JP5430267B2 - Processing apparatus and processing method for exhaust gas accompanied by powder - Google Patents

Processing apparatus and processing method for exhaust gas accompanied by powder Download PDF

Info

Publication number
JP5430267B2
JP5430267B2 JP2009172347A JP2009172347A JP5430267B2 JP 5430267 B2 JP5430267 B2 JP 5430267B2 JP 2009172347 A JP2009172347 A JP 2009172347A JP 2009172347 A JP2009172347 A JP 2009172347A JP 5430267 B2 JP5430267 B2 JP 5430267B2
Authority
JP
Japan
Prior art keywords
cooling water
exhaust gas
cooling
powder
processing unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009172347A
Other languages
Japanese (ja)
Other versions
JP2011025140A (en
Inventor
学 平岡
真大 田畑
直之 中本
美鈴 佐藤
義浩 茨木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide Japan GK
Original Assignee
Air Liquide Japan GK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide Japan GK filed Critical Air Liquide Japan GK
Priority to JP2009172347A priority Critical patent/JP5430267B2/en
Publication of JP2011025140A publication Critical patent/JP2011025140A/en
Application granted granted Critical
Publication of JP5430267B2 publication Critical patent/JP5430267B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treating Waste Gases (AREA)
  • Separation Of Particles Using Liquids (AREA)

Description

本発明は、粉体を同伴する排出ガスの処理装置および処理方法に関し、例えば、半導体や太陽電池等の生産装置や研究設備等において使用された材料ガスや粉体を含む排出ガスの処理装置および処理方法に関するものである。   The present invention relates to an exhaust gas processing apparatus and processing method accompanying powder, for example, an exhaust gas processing apparatus including material gas and powder used in production apparatuses and research facilities such as semiconductors and solar cells, and the like. It relates to a processing method.

半導体や太陽電池等を生産する製造装置や新たな素材を開発する研究設備等に多く使用されている材料ガスなどは、有害成分や危険物を含むことが多く、こうした製造装置や設備からの排出ガスは、所定の除害処理を行い、安全性が確保された後に排出されている。また、こうした排出ガスには、反応生成物等種々の粉体が含まれ、同時に除害処理を行うことが求められている。排出ガスの除害処理の多くは、燃焼炉によって燃焼処理した後に冷却処理される方法が採られている。   Material gases, etc. that are often used in manufacturing equipment that produces semiconductors, solar cells, etc. and research equipment that develops new materials, often contain harmful components and hazardous materials, and are emitted from such manufacturing equipment and equipment. The gas is discharged after performing a predetermined detoxification process and ensuring safety. Further, such exhaust gas contains various powders such as reaction products, and it is required to perform a detoxification process at the same time. Many of the exhaust gas detoxification processes employ a method of performing a cooling process after a combustion process in a combustion furnace.

具体的には、図6のように、半導体製造プロセスから排出される排ガスを燃焼処理する燃焼炉110と、該燃焼炉110の燃焼排ガスに水を噴霧して冷却する冷却塔112と、該冷却塔112から排出される燃焼排ガスに吸収液を噴霧してガス中の有害物を吸収する吸収塔114とを備え、前記燃焼炉110に導入される前記排ガスに水素を添加し、また前記冷却塔112の底部と前記吸収塔114の底部をタンク116を介して連通させ、該タンク116内の液面位置を設定レベルに制御する液面制御手段126を設けて構成する排ガス処理装置が提案されている(例えば特許文献1参照)。ここで、118はバーナ、120a〜120dは排ガスノズル、121は水素ノズル、122は噴霧ノズル、124はレベル計、125は排水管、128は排水ポンプ、130は充填層、132は噴霧ノズル、134は排気管、136は集塵装置、138は誘引ファンを示す。   Specifically, as shown in FIG. 6, a combustion furnace 110 that combusts exhaust gas discharged from the semiconductor manufacturing process, a cooling tower 112 that sprays and cools the combustion exhaust gas of the combustion furnace 110, and the cooling An absorption tower 114 for spraying an absorption liquid onto the combustion exhaust gas discharged from the tower 112 to absorb harmful substances in the gas, adding hydrogen to the exhaust gas introduced into the combustion furnace 110, and cooling tower An exhaust gas treatment apparatus is proposed in which a bottom surface of 112 and a bottom portion of the absorption tower 114 are communicated with each other via a tank 116 and liquid level control means 126 configured to control a liquid level position in the tank 116 to a set level is provided. (For example, refer to Patent Document 1). Here, 118 is a burner, 120a to 120d are exhaust gas nozzles, 121 is a hydrogen nozzle, 122 is a spray nozzle, 124 is a level meter, 125 is a drain pipe, 128 is a drain pump, 130 is a packed bed, 132 is a spray nozzle, 134 Indicates an exhaust pipe, 136 indicates a dust collector, and 138 indicates an induction fan.

また、図7(A)のように、洗浄水を入れた水タンク201と,その上面に立設した加熱反応装置202と,及び水洗浄装置203とによって構成される排気ガスの処理装置を挙げることができる(例えば特許文献2参照)。具体的には、半導体製造プロセスからの排気ガスは,加熱炉内にその上部におけるガス供給口211から導入されて高い温度に加熱される一方,これに水蒸気供給手段213から噴出供給される水蒸気が混合され,高い温度に加熱されることにより熱分解処理される。加熱炉の下部におけるガス出口212からの排出ガスは,水洗浄装置203において,水との直接接触にて溶解除去処理され,且つ冷却されるとともに,粉末状の固形成分が水洗浄によって除かれたのち大気中に放出される。水洗浄装置203は,図7(B)に示すように,下端が水タンク201内に開口する縦型の筒体220内に設けられた充填層221,222、その各々に対する水散布ノズル223,224,筒体220の頂部に設けられた送風機225,粉末状の固形物及びミストを分離するためのサイクロン226を経て,ガスが煙突ダクト227から大気中に放出する一方,サイクロン226において分離した粉末状の固形物及びミストを,ダウンパイプ228を介して水タンク201内における洗浄水中に導くように構成している。ここで、204は循環ポンプ、205は噴出口、206は排出口、207は空気供給管、218はガス供給口、230はシャワーノズルを示す。
Further, as shown in FIG. 7 (A), an exhaust gas processing apparatus constituted by a water tank 201 containing cleaning water, a heating reaction apparatus 202 erected on the upper surface, and a water cleaning apparatus 203 will be given. (For example, refer to Patent Document 2). Specifically, the exhaust gas from the semiconductor manufacturing process is introduced into the heating furnace from the gas supply port 211 at the upper part thereof and heated to a high temperature, while the steam supplied from the steam supply means 213 is supplied to the exhaust gas. It is mixed and pyrolyzed by heating to a high temperature. The exhaust gas from the gas outlet 212 in the lower part of the heating furnace was dissolved and removed by direct contact with water in the water cleaning device 203 and cooled, and the powdered solid component was removed by water cleaning. Later it is released into the atmosphere. As shown in FIG. 7B, the water cleaning device 203 includes filling layers 221 and 222 provided in a vertical cylindrical body 220 whose lower end opens into the water tank 201 , and water spray nozzles 223 and 223 for the respective filling layers. 224, a blower 225 provided on the top of the cylinder 220, a cyclone 226 for separating powdered solids and mist, and gas is discharged from the chimney duct 227 into the atmosphere, while the powder separated in the cyclone 226 The solid material and the mist are guided to the wash water in the water tank 201 through the down pipe 228. Here, 204 is a circulation pump, 205 is a spout, 206 is a discharge port, 207 is an air supply pipe, 218 is a gas supply port, and 230 is a shower nozzle.

特開2003−329233号公報JP 2003-329233 A 特開2006−175317号公報JP 2006-175317 A

しかし、上記のような排出ガス処理装置では、冷却水噴霧方式や冷却水散水方式といった従来の排出ガスの冷却方法が用いられているため、除害処理後の高温条件の排出ガスに対して十分な冷却機能を確保することが困難であり、以下の課題が生じることがあった。
(i)冷却水噴霧方式
噴霧ノズルから噴霧された冷却水と排出ガスとの接触効率が悪く、冷却効果が小さい。従って、高温の排出ガスに対する高い冷却効果を求めるには、長時間の接触が可能な流路あるいはノズル数を増やす必要があり、大掛かりな装置となる。また、噴霧ノズルからの噴霧された冷却水では、排出ガスとの接触以降の冷却ユニットの壁面に水膜を形成する効果は少なく、排出ガスに同伴する反応生成物(粉体)が流路・配管が蓄積しやすく、長期の使用によって閉塞するおそれが生じるとともに、水膜による該壁面の保護ができないことから、排出ガス中の腐食ガスによって流路・配管が腐蝕が進行し、寿命が短くなるおそれがあった。
However, since the exhaust gas treatment apparatus as described above uses a conventional exhaust gas cooling method such as a cooling water spray method or a cooling water sprinkling method, it is sufficient for exhaust gas under high temperature conditions after the detoxification treatment. It is difficult to ensure a proper cooling function, and the following problems may occur.
(I) Cooling water spray method The contact efficiency between the cooling water sprayed from the spray nozzle and the exhaust gas is poor, and the cooling effect is small. Therefore, in order to obtain a high cooling effect on the high-temperature exhaust gas, it is necessary to increase the number of flow paths or nozzles that can be contacted for a long time, resulting in a large-scale apparatus. In addition, the sprayed cooling water from the spray nozzle has little effect of forming a water film on the wall of the cooling unit after contact with the exhaust gas, and the reaction product (powder) accompanying the exhaust gas is Piping easily accumulates and may become clogged by long-term use, and the wall cannot be protected by a water film, so the corrosive gas in the exhaust gas causes corrosion of the flow path and piping, shortening the service life There was a fear.

(ii)冷却水散水方式
水散布ノズルから散水される冷却水と排出ガスとの接触においては、比較的高い冷却効果を得ることができる反面、高温の排出ガスを冷却するためには、接触効率を上げるために多量の冷却水を必要とする。また、図7(B)のように,冷却水との接触効率を上げるためにラシヒリングなどの充填材を散水流路に設け、粉末状の固形物及びミストを分離するためのサイクロンを配設する構成においては、装置が複雑化し、定期的な保守を必要とする処理装置の煩雑化を招来することとなる。
(Ii) Cooling water sprinkling method In the contact between the cooling water sprayed from the water spray nozzle and the exhaust gas, a relatively high cooling effect can be obtained, but in order to cool the hot exhaust gas, the contact efficiency A large amount of cooling water is required to increase the temperature. In addition, as shown in FIG. 7B, a filler such as Raschig ring is provided in the watering channel to increase the efficiency of contact with the cooling water, and a cyclone for separating the powdered solid and mist is provided. In the configuration, the apparatus becomes complicated, and the processing apparatus that requires regular maintenance is complicated.

(iii)冷却水バブリング方式
上記のような噴霧方式や散水方式以外に、排出ガスを冷却媒体と直接的に接触する一般な方法として、冷却水バブリング方式が多用される。しかしながら、バブリング方式においても、冷却効率を上げるためには気液接触時間または接触面積を大きくする必要があることから、処理装置の設置面積が大きくなり、装置のコンパクト化が難しい。また、バブリングに必要な加圧状態を形成するためには、バブリングユニットの前段に圧送手段を設ける、あるいは後段に吸引手段を設ける必要があり、装置の煩雑化を招来する。
(Iii) Cooling water bubbling method In addition to the spraying method and the watering method as described above, the cooling water bubbling method is frequently used as a general method for directly contacting the exhaust gas with the cooling medium. However, even in the bubbling method, in order to increase the cooling efficiency, it is necessary to increase the gas-liquid contact time or the contact area, so that the installation area of the processing apparatus becomes large and it is difficult to make the apparatus compact. Further, in order to form a pressurized state necessary for bubbling, it is necessary to provide a pressure feeding means at the front stage of the bubbling unit or a suction means at the rear stage, which causes complication of the apparatus.

本発明の目的は、比較的簡便な構成で、高温の排出ガスを効率よく冷却処理すると同時に、これに同伴する粉体を流路あるいはその壁面に付着させずに分離処理することが可能で、安全かつ操作性のよい粉体を同伴する排出ガスの処理装置および処理方法を提供することにある。   The object of the present invention is a relatively simple structure, and can efficiently cool the high-temperature exhaust gas, and at the same time, can separate the powder accompanying the powder without adhering to the flow path or its wall surface. An object of the present invention is to provide a processing apparatus and a processing method for exhaust gas accompanied by powder that is safe and easy to operate.

本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、以下に示す粉体を同伴する排出ガスの処理装置および処理方法によって上記目的を達成できることを見出し、本発明を完成するに到った。   As a result of intensive studies to solve the above problems, the present inventors have found that the above object can be achieved by the following exhaust gas processing apparatus and processing method accompanied by powder, and complete the present invention. It reached.

本発明は、粉体を同伴する排出ガスの処理装置であって、上端部が大きく開口し、下端ほど空間が絞り込まれる内面の構成を有し、粉体を同伴する排出ガスと冷却水を接触させ、該排出ガスを冷却させる冷却処理部を備え、前記冷却処理部の上方側の空間に設けられ高温の排出ガスが導入される口径が前記上端部よりも小さなガス導入部と、前記冷却処理部の下端部に設けられた第2処理部において冷却処理された排出ガスが供出される排出ガス供出部と、冷却水が導入される少なくとも3つの冷却水導入部a〜cを有し、
前記冷却処理部の上端部側の側面に配設された少なくとも1つの冷却水導入部cからの冷却水を、前記冷却処理部の内側面に対して接線方向に噴射させて下流ほど流速が上がり冷却水の密度を大きくする旋回流を形成し、かつ該内側面に下流ほど厚みが増大する水膜を形成させるとともに、
前記冷却処理部の上方側の空間に冷却水導入部aが設けられ、前記排出ガス導入部から噴射された排出ガスが、前記冷却水導入部aから噴射された冷却水と接触することを特徴とする。
The present invention is an exhaust gas processing apparatus that entrains powder, and has an inner surface configuration in which the upper end is greatly opened and the space is narrowed toward the lower end, and the exhaust gas accompanying the powder and cooling water are brought into contact with each other. And a cooling processing section for cooling the exhaust gas, a gas introduction section provided in a space above the cooling processing section, into which a high-temperature exhaust gas is introduced, smaller than the upper end section, and the cooling processing has a discharge gas dispensing portion where the exhaust gas cooled processed in the second processing unit provided at the lower end parts are let out, at least three of the cooling water inlet portion a~c cooling water is introduced,
Cooling water from at least one cooling water introduction part c disposed on the side surface on the upper end side of the cooling processing unit is jetted in a tangential direction with respect to the inner side surface of the cooling processing unit, and the flow rate increases toward the downstream. A swirl flow that increases the density of the cooling water is formed, and a water film that increases in thickness toward the downstream side is formed on the inner surface, and
The cooling water inlet portion a on the upper side of the space of the cooling unit is provided, characterized in that the exhaust gas injected from the discharge gas inlet is in contact with the cooling water injected from the cooling water inlet portion a And

また、本発明は、粉体を同伴する排出ガスの処理方法であって、
粉体を同伴する排出ガスの処理プロセスにおいて、
(1)上端部が大きく開口し、下端ほど空間が絞り込まれる内面の構成を有する冷却処理部に高温の排出ガスを導入し、前記冷却処理部の上方側の空間に設けられ口径が前記上端部よりも小さな排出ガス導入部から噴出させるとともに、該排出ガスに前記冷却処理部の上方側の空間に設けられた冷却水導入部aから噴射された冷却水と接触させ、さらに前記冷却処理部設けられた複数の冷却水導入部からの冷却水を噴射し、両者を接触・混合して冷却処理する1次処理プロセスと、
(2)前記複数の冷却水導入部の内の少なくとも1つの前記上端部側の側面に配設された冷却水導入部cからの冷却水を、前記冷却処理部の内側面に対して接線方向に噴射させて下流ほど流速が上がり冷却水の密度を大きくする旋回流を形成し、かつ該内側面に下流ほど厚みが増大する水膜を形成させる2次処理プロセスと、
(3)冷却された排出ガスから、該排出ガスに同伴してきた粉体を分離処理する3次処理プロセスと、
を有することを特徴とする。
Further, the present invention is a method for treating exhaust gas accompanied by powder,
In the treatment process of exhaust gas accompanied by powder,
(1) A high-temperature exhaust gas is introduced into a cooling processing unit having an inner surface configuration in which the upper end portion is greatly opened and the space is narrowed toward the lower end, and the diameter is provided in the space above the cooling processing unit. with jetted from a small exhaust gas inlet than in contact with the outlet gas to the cooling processing unit of the upper cooling water injected from the cooling water inlet portion a provided in the space, further to the cooling processing unit A primary treatment process in which cooling water is injected from a plurality of cooling water introduction portions provided, and both are brought into contact with and mixed with each other to perform a cooling treatment;
(2) The cooling water from the cooling water introduction portion c disposed on the side surface on the upper end side of at least one of the plurality of cooling water introduction portions is tangential to the inner side surface of the cooling processing portion. A secondary treatment process that forms a swirling flow that increases the flow velocity toward the downstream and increases the density of the cooling water, and forms a water film that increases in thickness toward the downstream on the inner surface;
(3) a tertiary treatment process for separating the powder accompanying the exhaust gas from the cooled exhaust gas;
It is characterized by having.

こうした構成を有する処理装置または処理方法により、高温状態で反応生成物等粉体を同伴する排出ガスを効率よく冷却処理することによって、既述の従来方式に比べて、低エネルギー、低コストでの処理が可能となる。つまり、排出ガスの冷却処理プロセスにおいて、排出ガスと冷却水を効率よく接触させるとともに、冷却処理部の内側面に対して接線方向に噴射させて旋回流を形成し、該内側面に水膜を形成させることによって、比較的簡便な構成で、高温の排出ガスを効率よく冷却処理すると同時に、これに同伴する粉体を流路あるいはその壁面に付着させずに分離処理することが可能で、安全かつ操作性のよい粉体を同伴する排出ガスの処理装置および処理方法を提供することが可能となった。   By efficiently cooling the exhaust gas accompanied by powder such as reaction products in a high temperature state by the processing apparatus or processing method having such a configuration, compared with the above-described conventional method, the energy consumption and the cost can be reduced. Processing is possible. That is, in the exhaust gas cooling process, the exhaust gas and cooling water are efficiently contacted, and a swirling flow is formed by tangentially injecting the inner surface of the cooling processing unit, and a water film is formed on the inner surface. By forming it, it is possible to cool the hot exhaust gas efficiently with a relatively simple structure, and at the same time, it is possible to separate the powder without entraining the powder accompanying it on the flow path or its wall surface. In addition, it has become possible to provide an exhaust gas processing apparatus and a processing method accompanied by powder with good operability.

特に、冷却水によって形成された旋回流は、冷却処理部内での排出ガスの流れと冷却水の噴流を攪拌し、その冷却効果を高めるとともに、内側面に形成される水膜によって粉体の付着を防止し、かつ粉体が付着した場合であっても、その粉体を除去することができる。これにより、粉体の付着・成長による流路の閉塞や断熱層あるいは水分吸収層の形成を防止することができる。さらに、水膜の形成によって、内側面からの熱伝導において抵抗となる伝熱境界層の形成を防止することができるとともに、常に内側面の冷却状態を維持することが可能となる。これによって、排出ガスから吸収した熱量によって加温した冷却水の熱量を、水膜を介して冷却処理部の内側面に伝導し、さらに外側面を介して外気に効率よく放熱することが可能となった。さらに、下流(下端側)ほど気液接触空間が絞り込まれることによって、噴出された冷却水の旋回流の流速が上がり、かつ冷却水の密度を大きくし、実質的な気液接触効果を大きくすることができる。また、下流ほど水膜の厚みが増大し、粉体の付着防止効果を大きくすることができるとともに、冷却水による吸熱効果を大きくすることができる。
In particular, the swirling flow formed by the cooling water stirs the flow of the exhaust gas and the jet of cooling water in the cooling processing section, enhances the cooling effect, and adheres the powder by the water film formed on the inner surface. Even when the powder adheres, the powder can be removed. As a result, it is possible to prevent the blockage of the flow path and the formation of the heat insulating layer or the moisture absorption layer due to the adhesion and growth of the powder. Furthermore, the formation of the water film can prevent the formation of a heat transfer boundary layer that provides resistance in heat conduction from the inner surface, and can always maintain the cooling state of the inner surface. As a result, the amount of heat of the cooling water heated by the amount of heat absorbed from the exhaust gas can be conducted to the inner surface of the cooling processing section through the water film, and can be efficiently radiated to the outside air through the outer surface. became. Further, the gas-liquid contact space is narrowed toward the downstream (lower end side), so that the flow velocity of the swirling flow of the injected cooling water is increased, the density of the cooling water is increased, and the substantial gas-liquid contact effect is increased. be able to. In addition, the thickness of the water film increases toward the downstream, so that the effect of preventing the adhesion of powder can be increased, and the endothermic effect by cooling water can be increased.

本発明は、上記粉体を同伴する排出ガスの処理装置であって、前記排出ガス導入部が冷却処理部の上端部、前記排出ガス供出部が冷却処理部の下端部に設けられ、前記冷却処理部の内側面が、該上端部に対して大きく開口し、前記下端部に対して小さく開口するとともに、接線方向に冷却水を噴射させる前記冷却水導入部が前記上端部側の側面に配設されることを特徴とする。   The present invention is an exhaust gas processing apparatus that entrains the powder, wherein the exhaust gas introduction part is provided at an upper end part of the cooling process part, and the exhaust gas supply part is provided at a lower end part of the cooling process part. An inner side surface of the processing unit is widely opened with respect to the upper end portion, is opened with a small opening with respect to the lower end portion, and the cooling water introducing portion for injecting cooling water in a tangential direction is arranged on the side surface on the upper end side. It is provided.

冷却処理部の内面をこうした構成にすることによって、下端部(下流部)における水膜の厚みが増大し、粉体の付着防止効果を大きくすることができるとともに、冷却水による吸熱効果を大きくすることができる。気液接触空間を絞り込むことによって、噴出された冷却水の密度を大きくし、実質的な気液接触効果を大きくすることができる。これによって、下流側での冷却水の水温上昇に伴う排ガスからの吸熱機能の低下を補完することが可能となる。また上端部を大きく開口することによって、排出ガス導入部からの排出ガスの断熱膨張に近い冷却機能を生み出すことができるとともに、噴出する冷却水との気液接触効果を大きくすることができる。
また、前記冷却処理部の下端部に、前記排出ガス供出部および冷却水導入部dを有する第2処理部が設けられ、排出ガスに対して該冷却水導入部dから新たな冷却水を噴射させ、気液分離および気固分離を行うことによって、冷却・清浄化された排出ガスが排出ガス供出部から排出される。冷却水導入部dから新たな冷却水を噴射させることによって、効率のよい気液分離および気固分離を行うことができる。つまり、粉体が溶解あるいは混合した水滴または飛沫に冷却水が接触すると、こうした粉体をさらに捕集し重量の大きな水滴を生じることから、第2処理部内の下方に移動し、一方処理された排出ガスは、同伴していた粉体が除去され軽質化することから、第2処理部内の上方に移動し、両者は分離可能な状態となる。
By configuring the inner surface of the cooling processing portion in this way, the thickness of the water film at the lower end (downstream portion) increases, and the effect of preventing adhesion of powder can be increased, and the endothermic effect by cooling water is increased. be able to. By narrowing the gas-liquid contact space, the density of the jetted cooling water can be increased, and the substantial gas-liquid contact effect can be increased. As a result, it is possible to compensate for a decrease in the endothermic function from the exhaust gas accompanying an increase in the coolant temperature on the downstream side. Further, by opening the upper end portion largely, a cooling function close to the adiabatic expansion of the exhaust gas from the exhaust gas introduction portion can be created, and the gas-liquid contact effect with the jetted cooling water can be increased.
In addition, a second processing unit having the exhaust gas supply unit and the cooling water introduction unit d is provided at the lower end of the cooling processing unit, and new cooling water is injected from the cooling water introduction unit d to the exhaust gas. Then, by performing gas-liquid separation and gas-solid separation, the cooled and purified exhaust gas is discharged from the exhaust gas supply section. By injecting new cooling water from the cooling water introduction part d, efficient gas-liquid separation and gas-solid separation can be performed. That is, when the cooling water comes into contact with water droplets or splashes in which the powder is dissolved or mixed, the powder is further collected to generate heavy water droplets. Since the entrained powder is removed and the exhaust gas is lightened, the exhaust gas moves upward in the second processing unit, and the two become separable.

本発明は、上記粉体を同伴する排出ガスの処理装置であって、前記冷却処理部の上端部近傍の内側面が複数に等分割された位置に、複数の冷却水導入部が設けられ、各冷却水導入部からの冷却水を前記冷却処理部の内側面に対して接線方向に噴射させて旋回流を形成し、該内側面全体に水膜を形成させることを特徴とする。
The present invention is an exhaust gas processing apparatus accompanied by the powder, wherein a plurality of cooling water introduction sections c are provided at positions where the inner side surface in the vicinity of the upper end of the cooling processing section is equally divided into a plurality. The cooling water from each cooling water introduction part c is jetted in a tangential direction with respect to the inner surface of the cooling processing part to form a swirl flow, and a water film is formed on the entire inner surface.

このように、冷却処理部内に旋回流を形成するための冷却水導入部が、その内側面に対して複数かつ等分割に配設される構成によって、旋回流によるムラのない気液接触効果を大きくし、内側面全体に均一な水膜を形成することができるとともに、吸熱効果の均一性および粉体の付着防止を大きくすることが可能となる。また逆に、複数の冷却水導入部のうちの特定の冷却水導入部を選択し、局部的に旋回流の強化あるいは水膜の強化のために、水量を増加することも可能となる。   As described above, the cooling water introducing portion for forming the swirling flow in the cooling processing portion is arranged in a plurality of and equally divided with respect to the inner surface thereof, thereby providing a gas-liquid contact effect without unevenness due to the swirling flow. As a result, it is possible to form a uniform water film on the entire inner surface, and to increase the uniformity of the endothermic effect and the prevention of adhesion of powder. On the other hand, it is possible to select a specific cooling water introduction portion from among the plurality of cooling water introduction portions and locally increase the amount of water in order to strengthen the swirl flow or strengthen the water film.

本発明に係る排出ガスの処理装置の基本構成例を示す概略図Schematic showing a basic configuration example of an exhaust gas treatment apparatus according to the present invention 本発明に係る排出ガスの処理装置の構成例を示す概略図Schematic which shows the example of a structure of the processing apparatus of the exhaust gas which concerns on this invention 本発明に係る排出ガスの処理装置の検証用の実験装置を例示する説明図Explanatory drawing illustrating an experimental apparatus for verification of an exhaust gas treatment apparatus according to the present invention 本発明に係る排出ガスの処理装置の検証結果を例示する説明図Explanatory drawing which illustrates the verification result of the processing apparatus of the exhaust gas which concerns on this invention 除害処理装置を含む本発明に係る排出ガスの処理装置を例示する説明図Explanatory drawing which illustrates the processing apparatus of the exhaust gas which concerns on this invention including a detoxification processing apparatus 従来技術に係る排出ガス処理装置を例示する概略図Schematic illustrating an exhaust gas treatment apparatus according to the prior art 従来技術に係る排気ガスの処理装置を例示する概略図Schematic illustrating an exhaust gas treatment apparatus according to the prior art

以下、本発明の実施の形態について、図面を参照しながら説明する。本発明は、粉体を同伴する排出ガスの処理装置(以下「本処理装置」という)であって、上端部が大きく開口し、下端ほど空間が絞り込まれる内面の構成を有し、粉体を同伴する排出ガスと冷却水を接触させ、該排出ガスを冷却させる冷却処理部を備え、前記冷却処理部の上方側の空間に設けられ高温の排出ガスが導入される口径が前記上端部よりも小さなガス導入部と、前記冷却処理部の下端部に設けられた第2処理部において冷却処理された排出ガスが供出される排出ガス供出部と、冷却水が導入される少なくとも3つの冷却水導入部a〜cを有し、冷却処理部の上端部側の側面に配設された少なくとも1つの冷却水導入部cからの冷却水を、前記冷却処理部の内側面に対して接線方向に噴射させて下流ほど流速が上がり冷却水の密度を大きくする旋回流を形成し、かつ該内側面に下流ほど厚みが増大する水膜を形成させるとともに、前記冷却処理部の上方側の空間に冷却水導入部aが設けられ、前記排出ガス導入部から噴射された排出ガスが、前記冷却水導入部aから噴射された冷却水と接触することを特徴とする。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is an exhaust gas processing apparatus accompanied by powder (hereinafter referred to as “the present processing apparatus”) having an inner surface structure in which an upper end portion is greatly opened and a space is narrowed toward a lower end. A cooling processing unit is provided for bringing the accompanying exhaust gas into contact with the cooling water and cooling the exhaust gas, and the diameter of the high-temperature exhaust gas introduced in the space above the cooling processing unit is higher than that of the upper end portion. small gas introduction portion, the cooling in the second processing unit disposed at the lower end of the processing section and the exhaust gas dispensing portion cooling the treated exhaust gas is let out, at least three cooling water introducing cooling water is introduced Cooling water from at least one cooling water introduction part c having the parts a to c and disposed on the side surface on the upper end part side of the cooling processing part is jetted tangentially to the inner side surface of the cooling processing part The flow rate increases and the cooling water density decreases Forming a swirling flow to hear, and with a thickness to the internal side toward the downstream is to form a water film to increase, the cooling water inlet portion a is provided on the upper side of the space of the cooling unit, the exhaust gas inlet portion exhaust gas injected from, characterized in that the contact with the cooling water injected from the cooling water inlet portion a.

ここでいう排出ガスは、各種プロセスガスを含め特に限定されないが、具体的には、半導体製造装置用の材料ガスとして使用された後の排出ガスや太陽電池製造の材料ガスとして使用された後の排出ガス、あるいはこれらの研究用設備において使用された排出ガスやペトロケミカル系プロセスの排出ガスなどを挙げることができる。また、こうした排出ガス中には、各プロセスにおいて発生する反応生成物等の粉体が含まれることがあり、これらが含有された排出ガスが対象となる。反応生成物の具体例としては、有機金属化合物を含む材料ガスが酸化処理されて形成される金属酸化物や金属成分の結合体、触媒や吸着剤あるいは被処理ガス中の無機成分の結合体等を挙げることができる。こうした粉体は、冷却処理部の内側面に付着し易く、特に冷却水と接触すると固化し易くなり、流路の狭小化や閉塞を招来する可能性がある。   The exhaust gas here is not particularly limited including various process gases. Specifically, the exhaust gas after being used as a material gas for a semiconductor manufacturing apparatus or after being used as a material gas for manufacturing a solar cell. Exhaust gas, exhaust gas used in these research facilities, petrochemical process exhaust gas, etc. can be mentioned. In addition, such exhaust gas may contain powders such as reaction products generated in each process, and the exhaust gas containing these is an object. Specific examples of reaction products include metal oxides or metal component conjugates formed by oxidation treatment of material gases containing organometallic compounds, catalysts, adsorbents, or inorganic component conjugates in the gas to be treated, etc. Can be mentioned. Such powder easily adheres to the inner side surface of the cooling processing part, and particularly, when it comes into contact with cooling water, it tends to solidify, which may lead to narrowing or blockage of the flow path.

<本処理装置の基本構成例>
図1は、本処理装置の基本構成例(第1構成例)を示す概略図であり、冷却処理部10と、分離された処理水や粉体を貯蔵する貯蔵部20が設けられている。冷却処理部10には、排出ガスが導入される排出ガス導入部1と、冷却水が導入される冷却水導入部2a〜2dと、これらが気液接触する第1処理部3と、さらに冷却水が導入され気液(気固)分離される第2処理部4と、処理された排出ガスが供出される排出ガス供出部5と、分離された処理水や粉体がトラップされる粉体分離部6が設けられ、貯蔵部20には、粉体分離部6からの粉体を含む処理水を貯蔵する貯蔵タンク7が設けられる。冷却水導入部2a〜2dからの冷却水の導入および流量は、開閉弁V1〜V4によって制御・調整される。
<Basic configuration example of the processing apparatus>
FIG. 1 is a schematic diagram showing a basic configuration example (first configuration example) of the present processing apparatus, and includes a cooling processing unit 10 and a storage unit 20 for storing separated treated water and powder. The cooling processing unit 10 includes an exhaust gas introduction unit 1 into which exhaust gas is introduced, cooling water introduction units 2a to 2d into which cooling water is introduced, a first processing unit 3 in which these are in gas-liquid contact, and further cooling. A second processing unit 4 in which water is introduced and gas-liquid (gas-solid) is separated; an exhaust gas supply unit 5 in which processed exhaust gas is supplied; and powder in which the separated processed water and powder are trapped A separation unit 6 is provided, and the storage unit 20 is provided with a storage tank 7 that stores treated water containing powder from the powder separation unit 6. The introduction and flow rate of the cooling water from the cooling water introduction parts 2a to 2d are controlled and adjusted by the on-off valves V1 to V4.

排出ガス導入部1から導入された排出ガスは、第1処理部3において冷却水導入部2a〜2cから導入された冷却水と接触して冷却され、さらに第2処理部4において冷却水導入部2dから導入された冷却水と接触して冷却・清浄化されて排出ガス供出部5から排出される。このとき、冷却水導入部2cからは、第1処理部3の内側面3aに対して接線方向に噴射させるように冷却水が導入され、旋回流Cを形成すると同時に、内側面3aに沿って水膜Fを形成させる。詳細は後述する。なお、図1においては、1つの接線方向に噴射させる冷却水の導入路の場合を例示したが、後述するように、これを複数設けることも可能である。第1処理部3の上流および下流には、温度計T1およびT2が設けられて排出ガスの温度がモニタされ、下流においてなお所望の温度を超えるときは、第2処理部4での冷却水供給量を増加することによって、供出される排出ガスの温度を制御することができる。また、冷却水導入部2a〜2dから導入された冷却水は、排出ガスと接触することによって加温されるとともに、排出ガスに同伴した反応生成物等の粉体を溶解あるいは混合した状態で、粉体分離部6を介して貯蔵タンク7に貯留される。貯蔵タンク7には、温度計T4およびレベル計Lが設けられ、所定の貯留量を超えたとき開閉弁V5を開として排出され、粉体を分離(回収される場合を含む)後、再利用あるいは廃棄される。   The exhaust gas introduced from the exhaust gas introduction unit 1 is cooled in contact with the cooling water introduced from the cooling water introduction units 2 a to 2 c in the first processing unit 3, and is further cooled in the second processing unit 4. It is cooled and cleaned in contact with the cooling water introduced from 2d and discharged from the exhaust gas supply unit 5. At this time, the cooling water is introduced from the cooling water introduction part 2c so as to be jetted in a tangential direction with respect to the inner side surface 3a of the first processing part 3 to form a swirling flow C and at the same time along the inner side surface 3a. A water film F is formed. Details will be described later. In addition, although the case of the introduction path | route of the cooling water injected in one tangential direction was illustrated in FIG. 1, it is also possible to provide two or more this so that it may mention later. Thermometers T1 and T2 are provided upstream and downstream of the first processing unit 3 to monitor the temperature of the exhaust gas. When the desired temperature is still exceeded downstream, the cooling water is supplied from the second processing unit 4 By increasing the amount, the temperature of the exhaust gas delivered can be controlled. In addition, the cooling water introduced from the cooling water introduction portions 2a to 2d is heated by contacting the exhaust gas, and in a state where powders such as reaction products accompanying the exhaust gas are dissolved or mixed, It is stored in the storage tank 7 through the powder separation unit 6. The storage tank 7 is provided with a thermometer T4 and a level meter L. When a predetermined storage amount is exceeded, the storage tank 7 is discharged with the on-off valve V5 open, and the powder is separated (including the case where it is collected) and reused. Or it is discarded.

〔第1処理部の構成〕
本処理装置においては、被処理ガスである排出ガスが導入される第1処理部3の内部構造は、図2(A)のように、上端部3bに対して大きく開口することが好ましい。排出ガスを口径の小さな排出ガス導入部1から急激に開口した第1処理部3の空間に噴き出すことによって、断熱膨張に近い冷却機能を生み出すことができるとともに、上端部3bに設けられた冷却水導入部2aから噴射された冷却水との接触効果を上げることができる。こうした機能は、排出ガス導入部1の先端をノズル状にし、加圧された排出ガスを噴き出すことによって、さらに効果上げることができる。
[Configuration of the first processing unit]
In the present processing apparatus, it is preferable that the internal structure of the first processing unit 3 into which the exhaust gas that is the processing target gas is introduced opens largely with respect to the upper end portion 3b as shown in FIG. By ejecting the exhaust gas from the exhaust gas introduction unit 1 having a small diameter into the space of the first processing unit 3 that is suddenly opened, a cooling function close to adiabatic expansion can be created, and cooling water provided at the upper end 3b The contact effect with the cooling water sprayed from the introduction part 2a can be raised. Such a function can be further improved by making the tip of the exhaust gas introduction part 1 into a nozzle shape and ejecting pressurized exhaust gas.

このとき、冷却水導入部2cから導入された冷却水は、図2(A)に例示するように、第1処理部3の内側面3aに対して接線方向に噴射させることによって、旋回流Cを形成することができると同時に、内側面3aに沿って水膜Fを形成することができる。旋回流Cの形成によって、排出ガスの流れと冷却水の噴流を攪拌し、その冷却効果を高めることができる。また、水膜Fの形成によって、内側面3aでの粉体の付着を防止し、かつ粉体が付着した場合であっても、その粉体を除去することができ、粉体の付着・成長による流路の閉塞や断熱層あるいは水分吸収層の形成を防止することができる。さらに、水膜Fの形成によって、内側面3aからの熱伝導において抵抗となる伝熱境界層の形成を防止することができるとともに、常に内側面3aの冷却状態を維持することが可能となる。これによって、排出ガスから吸収した熱量によって加温した冷却水の熱量を、水膜Fを介して内側面3aに伝導し、さらに外側面を介して外気に効率よく放熱することが可能となる。特に、第1処理部3を熱伝導度の高い材料(耐蝕性を有するステンレス鋼等)で構成することによって、放熱量を大きくし冷却機能を上げることができる。   At this time, the cooling water introduced from the cooling water introduction part 2c is jetted in a tangential direction with respect to the inner surface 3a of the first processing part 3 as illustrated in FIG. At the same time, the water film F can be formed along the inner surface 3a. By forming the swirl flow C, the exhaust gas flow and the cooling water jet can be agitated to enhance the cooling effect. Further, the formation of the water film F prevents the powder from adhering to the inner surface 3a, and even when the powder adheres, the powder can be removed, and the powder adheres and grows. It is possible to prevent the blockage of the flow path and the formation of the heat insulation layer or the moisture absorption layer due to the above. Furthermore, the formation of the water film F can prevent the formation of a heat transfer boundary layer that provides resistance in heat conduction from the inner side surface 3a, and can always maintain the cooling state of the inner side surface 3a. As a result, the amount of heat of the cooling water heated by the amount of heat absorbed from the exhaust gas can be conducted to the inner side surface 3a via the water film F and further efficiently radiated to the outside air via the outer side surface. In particular, by configuring the first processing unit 3 with a material having high thermal conductivity (such as stainless steel having corrosion resistance), the heat radiation amount can be increased and the cooling function can be improved.

ここで、冷却水導入部2cから冷却水を噴射するノズルは、図2(A)拡大図に示すように、内側面3aに沿って所定の幅を有することは好ましい。上流側の内側面3a上に所定の幅の水膜Fが形成されることによって、内側面3a全体にムラなく水膜Fを形成することができる。また、他の冷却水導入部2a、2bおよび2dから冷却水を噴射するノズルは、噴射角度約30〜60°が好ましい。30°以下であれば排出ガスとの接触が不十分となり、60°を超えると噴射される冷却水の分布にムラが生じることとなる。   Here, as shown in the enlarged view of FIG. 2A, the nozzle for injecting the cooling water from the cooling water introduction part 2c preferably has a predetermined width along the inner side surface 3a. By forming the water film F having a predetermined width on the inner side surface 3a on the upstream side, the water film F can be uniformly formed on the entire inner side surface 3a. Further, the nozzle for injecting the cooling water from the other cooling water introduction portions 2a, 2b and 2d preferably has an injection angle of about 30 to 60 °. If it is 30 ° or less, contact with the exhaust gas becomes insufficient, and if it exceeds 60 °, unevenness occurs in the distribution of the injected cooling water.

第1処理部3の内側面3aは、上端部3bに対して大きく開口し、下端部3cに対して小さく開口するとともに、上端部3b側の内側面3aに対し接線方向に冷却水を噴射させる冷却水導入部2cが配設されることが好ましい。下流(下端側)ほど気液接触空間が絞り込まれることによって、噴出された冷却水の旋回流の流速が上がり、かつ冷却水の密度を大きくし、実質的な気液接触効果を大きくすることができる。また、下流ほど水膜の厚みが増大し、粉体の付着防止効果を大きくすることができるとともに、冷却水による吸熱効果を大きくすることができる。このとき、上端部3bに対する開口角度(内側面が直円錐の場合には下端部3cに対する開口角度と同じ)は、約5〜15°が好ましい。5°以下の場合には、ストレート状と差異がなく絞り込み効果が得られない。15°を超えると、第1処理部3の内容積が小さくなり、十分な冷却機能が得られない。   The inner side surface 3a of the first processing unit 3 opens greatly with respect to the upper end portion 3b, opens smaller with respect to the lower end portion 3c, and injects cooling water in a tangential direction with respect to the inner side surface 3a on the upper end portion 3b side. It is preferable that the cooling water introduction part 2c is disposed. By narrowing the gas-liquid contact space toward the downstream (lower end side), the flow velocity of the swirling flow of the injected cooling water is increased, the density of the cooling water is increased, and the substantial gas-liquid contact effect is increased. it can. In addition, the thickness of the water film increases toward the downstream, so that the effect of preventing the adhesion of powder can be increased, and the endothermic effect by cooling water can be increased. At this time, the opening angle with respect to the upper end portion 3b (the same as the opening angle with respect to the lower end portion 3c when the inner surface is a right cone) is preferably about 5 to 15 °. In the case of 5 ° or less, there is no difference from the straight shape, and the narrowing effect cannot be obtained. If it exceeds 15 °, the internal volume of the first processing unit 3 becomes small, and a sufficient cooling function cannot be obtained.

ここで、第1処理部3の容量を約5Lとした場合、導入される排出ガス流量は約200SLM、導入される冷却水は、排出ガス温度が200℃のとき約2〜3L/min、300℃のとき約4〜4.5L/minが好適である。後述する検証結果からも判るように、従来法と比較して少量の冷却水によって効率よく冷却でき、同伴する粉体の影響を殆ど受けずに処理することが可能となった。   Here, when the capacity of the first processing unit 3 is about 5 L, the introduced exhaust gas flow rate is about 200 SLM, and the introduced cooling water is about 2-3 L / min when the exhaust gas temperature is 200 ° C., 300 About 4 to 4.5 L / min at the time of ° C is suitable. As can be seen from the verification results to be described later, the cooling can be efficiently performed with a small amount of cooling water as compared with the conventional method, and the processing can be performed with almost no influence of the accompanying powder.

〔第1処理部の他の構成例〕
第1処理部3において、図2(B)のように、上端部3b近傍の内側面3aが複数(図では4つ)に等分割された位置に、冷却水導入部が設けられ、各冷却水導入部からの冷却水を第1処理部3の内側面3aに対して接線方向に噴射させることが好ましい。4分割された位置に冷却水導入部21c〜24cが設けられ、略等量の冷却水を内側面3aに対して接線方向に噴射させることによって、ムラのない水量の大きな旋回流Cを形成することができるとともに、内側面3a全体に均一で水量の大きな水膜Fを形成することができる。これによって、吸熱効果の均一性および粉体の付着防止を大きくすることが可能となる。ただし、複数の冷却水導入部21c〜24cを全て等量の冷却水を噴射する必要はなく、特定の冷却水導入部を選択し、局部的に旋回流Cの強化あるいは水膜Fの強化のために、水量を増加することも可能である。
[Another configuration example of the first processing unit]
In the first processing section 3, as shown in FIG. 2B, a cooling water introduction section is provided at a position where the inner side surface 3a in the vicinity of the upper end 3b is equally divided into a plurality (four in the figure). It is preferable that the cooling water from the water introduction part is jetted in a tangential direction with respect to the inner side surface 3 a of the first processing part 3. Cooling water introduction portions 21c to 24c are provided at the four divided positions, and a swirling flow C having a large amount of water without unevenness is formed by injecting a substantially equal amount of cooling water in a tangential direction with respect to the inner surface 3a. In addition, a uniform and large water film F can be formed on the entire inner surface 3a. This makes it possible to increase the uniformity of the endothermic effect and the prevention of powder adhesion. However, it is not necessary to inject an equal amount of cooling water to all of the plurality of cooling water introduction portions 21c to 24c, and a specific cooling water introduction portion is selected and the swirling flow C or the water film F is strengthened locally. Therefore, it is possible to increase the amount of water.

〔第2処理部の構成〕
第1処理部3において十分に冷却された排出ガスは、粉体中の溶解成分が溶解あるいは非溶解成分が混合した飛沫あるいは水滴状の冷却水を同伴するが、そのままではガスと粉体および水分を分離することは難しい。本処理装置では、第1処理部3からの排出ガスに対して、さらに冷却水導入部2dから新たな冷却水を噴射させることによって、効率のよい気液分離および気固分離を行うことができる。つまり、粉体が溶解あるいは混合した水滴または飛沫に冷却水が接触すると、こうした粉体をさらに捕集し重量の大きな水滴を生じることから、第2処理部4内の下方に移動し、一方処理された排出ガスは、同伴していた粉体が除去され軽質化することから、第2処理部4内の上方に移動し、両者は分離可能な状態となる。そこで、排出ガスは、第2処理部4内の上部に設けられた排出ガス供出部5から供出され、ガス体と分離された冷却水や粉体(粉体等という)は、第2処理部4内の下部に設けられた粉体分離部6にトラップされて貯蔵タンク7に貯留される。
[Configuration of Second Processing Unit]
The exhaust gas sufficiently cooled in the first processing unit 3 is accompanied by droplets or water droplets of cooling water in which dissolved components in the powder are dissolved or mixed with non-dissolved components. Is difficult to separate. In the present processing apparatus, efficient gas-liquid separation and gas-solid separation can be performed by injecting new cooling water from the cooling water introduction section 2d to the exhaust gas from the first processing section 3. . That is, when the cooling water comes into contact with water droplets or droplets in which the powder is dissolved or mixed, the powder is further collected to generate heavy water droplets. The discharged gas is lightened by removing the entrained powder, and thus moves upward in the second processing unit 4 so that both can be separated. Therefore, the exhaust gas is supplied from an exhaust gas supply unit 5 provided in the upper part of the second processing unit 4, and cooling water and powder (referred to as powder) separated from the gas body are supplied to the second processing unit. 4 is trapped in the powder separation unit 6 provided in the lower part of the inside 4 and stored in the storage tank 7.

〔貯蔵部の構成〕
貯蔵タンク7には、粉体等のレベルを検出するレベルセンサLと、粉体等を排出する排出弁7aを備え、所定の貯留量を超えた場合に排出弁7aを開として粉体等を排出することができる。このとき、貯留された粉体等のレベルを、レベルセンサLを用いて監視することによって、所定量の系外への排出を自動的に行い、安定した粉体等の分離を図ることができる。貯蔵タンク7には、その内部に温度センサ7eが設けられ、所望の温度に管理維持される。
[Configuration of storage section]
The storage tank 7 is provided with a level sensor L for detecting the level of powder and the like, and a discharge valve 7a for discharging the powder and the like. When a predetermined storage amount is exceeded, the discharge valve 7a is opened to supply powder or the like. Can be discharged. At this time, by monitoring the level of the stored powder or the like using the level sensor L, it is possible to automatically discharge a predetermined amount out of the system and to stably separate the powder or the like. . The storage tank 7 is provided with a temperature sensor 7e and is maintained at a desired temperature.

〔本処理装置における排出ガスの処理方法〕
上記のような構成を有する本処理装置においては、以下の処理プロセスに沿って、排出ガスの冷却処理、分離処理が行われる。
(1)上端部が大きく開口し、下端ほど空間が絞り込まれる内面の構成を有する冷却処理部10に高温の排出ガスを導入し、前記冷却処理部の上方側の空間に設けられ口径が前記上端部よりも小さな排出ガス導入部1から噴出させるとともに、該排出ガスに前記冷却処理部の上方側の空間に設けられた冷却水導入部2aから噴射された冷却水と接触させ、さらに前記冷却処理部10設けられた複数の冷却水導入部(例えば2b,2c)からの冷却水を噴射し、両者を接触・混合して冷却処理する1次処理プロセス
(2)複数の冷却水導入部(例えば2b,2c)の内の少なくとも1つの上端部側の側面に配設された冷却水導入部2cからの冷却水を、排出ガスの流路に垂直かつ冷却処理部10(第1処理部3)の内側面3aに対して接線方向に噴射させて下流ほど流速が上がり冷却水の密度を大きくする旋回流Cを形成し、かつ内側面3aに下流ほど厚みが増大する水膜Fを形成させる2次処理プロセス
(3)冷却された排出ガスから、該排出ガスに同伴してきた粉体を分離処理する3次処理プロセス
を有することを特徴とする排出ガスの処理方法。
[Exhaust gas treatment method in this treatment equipment]
In this processing apparatus having the above-described configuration, exhaust gas cooling processing and separation processing are performed in accordance with the following processing processes.
(1) A high-temperature exhaust gas is introduced into the cooling processing unit 10 having an inner surface configuration in which the upper end portion is greatly opened and the space is narrowed toward the lower end, and the diameter is provided in the space above the cooling processing unit. The exhaust gas is ejected from the exhaust gas introduction unit 1 smaller than the cooling unit , and the exhaust gas is brought into contact with the cooling water ejected from the cooling water introduction unit 2a provided in the space above the cooling processing unit. a plurality of cooling water introducing portion provided in section 10 (e.g. 2b, 2c) by injecting cooling water from the primary treatment process for cooling process in contact-mixing the two (2) a plurality of cooling water introducing section ( For example, the cooling water from the cooling water introduction portion 2c disposed on the side surface on the upper end portion side of at least one of 2b and 2c) is made to be perpendicular to the exhaust gas flow path and to the cooling processing portion 10 (first processing portion 3). ) Tangent to the inner surface 3a The secondary treatment process (3) in which a swirl flow C is formed in which the flow velocity increases toward the downstream and the density of the cooling water increases, and the water film F increases in thickness on the inner surface 3a. A method for treating exhaust gas, comprising: a tertiary treatment process for separating the powder accompanying the exhaust gas from the exhaust gas.

ここで、上記(1)1次処理プロセスおよび(2)2次処理プロセスは、冷却処理部10の第1処理部3において処理操作が行われ、(3)3次処理プロセスは、冷却処理部10の第2処理部4および貯留部20において処理操作が行われる。   Here, the (1) primary processing process and (2) secondary processing process are performed in the first processing unit 3 of the cooling processing unit 10, and (3) the tertiary processing process is performed by the cooling processing unit. Processing operations are performed in the 10 second processing units 4 and the storage unit 20.

〔本処理装置における処理効率の検証〕
本処理装置、特に第1処理部3における冷却機能および粉体の処理機能を以下の通り検証した。
(a)高温排出ガスの冷却効率の検証
(a−1)処理条件
図3(A)に示す実験装置を用い、外気温20℃の条件下で、粉体(SiO,P等)を含む大気ベースのガスを加熱炉E1に導入し、約300℃に加熱された排出ガスとして、流量約200SLMで、内容積約5Lの第1処理部3に供給すると同時に、水圧約0.3MPa、水温14℃の冷却水を、以下の3つの条件で第1処理部3に供給した場合について、
(i)導入しない場合
(ii)ノズル(冷却水導入部に相当)E2aおよびE2bから各々流量約2.25L/min(総流量約4.5L/min)で旋回流Cを形成して供給した場合
(iii)ノズルE2cから流量約4.5L/minで排出ガスと同方向(順流)に供給した場合
第1処理部3の外壁面温度t1および出口温度t2、第2処理部4の出口温度t3をモニタし、冷却水の供給効果を検証した。ここで、第2処理部4は、内容積約5Lを有し、冷却水の供給はない。
[Verification of processing efficiency in this processor]
The cooling function and the powder processing function in this processing apparatus, particularly the first processing unit 3, were verified as follows.
(A) Verification of cooling efficiency of high-temperature exhaust gas (a-1) Processing conditions Powder (SiO 2 , P 2 O 5, etc.) under the condition of an outside air temperature of 20 ° C. using the experimental apparatus shown in FIG. ) Is introduced into the heating furnace E1, and is supplied to the first processing unit 3 having an internal volume of about 5 L as an exhaust gas heated to about 300 ° C. at a flow rate of about 200 SLM. About the case where the cooling water of 3MPa and water temperature 14 degreeC is supplied to the 1st process part 3 on the following three conditions,
(I) When not introduced (ii) Nozzles (corresponding to the cooling water introduction part) E2a and E2b form and supply a swirl flow C at a flow rate of about 2.25 L / min (total flow rate of about 4.5 L / min), respectively. Case (iii) When supplied in the same direction as the exhaust gas (forward flow) at a flow rate of about 4.5 L / min from the nozzle E2c, the outer wall surface temperature t1 and the outlet temperature t2 of the first processing unit 3, the outlet temperature of the second processing unit 4 t3 was monitored to verify the cooling water supply effect. Here, the 2nd process part 4 has internal volume about 5L, and does not supply cooling water.

(a−2)実験結果
その結果を表1に示す。冷却水の供給効果は、(ii)旋回流および(iii)順流のいずれも顕著に見られるが、冷却効果には大きな差異があり、旋回流の高い冷却効果が立証された。特に、第1処理部3の外壁面温度t1における差異は、出口ガス温度t2の差異と略同等であり、水膜Fの形成によって内側面および側壁を介して効率よく熱量が移動し、放熱されていることを表わしている。つまり、冷却水の旋回流Cおよび水膜Fの形成によって、非常に高い冷却機能を確保することができることを検証することができた。
(A-2) Experimental results The results are shown in Table 1. Although the cooling water supply effect was noticeable in both (ii) swirling flow and (iii) forward flow, there was a large difference in cooling effect, and a high cooling effect of swirling flow was proved. In particular, the difference in the outer wall surface temperature t1 of the first processing unit 3 is substantially the same as the difference in the outlet gas temperature t2, and the amount of heat efficiently moves through the inner surface and the side wall due to the formation of the water film F, and is dissipated. It represents that. In other words, it was verified that a very high cooling function can be ensured by the formation of the swirling flow C and the water film F of the cooling water.

Figure 0005430267
Figure 0005430267

(b)粉体除去効率の検証
(b−1)処理条件
図3(B)に示す実験装置を用い、流量約200〜300SLMの空気をブロアE3によって圧送し、内容積約30Lの粉体容器E4内に配設された粉体(粉体の性状として、親水性かつ粘性が高く付着しやすい材料である片栗粉を用いた)約500gに吹き付けて、排出ガスとして粉体を同伴した状態で、下流に設けられた内容積約3Lの第1処理部3に供給すると同時に、水圧約0.3MPa、水温14℃の冷却水を、以下の3つの条件で第1処理部3に供給した場合について、
(i)ノズルE2aおよびE2bから各々流量約2.25L/min(総流量約4.5L/min)で旋回流Cを形成して供給した場合
(ii)ノズルE2cから流量約4.5L/minで排出ガスと同方向(順流)に供給した場合
(iii)ノズルE2dから流量約4.5L/minで排出ガスの流れの中心に垂直な方向(直角流)に供給した場合
第1処理部3の内側面における粉体の付着状況(除去状況)をモニタし、その冷却水の供給効果を検証した。ここで、第1処理部3は、内部の粉体の付着状態を観察することが可能なように透明PVCにより製作し、確認は目視で行った。
(B) Verification of powder removal efficiency (b-1) Processing conditions Using an experimental apparatus shown in FIG. 3 (B), air having a flow rate of about 200 to 300 SLM is pumped by the blower E3, and a powder container having an internal volume of about 30L. Sprayed to about 500 g of powder disposed in E4 (using powdered starch, which is a hydrophilic and highly viscous material that easily adheres), and accompanied by powder as exhaust gas, About the case where cooling water with a water pressure of about 0.3 MPa and a water temperature of 14 ° C. is supplied to the first processing unit 3 under the following three conditions at the same time as it is supplied to the first processing unit 3 having an internal volume of about 3 L provided downstream. ,
(I) When the swirling flow C is formed and supplied from the nozzles E2a and E2b at a flow rate of about 2.25 L / min (total flow rate of about 4.5 L / min), respectively (ii) The flow rate of about 4.5 L / min from the nozzle E2c (Iii) When supplied from the nozzle E2d at a flow rate of about 4.5 L / min in a direction perpendicular to the center of the exhaust gas flow (normal flow), the first processing unit 3 The adhesion (removal) of the powder on the inner surface of the monitor was monitored, and the cooling water supply effect was verified. Here, the 1st process part 3 was manufactured by transparent PVC so that the adhesion state of an internal powder could be observed, and confirmation was performed visually.

(b−2)実験結果
その結果を表2に示す。冷却水の供給効果は、(i)旋回流および(ii)順流のいずれも顕著に見られるが、(iii)直角流については、内側面の粉体除去効果は殆ど見られなかった。また、(i)旋回流と(ii)順流の間での粉体除去効果には大きな差異があり、旋回流の高い粉体除去効果が立証された。つまり、冷却水の旋回流Cおよび水膜Fの形成によって、非常に高い粉体除去機能を確保することができることを検証することができた。
(B-2) Experimental results The results are shown in Table 2. The cooling water supply effect was noticeable in both (i) swirl flow and (ii) forward flow, but (iii) almost no powder removal effect on the inner surface was observed for right-angle flow. Moreover, there was a large difference in the powder removal effect between (i) the swirl flow and (ii) the forward flow, and a high powder removal effect of the swirl flow was proved. In other words, it was verified that the formation of the swirling flow C and the water film F of the cooling water can ensure a very high powder removal function.

Figure 0005430267
Figure 0005430267

(c)粉体除去効率に対する冷却水の流量影響の検証
(c−1)処理条件
図3(B)に示す実験装置を用い、冷却水の供給流量以外を、上記(b−1)と同様の条件として、以下の2つの条件で第1処理部3に供給した場合について、
(i)ノズルE2aおよびE2bから旋回流Cを形成して供給した場合
(ii)ノズルE2dから排出ガスの流れの中心に垂直な方向(直角流)に供給した場合
第1処理部3の内側面における粉体の付着状況(除去状況)をモニタし、その冷却水の供給効果を検証した。
(C) Verification of influence of flow rate of cooling water on powder removal efficiency (c-1) Processing conditions The experimental apparatus shown in FIG. 3 (B) is used, except for the cooling water supply flow rate, the same as (b-1) above. As a condition for the case where the first processing unit 3 is supplied under the following two conditions:
(I) When the swirl flow C is formed and supplied from the nozzles E2a and E2b (ii) When supplied in the direction perpendicular to the center of the flow of the exhaust gas (normal flow) from the nozzle E2d The inner surface of the first processing unit 3 The powder adhesion status (removal status) was monitored and the cooling water supply effect was verified.

(c−2)実験結果
その結果を図4に示す。冷却水の供給流量を変化させた場合の粉体除去効果は、直角流では、冷却水の供給流量の低下に伴い殆ど比例的に粉体の付着量が増加し、十分な粉体除去効率を得ることができない傾向が見られる一方、旋回流では、約2L/min以上において高い粉体除去効率を示し、直角流に比較して大きな異差が見られた。また、旋回流についても、約2L/min以下の流量条件においては、著しい粉体除去効率の低下が見られ、約2L/min以上の流量条件を確保することが好ましいとの検証結果を得た。
(C-2) Experimental results The results are shown in FIG. The powder removal effect when the cooling water supply flow rate is changed is that in the case of right-angle flow, the amount of adhered powder increases almost proportionally as the cooling water supply flow rate decreases, and sufficient powder removal efficiency is achieved. On the other hand, in the swirl flow, high powder removal efficiency was exhibited at about 2 L / min or more, and a large difference was observed compared to the right-angle flow. Also, with regard to the swirl flow, a significant decrease in powder removal efficiency was observed at a flow rate condition of about 2 L / min or less, and a verification result was obtained that it was preferable to ensure a flow rate condition of about 2 L / min or more. .

<除害処理装置を含む本処理装置の構成例>
次に、除害処理装置を含む本処理装置の構成例を図5に示す。冷却処理部10および貯蔵部20の前段に、除害処理装置30が設けられ、半導体製造設備等の消費設備(図示せず)からの被処理ガスが、導入部8から開閉弁V6を介して除害処理装置30に導入される。本構成例は、こうした除害処理装置によって新たな粉体(反応生成物)が生じる場合に、本処理装置を適用したものである。除害処理装置30としては、例えば有機成分が多く含まれる被処理ガスにおいては燃焼炉(酸化炉)が多く用いられ、その他触媒を用いて無害化物質に変換する方法や吸着剤によって有害物質を除去する方法が用いられる。
<Configuration example of the present processing apparatus including the abatement processing apparatus>
Next, FIG. 5 shows a configuration example of the present processing apparatus including the abatement processing apparatus. An abatement treatment apparatus 30 is provided upstream of the cooling processing unit 10 and the storage unit 20, and a gas to be processed from a consumption facility (not shown) such as a semiconductor manufacturing facility is supplied from the introduction unit 8 via an on-off valve V6. It is introduced into the abatement processing apparatus 30. In the present configuration example, when a new powder (reaction product) is generated by such an abatement processing apparatus, the present processing apparatus is applied. As the abatement treatment apparatus 30, for example, a combustion furnace (oxidation furnace) is often used for a gas to be treated containing a large amount of organic components, and other substances are removed by a method of converting to a detoxification substance using an catalyst or an adsorbent. The removal method is used.

このときの排出ガス中には、反応生成物としての金属酸化物や触媒や吸着剤あるいは被処理ガス中の無機成分の結合体等の粉体が含まれる。具体的には、下式1,2に示すような、分解された金属成分からの原子状金属成分Mが発生し、これが酸素と反応して金属酸化物の粉体を生成したり、原子状金属成分M同士が結合して粉体を生成することとなる。
MCxHyOz+mO→xCO(g)+y/2HO(g)+M ・・式1
+Cat→Cat−M ・・式2
こうした金属化合物の一部は水溶性であるが、多くの金属化合物あるいは金属結合体は難溶性であり成長性を有することから、これらを同伴する排出ガスの清浄化処理において、一旦その処理部の側壁に付着した場合には、それを除去することは非常に難しく、やがて流路の閉塞に繋がることがある。
The exhaust gas at this time includes a metal oxide as a reaction product, a catalyst, an adsorbent, or a powder of a combination of inorganic components in the gas to be treated. Specifically, an atomic metal component M 0 from a decomposed metal component is generated as shown in the following formulas 1 and 2, and this reacts with oxygen to form a metal oxide powder, Jo metal component M 0 with each other and thus to generate a bond to a powder.
MCxHyOz + mO 2 → xCO 2 (g) + y / 2H 2 O (g) + M 0 Formula 1
M 0 + Cat → Cat−M ・ ・ Formula 2
Some of these metal compounds are water-soluble, but many metal compounds or metal conjugates are poorly soluble and have growth properties. When it adheres to the side wall, it is very difficult to remove it, which may eventually lead to blockage of the flow path.

一方、本処理装置は、冷却水の導入によって流路内に旋回流Cを形成し、その側壁に水膜Fを形成することによって、こうした粉体の付着そのものを防止することができる。つまり、本処理装置は、単に被処理ガス中に粉体を同伴する場合だけではなく、こうした成長性のある粉体が生成された直後に配設することによって、成長する前の粉体を未然に除去することができる。従って、除害処理装置等を含む排出ガスの処理系に本処理装置を適用することは、処理系全体の安全性や操作性を確保することに対して、非常に有効な手段となるものである。   On the other hand, this processing apparatus can prevent such adhesion of powder itself by forming a swirl flow C in the flow path by introducing cooling water and forming a water film F on the side wall thereof. In other words, the present processing apparatus is not limited to the case where the powder is entrained in the gas to be processed, but is disposed immediately after such a powder having a growth potential is generated, so that the powder before growth can be obtained in advance. Can be removed. Therefore, applying this processing apparatus to an exhaust gas processing system including an abatement processing apparatus is a very effective means for ensuring the safety and operability of the entire processing system. is there.

1 排出ガス導入部
2a〜2d 冷却水導入部
3 第1処理部
4 第2処理部
5 排出ガス供出部
6 粉体分離部
7 貯蔵タンク
10 冷却処理部
20 貯蔵部
C 旋回流
F 水膜
L レベル計
T1〜T4 温度計
V1〜V4 開閉弁
DESCRIPTION OF SYMBOLS 1 Exhaust gas introduction part 2a-2d Cooling water introduction part 3 1st process part 4 2nd process part 5 Exhaust gas supply part 6 Powder separation part 7 Storage tank 10 Cooling process part 20 Storage part C Swirling flow F Water film L Level Total T1-T4 Thermometer V1-V4 On-off valve

Claims (4)

上端部が大きく開口し、下端ほど空間が絞り込まれる内面の構成を有し、粉体を同伴する排出ガスと冷却水を接触させ、該排出ガスを冷却させる冷却処理部を備え、前記冷却処理部の上方側の空間に設けられ高温の排出ガスが導入される口径が前記上端部よりも小さなガス導入部と、前記冷却処理部の下端部に設けられた第2処理部において冷却処理された排出ガスが供出される排出ガス供出部と、冷却水が導入される少なくとも3つの冷却水導入部a〜cを有し、
前記冷却処理部の上端部側の側面に配設された少なくとも1つの冷却水導入部cからの冷却水を、前記冷却処理部の内側面に対して接線方向に噴射させて下流ほど流速が上がり冷却水の密度を大きくする旋回流を形成し、かつ該内側面に下流ほど厚みが増大する水膜を形成させるとともに、
前記冷却処理部の上方側の空間に冷却水導入部aが設けられ、前記排出ガス導入部から噴射された排出ガスが、前記冷却水導入部aから噴射された冷却水と接触することを特徴とする粉体を同伴する排出ガスの処理装置。
Upper end largely opening has the configuration of the inner surface of the space is narrowed as the lower end, the powder is contacted with the exhaust gas to entrain cooling water, a cooling unit for cooling the exhaust outlet gas, the cooling processing unit The exhaust gas that has been cooled in the gas introduction part that is provided in the upper space of the gas and has a smaller diameter than the upper end part, and the second treatment part that is provided in the lower end part of the cooling treatment part. and exhaust gas dispensing portion which the gas is let out, has at least three of the cooling water inlet portion a~c cooling water is introduced,
Cooling water from at least one cooling water introduction part c disposed on the side surface on the upper end side of the cooling processing unit is jetted in a tangential direction with respect to the inner side surface of the cooling processing unit, and the flow rate increases toward the downstream. A swirl flow that increases the density of the cooling water is formed, and a water film that increases in thickness toward the downstream side is formed on the inner surface, and
The cooling water inlet portion a on the upper side of the space of the cooling unit is provided, characterized in that the exhaust gas injected from the discharge gas inlet is in contact with the cooling water injected from the cooling water inlet portion a An exhaust gas treatment device accompanied by powder.
前記冷却処理部の下端部に、前記排出ガス供出部および冷却水導入部dを有する第2処理部が設けられ、排出ガスに対して該冷却水導入部dから新たな冷却水を噴射させ、気液分離および気固分離を行うことを特徴とする請求項1記載の粉体を同伴する排出ガスの処理装置。   A second processing unit having the exhaust gas supply unit and the cooling water introduction unit d is provided at the lower end of the cooling processing unit, and new cooling water is jetted from the cooling water introduction unit d to the exhaust gas, The apparatus for treating an exhaust gas accompanied by powder according to claim 1, wherein gas-liquid separation and gas-solid separation are performed. 前記冷却処理部の上端部近傍の内側面が複数に等分割された位置に、複数の冷却水導入部が設けられ、各冷却水導入部からの冷却水を前記冷却処理部の内側面に対して接線方向に噴射させて旋回流を形成し、該内側面全体に水膜を形成させることを特徴とする請求項1または2記載の粉体を同伴する排出ガスの処理装置。 A plurality of cooling water introduction portions c are provided at positions where the inner side surface in the vicinity of the upper end portion of the cooling processing unit is equally divided into a plurality, and the cooling water from each cooling water introduction unit c is supplied to the inner side surface of the cooling processing unit. The apparatus for treating exhaust gas accompanied by powder according to claim 1 or 2, wherein a swirl flow is formed by jetting in a tangential direction to form a water film on the entire inner surface. 粉体を同伴する排出ガスの処理プロセスにおいて、
(1)上端部が大きく開口し、下端ほど空間が絞り込まれる内面の構成を有する冷却処理部に高温の排出ガスを導入し、前記冷却処理部の上方側の空間に設けられ口径が前記上端部よりも小さな排出ガス導入部から噴出させるとともに、該排出ガスに前記冷却処理部の上方側の空間に設けられた冷却水導入部aから噴射された冷却水と接触させ、さらに前記冷却処理部設けられた複数の冷却水導入部からの冷却水を噴射し、両者を接触・混合して冷却処理する1次処理プロセスと、
(2)前記複数の冷却水導入部の内の少なくとも1つの前記上端部側の側面に配設された冷却水導入部cからの冷却水を、前記冷却処理部の内側面に対して接線方向に噴射させて下流ほど流速が上がり冷却水の密度を大きくする旋回流を形成し、かつ該内側面に下流ほど厚みが増大する水膜を形成させる2次処理プロセスと、
(3)冷却された排出ガスから、該排出ガスに同伴してきた粉体を分離処理する3次処理プロセスと、
を有することを特徴とする排出ガスの処理方法。
In the treatment process of exhaust gas accompanied by powder,
(1) A high-temperature exhaust gas is introduced into a cooling processing unit having an inner surface configuration in which the upper end portion is greatly opened and the space is narrowed toward the lower end, and the diameter is provided in the space above the cooling processing unit. with jetted from a small exhaust gas inlet than in contact with the outlet gas to the cooling processing unit of the upper cooling water injected from the cooling water inlet portion a provided in the space, further to the cooling processing unit A primary treatment process in which cooling water is injected from a plurality of cooling water introduction portions provided, and both are brought into contact with and mixed with each other to perform a cooling treatment;
(2) The cooling water from the cooling water introduction portion c disposed on the side surface on the upper end side of at least one of the plurality of cooling water introduction portions is tangential to the inner side surface of the cooling processing portion. A secondary treatment process that forms a swirling flow that increases the flow velocity toward the downstream and increases the density of the cooling water, and forms a water film that increases in thickness toward the downstream on the inner surface;
(3) a tertiary treatment process for separating the powder accompanying the exhaust gas from the cooled exhaust gas;
A process for treating exhaust gas, comprising:
JP2009172347A 2009-07-23 2009-07-23 Processing apparatus and processing method for exhaust gas accompanied by powder Expired - Fee Related JP5430267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009172347A JP5430267B2 (en) 2009-07-23 2009-07-23 Processing apparatus and processing method for exhaust gas accompanied by powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009172347A JP5430267B2 (en) 2009-07-23 2009-07-23 Processing apparatus and processing method for exhaust gas accompanied by powder

Publications (2)

Publication Number Publication Date
JP2011025140A JP2011025140A (en) 2011-02-10
JP5430267B2 true JP5430267B2 (en) 2014-02-26

Family

ID=43634533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009172347A Expired - Fee Related JP5430267B2 (en) 2009-07-23 2009-07-23 Processing apparatus and processing method for exhaust gas accompanied by powder

Country Status (1)

Country Link
JP (1) JP5430267B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101720086B1 (en) * 2015-09-04 2017-03-27 주식회사 글로벌스탠다드테크놀로지 Integrated Semiconductor Waste Gas Purification Apparatus
KR101866147B1 (en) * 2017-12-22 2018-06-08 이윤수 Multi-stage cross flow type cooling towers)
CN108854351A (en) * 2018-07-12 2018-11-23 庄五 A kind of industrial dust processing equipment of environmental protection
CN111359345A (en) * 2020-04-10 2020-07-03 余姚市日昇环保科技有限公司 Intelligent rotary washing dust removal purifier

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2688655B2 (en) * 1988-09-02 1997-12-10 千代田化工建設株式会社 Combustion treatment method and equipment for toxic gas
JP2004277574A (en) * 2003-03-17 2004-10-07 Ube Ind Ltd Cooling and dust removing method of synthesis gas, and its apparatus

Also Published As

Publication number Publication date
JP2011025140A (en) 2011-02-10

Similar Documents

Publication Publication Date Title
KR101995211B1 (en) Exhaust gas processing device
CN101497443B (en) Reactor cleaning apparatus
JP3648539B2 (en) Exhaust flow treatment system for oxidation treatment of semiconductor manufacturing exhaust
JP5430267B2 (en) Processing apparatus and processing method for exhaust gas accompanied by powder
CN101541400A (en) Gas processing apparatus
JP2008546525A (en) Method and apparatus for detoxifying treatment
TW495375B (en) Treatment system for removing hazardous substances from a semiconductor process waste gas stream
JP6336059B2 (en) Heat exchanger and exhaust gas treatment apparatus using the heat exchanger
JP6151980B2 (en) Powder discharge system
JP2017124345A (en) Exhaust gas detoxification device
JP2016014516A (en) Exhaust gas cooling device and exhaust gas cooling method
JP5297533B2 (en) Gas cleaning device and gas cleaning method
CN114923193B (en) Harmful gas combustion reactor
US20090056544A1 (en) Methods and apparatus for abating electronic device manufacturing tool effluent
JP7279985B2 (en) Gas treatment furnace and exhaust gas treatment equipment using the same
KR100743399B1 (en) An apparatus for treatment chlorine gas and perfluoro compounds from semiconductor manufacturing process
TWI742424B (en) Exhaust gas introduction nozzle, water treatment device, and exhaust gas treatment device
JP4594065B2 (en) Apparatus and method for treating fluorine compound contained in exhaust gas from semiconductor manufacturing process
JP2007090276A (en) Treatment method and treatment apparatus for exhaust gas
CN101357296A (en) Semiconductor discharged-gas processing device
KR20000062400A (en) Inlet structures for introducing a particulate solids containing and/or solids forming gas stream to a gas processing system
CN221432618U (en) Spray type neutralization washing tower
CN217134321U (en) Cleaning and etching device based on high-temperature phosphoric acid wet process
JP2010017636A (en) Scrubber and waste gas detoxification apparatus using the same
JP2013166146A (en) Exhaust gas cleaning method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5430267

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees