C=3.0、GHSV=1000h−1、反応温度700℃で3時間行った。その後、窒素パージして降温し、100℃とした。次いで650℃、S/C=3.3での水蒸気改質反応の化学平衡ガス組成の混合ガスをGHSV=1000h−1にて30分間流した。反応管をバルブで封止して100℃にて1時間保持し、その後、室温まで降温して反応管を取り外した。3日間静置した後、ニッケルカルボニル生成量の定量分析を行った結果、55ppmであり除去効果が得られたことを確認した。
<Metal carbonyl formation and analysis>
Using 10 cc of catalyst beads, a steam reforming reaction was performed at S / C = 3.0, GHSV = 1000 h −1 , and a reaction temperature of 700 ° C. for 3 hours. Thereafter, the temperature was lowered by purging with nitrogen to 100 ° C. Subsequently, a mixed gas having a chemical equilibrium gas composition of the steam reforming reaction at 650 ° C. and S / C = 3.3 was allowed to flow at GHSV = 1000 h −1 for 30 minutes. The reaction tube was sealed with a valve and held at 100 ° C. for 1 hour, and then cooled to room temperature and the reaction tube was removed. After standing for 3 days, a quantitative analysis of the amount of nickel carbonyl was conducted, and it was confirmed that the removal effect was 55 ppm.

実施例6
実施例3の銅担持アルミナビーズの代わりに、Agを金属換算で5.8wt%担持したY型ゼオライトを直径1mm、高さ2〜3mmの成形体として用意した。担持されたAgの金属サイズは電子顕微鏡より12nmであることを確認した。上記したニッケル触媒ビーズに対してAg担持Y型ゼオライトを、重量対比で10wt%用意した。Ag担持Y型ゼオライト成形体は、このニッケル触媒の上層及び下層部に設置した。
Example 6
Instead of the copper-carrying alumina beads of Example 3, Y-type zeolite carrying 5.8 wt% of Ag in terms of metal was prepared as a molded body having a diameter of 1 mm and a height of 2 to 3 mm. The metal size of the supported Ag was confirmed to be 12 nm by an electron microscope. 10 wt% of Ag-supported Y-type zeolite was prepared with respect to the above-described nickel catalyst beads in terms of weight. Ag-supported Y-type zeolite compacts were placed in the upper and lower layers of this nickel catalyst.

<金属カルボニル生成と分析>
触媒ビーズを33cc用いて、水蒸気改質反応をS/C=3.0、GHSV=1000h−1、反応温度700℃で3時間行った。その後、窒素パージして降温し、100℃とした。次いで650℃、S/C=3.1での水蒸気改質反応の化学平衡ガス組成の混合ガスをGHSV=1000h−1にて30分間流した。反応管をバルブで封止して100℃にて1時間保持し、その後、室温まで降温して反応管を取り外した。3日間静置した後、ニッケルカルボニル生成量の定量分析を行った結果、62ppmであり除去効果が得られたことを確認した。
<Metal carbonyl formation and analysis>
Using 33 cc of catalyst beads, a steam reforming reaction was performed at S / C = 3.0, GHSV = 1000 h −1 , and a reaction temperature of 700 ° C. for 3 hours. Thereafter, the temperature was lowered by purging with nitrogen to 100 ° C. Next, a mixed gas having a chemical equilibrium gas composition of the steam reforming reaction at 650 ° C. and S / C = 3.1 was allowed to flow at GHSV = 1000 h −1 for 30 minutes. The reaction tube was sealed with a valve and held at 100 ° C. for 1 hour, and then cooled to room temperature and the reaction tube was removed. After standing for 3 days, a quantitative analysis of the amount of nickel carbonyl was performed, and as a result, it was confirmed that the removal effect was 62 ppm.

実施例7
MgCl・6HO 93.41gとAlCl・6HO 26.41g、NiCl・6HO 16.29gを溶解させた金属溶解溶液1300mlと、NaOH 166.0ml(14mol/L濃度)とNaCO 16.23gを溶解させた700mlのアルカリ混合溶液を用意した。このアルカリ混合溶液に前記マグネシウム塩、アルミニウム塩、ニッケル塩との混合溶液を加え、85℃で12時間熟成を行って含水複水酸化物を得た。これを濾別分離し、乾燥して、粉末を得た。得た粉末を3mmΦに成形後、さらに熱処理を行った。得た3mmφ成形体に120g/LのRu金属を含む塩化ルテニウム溶液 3.244mlをスプレー担持し、還元処理を行ってニッケル触媒(ビーズ状)を得た。
得られた触媒中のニッケルの含有量は12.10wt%であり、金属ニッケル微粒子の大きさは7nmであった。また得られた触媒中のRuの含有量は0.521wt%であり、大きさは2nmであった。
別に、3mmΦのアルミナビーズに硝酸銅を用いて、銅を金属換算で4.39wt%スプレー担持させ、350℃にて3h熱処理した。この銅を担持したアルミナビーズを上記ニッケル触媒に対して20wt%混合した触媒を用意した。このとき、ニッケル触媒ビーズに対して、銅を担持したアルミナビーズがなるべく均一に散在するようよく混ぜ合わせた。
Example 7
1300 ml of a metal-dissolved solution in which 93.41 g of MgCl 2 .6H 2 O, 26.41 g of AlCl 3 .6H 2 O and 16.29 g of NiCl 2 .6H 2 O were dissolved, and 166.0 ml of NaOH (concentration of 14 mol / L) A 700 ml alkali mixed solution in which 16.23 g of Na 2 CO 3 was dissolved was prepared. A mixed solution of the magnesium salt, aluminum salt, and nickel salt was added to the alkali mixed solution, followed by aging at 85 ° C. for 12 hours to obtain a hydrated double hydroxide. This was separated by filtration and dried to obtain a powder. The obtained powder was molded to 3 mmΦ, and further heat-treated. The obtained 3 mmφ molded body was spray-supported with 3.244 ml of a ruthenium chloride solution containing 120 g / L of Ru metal and subjected to a reduction treatment to obtain a nickel catalyst (beads).
The content of nickel in the obtained catalyst was 12.10 wt%, and the size of the metal nickel fine particles was 7 nm. Further, the Ru content in the obtained catalyst was 0.521 wt%, and the size was 2 nm.
Separately, using copper nitrate on 3 mmφ alumina beads, copper was supported by 4.39 wt% in terms of metal, and heat-treated at 350 ° C. for 3 hours. A catalyst was prepared by mixing 20 wt% of the alumina beads supporting copper with respect to the nickel catalyst. At this time, the nickel catalyst beads were mixed well so that the alumina beads supporting copper were dispersed as uniformly as possible.

<金属カルボニル生成と分析>
触媒ビーズを15cc用いて、水蒸気改質反応をS/C=3、GHSV=1000h−1、反応温度700℃で3時間行った。その後、窒素パージして降温し、100℃とした。次いで650℃、S/C=2.4での水蒸気改質反応の化学平衡ガス組成の混合ガスをGHSV=1000h−1にて30分間流した。反応管をバルブで封止して100℃にて1時間保持し、その後、室温まで降温して反応管を取り外した。3日間静置した後、ニッケルカルボニル生成量の定量分析を行った結果、32ppmであり除去効果が得られたことを確認した。
<Metal carbonyl formation and analysis>
Using 15 cc of catalyst beads, a steam reforming reaction was performed at S / C = 3, GHSV = 1000 h −1 , and a reaction temperature of 700 ° C. for 3 hours. Thereafter, the temperature was lowered by purging with nitrogen to 100 ° C. Next, a mixed gas having a chemical equilibrium gas composition of the steam reforming reaction at 650 ° C. and S / C = 2.4 was allowed to flow for 30 minutes at GHSV = 1000 h −1 . The reaction tube was sealed with a valve and held at 100 ° C. for 1 hour, and then cooled to room temperature and the reaction tube was removed. After standing for 3 days, the amount of nickel carbonyl produced was quantitatively analyzed. As a result, it was confirmed that the removal effect was 32 ppm.

実施例8
Mg(NO・6HO 129.8gとAl(NO・9HO 31.65gを溶解させ金属溶解溶液1000mlと、NaOH 251.0ml(14mol/L濃度)に、NaCO 16.6gを溶解させた1000ml溶液を加えて全量2000mlのアルカリ混合溶液を用意した。このアルカリ混合溶液に前記マグネシウム塩とアルミニウム塩との混合溶液を加え、118℃で11時間熟成を行って含水複水酸化物芯粒子を得た。
次いで、このアルカリ性懸濁液に、Mg(NO・6HO 42.29gとNi(NO・6HO 0.128gとAl(NO・9HO 10.31gと51g/LのRu金属を含む硝酸ルテニウム溶液 54.97mlとを溶かした500mlのマグネシウム塩、ニッケル塩、アルミニウム塩、ルテニウム塩の混合溶液を加え、さらに95℃で6時間熟成し、含水複水酸化物の粒子表面にトポタクティックに成長させた。これを濾別分離し、乾燥して、粉末を得た。得た粉末を3mmΦに成形後、さらに熱処理した後、還元処理を行ってニッケル触媒(ビーズ状)を得た。得られた触媒中のニッケルの含有量は0.066wt%であり、金属ニッケル微粒子の大きさは2nmであった。また得られた触媒中のRuの含有量は1.212wt%であり、大きさは5nmであった。なお、金属ニッケル微粒子、金属ルテニウム微粒子は粒子表面近傍にのみ存在するものと推定される。
別に、3mmΦのアルミナビーズに硝酸銅を用いて、銅を金属換算で7.12wt%スプレー担持させ、380℃にて5h熱処理した。この銅を担持したアルミナビーズを上記ニッケル触媒に対して25wt%混合した触媒を用意した。このとき、ニッケル触媒ビーズに対して、銅を担持したアルミナビーズがなるべく均一に散在するようよく混ぜ合わせた。
Example 8
129.8 g of Mg (NO 3 ) 2 .6H 2 O and 31.65 g of Al 2 (NO 3 ) 3 .9H 2 O are dissolved, 1000 ml of a metal solution, and 251.0 ml of NaOH (concentration of 14 mol / L) are added to Na. A 1000 ml solution in which 16.6 g of 2 CO 3 was dissolved was added to prepare a total amount of 2000 ml of an alkali mixed solution. The mixed solution of the magnesium salt and the aluminum salt was added to the alkali mixed solution and aged at 118 ° C. for 11 hours to obtain hydrous double hydroxide core particles.
Subsequently, 42.29 g of Mg (NO 3 ) 3 .6H 2 O, 0.128 g of Ni (NO 3 ) 2 .6H 2 O and 10.31 g of Al (NO 3 ) 3 .9H 2 O were added to this alkaline suspension. And a mixed solution of magnesium salt, nickel salt, aluminum salt and ruthenium salt dissolved in 54.97 ml of ruthenium nitrate solution containing 51 g / L of Ru metal and further aged at 95 ° C. for 6 hours. It was grown topotactically on the oxide particle surface. This was separated by filtration and dried to obtain a powder. The obtained powder was molded to 3 mmΦ, further heat-treated, and then subjected to reduction treatment to obtain a nickel catalyst (bead shape). The content of nickel in the obtained catalyst was 0.066 wt%, and the size of the metal nickel fine particles was 2 nm. Further, the Ru content in the obtained catalyst was 1.212 wt%, and the size was 5 nm. The metal nickel fine particles and metal ruthenium fine particles are presumed to exist only in the vicinity of the particle surface.
Separately, using copper nitrate on 3 mmφ alumina beads, 7.12 wt% of copper was spray-supported in terms of metal and heat-treated at 380 ° C. for 5 hours. A catalyst was prepared by mixing 25 wt% of the alumina beads supporting copper with respect to the nickel catalyst. At this time, the nickel catalyst beads were mixed well so that the alumina beads supporting copper were dispersed as uniformly as possible.

<金属カルボニル生成と分析>
触媒ビーズを22cc用いて、水蒸気改質反応をS/C=3、GHSV=1000h−1、反応温度700℃で3時間行った。その後、窒素パージして降温し、100℃とした。次いで650℃、S/C=2.6での水蒸気改質反応の化学平衡ガス組成の混合ガスをGHSV=1000h−1にて30分間流した。反応管をバルブで封止して100℃にて1時間保持し、その後、室温まで降温して反応管を取り外した。3日間静置した後、ニッケルカルボニル生成量の定量分析を行った結果、15ppmであり除去効果が得られたことを確認した。
<Metal carbonyl formation and analysis>
Using 22 cc of catalyst beads, a steam reforming reaction was performed at S / C = 3, GHSV = 1000 h −1 , and a reaction temperature of 700 ° C. for 3 hours. Thereafter, the temperature was lowered by purging with nitrogen to 100 ° C. Subsequently, a mixed gas having a chemical equilibrium gas composition of the steam reforming reaction at 650 ° C. and S / C = 2.6 was allowed to flow at GHSV = 1000 h −1 for 30 minutes. The reaction tube was sealed with a valve and held at 100 ° C. for 1 hour, and then cooled to room temperature and the reaction tube was removed. After standing for 3 days, the amount of nickel carbonyl produced was quantitatively analyzed. As a result, it was confirmed that the removal effect was 15 ppm.

実施例9
Mg(NO・6HO 10.55gとAl(NO・9HO 6.952g、Ni(NO・6HO 0.341gと51g/LのRu金属を含む硝酸ルテニウム溶液 4.166mlを溶解させた金属溶解溶液を3mmφのアルミナビーズ 93gに含浸吸着法にて担持した。得たMgAlNiRu担持アルミナビーズを熱処理した後、還元処理を行ってニッケル触媒(ビーズ状)を得た。得られた触媒中のニッケルの含有量は4.996wt%であり、金属ニッケル微粒子の大きさは3nmであった。また得られた触媒中のRuの含有量は0.485wt%であり、大きさは1nmであった。
別に、3mmΦのアルミナビーズに硝酸銅を用いて、銅を金属換算で9.15wt%スプレー担持させ、320℃にて2h熱処理した。
この銅を担持したアルミナビーズを上記ニッケル触媒に対して12wt%混合した触媒を用意した。このとき、ニッケル触媒ビーズに対して、銅を担持したアルミナビーズがなるべく均一に散在するようよく混ぜ合わせた。
Example 9
Contains 10.55 g of Mg (NO 3 ) 2 .6H 2 O, 6.952 g of Al (NO 3 ) 3 .9H 2 O, 0.341 g of Ni (NO 3 ) 2 .6H 2 O and 51 g / L of Ru metal. A metal solution obtained by dissolving 4.166 ml of ruthenium nitrate solution was supported on 93 g of 3 mmφ alumina beads by an impregnation adsorption method. The obtained MgAlNiRu-supported alumina beads were heat-treated and then subjected to a reduction treatment to obtain a nickel catalyst (bead shape). The content of nickel in the obtained catalyst was 4.996 wt%, and the size of the metal nickel fine particles was 3 nm. Further, the Ru content in the obtained catalyst was 0.485 wt%, and the size was 1 nm.
Separately, copper nitrate was supported on a 3 mmφ alumina bead using 9.15 wt% copper as a metal, and heat treated at 320 ° C. for 2 h.
A catalyst was prepared by mixing 12 wt% of the alumina beads supporting copper with respect to the nickel catalyst. At this time, the nickel catalyst beads were mixed well so that the alumina beads supporting copper were dispersed as uniformly as possible.

<金属カルボニル生成と分析>
触媒ビーズを10cc用いて、水蒸気改質反応をS/C=3、GHSV=1000h−1、反応温度700℃で3時間行った。その後、窒素パージして降温し、100℃とした。次いで650℃、S/C=3.5での水蒸気改質反応の化学平衡ガス組成の混合ガスをGHSV=1000h−1にて30分間流した。反応管をバルブで封止して100℃にて1時間保持し、その後、室温まで降温して反応管を取り外した。3日間静置した後、ニッケルカルボニル生成量の定量分析を行った結果、2ppmであり除去効果が得られたことを確認した。
<Metal carbonyl formation and analysis>
Using 10 cc of catalyst beads, a steam reforming reaction was performed at S / C = 3, GHSV = 1000 h −1 , and a reaction temperature of 700 ° C. for 3 hours. Thereafter, the temperature was lowered by purging with nitrogen to 100 ° C. Subsequently, a mixed gas having a chemical equilibrium gas composition of the steam reforming reaction at 650 ° C. and S / C = 3.5 was allowed to flow at GHSV = 1000 h −1 for 30 minutes. The reaction tube was sealed with a valve and held at 100 ° C. for 1 hour, and then cooled to room temperature and the reaction tube was removed. After standing for 3 days, the quantitative analysis of the amount of nickel carbonyl was conducted. As a result, it was confirmed that the removal effect was 2 ppm.

比較例1
α−アルミナ粉末を3mmφの球形状ビーズとして、1150℃で10時間空気中にて焼成した。このα−アルミナビーズにNi(NO・6HO 59.47gを純水に溶解させた200mlの溶液をスプレーで数回に分けて塗布し、乾燥後、660℃で6時間空気中にて焼成、還元処理を行った。得られた触媒中のニッケルの含有量は11.98wt%であり、金属ニッケル微粒子の大きさは58nmであった。
Comparative Example 1
The α-alumina powder was fired in air at 1150 ° C. for 10 hours as 3 mmφ spherical beads. A 200 ml solution of 59.47 g of Ni (NO 3 ) 2 · 6H 2 O dissolved in pure water was applied to the α-alumina beads by spraying several times, dried, and then in air at 660 ° C. for 6 hours. Was subjected to firing and reduction treatment. The content of nickel in the obtained catalyst was 11.98 wt%, and the size of the metal nickel fine particles was 58 nm.

<金属カルボニル生成と分析>
触媒ビーズを10cc用いて、水蒸気改質反応をS/C=3、GHSV=1000h−1、反応温度700℃で3時間行った。その後、窒素パージして降温し、100℃とした。次いで650℃、S/C=3.0での水蒸気改質反応の化学平衡ガス組成の混合ガスをGHSV=1000h−1にて30分間流した。反応管をバルブで封止して100℃にて1時間保持し、その後、室温まで降温して反応管を取り外した。3日間静置した後、ニッケルカルボニル生成量の定量分析を行った結果、検出上限値の100ppmを超えた値が得られた。
<Metal carbonyl formation and analysis>
Using 10 cc of catalyst beads, a steam reforming reaction was performed at S / C = 3, GHSV = 1000 h −1 , and a reaction temperature of 700 ° C. for 3 hours. Thereafter, the temperature was lowered by purging with nitrogen to 100 ° C. Subsequently, a mixed gas having a chemical equilibrium gas composition of the steam reforming reaction at 650 ° C. and S / C = 3.0 was allowed to flow for 30 minutes at GHSV = 1000 h −1 . The reaction tube was sealed with a valve and held at 100 ° C. for 1 hour, and then cooled to room temperature and the reaction tube was removed. As a result of quantitative analysis of the amount of nickel carbonyl produced after standing for 3 days, a value exceeding the detection upper limit of 100 ppm was obtained.

比較例2
MgSO・6HO 82.13gとAl(SO・8HO 32.41g、NiSO・6HO 35.05gを溶解させた金属溶解溶液1400mlと、NaOH 110.0ml(14mol/L濃度)とNaCO 9.893gを溶解させた600mlのアルカリ混合溶液を用意した。このアルカリ混合溶液に前記マグネシウム塩、アルミニウム塩、ニッケル塩との混合溶液を加え、70℃で6時間熟成を行って含水複水酸化物を得た。これを濾別分離し、乾燥して、粉末を得た。得た粉末を3mmΦに成形後、さらに熱処理した後、還元処理を行ってニッケル触媒(ビーズ状)を得た。得られた触媒中のニッケルの含有量は27.89wt%であり、金属ニッケル微粒子の大きさは32nmであった。
Comparative Example 2
1400 ml of a metal dissolving solution in which 82.13 g of MgSO 4 · 6H 2 O, 32.41 g of Al 2 (SO 4 ) 3 · 8H 2 O and 35.05 g of NiSO 4 · 6H 2 O were dissolved, and 110.0 ml (14 mol) of NaOH / L concentration) and 600 ml of an alkali mixed solution in which 9.893 g of Na 2 CO 3 was dissolved. A mixed solution of the magnesium salt, aluminum salt, and nickel salt was added to the alkali mixed solution, followed by aging at 70 ° C. for 6 hours to obtain a hydrated double hydroxide. This was separated by filtration and dried to obtain a powder. The obtained powder was molded to 3 mmΦ, further heat-treated, and then subjected to reduction treatment to obtain a nickel catalyst (bead shape). The content of nickel in the obtained catalyst was 27.89 wt%, and the size of the metal nickel fine particles was 32 nm.

<金属カルボニル生成と分析>
触媒ビーズを8cc用いて、水蒸気改質反応をS/C=3.0、GHSV=1000h−1、反応温度700℃で3時間行った。その後、窒素パージして降温し、100℃とした。次いで650℃、S/C=2.8での水蒸気改質反応の化学平衡ガス組成の混合ガスをGHSV=1000h−1にて30分間流した。反応管をバルブで封止して100℃にて1時間保持し、その後、室温まで降温して反応管を取り外した。3日間静置した後、ニッケルカルボニル生成量の定量分析を行った結果、検出上限値の100ppmを超えた値が得られた。
<Metal carbonyl formation and analysis>
Using 8 cc of catalyst beads, a steam reforming reaction was performed at S / C = 3.0, GHSV = 1000 h −1 , and a reaction temperature of 700 ° C. for 3 hours. Thereafter, the temperature was lowered by purging with nitrogen to 100 ° C. Next, a mixed gas having a chemical equilibrium gas composition of the steam reforming reaction at 650 ° C. and S / C = 2.8 was allowed to flow at GHSV = 1000 h −1 for 30 minutes. The reaction tube was sealed with a valve and held at 100 ° C. for 1 hour, and then cooled to room temperature and the reaction tube was removed. As a result of quantitative analysis of the amount of nickel carbonyl produced after standing for 3 days, a value exceeding the detection upper limit of 100 ppm was obtained.

Figure 0005439706
Figure 0005439706

Figure 0005439706
Figure 0005439706

Figure 0005439706
Figure 0005439706

本発明に係る金属カルボニルの生成抑制あるいは吸着/分解除去する触媒は、金属カルボニルの発生を抑制するだけでなく、より安価であり、機能面では優れた触媒活性を示し、硫黄被毒に対し優れた耐性を有するため、今後燃料電池システムを始め多くのニーズが発生する可能性が高い。   The catalyst for suppressing generation or adsorption / decomposition and removal of metal carbonyl according to the present invention not only suppresses the generation of metal carbonyl, but also is cheaper, exhibits excellent catalytic activity in terms of function, and is superior to sulfur poisoning. Therefore, there is a high possibility that many needs such as fuel cell systems will occur in the future.

Claims (3)

150℃以下の反応場において、金属カルボニルを抑制する触媒を用いて一酸化炭素を含むガス中で金属カルボニルの発生を抑制する方法であって、前記金属カルボニルを抑制する触媒が、マグネシウム、アルミニウム、ニッケルを構成元素とし、且つ、ルテニウムを含有するとともに、前記触媒に対して重量対比で1〜50%の粘土鉱物を存在させ、前記粘土鉱物に平均粒径が50nm以下のルテニウム、ロジウム、イリジウム、白金、金、銀、パラジウム、ニッケル、コバルト、銅、鉄、亜鉛、バナジウム、マンガンから選ばれた一種又は二種の元素を担持させた触媒体であり、金属ルテニウム微粒子の平均粒子径が0.5nm〜10nmであり、金属ルテニウムの含有量が前記触媒体に対して0.05〜5.0wt%であることを特徴とする金属カルボニルの発生を抑制する方法。 In a reaction field of 150 ° C. or lower, a method for suppressing the generation of metal carbonyl in a gas containing carbon monoxide using a catalyst for suppressing metal carbonyl, wherein the catalyst for suppressing metal carbonyl comprises magnesium, aluminum, Nickel as a constituent element and containing ruthenium, and 1-50% by weight of clay mineral with respect to the catalyst is present, and the clay mineral has an average particle size of ruthenium, rhodium, iridium, 50 nm or less, A catalyst body supporting one or two elements selected from platinum, gold, silver, palladium, nickel, cobalt, copper, iron, zinc, vanadium, and manganese . The average particle diameter of the metal ruthenium fine particles is 0. 5 to 10 nm, and the content of metal ruthenium is 0.05 to 5.0 wt% with respect to the catalyst body Method of inhibiting the occurrence of metal carbonyls. 請求項1記載の金属カルボニルの発生を抑制する方法に用いる金属カルボニルを抑制する触媒の金属ニッケル微粒子の平均粒子径が1〜20nmであって、金属ニッケルの含有量が金属カルボニルを抑制する触媒に対して0.1〜20wt%であることを特徴とする金属カルボニルの発生を抑制する方法。 The catalyst for suppressing metal carbonyl generation according to claim 1, wherein the metal nickel fine particles have an average particle diameter of 1 to 20 nm and the content of metal nickel is a catalyst for suppressing metal carbonyl. The method of suppressing generation | occurrence | production of the metal carbonyl characterized by being 0.1-20 wt% with respect to it. 請求項1又は2に記載の金属カルボニルの発生を抑制する方法を用いることを特徴とする燃料電池システム。 A fuel cell system using the method for suppressing generation of metal carbonyl according to claim 1 or 2 .
JP2007078007A 2007-03-24 2007-03-24 Method for suppressing generation of metal carbonyl and fuel cell system Active JP5439706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007078007A JP5439706B2 (en) 2007-03-24 2007-03-24 Method for suppressing generation of metal carbonyl and fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007078007A JP5439706B2 (en) 2007-03-24 2007-03-24 Method for suppressing generation of metal carbonyl and fuel cell system

Publications (2)

Publication Number Publication Date
JP2008237955A JP2008237955A (en) 2008-10-09
JP5439706B2 true JP5439706B2 (en) 2014-03-12

Family

ID=39909934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007078007A Active JP5439706B2 (en) 2007-03-24 2007-03-24 Method for suppressing generation of metal carbonyl and fuel cell system

Country Status (1)

Country Link
JP (1) JP5439706B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109494365A (en) * 2018-11-09 2019-03-19 南昌大学 A kind of preparation method of the LDH- porous charcoal sulphur composite material for lithium-sulphur cell positive electrode

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4142900A1 (en) * 1991-12-23 1993-06-24 Sued Chemie Ag USE OF COPPER OXIDE ALUMINUM OXIDE MAGNESIUM OXIDE CATALYSTS FOR CONVERTING CARBON MONOXIDE
US6077487A (en) * 1997-11-05 2000-06-20 Millipore Corporation Process and apparatus of removing metal carbonyls and moisture from a gas
JP4016100B2 (en) * 2002-06-11 2007-12-05 独立行政法人産業技術総合研究所 Catalyst for water gas shift reaction
JP4332733B2 (en) * 2004-08-24 2009-09-16 戸田工業株式会社 Hydrocarbon cracking catalyst and method for producing hydrogen using the hydrocarbon cracking catalyst
JP4340892B2 (en) * 2004-08-24 2009-10-07 戸田工業株式会社 Hydrocarbon cracking catalyst and method for producing the same, and method for producing hydrogen using the hydrocarbon cracking catalyst
JP4607715B2 (en) * 2005-09-06 2011-01-05 株式会社東芝 Catalyst and method for producing catalyst
JP4706857B2 (en) * 2006-05-30 2011-06-22 戸田工業株式会社 Catalyst for removing metal carbonyl, method for producing mixed reformed gas containing hydrogen, method for removing metal carbonyl, fuel cell system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109494365A (en) * 2018-11-09 2019-03-19 南昌大学 A kind of preparation method of the LDH- porous charcoal sulphur composite material for lithium-sulphur cell positive electrode

Also Published As

Publication number Publication date
JP2008237955A (en) 2008-10-09

Similar Documents

Publication Publication Date Title
JP4706857B2 (en) Catalyst for removing metal carbonyl, method for producing mixed reformed gas containing hydrogen, method for removing metal carbonyl, fuel cell system
JP5531615B2 (en) Catalyst for cracking hydrocarbons
Chen et al. Effect of Vapor‐phase‐treatment to CuZnZr Catalyst on the Reaction Behaviors in CO2 Hydrogenation into Methanol
Osman et al. Surface hydrophobicity and acidity effect on alumina catalyst in catalytic methanol dehydration reaction
Surisetty et al. Comparative study of higher alcohols synthesis over alumina and activated carbon-supported alkali-modified MoS2 catalysts promoted with group VIII metals
Jeong et al. Toluene combustion over NiO nanoparticles on mesoporous SiO2 prepared by atomic layer deposition
Xia et al. Study on catalytic properties and carbon deposition of Ni-Cu/SBA-15 for cyclohexane dehydrogenation
Shao et al. Influence of ZrO2 properties on catalytic hydrodechlorination of chlorobenzene over Pd/ZrO2 catalysts
Parnian et al. Ru promoted cobalt catalyst on γ-Al2O3: Influence of different catalyst preparation method and Ru loadings on Fischer–Tropsch reaction and kinetics
Bakar et al. Catalytic methanation reaction over supported nickel–ruthenium oxide base for purification of simulated natural gas
Wang et al. Ruthenium/cobalt binary oxides supported on hollow alumina microspheres as highly efficient catalyst for vinyl chloride oxidation
Tian et al. Catalytic performance of Au III supported on SiO 2 modified activated carbon
He et al. Design strategies for the development of a Pd-based acetylene hydrochlorination catalyst: improvement of catalyst stability by nitrogen-containing ligands
Ahmad et al. Natural clay-supported palladium catalysts for methane oxidation reaction: effect of alloying
Sun et al. Preparation of Au/xCeO2-Al2O3 catalysts with enhanced catalytic properties for the selective acetylene hydrogenation
Meshesha et al. Gas-phase hydrodechlorination of trichloroethylene over Pd/NiMgAl mixed oxide catalysts
Howeizi et al. Effect of the distribution and dispersion of palladium nanoparticles on the reducibility and performance of Pd/Al 2 O 3 catalyst in liquid-phase hydrogenation of olefins
Cha et al. Adsorbent/catalyst bi-functional Fe-ZSM-5 prepared by a simple CVD process for exhaust gas treatment
JP5439706B2 (en) Method for suppressing generation of metal carbonyl and fuel cell system
Kim et al. Synthesis of a catalytic support from natural cellulose fibers, and its performance in a CO2 reforming of CH4
Janiszewska et al. Aqueous‐Phase Hydrodechlorination of Trichloroethylene on Ir Catalysts Supported on SBA‐3 Materials
Mierczynski et al. Modern Ni and Pd–Ni Catalysts Supported on Sn–Al Binary Oxide for Oxy‐Steam Reforming of Methanol
Xia et al. Support-dependent activity and thermal stability of Ru-based catalysts for catalytic combustion of light hydrocarbons
LU et al. Study on catalytic performance of supported transition metal oxide catalyst for ozone decomposition
AU779876B2 (en) Process for the catalytic oxidation of carbonaceous compounds

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131202

R150 Certificate of patent or registration of utility model

Ref document number: 5439706

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250