JP5439106B2 - 走査荷電粒子顕微鏡を用いたパターン形状評価装置およびその方法 - Google Patents

走査荷電粒子顕微鏡を用いたパターン形状評価装置およびその方法 Download PDF

Info

Publication number
JP5439106B2
JP5439106B2 JP2009227238A JP2009227238A JP5439106B2 JP 5439106 B2 JP5439106 B2 JP 5439106B2 JP 2009227238 A JP2009227238 A JP 2009227238A JP 2009227238 A JP2009227238 A JP 2009227238A JP 5439106 B2 JP5439106 B2 JP 5439106B2
Authority
JP
Japan
Prior art keywords
imaging
circuit pattern
pattern
image
image processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009227238A
Other languages
English (en)
Other versions
JP2011077299A (ja
Inventor
敦 宮本
千絵 宍戸
剛 上瀧
良一 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2009227238A priority Critical patent/JP5439106B2/ja
Publication of JP2011077299A publication Critical patent/JP2011077299A/ja
Application granted granted Critical
Publication of JP5439106B2 publication Critical patent/JP5439106B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

本発明は,半導体デバイスの設計あるいは製造過程において,走査荷電粒子顕微鏡を用いて半導体ウェーハなどの試料上の回路パターンを計測あるいは評価する方法及びその装置に関する。
半導体ウェーハに回路パターンを形成するに際しては,半導体ウェーハ上にレジストと呼ばれる塗布材を塗布し,レジストの上に回路パターンの露光用マスク(レチクル)を重ねてその上から可視光線,紫外線あるいは電子ビームを照射し,レジストを感光(露光)して現像することによって半導体ウェーハ上にレジストによる回路パターンを形成し,このレジストの回路パターンをマスクとして半導体ウェーハをエッチング加工することにより回路パターンを形成する方法等が採用されている。
近年,半導体デバイスの高速化・高集積化のニーズに応えるため,光近接効果補正(Optical Proximity Correction:OPC)に代表される超解像度露光技術が導入され,パターンの微細化・複雑化が進んでいる。また,Fin-FET(Fin-Field Effect Transistor)と呼ばれる立体構造トランジスタも考案されている。
半導体デバイスの設計・製造においては,回路パターン形状を計測し,評価結果を設計や製造プロセスへフィードバックする必要がある。パターンの形状計測には,走査荷電粒子顕微鏡の一つである測長用の走査電子顕微鏡(Critical Dimension Scanning Electron Microscope:CD−SEM)が広く用いられている。SEM画像を用いた従来の形状評価方法として,(1)いわゆるCD値と呼ばれるラインパターン幅やコンタクトホール径等の寸法を計測する方法,(2)例えば特許第4158384号公報(特許文献2)に開示されたパターン形状と相関の高い画像特徴量を計算する方法,(3)例えば特許第4154374号公報(特許文献3)に開示されたパターンの二次元的な輪郭線を検出する方法等がある。
一方,SEMによるパターンの観察には,(1)パターンの垂直上方から電子ビームを照射してSEM画像(トップダウン像)を得る方法と,(2)パターンに対して相対的に斜め方向から電子ビームを照射してSEM画像(チルト像)を得る方法がある。更に後者のチルト像を得る方式としては,(1)例えば特開2000−348658号公報(特許文献4) に開示された電子ビームを偏向することにより,観察対象に対し電子ビームを斜めから照射して撮像する方式(ビームチルト方式と呼ぶ),(2)試料を移動させるステージ自体を傾斜させて撮像する方式(ステージチルト方式と呼ぶ),(3)SEMの電子光学系自体を機械的に傾斜させる方式(鏡筒チルト方式と呼ぶ)等がある。
特開2007−250528号公報 特許第4158384号公報 特許第4154374号公報 特開2000−348658号公報
パターンの微細化・複雑化,三次元構造化に伴い,設計や製造プロセス制御はますます困難になってきている。半導体の電気的な特性にはパターンの高さ,ライン幅,側壁傾斜角のほか,角の丸みや三次元的なパターンの断面形状等の微妙な変化も大きな影響を与える。トップダウン方向からは直接観察することが困難な,例えば前記パターンの高さ,側壁傾斜角,断面形状の情報を得るためには,SEMを用いてパターンを斜め方向から観察したチルト像を利用した計測が有効と考えられる。
しかしながら,チルト像には立体的なパターンの様々な輪郭線が存在するため画像処理による形状認識は複雑になる。またチルト像においてはパターン表面のラフネス等により計測対象外の形状変化に伴うエッジも含まれるため,前記複雑な形状認識と併せ,画像処理による形状計測は容易でない。また近年,評価すべき計測点数は増大しており,計測点毎に手作業で画像を解析,あるいは画像処理方法を指定することは時間,労力の観点から現実的ではない。さらに,そもそも前記パターンの形状評価を行うには,どのような方向から前記パターンを観察するのが適切か判断することが困難である。
本発明は,前述のように複雑な構造を含む半導体パターンのチルト像から安定かつ自動で形状評価を行う方法を提供する。本課題を解決するために,本発明は,以下の特徴を有する走査荷電粒子顕微鏡を用いたパターン形状評価装置およびその方法とした。以降の説明では走査荷電粒子顕微鏡の例として,走査電子顕微鏡(Scanning Electron Microscope :SEM)を例に説明するが,本発明はこれに限定されるものではなく,走査型イオン顕微鏡(Scanning Ion Microscope :SIM)又は走査型透過電子顕微鏡(Scanning Transmission Electron Microscope :STEM)等の走査荷電粒子顕微鏡にも応用することが可能である。
すなわち、本発明においては、
(1)回路パターンの形状評価装置およびその方法において、評価対象となる回路パターンを含む領域を撮像領域として指定する撮像領域指定ステップと,前記撮像領域に対して照射する荷電粒子の照射方向(撮像方向)を指定する撮像方向指定ステップと,前記撮像領域を前記撮像方向から撮像して撮像画像を得る撮像ステップと,前記撮像領域内に含まれる回路パターンの設計データを入力する設計データ入力ステップと,前記撮像画像上で観測される回路パターンの輪郭線の予想位置(予想輪郭線)を前記設計データと前記撮像方向から算出する予想輪郭線算出ステップと,前記撮像画像と前記予想輪郭線との対応関係を求める照合ステップと,前記予想輪郭線を基に,前記撮像画像を処理する画像処理範囲あるいは画像処理方法を設定する画像処理範囲・方法設定ステップと,前記画像処理範囲あるいは画像処理方法に従って前記撮像画像を処理することによって回路パターンの形状を評価する形状評価ステップを含むように構成した。
これにより,設計データを基に算出した予想輪郭線により,評価対象となるパターンあるいはその周辺パターンの各輪郭線がチルト像中のどの辺りに存在しうるかを推定することができ,前記評価対象となるパターンを評価する上で適切な画像処理範囲や画像処理方法を設定することが可能となる。これにより,例えば評価対象となるパターンの輪郭線検出において,検出すべき輪郭線と異なる輪郭線を誤って検出する等の失敗を低減することができ,安定な形状評価が実現できた。
(2)また本発明においては、前記予想輪郭線算出ステップにおいて算出された予想輪郭線と,前記の画像処理範囲・方法設定ステップにおいて設定された画像処理範囲あるいは画像処理方法を計測レシピとして保存し,前記計測レシピを基に前記形状評価ステップを行うようにした。
このように,画像処理範囲や画像処理方法を指定するファイルを計測レシピとして作成することにより,前記計測レシピに基づきパターンの形状評価を自動で行うことができる。また,設計データを用いることで計測レシピの作成にウェーハやSEM装置が不要となり(オフライン化),テープアウト後は直ぐに計測レシピを作成することできる。これにより,レシピ生成を含む評価の準備から実際のSEM撮像・形状評価までを含めた総合的なスループットを向上させることができる。更に計測レシピをファイルとして管理することで,同種パターンの形状評価時や,複数のSEMを用いた形状評価において計測レシピを共通に用いることができる。
(3)また本発明においては、前記撮像ステップにおいて前記撮像方向からの撮像は,前記撮像方向に荷電粒子の照射方向を偏向する方式,あるいは評価対象を載せた試料台を傾斜させる方式,あるいは荷電粒子顕微鏡電子光学系自体を機械的に傾斜させる方式により行い,請求項1記載の予想輪郭線算出ステップにおいては前記撮像の方式に応じて予想輪郭線を算出するようにした。
パターンを斜め方向から観察するためには,パターンに対して相対的に荷電粒子の照射方向を傾ける必要があり,その方式は前述のように複数通りありうる。また,方式の違いによって生成されるチルト像上のパターン輪郭線の位置は異なることがある。そのため,このような方式の違いを考慮して設計データから予想輪郭線を算出することでより,実際に撮像したSEM上の輪郭線により近い輪郭線を推定することが可能となる。
(4)また本発明においては、前記予想輪郭線算出ステップにおいて,前記撮像領域に含まれる回路パターン形状の二次元のレイアウト情報が書き込まれた設計データと前記回路パターンの高さの設計値とをそれぞれ入力し,前記設計データと前記高さの設計値から前記回路パターンの擬似的な三次元形状を算出し,前記撮像方向から観測される前記擬似的な三次元形状の輪郭線を算出することによって予想輪郭線を算出するようにした。
設計データのフォーマットとしては,「GDSII」や「OASIS」等が一般に知られているが,設計データのファイル内には,二次元的な(奥行き情報のない)レイアウト情報のみ記録されている場合が多い。そのため,各パターンの高さ情報(例えば,レイヤ毎の膜厚情報)を別途入力できる仕組みを設けることで,前記二次元的なレイアウト情報と合せ,内部で対象パターンの三次元形状を推測することができる。勿論,初めからパターンの三次元的な形状情報が書き込まれた設計データを入力することで,三次元形状を得てもよい。ただし,実際に生成されるパターンの断面形状は単なる長方形ではなく,線幅は高さ方向に連続的に変化する場合がある(単一の二次元的なレイアウト情報と高さ情報では表現できない)。
このような場合,評価対象がレジストパターンのときはマスクの設計データから露光,現像シミュレーションを行い,三次元形状情報を推定してもよい。また,前記三次元形状のチルト像上での正確な輪郭線位置を推定するため,前記三次元形状に対してSEMシミュレーションを併用してもよい。同様に評価対象がエッチングパターンのときは,前述のレジストパターンの形状推定の後,エッチングシミュレーションを行うことで,三次元形状情報を推定することができる。
(5)また本発明においては、前記画像処理範囲・方法設定ステップにおいて,前記予想輪郭線と実際に撮像画像上で観測される輪郭線との位置ずれ予想範囲を設定し,前記予想輪郭線と前記位置ずれ予想範囲とを基に前記画像処理範囲あるいは画像処理方法を設定するようにした。
前記予想輪郭線と実際に撮像画像上で観測される輪郭線との間には形状乖離が発生しうる。原因としては,製造プロセスにおいて発生するパターンの太り/細り,角の丸まり,ラフネス,パターンの平行移動や,二次電子の発生メカニズムに起因するSEM画像上でのパターンの位置ずれ,等が挙げられる。前記形状乖離によってパターンの形状評価が失敗するのを避けるため,予め位置ずれ予想範囲を設定し,同範囲で位置ずれが発生しても処理が失敗しないように画像処理範囲あるいは画像処理方法を設定することで,形状乖離にロバストな形状評価が実現する。
位置ずれ予想範囲の推定方法としては,次の(a)〜(c)が挙げられる。(a)製造プロセスに関する事前知識を基に設定する方法。例えば,パターンの角は丸まり易い,ダブルパターニングの際に2回の露光間で位置ずれが起きるかもしれない等の知識や,過去の事例を参照する等の方法が挙げられる。(b)前記項目(4)で述べたように露光あるいは現像あるいはエッチングあるいはSEMシミュレーション等を基に実際に撮像画像上で観測される輪郭線を推定する方法。この際,実際の条件にあったシミュレーションのパラメータを正確に与えることが困難な場合があるため,前記パラメータを振って推定した複数の推定結果から位置ずれ予想範囲を推定することができる。(c)前記シミュレーションを模擬した簡易な形状変形あるいは画像処理により前記項目(1)記載の擬似的な三次元形状や前記予想輪郭線を変形させ,その変形範囲を基に推定する方法。
(6)また本発明においては、前記形状評価ステップにおいて,前記画像処理範囲あるいは画像処理方法に従って,(a)回路パターンの寸法を計測する,(b)回路パターンの輪郭線を検出する,(c)回路パターンの三次元形状と相関のある画像特徴量を算出するようにした。
(7)更に、回路パターンの形状評価装置およびその方法において、評価対象となる回路パターンを含む領域を撮像領域として指定する撮像領域指定ステップと,前記撮像領域に対して照射する荷電粒子の照射方向(撮像方向)を指定する撮像方向指定ステップと,前記撮像領域内に含まれる回路パターンの設計データを入力する設計データ入力ステップと,前記撮像画像上で観測される回路パターンの輪郭線の予想位置(予想輪郭線)を前記設計データと前記撮像方向から算出する予想輪郭線算出ステップと,前記予想輪郭線を画面上に表示する予想輪郭線表示ステップと,前記表示された予想輪郭線を基に撮像方向の決定を行う撮像方向決定ステップと,前記撮像方向決定ステップにおいて決定した撮像方向から撮像領域を撮像して撮像画像を得る撮像ステップを含むように構成した。
すなわち,チルト像を用いた形状評価を行うためには,評価対象となるパターンの適切な形状評価が可能な撮像方向を設定する必要がある。撮像方向によっては,撮像画像において評価対象となるパターン(あるいはその一部)が周辺パターンの陰になってしまう場合がある。また,例えば輪郭線検出においては,検出すべき輪郭線だけが観測されれば良いというわけではない。画像処理により輪郭線を良好に検出するためには,SEM画像におけるエッジ信号の広がり(裾野)も考慮し, 検出すべき輪郭線の周囲も多少撮像されることが望ましい。このような判断を基に撮像方向を設定するためには,任意に設定した撮像方向から観測されるパターンの予想輪郭線をディスプレイ等に表示し,ユーザに撮像方向の決定を促すGUIが有効である。また,評価対象となるパターンを指定することで,予想輪郭線をもとに計算機内で評価対象となるパターンの観測可否判定を行い,自動で適切な撮像方向を決定することも可能である。
本発明により,複雑な構造を含む半導体パターンのチルト像から安定かつ自動で形状評価を行うことが可能となる。これにより,トップダウン方向からは直接観察することが困難な,例えば前記パターンの高さや側壁傾斜角,さらには三次元的なパターンの断面形状の情報を得ることができ,同形状の評価結果を設計や製造プロセスへフィードバックすることが可能となる。また,このような形状評価の自動化により,大量の計測点に対しても,評価者の作業時間,労力を大きく軽減することが可能となる。
本発明を実現するためのSEM装置の構成を示す図である。 半導体ウェーハ上から放出される電子の信号量を画像化する方法を示す図である。 本発明における処理全体のフローを示す図である。 本発明における処理全体のフローを示す図である。 上層レイヤに置けるパターンの二次元的なレイアウト情報を示すパターンの平面図である。 下層レイヤに置けるパターンの二次元的なレイアウト情報を示すパターンの平面図である。 上層及び下層レイヤのパターンの二次元的なレイアウト情報から推定した三次元形状に斜視図である。 パターンの形状変形・シフトのバリエーションを示す図である。 ラインパターン702のトップダウン像を示す図である。 トップダウン像701中a−b間のSEM信号プロファイルを示すグラフである。 SEM信号の積算プロファイルを表すグラフである。 SEM信号の積算プロファイルから線幅を計測する例を示すグラフである。 斜めから電子ビームが照射された状態を示すラインパターンの断面形状を示す図。 斜めから電子ビームを照射して観察したラインパターンのチルト像である。 チルト像を用いて通常の直線パターンの一部である線分a−bの輪郭線を抽出する方法を示し、測長カーソルが適切な範囲に設定された状態を示すパターンの斜視図である。 チルト像を用いて通常より細く形成された直線パターンの一部である線分a−bの輪郭線を抽出する方法を示し、測長カーソルが適切な範囲に設定された状態を示すパターンの斜視図である。 チルト像を用いて通常より細く形成された直線パターンの一部である線分a−bの輪郭線を抽出する方法を示し、測長カーソルが大きく不適切な範囲に設定された状態を示すパターンの斜視図である。 チルト像を用いて通常より細く形成された直線パターンの一部である線分a−bの輪郭線を抽出する方法を示し、測長カーソルが小さく不適切な範囲に設定された状態を示すパターンの斜視図である。 チルト像を用いて曲線パターンの輪郭線の抽出方法を示す図である。 曲線a−bを検出するために曲線1002に沿ってカーブした測長カーソル1003を設定することで他の輪郭線の影響を受けずに抽出した曲線を示す図である。 チルト像を用いて曲線パターンの輪郭線を抽出した結果を示すパターンの斜視図である。 フッティング部に小さなノッチがあるラインパターン1101の断面形状を示す図である。 フッティング部に大きなノッチがあるラインパターン1103の断面形状を示す図である。 電子ビームを斜めから照射してラインパターン1101あるいは1103を観察した際のチルト像を示す図である。 チルト像においてフッティング部付近に相当するa−b間のSEM信号プロファイルの概形を示す図である。 理想的な直方体形状のラインパターンの斜視図である。 表面にラフネスと呼ばれる細かな凹凸が存在するラインパターンの斜視図である。 表面にラフネスと呼ばれる細かな凹凸が存在するラインパターンのチルト像を示す図である。 チルト画像中の一定領域内の画像明度値のばらつきを画像特徴量として計算した結果を示すグラフである。 二本のラインパターンの斜視図である。 パターン1301の右側のフッティング部(線分a−b)評価すべき部位としたときに(a)パターンに対してほぼ真上から電子ビームを照射した状態を示すパターンの断面図と(b)そのときの擬似チルト像である。 パターン1301の右側のフッティング部(線分a−b)評価すべき部位としたときに(a)電子ビームの入射角度が大きくて評価すべき部位が手前のパターンの影になった状態を示すパターンの断面図と(b)そのときの擬似チルト像である。擬似チルト像あるいは観察方向の表示例と撮像方向の決定方法を示す図である。 パターン1301の右側のフッティング部(線分a−b)評価すべき部位としたときに(a)電子ビームの入射角度が適切で評価すべき部位に電子ビームが入射している状態を示すパターンの断面図と(b)そのときの擬似チルト像である。 (a)は擬似3Dラインパターンの断面形状を示す図、(b)は推定されるラインパターンの断面形状1401を撮像方向1402から撮像した際に得られる擬似チルト像を示す図である。 (a)は,擬似3Dラインパターンに対して側壁傾斜角θが大きく異なっているパターン1404の断面形状を示す図、(b)はパターン1404のチルト像を示す図である。 直線パターンの輪郭線の抽出方法を示す図である。 曲線パターンの輪郭線の抽出方法を示す図である。 本発明を実現するための装置システムの構成を示し、SEM制御装置、撮像・計測レシピ作成演算装置、サーバを個々に配置した状態を示す図である。 本発明を実現するための装置システムの構成を示し、SEM制御装置、撮像・計測レシピ作成演算装置、サーバを一体化して配置した状態を示す図である。 断面形状1701のパターンの斜視図である。 断面形状1701のパターンをチルト角θでステージチルト方式あるいは鏡筒チルト方式により撮像した際に得られるチルト像である。 断面形状1701のパターンをチルト角θでビームチルト方式により撮像した際に得られるチルト像である。 断面形状が単なる長方形の場合を示すパターンの断面図である。 線幅は高さ方向に連続的に変化する断面形状を有するパターンの断面である。 パターンの三次元形状あるいはSEM画像を推定する処理フローを示す図である。 電子ビームを2002と2003の二通りの方向から照射している状態を示すラインパターンの断面図である。 電子ビームを2002の方向から照射したときのパターン2001のチルト像を示す図である。 電子ビームを2003の方向から照射したときのパターン2001のチルト像を示す図である。
本発明は,走査荷電粒子顕微鏡を用いて,複雑な構造を含む半導体パターンのチルト像から安定かつ自動で形状評価を行う方法を提供する。以下,本発明に係る実施の形態を,走査電子顕微鏡(Scanning Electron Microscope:SEM)に適用した場合について説明するが,本発明はこれに限定されるものではなく,走査型イオン顕微鏡(Scanning Ion Microscope:SIM)又は走査型透過電子顕微鏡(Scanning Transmission Electron Microscope:STEM)等の走査荷電粒子顕微鏡にも応用することが可能である。
1. SEM
1.1SEM構成要素
図1に試料の二次電子像(Secondary Electron:SE像)あるいは反射電子像(Backscattered Electron:BSE像)を取得するSEMの構成概要のブロック図を示す。また,SE像とBSE像を総称してSEM画像と呼ぶ。また,ここで取得される画像は測定対象を垂直方向から電子ビームを照射して得られたトップダウン画像,あるいは任意の傾斜させた方向から電子ビームを照射して得られたチルト像の一部または全てを含む。
電子光学系102は内部に電子銃103を備え,電子線104を発生する。電子銃103から発射された電子線はコンデンサレンズ105で細く絞られた後,ステージ121上におかれた試料である半導体ウェーハ101上の任意の位置において電子線が焦点を結んで照射されるように,偏向器106および対物レンズ108により電子線の照射位置と絞りとが制御される。
電子線を照射された半導体ウェーハ101からは,2次電子と反射電子が放出され,ExB偏向器107によって照射電子線の軌道と分離された2次電子は2次電子検出器109により検出される。一方,反射電子は反射電子検出器110および111により検出される。反射電子検出器110と111とは互いに異なる方向に設置されている。2次電子検出器109および反射電子検出器110および111で検出された2次電子および反射電子はA/D変換機112,113,114でデジタル信号に変換され,処理・制御部115に入力されて,画像メモリ117に格納され,CPU116で目的に応じた画像処理が行われる。
図2に半導体ウェーハ上に電子線を走査して照射した際,半導体ウェーハ上から放出される電子の信号量を画像化する方法を示す。電子線は,例えば図2左に示すようにx,y方向に201〜203又は204〜206のように走査して照射される。電子線の偏向方向を変更することによって走査方向を変化させることが可能である。x方向に走査された電子線201〜203が照射された半導体ウェーハ上の場所をそれぞれG1〜G3で示す。同様にy方向に走査された電子線204〜206が照射された半導体ウェーハ上の場所をそれぞれG4〜G6で示す。
G1〜G6において放出された電子の信号量は,それぞれ図2右に示した画像209における画素H1〜H6の明度値になる(G,Hにおける添字1〜6は互いに対応する)。208は画像上のx,y方向を示す座標系である(Ix-Iy座標系と呼ぶ)。このように視野内を電子線で走査することにより,画像フレーム209を得ることができる。また実際には同じ要領で前記視野内を電子線で何回か走査し,得られる画像フレームを加算平均することにより,高S/Nな画像を得ることができる。加算フレーム数は任意に設定可能である。図1では反射電子像の検出器を2つ備えた実施例を示したが,前記反射電子像の検出器をなくすことも,数を減らすことも,数を増やすことも可能である。
図1に示す装置を用いて測定対象を任意の傾斜角方向から観察したチルト像を得る方法としては、(1)電子光学系より照射する電子線を偏向し,電子線の照射角度を傾斜させて傾斜画像を撮像する方式(ビームチルト方式と呼ぶ。例えば特開2000−348658号),(2)半導体ウェーハ等の試料を移動させるステージ121自体を傾斜させる方式(ステージチルト方式と呼ぶ。図1においてはx-y-z座標系100に対してチルト角122でステージが傾斜している),(3)電子光学系自体を機械的に傾斜させる方式(鏡筒チルト方式と呼ぶ)等がある。
図1中の処理・制御部115はCPU116と画像メモリ117を備えたコンピュータシステムであり,撮像レシピを基に評価対象となる回路パターンを含む領域を撮像領域として撮像するため,ステージコントローラ119や偏向制御部120に対して制御信号を送る,あるいは半導体ウェーハ101上の任意の撮像領域における撮像画像に対し計測レシピを基に各種画像処理を行う等の処理・制御を行う。また,処理・制御部115は処理端末118(ディスプレイ,キーボード,マウス等の入出力手段を備える)と接続されており,ユーザに対して画像等を表示する,あるいはユーザからの入力を受け付けるGUI(Graphic User Interface)を備える。
121はXYステージであり,半導体ウェーハ101を移動させ,前記半導体ウェーハの任意の位置の画像撮像を可能にしている。XYステージ121により撮像位置を変更することをステージシフト,例えば偏向器106により電子線を偏向することにより観察位置を変更することをイメージシフトと呼ぶ。一般にステージシフトは可動範囲は広いが撮像位置の位置決め精度が低く,逆にイメージシフトは可動範囲は狭いが撮像位置の位置決め精度が高いという性質がある。
1.2撮像・計測レシピ
撮像レシピと計測レシピについて詳細を説明する。
まず,撮像レシピとは,評価対象となる撮像領域を位置ずれなく,かつ高精細に撮像するための撮像シーケンスや撮像条件を指定するファイルである。例えば,前述のステージシフトやイメージシフトの位置決め精度により,撮像位置がすれてしまう危険性がある。その対策として、特開2007−250528号公報(特許文献1)の図3に記載されているように、位置とパターンとが与えられた位置決め用のテンプレート(アドレッシング点。以降,APと呼ぶ)を予め登録し,評価対象となる撮像領域を撮像する前に,一旦前記テンプレートの位置を撮像することで位置ずれ量を検出し,前記位置ずれ量を補正するように評価対象となる撮像領域に視野移動することで,視野ずれの少ない撮像画像を得ることができる。
また,評価対象に照射する電子ビームのフォーカスを調整するために撮像するオートフォーカス点(以降,AFと呼ぶ)や,前記電子ビーム形状の非点収差補正を行うオートスティグマ点(以降,ASTと呼ぶ)や,撮像画像の明るさ・コントラスト調整を行うオートブライトネス・コントラスト点(以降,ABCCと呼ぶ)を設定し,評価対象となる撮像領域を撮像する前に前記AF,AST,ABCCを撮像して各調整を行い,高精細な撮像画像を得ることができる。評価対象となる撮像領域,AP,AF,AST,ABCCの場所,撮像有無,撮像順を撮像シーケンスとして指定する。また,評価対象となる撮像領域,AP,AF,AST,ABCCをそれぞれ撮像する際のプローブ電流,加速電圧,電子ビームの走査方向や走査範囲(撮像範囲),加算フレーム数等を撮像条件として指定する。観察方向(チルト角)も撮像条件として指定することができる。
次に計測レシピとは,撮像したSEM画像から撮像対象の形状計測や評価を行う手順を指定するファイルである。SEM画像内において計測や評価を行うべき計測ポイント(以降,MPと呼ぶ)を定め,前記MPにおけるパターンの所望の寸法の計測や評価を行う。MPはSEM画像内に複数個存在する場合もあるし,SEM画像の視野全体がMPとなる場合もある。
形状評価方法としては,(1)いわゆるCD値と呼ばれるラインパターン幅やコンタクトホール径等の寸法を計測する方法,(2)例えば特許第4158384号公報(特許文献2)に開示されたパターン形状と相関の高い画像特徴量を計算する方法,(3)例えば特許第4154374号公報(特許文献3)に開示されたパターンの二次元的な輪郭線を検出する方法等が挙げられる。
例えば,前記(1)のCD値には,ラインパターンの線幅計測,ラインパターン間のギャップ計測,ライン端部の後退量,コンタクトホール径の計測,OPC(Optical Proximity Correction:光近接効果補正)形状の計測等が挙げられ,以降,このようなMPにおける計測のバリエーションを測長種と呼ぶ。また単に「線幅計測」等のカテゴリだけでなく,配線領域のどこの部分とどこの部分の距離を計測するかという計測部位の情報や,例えば「後退量」の計測であればどの方向への後退量を計測するかという計測方向の情報も測長種に含めることができる。
(1)〜(3)の寸法,画像特徴量,輪郭線を算出するためにはパターン形状のエッジを正確に検出する画像処理が必要である。前記エッジを正確に検出するためには,前記エッジを含む一定サイズの領域を設定し,前記領域内でSEM信号を例えばライン方向に積算することにより画像ノイズやラインエッジラフネスの影響を受けにくい積算プロファイルを算出し,前記プロファイルを用いてエッジ位置を検出する手法がある。前記エッジを含む一定サイズの領域は,測長カーソルと呼ばれるボックスにより指定される。MPの位置,測長種,測長カーソルの位置や形状,測長方法(測長アルゴリズムや測長パラメータ)は計測レシピとして管理され,SEMは前記計測レシピに基づき,SEM画像の評価を行う。
本発明では前述のような切り分けで撮像レシピ,計測レシピという言葉を用いる。ただし,前記撮像レシピ,計測レシピの切り分けは一実施例であり,各レシピで指定される各設定項目は,任意の組み合わせで管理することが可能である。よって前記撮像レシピ,計測レシピを特に区別しない場合,両者を合わせて単にレシピ,あるいは撮像・計測レシピと呼ぶ。
撮像レシピ作成装置123においては撮像レシピを生成し,処理・制御部115は前記撮像レシピを基に評価対象となる回路パターンを含む領域のSEM画像を撮像する。計測レシピ作成装置124においては後述する方法により計測レシピを生成し,画像処理装置125は前記計測レシピを基に前記SEM画像から撮像対象の形状計測や評価を行う。123,124,125は処理端末126(ディスプレイ,キーボード,マウス等の入出力手段を備える)と接続されており,ユーザに対して処理結果等を表示する,あるいはユーザからの入力を受け付けるGUI(Graphic User Interface)を備える。また,127は半導体回路パターンの設計レイアウト情報(以降,設計データ)等のデータベースを格納したストレージであり,前記データベースには撮像したSEM画像,計測・評価結果(パターンの寸法,画像特徴量,輪郭線等),撮像・計測レシピ等の情報を保存・共有することが可能である。115,123,124,125で行われる処理は,任意の組合せで複数台の装置に分割,あるいは統合して処理させることが可能である。
2.本発明の処理フロー
本発明は,前述のように複雑な構造を含む半導体パターンのチルト像から安定かつ自動で形状評価を行う方法を提供する。以下,本発明の処理フローを説明する。図3,図4を用いて処理フローの概要を説明しながら,必要に応じて他の図で詳細を補足説明する。
2.1設計データ入力 ;図4のステップ1)に対応
まず,評価対象となる回路パターンを含む領域を撮像領域として指定する(ステップ301)。評価対象となる回路パターンの座標は,例えばEDA(Electronic Design Automation)ツールで実行される露光シミュレーション等の結果を基に検出されたホットスポット(危険ポイント)の座標が入力される。あるいは,ユーザが自身の判断により(必要に応じて前記EDAツールの情報も参考にしながら)入力される場合もある。また,前記撮像領域における撮像条件を入力する(ステップ302)。撮像条件には前述のように撮像する際のプローブ電流,加速電圧,電子ビームの走査方向や走査範囲(撮像範囲),加算フレーム数や,前記撮像領域に対して照射する荷電粒子の照射方向(撮像方向)が含まれる。
観察方向(チルト角)を変えることによって,パターンを斜め方向から観察したチルト像を得ることができる。前記チルト角の決定方法については後述する。また,前記撮像領域内に含まれる回路パターンの設計データを入力する(ステップ303)。前記設計データは,例えば図4中の回路パターン形状の二次元のレイアウト401,402である。同図ではx-y-z座標系(図1中100に対応)でパターンを描画している。
2.2擬似3Dパターン作成 ;図4のステップ2)に対応
ステップ303で入力した設計データを基に撮像領域に含まれる回路パターン形状の擬似的な三次元形状(擬似3Dパターン)を計算機内で算出する(ステップ305)。
設計データのフォーマットとしては,「GDSII」や「OASIS」等が一般に知られているが,設計データのファイル内には,二次元的な(奥行き情報のない)レイアウト情報のみ記録されている場合が多い。そのため,各パターンの高さ情報(例えば,レイヤ毎の膜厚情報)を別途入力できる仕組みを設けることで,前記二次元的なレイアウト情報と合せ,内部で対象パターンの三次元形状(例えば図4中の403,404)を推定することができる。前記高さ情報はステップ304における入力情報の一つとすることができる。図5A〜Cを用いて多層レイヤで構成されるパターンの三次元形状の推定例を説明する。図5Aの501は上層レイヤに置けるパターンの二次元的なレイアウト情報,図5Bの502は下層レイヤにおけるパターンの二次元的なレイアウト情報である。これに上層レイヤの高さh1,下層レイヤの高さh2を与えることにより,図5Cの503のような三次元形状を推定することができる。これは3層以上のレイヤや積層パターン(ハードマスク等)に対しても同様に推定することができる。
勿論,初めからパターンの三次元的な形状情報が書き込まれた設計データを入力することで,三次元形状を得てもよい。ただし,実際に生成されるパターンの断面形状は図18Aの1801に例示するような単なる長方形ではなく,図18Bの1804に例示するように線幅は高さ方向に連続的に変化する場合がある(単一の線幅(例えば図18Aの1802)と高さ情報(例えば図18Aの1803)では表現できない)。このような場合,側壁の傾斜角(テーパ角)や,パターンのトップラウンディングやボトムフッティングを考慮してパターンの角を丸める等の変形を加えてもよい。また,更に正確にパターンの三次元形状を推定するため,図19に示すように,評価対象がレジストパターンのときはマスクの設計データを入力し(ステップ1901),前記マスクの設計データからレジスト膜の露光,現像シミュレーションを行い(ステップ1902,1903),三次元形状情報を推定してもよい。同様に評価対象がエッチングパターンのときは,前述のレジストパターンの形状推定の後,エッチングシミュレーションを行うことで(ステップ1904),三次元形状情報を推定することができる。
2.3チルト像上における予想輪郭線推定 ;図4のステップ3)に対応
ステップ305で推定した擬似3Dパターンと,ステップ302の入力情報の一つであるSEMの撮像方向を基に,前記擬似3Dパターンを前記撮像方向から観測した際に得られる輪郭線を算出することによって,前記撮像方向からのチルト像上において実際に観察されるパターン輪郭線の予想位置(予想輪郭線)を推定する(ステップ306)。すなわち,設計データを基に算出した予想輪郭線により,評価対象となるパターンあるいはその周辺パターンの各輪郭線がチルト像中のどの辺りに存在しうるかを推定することができ,前記評価対象となるパターンを評価する上で適切な画像処理範囲や画像処理方法(計測レシピの説明で述べた測長カーソルの位置や形状,測長方法等)を設定することが可能となる。
これにより,例えば評価対象となるパターンの輪郭線検出において,検出すべき輪郭線と異なる輪郭線を誤って検出する等の失敗を低減することができ,安定な形状評価が実現する。図4中405は予想輪郭線の一例である(405は推定チルト像と呼ぶことができる)。同図では,チルト像上のx,y方向を示す座標系であるIx-Iy座標系(図2中208に対応)において,予想輪郭線がどこに位置するかを示している。
パターンを斜め方向から観察するためには,パターンに対して相対的に荷電粒子の照射方向を傾ける必要があり,その方式は前述のようにビームチルト方式,ステージチルト方式,鏡筒チルト方式等,複数通りありうる。しかし,このようなチルト方式の違いによって生成されるチルト像上のパターン輪郭線の位置は異なることがある。図17A〜Cを用いてチルト方式の違いによるチルト像上のパターン輪郭線の位置の違いを説明する。図17Aに示すような断面形状1701のパターンをチルト角θ(図示)でステージチルト方式あるいは鏡筒チルト方式により撮像した際に得られるチルト像を図17Bの1709に,同様にチルト角θでビームチルト方式により撮像した際に得られるチルト像を図17Cの1710に示す。断面形状1701におけるパターンのコーナa,b,cに対応するチルト像上でのエッジ位置をチルト像1709,1710においてもa,b,cで指し示している。
ステージチルト方式での断面形状1701の撮像においては,x-y-z座標系は1707のようにパターンに対し傾斜する。コーナa,b,cへそれぞれ照射される電子ビームの軌道を模式的に1702,1703,1704で示しており,電子ビームは1702から1703を経由して1704へ走査される。x-y-z座標系1707のx方向(電子ビームの照射方向に直交する方向1705に等しい)に対する電子ビームの走査速度は等速となるため,1702−1703間,1703−1704間のx方向の間隔がそれぞれL1,L2(図示)であれば,チルト像1709上のエッジa−b間,b−c間の距離はそれぞれL1,L2の定数倍A*L1,A*L2となる(Aは定数)。
鏡筒チルト方式での断面形状1701の撮像においては,x-y-z座標系は1708のようにパターンに対し傾斜しないが,ステージチルト方式と同様に電子ビームの照射方向に直交する方向1705に対する電子ビームの走査速度は等速となるので,チルト像1709が得られる。
一方,ビームチルト方式での断面形状1701の撮像においては,x-y-z座標系は1708となる。x-y-z座標系1708のx方向(図中の方向1706に等しい)に対する電子ビームの走査速度は等速となるため,1702−1703間,1703−1704間のx方向の間隔がそれぞれM1,M2(図示)であれば,チルト像1710上のエッジa−b間,b−c間の距離はそれぞれM1,M2の定数倍A*M1,A*M2となる(Aは定数)。
このように同じチルト角でもチルト方式により,得られるチルト像は1709,1710のように異なる。そのため,本発明ではこのようなチルト方式の違いを考慮して予想輪郭線を算出することにより,実際に撮像したSEM上の輪郭線により近い輪郭線を推定することを特徴とする。
なお,評価対象のパターンに対して座標系が1708のように傾かないビームチルト方式は図示し易いので,本明細書において図1,17以外の図は,ビームチルト方式による撮像を例に説明している。
2.4予想輪郭線と実際の輪郭線との位置ずれ予想範囲の推定 ;図4のステップ4に対応
ステップ306で推定した前記予想輪郭線と実際に撮像画像上で観測される輪郭線との位置ずれ予想範囲を推定する(ステップ307)。前記予想輪郭線と実際に撮像画像上で観測される輪郭線との間には形状乖離が発生しうる。原因としては,図6に例示するように製造プロセスにおいて発生する(a)のパターン601の(b)太り602/(c)細り603,(d)角の丸まり604,(e)ラフネス605,(f)パターンの平行移動607や,二次電子の発生メカニズムに起因するSEM画像上でのパターンの位置ずれ(実際のパターンのエッジ位置と画像上におけるパターンのエッジ位置とが一致するとは限らない)等が挙げられる。前記形状乖離によってパターンの形状評価が失敗するのを避けるため,予め位置ずれ予想範囲を設定し,同範囲で位置ずれが発生しても処理が失敗しないように画像処理範囲あるいは画像処理方法を設定することで,形状乖離にロバストな形状評価が実現する。前記位置ずれ予想範囲の推定方法としては,次の(a)〜(c)が挙げられる。
(a)製造プロセスに関する事前知識を基に設定する方法。例えば,パターンの角は丸まり易い,ダブルパターニングの際に2回の露光間で位置ずれが起きるかもしれない等の知識や,過去の事例を参照する等の方法が挙げられる。また,範囲の程度については発生しうる最悪の位置ずれ量を基に設定したり,ある程度実際に発生する位置ずれ量が統計的にそれ以下になることが期待される位置ずれ量を基に設定することができる。
(b)先に図19を用いて説明したように,露光あるいは現像あるいはエッチングシミュレーション等を基に実際に生成されるパターン形状を正確に推定し,前記パターン形状を基に撮像画像上で観測される輪郭線を推定する方法。この際,実際の条件にあったシミュレーションのパラメータを正確に与えることが困難な場合があるため,前記パラメータを振って推定した複数の推定結果から位置ずれ予想範囲を推定することができる。更に二次電子の発生メカニズムに起因するSEM画像上でのパターンの位置ずれを精度良く推定するため,SEMシミュレーションを組み合わせてもよい。SEMシミュレーションとは,電子ビームの照射によって電子がどのように移動するかをモンテカルロシミュレーション等で確率的に求めることで,得られるSEM画像を推定するものである。例えば,評価対象がレジストパターンのときは現像シミュレーション後に推定したパターン形状を基にSEMシミュレーションを行い(ステップ1905),得られるSEM画像を推定する。同様に評価対象がエッチングパターンのときは,エッチングシミュレーション後に推定したパターン形状を基にSEMシミュレーションを行い(ステップ1906),得られるSEM画像を推定する。SEMシミュレーションのパラメータについても正確に与えることが困難な場合は,前記パラメータを振って推定した複数の推定結果から位置ずれ予想範囲を推定することができる。
(c)前記露光シミュレーションあるいは現像シミュレーションあるいはエッチングシミュレーションあるいはSEMシミュレーションを模擬した簡易な形状変形あるいは画像処理により擬似3Dパターンあるいは予想輪郭線を変形させ,その変形範囲を基に推定する方法。
発生しうる形状変形量や前記位置ずれ予想範囲の参考値はステップ304における入力情報の一つとすることができ,ステップ307では前記入力情報を基に位置ずれ予想範囲を推定してもよい。
図4の推定チルト像405内の予想輪郭線の一部408(3つの線分a−b,a−c,a−d。太線で図示)の拡大図,408Bにおける位置ずれ予想範囲を点線411で示す。本例ではこの点線の範囲内で輪郭線が移動しうると予想されたことを示す。位置ずれ予想範囲は一定量ではなく場所によって変化しうる。本例においては,直線部における輪郭線の変形あるいはシフトの予想範囲(例えば412)に対して,コーナ部の丸まり等の変形あるいはシフトの予想範囲(例えば413)が大きいと推測されている。別の例として,推定チルト像405内の予想輪郭線の一部409(線分e−f。太線で図示),410(線分g−h。太線で図示)の拡大図,409B,410Bにおける位置ずれ予想範囲をそれぞれ点線414,415で示す。
2.5予想輪郭線上に画像処理範囲設定 ;図4のステップ5)に対応
前記予想輪郭線と前記位置ずれ予想範囲とを基に前記画像処理範囲(測長カーソルとも呼ばれる)あるいは画像処理方法を設定する(ステップ308)。図4の推定チルト像416に測長カーソルの例として,パターン406のフッティングエッジを検出するための画像処理範囲417,パターン406と407が交差するコーナ部の丸まり度合いを評価するための画像処理範囲418,パターン407のフッティングエッジを検出するための画像処理範囲419を示す。推定チルト像416中では画像処理範囲の設定の一例として点線で示した位置ずれ予想範囲411まで画像処理範囲がカバーするように画像処理範囲が設定されている。このような設定によって,評価部位の変形あるいはシフトが前記位置ずれ予想範囲内であれば,評価部位が前記画像処理範囲外になることはない。
図7A〜Dを用いてトップダウン像におけるラインパターンの線幅計測を例に画像処理範囲,画像処理方法について説明する。図7Aのトップダウン像701上のラインパターン702の線幅707を計測するためには,ライン左右のエッジの位置を正確かつ安定に計測する必要がある。そのため,左右のエッジそれぞれにエッジを含む一定サイズの領域(測長カーソルの領域。例えば703A,703B)を設定し,前記領域内でSEM信号を処理することによってエッジ位置を検出する。測長カーソルはその配置位置やラインエッジから外側のカーソル端までの距離(704Aあるいは704B),ラインエッジから内側のカーソル端までの距離(705Aあるいは705B),y方向の範囲(706Aあるいは706B)によって定義できる。図7Bのグラフ708にトップダウン像701中a−b間のSEM信号プロファイル709に示す。前記SEM信号プロファイル709のS/Nを高めるため,例えば測長カーソルのy方向の範囲分(706Aあるいは706B)だけy方向にSEM信号を加算平均することにより,図7Cのグラフ710中のSEM信号の積算プロファイル711を得ることができる。
ライン方向に積算することにより画像ノイズやラインエッジラフネスの影響を受けにくいプロファイルを得ることができる。プロファイル711において左右のホワイトバンドのピーク位置712A,712Bをそれぞれ検出し,その間を線幅として計測する。図7Cのグラフ710はプロファイル711のピーク間を線幅する画像処理方法の例であるが,プロファイルにおいてどの場所とどの場所の間隔を線幅として計測するかはバリエーションがありうる。例えば左側のラインエッジ位置を,図7Dのグラフ713中のプロファイル711において測長カーソルのx方向の範囲(707A,708A)のSEM信号プロファイルのホワイトバンドのピークの明度値H1(図示)とそのx座標714A,最も低い明度値H2(図示)とそのx座標715Aを求め,714A−715A間で明度値がHx=H2+(H1−H2)*P(Pは設定可能なパラメータ)となる位置716Aとする。同様に右側のラインエッジ位置716Bを求め,その間を線幅として計測するという画像処理方法も考えられる。図7A〜Dで説明した画像処理方法は一例であり,パターンの形状抽出,計測に関しては様々なアルゴリズムが考えられる。また,このような画像処理方法の違いにより,適切な画像処理範囲の設定方法も異なりうる。
以下,図8〜10を用いてチルト像における測長カーソルの設定方法を説明する。
図8A及びBはチルト像におけるラインパターンの側壁幅の計測例である。図8Aの801はラインパターンの断面形状を示しており,802は対象に対して斜めから照射した電子ビームの方向を示す。前記方向からラインパターン801を観察した際のチルト像を図8Bの803に示す。領域804はラインパターンの上面部,領域805はラインパターン右側壁部に相当する領域である。チルト像803において前記右側壁部に相当する領域805の幅807を計測するためには,測長カーソル806A,806Bを設定することで,それぞれ上面部と右側壁部の境界エッジと,右側壁部と下地の境界エッジを検出する。
図9A〜Dを用いて,多くのエッジを含むチルト像における測長カーソルの適切な範囲について説明する。図9Aのチルト像上のパターン901の一部である線分a−bの輪郭線を画像処理により抽出し,形状を評価するケースを考える。図9Bのチルト像上のパターン903,図9Cのチルト像上のパターン904,図9Dのチルト像上のパターン906は,図9Aのパターン901と設計データは同じであるが,製造プロセスのパラメータ変動等により線幅が細くなっている。よって,図9Aの通常パターン901の画像上での線幅h1(図示)に対して,変形パターンである図9Bの903,図9Cの904,図9Dの906の画像上での線幅h2(図示)はh2<h1となっている。図9Bの測長カーソル902は適切な範囲,図9Cの測長カーソル905,図9Dの測長カーソル907は不適切な範囲として例示した。まず,図9Bの測長カーソル902は図9Aの正常パターン901においても図9Bの変形パターン903においても線分a−bとその周辺を十分に含み,かつ他の線分を含まない。
一方,前記パラメータ変動等によるパターンの変形やシフトに対しても線分a−bが測長カーソルの範囲外とならないように,図9Cの測長カーソル905のように大きめの測長カーソルを設定すると,他の線分(例えば線分c−dや線分e−f)まで含んでしまい,線分a−bの検出が困難となる。また,逆に図9Dの測長カーソル907のように小さめの測長カーソルを設定すると,線分a−bを画像処理により検出することが困難となる危険性がある。なぜならば,図7A〜Dを用いて説明したようにエッジ位置におけるSEM信号プロファイルはエッジ位置のみ明度値が高くなるインパルス信号のような波形ではなく,なだらかな広がりをもった波形だからである。そのため同エッジを検出するための画像処理範囲はエッジ位置を中心にある程度の幅をもつ必要がある。
また,図9Dの小さめの測長カーソル907では,パターンの変形やシフトに対して線分a−bが測長カーソルの範囲外になる危険性も高い。ただし,パターンの形状や観察方向によっては,他の線分を含まず,かつ幅の広い測長カーソルが幾何学的に設定困難な場合もありうる。そのような場合は,測長カーソルのみならず,画像処理方法も併せて変更することができる。例えば検出すべきエッジ位置を中心とした測長カーソルの幅が狭いときは,図7Dのグラフ713で例示したエッジ位置から離れた下地の明度値H2を用いて計測を行う方式ではなく,図7Cのグラフ710で例示したエッジのピーク位置(例えば712A)のみを検出して計測を行う方式を用いる。また,どうしても測長カーソル内に対象外の線分を含む場合は,画像処理において前記対象外の線分を除外するような画像認識処理を追加する等である。
図10A〜Cを用いて曲線形状のエッジ検出用の測長カーソルについて説明する。図10Aのチルト像1000中のカーブのあるパターン1001の一部である曲線1002(曲線a−b)を検出するために曲線1002に沿ってカーブした測長カーソル1003を設定することで他の輪郭線の影響を受けずに曲線を抽出することができる。抽出結果を図10Bの1005に示す。また,このような曲線形状の輪郭抽出においてSEM信号プロファイルの積算を行う際には,図7C及びD中の積算プロファイル711のように単にy方向に積算するのではなく,曲線に沿って積算する等の画像処理方法が考えられる。また,輪郭線の抽出は図10Bの1005に代表されるパターンの一部に限らず,図10Cの1007のようにパターンあるいは視野全面の輪郭線を抽出することもできる。
図7AのSEM画像701,図8BのSEM画像803,図9AのSEM画像901,図9BのSEM画像903,図9CのSEM画像904,図9DのSEM画像906,図10AのSEM画像1000内に表示したパターンの輪郭線と同様の輪郭線が前記予想輪郭線によって与えられる。以上より本発明においては,画像処理範囲への他の線分の混入,あるいはパターンの変形やシフト,あるいは画像処理に必要なある程度の幅,等を考慮し画像処理範囲を設定することを特徴とし,そのためにチルト像上での予想輪郭線(例えば405)や,位置ずれ予想範囲(例えば411)の情報を基に画像処理範囲あるいは画像処理方法を設定することを特徴とする。
2.6計測レシピ生成
前記予想輪郭線推定ステップ306において算出された予想輪郭線と,前記の画像処理範囲・方法設定ステップ307において設定された画像処理範囲あるいは画像処理方法を計測レシピとして保存する(ステップ309)。このように,画像処理範囲や画像処理方法を指定するファイルを計測レシピとして作成することにより,前記計測レシピに基づきチルト像におけるパターンの形状評価を自動で行うことができる。また,前述のように画像処理範囲あるいは画像処理方法の決定に設計データを用いることで計測レシピの作成にウェーハやSEM装置が不要となり(オフライン化),テープアウト後は直ぐに計測レシピを作成することできる。これにより,レシピ生成を含む評価の準備から実際のSEM撮像・形状評価までを含めた総合的なスループットを向上させることができる。更に計測レシピをファイルとして管理することで,同種パターンの形状評価時や,複数のSEMを用いた形状評価において計測レシピを共通に用いることができる。
2.7評価点のチルト像撮像;図4のステップ6)に対応
ステップ301で入力した撮像領域をステップ302で入力した撮像方向から撮像して撮像画像を得る(ステップ310)。図4に撮像したチルト像420を示す。
2.8チルト像と予想輪郭線のマッチング&チルト像上に画像処理範囲設定;図4のステップ7)に対応
ステップ310で撮像した撮像画像とステップ306で推定した予想輪郭線とをマッチングし,位置の対応関係を求める(ステップ311)。前記撮像画像と予想輪郭線の位置の対応関係が分かると,ステップ308において前記予想輪郭線に対して画像処理範囲や画像処理方法を設定しているため,前記撮像画像と前記画像処理範囲の位置の対応関係も分かり,前記撮像画像上に前記画像処理範囲や画像処理方法を設定することができる(ステップ312)。図4の実際に撮像したチルト像421において配置された測長カーソル417,418,419を示す。
測長カーソルの配置がうまくいない場合として,例えば位置ずれ予想範囲が広すぎて,測長カーソルが前記位置ずれ予想範囲を含むことができない場合や,位置ずれ予想範囲以上の大きな位置ずれが発生する場合もある。そのような場合は,実際に撮像した撮像画像を基に測長カーソルを移動させることができる。図4の撮像画像421中のパターン424と425の相対位置に対して 撮像画像422中のパターン424と425の相対位置は大きくずれている。そのためパターン425のフッティングエッジを検出するための画像処理範囲419の端に実際のフッティングエッジが位置している。そこで実際に撮像した撮像画像を基に測長カーソルを移動させた例を撮像画像423に図示する。撮像画像422中の測長カーソル419に対応する撮像画像423中の測長カーソル426は上方向に移動しており,その結果,パターン425のフッティングエッジ測長カーソルの中央に捉えている。
図15A及びBに輪郭線検出例を二例示す。同図左は直線パターンの検出例,同図右は曲線パターンの検出例である。図15Aの予想輪郭線1501,図15Bの1506と撮像画像をマッチングすることによって,予想輪郭線に配置した図15Aの測長カーソル1503,図15Bの測長カーソル1508を図15Aの実際の画像上のパターン(輪郭線)1502及び図15Bの1507に配置し,前記測長カーソル内で輪郭線を探索することにより(探索方向を模式的に図15Aの1504,図15Bの1509で示す),図15Aの輪郭線の位置1505及び図15Bの1510を検出する(図15A及びBでは左右それぞれの図において輪郭線上の点を4点検出している)。
2.9評価対象となる回路パターンの評価
ステップ312において撮像画像上に設定した前記画像処理範囲あるいは画像処理方法に従って前記撮像画像を処理することによって回路パターンの形状を評価する。形状評価には,パターンの測長(ステップ313),画像特徴量算出(ステップ314),パターンの輪郭線抽出(ステップ315),パターンの3D形状計測(ステップ316)等のバリエーションがある。
図11A〜D,図12A〜Dを用いて図3のステップ314の画像特徴量算出の実施例を説明する。
図11A〜Dはチルト像から画像特徴量を用いてパターンフッティング部のへこみ(ノッチ形状)を評価する例である。図11Aの1101と図11Bの1103はラインパターンの断面形状を示しており,図11Aのパターン1101のフッティング部には小さなノッチ1102,図11Bのパターン1103のフッティング部には大きなノッチ1104が存在する。図11Aの1100は対象に対して斜めから照射した電子ビームの方向を示す。前記方向からラインパターン1101あるいは1103を観察した際のチルト像を図11Cの1105に示す。図11Cの領域1106はラインパターンの上面部,領域1107はラインパターン右側壁部に相当する領域である。
チルト像1105においてフッティング部付近に相当するa−b間のSEM信号プロファイルの概形を図11Dの1109に示す。前記プロファイル1109においてフッティング部1110における明度値が低くなっているが,この度合いはノッチの大きさに依存して変化することがある(ノッチが大きいほど,暗くなる等)。そのためノッチ形状の評価においては,前記ノッチ形状を直接計測するのではなく,フッティング部1110における明度値を画像特徴量として算出し,その値に応じてノッチ形状の大小を評価することができる。このようなパターンの三次元形状と相関のある前記画像特徴量を算出するためのプロファイルを算出する画像処理範囲として,図11Cに示すようにフッティング部を適切に捉える測長カーソル1108を配置する。
図12A〜Dはチルト像から画像特徴量を用いてパターン表面の凹凸度合いを評価する例である。ラインパターンを例にとると図12Aのパターンは1201に示すように理想的な直方体ではなく,図12Bの1204に模式的に示すように表面にラフネスと呼ばれる細かな凹凸が存在する場合がある。図12Aのラインパターン1201あるいは図12Bの1204を観察した際のチルト像を図12Cの1205に示す。領域1206はラインパターンの上面部,領域1207はラインパターン右側壁部に相当する領域である。
パターン上面(図12Aのパターン1201中では1202,図12Cのチルト像1205中では1208に相当する領域)やパターン側壁(図12Aのパターン1201中では1203,図12Cのチルト像1205中では1209に相当する領域)のラフネスの度合いを評価する際,前記パターン表面の細かな凹凸の高さを正確に計測し,前記高さ情報の分布からラフネスの度合いを評価することは困難である。そこでパターン表面の凹凸に応じて画像の明度値が変化する性質に着目し,画像中の一定領域内(パターン上面の評価であれば1208,側壁の評価であれば1209)において,前記領域内の画像明度値のばらつき(例えば標準偏差)を画像特徴量として計算する。図12Dのグラフ1210のように前記画像特徴量(明度値のばらつき)が大きいほどラフネスが大きいと評価することができる。前記画像特徴量を算出するための領域を指定する画像処理範囲として,図12Cに示すような測長カーソル1208あるいは1209を配置する。
図20A〜Cを用いて図3のステップ316の3D形状計測の実施例を説明する。図20Aの2001はラインパターンの断面形状を示しており,2002,2003は対象に対して斜めから照射した電子ビームの二通りの方向を示す。前記方向2002,2003からそれぞれパターン2001を撮像し,得られる二枚のチルト像を図20Bの2004,図20Cの2009に示す。図20Bの領域2005及び図20Cの領域2010はラインパターンの上面部,図20Bの領域2006及び図20Cの領域2011はラインパターン右側壁部に相当する領域である。
よりチルト角の大きい観察方向2003に対応するチルト像2009の方が,右側壁部に相当する領域が大きい(領域2011が領域2006より大きい)。チルト像2004において測長カーソル2007,2008を設定することで,それぞれ上面部と右側壁部の境界エッジと,右側壁部と下地の境界エッジを検出することができる。同様にチルト像2009において測長カーソル2012,2013を設定することで,それぞれ上面部と右側壁部の境界エッジと,右側壁部と下地の境界エッジを検出することができる。
観察方向の異なる二枚の画像図20Bの2004及び図20Cの2009から図20Aの断面形状2001において同一箇所に相当する境界エッジを検出できれば,ステレオ視における対応点問題を解いたことになり,三角測量の原理で高さ情報を得ることができる(この場合,上面部と右側壁部の境界エッジと,右側壁部と下地の境界エッジの高さが計測できれば,パターン2001の正確な高さ(膜厚)を計測することができる)。本発明における予想輪郭線を図20Bのチルト像2004及び図20Cの2009に対して推定すると,チルト像2004,2009として図示した輪郭線と同様の輪郭線が得られるため,前記予想輪郭線を基に前記図20Bの測長カーソル2007,2008及び図20Cの測長カーソル2012,2013を設定することができる。
また,図20Aのパターン2001の任意の場所における高さ情報を推定する場合について説明する。例えば図20Bのチルト像2004上の点2014における高さを推定する場合, 点2014に対応する図20Cのチルト像2009上の点を探索する必要がある。例えば図20Cのチルト像2009内でテンプレート2015をずらしながら,点2014を似た画像パターンをもつ位置を探索することになる。この際,チルト像2004,2009間で対応する点が見つかれば,同点における高さ情報が計測できる。
図20Bの点2014に対応する図20Cのテンプレート2015位置の探索においては,本発明における予想輪郭線を利用することができる。すなわち,チルト像2004においてパターン上面部2005内に存在する点2014は,チルト像2009においてもパターン上面部2010内に存在するので,テンプレート2015位置の探索はパターン上面部2010の範囲内に限定することができる。これにより,パターン上面部2010の範囲外の位置に点2014と似た画像パターンが存在しても,テンプレート2015を誤って対応させることはない。また探索時間の短縮にも繋がる。前記予想輪郭線を用いれば,チルト像上におけるパターン構造(例えばパターン上面部,側壁部の範囲図20Bの2005,2006及び図20Cの2010,2011)が予め分かるため,前述のような探索範囲の設定が可能となる。
2.10予想輪郭線の表示&撮像方向設定
ステップ306で推定した予想輪郭線を画面上に表示し(ステップ317),前記表示された予想輪郭線を基に撮像方向の決定を行うことができる(ステップ302において撮像方向として再入力)。前記決定した撮像方向は,撮像レシピに出力することができ,前記撮像レシピを基にステップ310で撮像画像を得る。
すなわち,チルト像を用いた形状評価を行うためには,評価対象となるパターンの適切な形状評価が可能な撮像方向を設定する必要がある。撮像方向によっては,撮像画像において評価対象となるパターン(あるいはその一部)が周辺パターンの陰になってしまう場合がある。
また,例えば輪郭線検出においては,検出すべき輪郭線だけが観測されれば良いというわけではない。画像処理により輪郭線を良好に検出するためには,前述のようにSEM画像におけるエッジ信号の広がり(裾野)も考慮し, 検出すべき輪郭線の周囲も多少撮像されることが望ましい。このような判断を基に撮像方向を設定するためには,任意に設定した撮像方向から観測されるパターンの予想輪郭線をディスプレイ等に表示し,ユーザに撮像方向の決定を促すGUIが有効である。また,評価対象となるパターンを指定することで,予想輪郭線をもとに計算機内で評価対象となるパターンの観測可否判定を行い,自動で適切な撮像方向を決定することも可能である。
図13A〜Dを用いて予想輪郭線の表示例について説明する。図13Aの下地1303上に二本のラインパターン1301,1302が配置された例を考える(識別し易くするため,下地にハッチングを施している)。評価すべき部位としてパターン1301の右側のフッティング部(線分a−b)とする。SEMの撮像方向として対象に対して電子ビームを図13B(a)の方向1304〜図13D(a)の方向1306から照射した際に得られるチルト像における予想輪郭線(擬似チルト像)を図13B(b)の1307〜図13D(b)の1309に順に示す(識別し易くするため,下地にハッチングを施している)。図13B(a)に示すように撮像方向1304の場合,図13B(b)に示すような擬似チルト像1307(この場合はトップダウン像)において評価すべき線分a−bは,ラインパターン1301上面の線分c−dと重なってしまい,観察が困難である。
一方,図13C(a)に示すように撮像方向1305の場合,図13C(b)に示すような擬似チルト像1308において評価すべき線分a−bは,隣のラインパターン1302の陰となってしまい,観察が困難である。図13D(a)に示すように撮像方向1306であれば,擬似チルト像1309において評価すべき線分a−bを十分に観察することができる。このように擬似チルト像を表示することにより,実際にパターンを撮像することなく,撮像方向の良否を判定,及び決定を行うことができる。特に,本例のようにトップダウン方向からは観察しにくいフッティング部の観察においてはなるべく大きなチルト角で斜め方向から観察した方が有効な場合が多いが,高アスペクトなラインアンドスペース等においては,周囲のパターンの陰となってしまうことが多い。
本方法によれば,観察可能なチルト角の内,最大のチルト角を決定するといったことも実現できる。なお,撮像方向の良否を判定,及び決定を行うための表示画面には,擬似チルト像(図13B(b)の1307〜図13D(b)の1309等)を表示してもよいし,対象パターンの三次元的な外観(図3のステップ305で作成した擬似3Dパターンを用いて表示。図13Aに表示した下地1303とその上のパターン1301,1302の表示等)を表示してもよいし,パターンの断面形状と撮像方向との関係(図13D(a)に表示した撮像方向1306と断面形状1301,1302の組み合わせ等)を表示してもよい。
また,図14A及びBを用いて図13A〜Dの変形例を説明する。図14A(a)には擬似3Dパターンより推定されるラインパターンの断面形状1401を撮像方向1402から撮像した際に得られる擬似チルト像1403を表示している。パターン1401のフッティング部のコーナa(図示)の観察を目的とした場合,前記コーナaに相当するエッジが前記擬似チルト像1403においては観測できる(線分a−a’)。しかしながら,擬似3Dパターンと実際のパターンとの間には形状乖離が発生しうる。例えば,擬似3Dパターン1401に対して,実際のパターンは図14B(a)の1404のように側壁傾斜角θ(図示)が大きく異なっていたとする(逆テーパ)。その場合,パターン1404上部のコーナb(図示)の陰となり,実際のパターンのチルト像である図14B(b)の1406においては,前記フッティング部のコーナaを観察できない。
このような前記形状乖離によって撮像方向の良否判定を誤る危険性がある。そこでステップ317においてはステップ307で推定した位置ずれ予想値(発生しうる形状変形量の情報を含む)を考慮することができる。すなわち,発生しうる形状変形量を擬似3Dパターンあるいは擬似チルト像に対して加え,結果を表示することができる。図14A及びBの例であれば側壁傾斜角θに対して発生しうる形状変形量を加えた擬似3Dパターンや擬似チルト像を表示したり,また発生しうる形状変形量の値を推定することが困難な場合は,前記形状変形量をある範囲で変化させて作成した擬似3Dパターンや擬似チルト像を表示することができる。
3.システム構成
本発明におけるシステム構成の実施例を図16を用いて説明する。
図16Aにおいて1601はマスクパターン設計装置,1602はマスク描画装置,1603はマスクパターンのウェーハ上への露光・現像装置,1604はウェーハのエッチング装置,1605および1607はSEM装置,1606および1608はそれぞれ前記SEM装置を制御するSEM制御装置,1609はEDA(Electronic Design Automation)ツールサーバ,1610はデータベースサーバ,1611はデータベースを保存するストレージ,1612は撮像・計測レシピ作成装置,1613は撮像・計測レシピサーバ,1614はパターン形状の計測・評価を行う画像処理装置画像処理サーバであり,これらはネットワーク1615を介して情報の送受信が可能である。
データベースサーバ1610にはストレージ1611が取り付けられており,(a)設計データ(マスク設計データ(OPCなし/あり),ウェーハ転写パターン設計データ),(b)撮像・計測レシピ生成ルール,(c)生成された撮像・計測レシピ,(d)撮像した画像,(e)計測・評価結果(パターン測長値,画像特徴量,パターン輪郭線,パターン3D形状等),(f)擬似3Dパターンや位置ずれ予想範囲,(g)各種シミュレーションデータ(図19で作成)の一部または全てを,品種,製造工程,日時,データ取得装置等とリンクさせて保存し,また参照することが可能である。
また,同図においては例として二台のSEM装置1605,1607がネットワークに接続されているが,本発明においては,任意の複数台のSEM装置において撮像・計測レシピをデータベースサーバ1611あるいは撮像・計測レシピサーバ1613により共有することが可能であり,一回の撮像・計測レシピ作成によって前記複数台のSEM装置を稼動させることができる。また複数台のSEM装置でデータベースを共有することにより,過去の前記撮像あるいは計測の成否や失敗原因の蓄積も早くなり,これを参照することにより良好な撮像・計測レシピ生成の一助とすることができる。
図16Bは一例として図16Aにおける1606,1608,1609,1610,1612〜1614を一つの装置1616に統合したものである。本例のように任意の機能を任意の複数台の装置に分割,あるいは統合して処理させることが可能である。
本実施例に拠れば、設計データを基に算出した予想輪郭線により,評価対象となるパターンあるいはその周辺パターンの各輪郭線がチルト像中のどの辺りに存在しうるかを推定することができ,前記評価対象となるパターンを評価する上で適切な画像処理範囲や画像処理方法を設定することが可能となる。これにより,例えば評価対象となるパターンの輪郭線検出において,検出すべき輪郭線と異なる輪郭線を誤って検出する等の失敗を低減することができ,安定な形状評価を実現することができる。
100・・・x-y-z座標系(電子光学系の座標系) 101・・・半導体ウェーハ 102・・・電子光学系 103・・・電子銃 104・・・電子線(一次電子) 105・・・コンデンサレンズ 106・・・偏向器 107・・・ExB偏向器 108・・・対物レンズ 109・・・二次電子検出器 110,111・・・反射電子検出器 112〜114・・・A/D変換器 115・・・処理・制御部 116・・・CPU 117・・・画像メモリ 118,126・・・処理端末 119・・・ステージコントローラ 120・・・偏向制御部 121・・・ステージ 123・・・撮像レシピ作成装置 124・・・計測レシピ生成装置
125・・・画像処理装置(形状計測・評価) 127・・・データベース(ストレージ) 703A,703B・・・測長カーソル 1601・・・マスクパターン設計装置 1602・・・マスク描画装置 1603・・・露光・現像装置 1604・・・エッチング装置 1605,1007・・・SEM装置 1606,1608・・・SEM制御装置 1609・・・EDAツールサーバ 1610・・・データベースサーバ 1612・・・撮像・計測レシピ作成装置 1613・・・撮像・計測レシピサーバ 1614・・・画像処理装置サーバ(形状計測・評価) 1615・・・ネットワーク。

Claims (9)

  1. 走査荷電粒子顕微鏡を用いて半導体デバイスの回路パターンを撮像し,撮像画像から前記
    回路パターンの形状を評価する装置であって,
    評価対象となる回路パターンを含む領域を撮像領域として指定する撮像領域指定手段と,
    前記撮像領域指定手段で指定した撮像領域に対して前記走査荷電粒子顕微鏡で照射する荷
    電粒子の照射方向(撮像方向)を指定する撮像方向指定手段と,
    前記撮像領域指定手段で指定した撮像領域を前記撮像方向から撮像して撮像画像を得る撮
    像手段と,
    前記撮像領域指定手段で指定した撮像領域内に含まれる回路パターンの設計データを入力
    する設計データ入力手段と,
    前記撮像手段で撮像して得られる撮像画像上で観測される回路パターンの輪郭線の予想位
    置(予想輪郭線)を前記設計データ入力手段に入力した設計データと前記撮像方向の情報を用いて算出する予想輪郭線算出手段と,
    前記撮像手段で撮像して得られた撮像画像と前記予想輪郭線算出手段で算出した予想輪郭
    線との対応関係を求める照合手段と,
    前記予想輪郭線算出手段で算出した予想輪郭線を基に,前記撮像手段で撮像して得られた
    撮像画像を処理する画像処理範囲あるいは画像処理方法を設定する画像処理範囲・方法設
    定手段と,
    前記画像処理範囲・方法設定手段で設定した画像処理範囲あるいは画像処理方法に従って
    前記撮像手段で撮像して得られた撮像画像を処理することによって前記回路パターンの形
    状を評価する形状評価手段と
    を含むことを特徴とする回路パターンの形状評価装置。
  2. 走査荷電粒子顕微鏡を用いて半導体デバイスの回路パターンを撮像し,撮像画像から前記
    回路パターンの形状を評価する装置であって,
    評価対象となる回路パターンを含む領域を撮像領域として指定する撮像領域指定手段と,
    前記撮像領域指定手段で指定した撮像領域に対して前記走査荷電粒子顕微鏡で照射する荷
    電粒子の照射方向(第一の撮像方向)を指定する撮像方向指定手段と,
    前記撮像領域指定手段で指定した撮像領域内に含まれる回路パターンの設計データを入力
    する設計データ入力手段と,
    前記撮像領域を撮像して得られる撮像画像上で観測される回路パターンの輪郭線の予想位
    置(予想輪郭線)を前記設計データ入力手段に入力した設計データと前記第一の撮像方向の情報を用いて算出する予想輪郭線算出手段と,
    前記予想輪郭線算出手段で算出した予想輪郭線を画面上に表示する表示手段と,
    前記表示手段に表示された予想輪郭線を基に第二の撮像方向の決定を行う撮像方向決定手段と,
    前記撮像方向決定手段において決定した前記第二の撮像方向から前記撮像領域を撮像して撮像画像を得る撮像手段と
    を含むことを特徴とする回路パターンの形状評価装置。
  3. 走査荷電粒子顕微鏡を用いて半導体デバイスの回路パターンを撮像し,撮像画像から前記
    回路パターンの形状を評価する方法であって,
    評価対象となる回路パターンを含む領域を撮像領域として指定する撮像領域指定ステップ
    と,
    前記指定した撮像領域に対して前記走査荷電粒子顕微鏡で照射する荷電粒子の照射方向(
    撮像方向)を指定する撮像方向指定ステップと,
    前記指定した撮像領域を前記撮像方向から前記走査荷電粒子顕微鏡で撮像して撮像画像を
    得る撮像ステップと,
    前記指定した撮像領域内に含まれる回路パターンの設計データを入力する設計データ入力
    ステップと,
    前記撮像して得た撮像画像上で観測される回路パターンの輪郭線の予想位置(予想輪郭線
    )を前記入力した設計データと前記指定した撮像方向の情報を用いて算出する予想輪郭線
    算出ステップと,
    前記撮像して得た撮像画像と前記算出した予想輪郭線との対応関係を求める照合ステップ
    と,
    前記算出した予想輪郭線を基に,前記撮像して得た撮像画像を処理する画像処理範囲ある
    いは画像処理方法を設定する画像処理範囲・方法設定ステップと,
    前記設定した画像処理範囲あるいは画像処理方法に従って前記撮像画像を処理することに
    よって前記回路パターンの形状を評価する形状評価ステップと
    を含むことを特徴とする回路パターンの形状評価方法。
  4. 前記予想輪郭線算出ステップにおいて算出された予想輪郭線と,前記画像処理範囲・方法
    設定ステップにおいて設定された画像処理範囲あるいは画像処理方法を計測レシピとして
    保存し,前記計測レシピを基に前記形状評価ステップを行うことを特徴とする請求項3記
    載の回路パターンの形状評価方法。
  5. 前記撮像ステップにおいて前記撮像方向からの撮像は,前記撮像方向に荷電粒子の照射方
    向を偏向する方式,あるいは評価対象を載せた試料台を傾斜させる方式,あるいは荷電粒
    子顕微鏡電子光学系自体を機械的に傾斜させる方式により行い,請求項1記載の予想輪郭
    線算出ステップにおいては前記撮像の方式に応じて予想輪郭線を算出することを特徴とす
    る請求項3記載の回路パターンの形状評価方法。
  6. 前記予想輪郭線算出ステップにおいて,前記撮像領域に含まれる回路パターン形状の二次
    元のレイアウト情報が書き込まれた設計データと前記回路パターンの高さの設計値とをそ
    れぞれ入力し,前記設計データと前記高さの設計値から前記回路パターンの擬似的な三次
    元形状を算出し,前記撮像方向から観測される前記擬似的な三次元形状の輪郭線を算出す
    ることによって予想輪郭線を算出することを特徴とする請求項3記載の回路パターンの形
    状評価方法。
  7. 前記画像処理範囲・方法設定ステップにおいて,前記予想輪郭線と実際に撮像画像上で観
    測される輪郭線との位置ずれ予想範囲を設定し,前記予想輪郭線と前記位置ずれ予想範囲
    とを基に前記画像処理範囲あるいは画像処理方法を設定することを特徴とする請求項3記
    載の回路パターンの形状評価方法。
  8. 前記形状評価ステップにおいて,前記画像処理範囲あるいは画像処理方法に従って回路パ
    ターンの寸法を計測する,あるいは回路パターンの輪郭線を検出する,あるいは回路パタ
    ーンの三次元形状と相関のある画像特徴量を算出することを特徴とする請求項3記載の回
    路パターンの形状評価方法。
  9. 走査荷電粒子顕微鏡を用いて半導体デバイスの回路パターンを撮像し,撮像画像から前記
    回路パターンの形状を評価する方法であって,
    評価対象となる回路パターンを含む領域を撮像領域として指定する撮像領域指定ステップ
    と,
    前記指定した撮像領域に対して前記走査荷電粒子顕微鏡で照射する荷電粒子の照射方向(第一の撮像方向)を指定する撮像方向指定ステップと,
    前記指定した撮像領域内に含まれる回路パターンの設計データを入力する設計データ入力
    ステップと,
    前記撮像領域を撮像することにより得られる撮像画像上で観測される回路パターンの輪郭
    線の予想位置(予想輪郭線)を前記入力した設計データと前記指定した第一の撮像方向の情報を用いて算出する予想輪郭線算出ステップと,
    前記算出した予想輪郭線を画面上に表示する予想輪郭線表示ステップと,
    前記画面上に表示された予想輪郭線を基に第二の撮像方向の決定を行う撮像方向決定ステップと,
    前記撮像方向決定ステップにおいて決定した前記第二の撮像方向から前記指定した撮像領域を撮像して撮像画像を得る撮像ステップと
    を含むことを特徴とする回路パターンの形状評価方法。
JP2009227238A 2009-09-30 2009-09-30 走査荷電粒子顕微鏡を用いたパターン形状評価装置およびその方法 Expired - Fee Related JP5439106B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009227238A JP5439106B2 (ja) 2009-09-30 2009-09-30 走査荷電粒子顕微鏡を用いたパターン形状評価装置およびその方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009227238A JP5439106B2 (ja) 2009-09-30 2009-09-30 走査荷電粒子顕微鏡を用いたパターン形状評価装置およびその方法

Publications (2)

Publication Number Publication Date
JP2011077299A JP2011077299A (ja) 2011-04-14
JP5439106B2 true JP5439106B2 (ja) 2014-03-12

Family

ID=44020974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009227238A Expired - Fee Related JP5439106B2 (ja) 2009-09-30 2009-09-30 走査荷電粒子顕微鏡を用いたパターン形状評価装置およびその方法

Country Status (1)

Country Link
JP (1) JP5439106B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180018105A (ko) * 2016-08-12 2018-02-21 에스케이하이닉스 주식회사 반도체 패턴 계측을 위한 이미지 분석 장치 및 방법과, 이를 이용한 이미지 분석 시스템
WO2024009572A1 (ja) * 2022-07-07 2024-01-11 富士フイルム株式会社 情報処理装置、情報処理方法、及び情報処理プログラム

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111094891B (zh) * 2017-10-13 2022-10-25 株式会社日立高新技术 图案测量装置及图案测量方法
JP7492389B2 (ja) 2020-07-03 2024-05-29 株式会社ホロン 画像検査装置および画像検査方法
JP7048778B2 (ja) * 2021-02-03 2022-04-05 株式会社日立ハイテク 荷電粒子線装置およびパターン計測方法
CN113741020B (zh) * 2021-08-25 2024-05-03 华中科技大学苏州脑空间信息研究院 一种天然调制光片照明成像方法及***

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4500653B2 (ja) * 2003-11-25 2010-07-14 株式会社日立ハイテクノロジーズ 試料の観察方法及びその装置
JP5204979B2 (ja) * 2006-02-17 2013-06-05 株式会社日立ハイテクノロジーズ 撮像レシピの生成方法
JP4974737B2 (ja) * 2007-04-05 2012-07-11 株式会社日立ハイテクノロジーズ 荷電粒子システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180018105A (ko) * 2016-08-12 2018-02-21 에스케이하이닉스 주식회사 반도체 패턴 계측을 위한 이미지 분석 장치 및 방법과, 이를 이용한 이미지 분석 시스템
KR102290488B1 (ko) * 2016-08-12 2021-08-18 에스케이하이닉스 주식회사 반도체 패턴 계측을 위한 이미지 분석 장치 및 방법과, 이를 이용한 이미지 분석 시스템
WO2024009572A1 (ja) * 2022-07-07 2024-01-11 富士フイルム株式会社 情報処理装置、情報処理方法、及び情報処理プログラム

Also Published As

Publication number Publication date
JP2011077299A (ja) 2011-04-14

Similar Documents

Publication Publication Date Title
JP5986817B2 (ja) オーバーレイ誤差測定装置、及びコンピュータープログラム
US8767038B2 (en) Method and device for synthesizing panorama image using scanning charged-particle microscope
KR101828124B1 (ko) 패턴 평가 방법 및 패턴 평가 장치
JP5783953B2 (ja) パターン評価装置およびパターン評価方法
US8330104B2 (en) Pattern measurement apparatus and pattern measurement method
WO2011148975A1 (ja) 画像処理装置、荷電粒子線装置、荷電粒子線装置調整用試料、およびその製造方法
JP5439106B2 (ja) 走査荷電粒子顕微鏡を用いたパターン形状評価装置およびその方法
JPWO2007094439A1 (ja) 試料寸法検査・測定方法、及び試料寸法検査・測定装置
US20120290990A1 (en) Pattern Measuring Condition Setting Device
JP2023002652A (ja) 画像処理プログラム、画像処理装置および画像処理方法
JP6286544B2 (ja) パターン測定条件設定装置、及びパターン測定装置
JP5286337B2 (ja) 半導体製造装置の管理装置、及びコンピュータプログラム
JP5171071B2 (ja) 撮像倍率調整方法及び荷電粒子線装置
JP6001945B2 (ja) パターン計測装置及び方法
JP6207893B2 (ja) 試料観察装置用のテンプレート作成装置
JP3684943B2 (ja) ビーム走査形検査装置
JP2016126823A (ja) ビーム条件設定装置、及び荷電粒子線装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131216

R150 Certificate of patent or registration of utility model

Ref document number: 5439106

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees