JP5424402B2 - Pyrroline-based nitroxide polymer and battery using the same - Google Patents

Pyrroline-based nitroxide polymer and battery using the same Download PDF

Info

Publication number
JP5424402B2
JP5424402B2 JP2009533174A JP2009533174A JP5424402B2 JP 5424402 B2 JP5424402 B2 JP 5424402B2 JP 2009533174 A JP2009533174 A JP 2009533174A JP 2009533174 A JP2009533174 A JP 2009533174A JP 5424402 B2 JP5424402 B2 JP 5424402B2
Authority
JP
Japan
Prior art keywords
pyrroline
active material
electrode active
battery
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009533174A
Other languages
Japanese (ja)
Other versions
JPWO2009038125A1 (en
Inventor
宏之 西出
研一 小柳津
信貴 藤本
祐治 金原
繁之 岩佐
謙太郎 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waseda University
Sumitomo Seika Chemicals Co Ltd
NEC Corp
Original Assignee
Waseda University
Sumitomo Seika Chemicals Co Ltd
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waseda University, Sumitomo Seika Chemicals Co Ltd, NEC Corp filed Critical Waseda University
Priority to JP2009533174A priority Critical patent/JP5424402B2/en
Publication of JPWO2009038125A1 publication Critical patent/JPWO2009038125A1/en
Application granted granted Critical
Publication of JP5424402B2 publication Critical patent/JP5424402B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • H01M4/606Polymers containing aromatic main chain polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F234/00Copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain and having one or more carbon-to-carbon double bonds in a heterocyclic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F34/00Homopolymers and copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain and having one or more carbon-to-carbon double bonds in a heterocyclic ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/109Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure of button or coin shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、ピロリン系ニトロキシド重合体、当該重合体を含有する電極活物質および当該電極活物質を用いた電池に関する。 The present invention relates to a pyrroline-based nitroxide polymer, an electrode active material containing the polymer, and a battery using the electrode active material.

ノート型パソコンや携帯電話等の急速な市場拡大に伴い、これらに用いられるエネルギー密度の高い小型大容量二次電池への要求が高まっている。この要求に応えるために、リチウムイオン等のアルカリ金属イオンを荷電担体としてその電荷授受に伴う電気化学反応を利用した二次電池が開発されている。中でもリチウムイオン二次電池は、エネルギー密度が高く、安定性に優れた大容量二次電池として種々の電子機器に利用されている。このようなリチウムイオン二次電池は、一般に、活物質として正極にリチウム含有遷移金属酸化物を、負極に炭素を用いたものであり、これら活物質へのリチウムイオンの挿入、脱離反応を利用して充放電を行っている。 With the rapid market expansion of notebook personal computers and mobile phones, there is an increasing demand for small high-capacity secondary batteries with high energy density used for these. In order to meet this demand, a secondary battery using an alkali metal ion such as lithium ion as a charge carrier and utilizing an electrochemical reaction accompanying charge transfer has been developed. Among these, lithium ion secondary batteries are used in various electronic devices as high-capacity secondary batteries having high energy density and excellent stability. Such a lithium ion secondary battery generally uses a lithium-containing transition metal oxide as a positive electrode as an active material and carbon as a negative electrode. Charging and discharging.

近年、より大容量化を目的に、電極反応に直接寄与する電極活物質としてラジカル化合物を利用した二次電池が提案されている。特許文献1には、正極、負極の少なくとも一方の活物質としてラジカル化合物を含有することを特徴とする二次電池が公開されている。
また、特許文献2には、ニトロキシル化合物を正極中に含有する蓄電デバイスが公開されている。このような蓄電デバイスでは、電極反応が速いことにより大電流で充放電ができるとされている。
特開2002−151084号公報 特開2002−304996号公報
In recent years, secondary batteries utilizing radical compounds as electrode active materials that directly contribute to electrode reactions have been proposed for the purpose of increasing capacity. Patent Document 1 discloses a secondary battery including a radical compound as an active material of at least one of a positive electrode and a negative electrode.
Patent Document 2 discloses an electricity storage device containing a nitroxyl compound in a positive electrode. In such an electricity storage device, it is said that charging and discharging can be performed with a large current due to a fast electrode reaction.
JP 2002-151084 A JP 2002-304996 A

しかしながら、特許文献1に記載の正極、負極の少なくとも一方の活物質がラジカル化合物を含有することを特徴とする二次電池や、特許文献2に記載の安定ラジカルを含むニトロキシル化合物を用いた蓄電デバイスは、繰り返し充放電後の容量低下の面において改善の余地があった。 However, a secondary battery in which at least one of the positive electrode and the negative electrode active material described in Patent Document 1 contains a radical compound, and an electricity storage device using a nitroxyl compound containing a stable radical described in Patent Document 2 However, there was room for improvement in terms of capacity reduction after repeated charge and discharge.

本発明は、大きな電流を取り出すことができ、かつ、繰り返し充放電を行っても容量の低下が少ない電池の電極材料として用いられるピロリン系ニトロキシド重合体、当該重合体を含有する電極活物質および当該電極活物質を用いた電池を提供することを目的とする。 The present invention is a pyrroline-based nitroxide polymer that can be used as an electrode material for a battery that can take out a large current and has little decrease in capacity even after repeated charge and discharge, an electrode active material containing the polymer, and the It aims at providing the battery using an electrode active material.

本発明は、一般式(1):

Figure 0005424402
(式中、nは、0または1である。)で表されるピロリン系ニトロキシド化合物を重合して得られ、数平均分子量が1000〜1000000であるピロリン系ニトロキシド重合体に関する。
また、本発明は、前記ピロリン系ニトロキシド重合体を含有する電極活物質に関する。
さらに、本発明は、前記電極活物質を用いた電池に関する。
以下に本発明を詳細に説明する。 The present invention relates to a general formula (1):
Figure 0005424402
(Wherein n is 0 or 1), and is a pyrroline nitroxide polymer obtained by polymerizing a pyrroline nitroxide compound represented by formula (1) and having a number average molecular weight of 1,000 to 1,000,000 .
The present invention also relates to an electrode active material containing the pyrroline nitroxide polymer.
Furthermore, the present invention relates to a battery using the electrode active material.
The present invention is described in detail below.

本発明に係るピロリン系ニトロキシド重合体は、下記一般式(1)で表されるピロリン系ニトロキシド化合物を重合して得られるものである。

Figure 0005424402
式中、nは、0または1である。The pyrroline nitroxide polymer according to the present invention is obtained by polymerizing a pyrroline nitroxide compound represented by the following general formula (1).
Figure 0005424402
In the formula, n is 0 or 1.

一般式(1)で表されるピロリン系ニトロキシド化合物は、繰り返し単位の数(n)が0または1である。nが2以上であると、当該ピロリン系ニトロキシド化合物を重合して得られるピロリン系ニトロキシド重合体を含有する電極活物質を用いた電池の容量が低下するおそれがある。 In the pyrroline nitroxide compound represented by the general formula (1), the number of repeating units (n) is 0 or 1. When n is 2 or more, the capacity of a battery using an electrode active material containing a pyrroline nitroxide polymer obtained by polymerizing the pyrroline nitroxide compound may be reduced.

一般式(1)で表されるピロリン系ニトロキシド化合物のうち、nが0である3−オキシラニル−2,2,5,5−テトラメチルピロリン−1−オキシルは、例えば、下記式に示すように、3−カルバモイル−2,2,5,5−テトラメチルピロリン−1−オキシルを用いる方法(Tetrahedron Letters,43(4),553−555(2002))により製造することができる。具体的には、水酸化ナトリウム水溶液等を用いて3−カルバモイル−2,2,5,5−テトラメチルピロリン−1−オキシルを加水分解して、3−カルボキシ−2,2,5,5−テトラメチルピロリン−1−オキシルとし、次に、アルゴンガスや窒素ガス等の不活性ガス雰囲気下、水素化リチウムアルミニウム−tert−ブトキシド等を用いてこれを還元することにより3−ホルミル−2,2,5,5−テトラメチルピロリン−1−オキシルとし、さらにトリメチルスルホニウムヨージド等を用いてこれを環化することにより3−オキシラニル−2,2,5,5−テトラメチルピロリン−1−オキシルを製造することができる。 Among the pyrroline-based nitroxide compounds represented by the general formula (1), 3-oxiranyl-2,2,5,5-tetramethylpyrrolin-1-oxyl in which n is 0 is, for example, as shown in the following formula: , 3-carbamoyl-2,2,5,5-tetramethylpyrroline-1-oxyl (Tetrahedron Letters, 43 (4), 553-555 (2002)). Specifically, 3-carbamoyl-2,2,5,5-tetramethylpyrrolin-1-oxyl is hydrolyzed using an aqueous sodium hydroxide solution or the like to give 3-carboxy-2,2,5,5- Tetramethylpyrroline-1-oxyl is then reduced, and this is reduced using lithium aluminum hydride-tert-butoxide or the like in an inert gas atmosphere such as argon gas or nitrogen gas, thereby forming 3-formyl-2,2 , 5,5-tetramethylpyrrolin-1-oxyl, and further cyclized with trimethylsulfonium iodide etc. to give 3-oxiranyl-2,2,5,5-tetramethylpyrrolin-1-oxyl. Can be manufactured.

Figure 0005424402
Figure 0005424402

また、一般式(1)で表されるピロリン系ニトロキシド化合物のうち、nが1であるピロリン系ニトロキシド置換グリシジルエーテルは、例えば、水酸化ナトリウムの存在下、テトラブチルアンモニウム硫酸水素ナトリウムを触媒に用いて、エピクロロヒドリンと4−ヒドロキシプロキシルとを反応させる方法(Macromolecules,26,3227−3229(1993))により製造することができる。 Further, among the pyrroline nitroxide compounds represented by the general formula (1), pyrroline nitroxide substituted glycidyl ether in which n is 1 uses, for example, sodium tetrabutylammonium hydrogensulfate as a catalyst in the presence of sodium hydroxide. Thus, it can be produced by a method of reacting epichlorohydrin and 4-hydroxyproxil (Macromolecules, 26, 3227-3229 (1993)).

本発明に係るピロリン系ニトロキシド重合体は、前記ピロリン系ニトロキシド化合物を重合して得られるものである。
前記ピロリン系ニトロキシド化合物を重合する方法としては、特に限定されるものではなく、例えば、塊状重合法および溶液重合法等を用いて重合する方法を挙げることができる。
The pyrroline nitroxide polymer according to the present invention is obtained by polymerizing the pyrroline nitroxide compound.
The method for polymerizing the pyrroline nitroxide compound is not particularly limited, and examples thereof include a method of polymerizing using a bulk polymerization method, a solution polymerization method, and the like.

前記塊状重合法を用いて重合する方法としては、例えば、撹拌機、温度計、アルゴンガスや窒素ガス等の不活性ガスを導入するためのガス導入管および冷却管を備えた反応器を用いて、所定量のピロリン系ニトロキシド化合物を仕込み、不活性ガスにより脱酸素した後、撹拌しながら重合開始剤を添加する方法が挙げられる。 Examples of the polymerization method using the bulk polymerization method include using a reactor equipped with a stirrer, a thermometer, a gas introduction pipe for introducing an inert gas such as argon gas or nitrogen gas, and a cooling pipe. There is a method in which a predetermined amount of a pyrroline-based nitroxide compound is charged, deoxygenated with an inert gas, and then a polymerization initiator is added with stirring.

前記溶液重合法を用いて重合する方法としては、例えば、前記塊状重合法を用いて重合する場合において、所定量のピロリン系ニトロキシド化合物とともに不活性溶媒を仕込み、不活性ガスにより脱酸素した後、撹拌しながら重合開始剤を添加する方法が挙げられる。 As a method of polymerizing using the solution polymerization method, for example, in the case of polymerizing using the bulk polymerization method, after adding an inert solvent together with a predetermined amount of pyrroline nitroxide compound, deoxidizing with an inert gas, A method of adding a polymerization initiator while stirring can be mentioned.

前記溶液重合法を用いて重合する場合に使用する不活性溶媒としては、例えば、ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒;n−ヘキサン、n−ヘプタン、リグロイン等の非環式飽和炭化水素系溶媒;シクロペンタン、メチルシクロペンタン、シクロヘキサン、メチルシクロヘキサン等の環式飽和炭化水素系溶媒;ジエチルエーテル、テトラヒドロフラン等のエーテル系溶媒等の不活性溶媒が挙げられる。これらの中でも、工業的に入手が容易で、安価であり、得られる重合反応生成物の品質が安定する観点から、芳香族炭化水素系溶媒および非環式飽和炭化水素系溶媒が好ましく、中でもトルエンおよびn−ヘキサンが好適に用いられる。 Examples of the inert solvent used for polymerization using the solution polymerization method include aromatic hydrocarbon solvents such as benzene, toluene and xylene; acyclic saturation such as n-hexane, n-heptane and ligroin Hydrocarbon solvents; cyclic saturated hydrocarbon solvents such as cyclopentane, methylcyclopentane, cyclohexane and methylcyclohexane; and inert solvents such as ether solvents such as diethyl ether and tetrahydrofuran. Among these, aromatic hydrocarbon solvents and acyclic saturated hydrocarbon solvents are preferred from the viewpoint of being easily available industrially, inexpensive, and stabilizing the quality of the resulting polymerization reaction product. And n-hexane are preferably used.

前記溶液重合法を用いて重合する場合における前記不活性溶媒の使用量は、特に制限されるものではないが、反応を円滑に進行させる観点および使用量に見合うだけの効果を得る観点から、ピロリン系ニトロキシド化合物100重量部に対して1〜200重量部であることが好ましい。 The amount of the inert solvent used in the polymerization using the solution polymerization method is not particularly limited. However, from the viewpoint of smoothly proceeding the reaction and obtaining an effect that is commensurate with the amount used, pyrroline is used. The amount is preferably 1 to 200 parts by weight based on 100 parts by weight of the nitroxide compound.

前記重合開始剤としては特に限定されず、例えば、アニオン系重合開始剤を用いて重合することができる。アニオン系重合開始剤としては、例えば、tert−ブトキシカリウム、グリニャール試薬(n−ブチルマグネシウムブロマイド、イソブチルマグネシウムブロマイド、tert−ブチルマグネシウムブロマイド、n−ブチルマグネシウムクロライド、イソブチルマグネシウムクロライド、tert−ブチルマグネシウムクロライド等)、アルキルリチウム(n−ブチルリチウム、tert−ブチルリチウム、1,1−ジフェニルヘキシルリチウム等)、ジエチル亜鉛およびジエチル亜鉛/水系開始剤等が挙げられる。これらの中でも、得られる重合反応生成物の品質が安定する観点からtert−ブトキシカリウムおよびジエチル亜鉛/水系開始剤が好適に用いられる。 It does not specifically limit as said polymerization initiator, For example, it can superpose | polymerize using an anionic polymerization initiator. Examples of the anionic polymerization initiator include tert-butoxy potassium, Grignard reagent (n-butylmagnesium bromide, isobutylmagnesium bromide, tert-butylmagnesium bromide, n-butylmagnesium chloride, isobutylmagnesium chloride, tert-butylmagnesium chloride, etc. ), Alkyllithium (n-butyllithium, tert-butyllithium, 1,1-diphenylhexyllithium, etc.), diethylzinc, diethylzinc / water-based initiator, and the like. Among these, tert-butoxy potassium and diethyl zinc / water based initiator are preferably used from the viewpoint of stabilizing the quality of the obtained polymerization reaction product.

前記重合開始剤の使用量は、使用する重合開始剤の種類や反応温度により異なるが、通常、ピロリン系ニトロキシド化合物100重量部に対して0.05〜20重量部であることが好ましい。なお、前記重合反応において、必要に応じてイソプロピルアルコール等の連鎖移動剤やメタノール等の重合停止剤等の添加剤を適宜加えてもよい。 Although the usage-amount of the said polymerization initiator changes with kinds and reaction temperature of a polymerization initiator to be used, it is preferable that it is 0.05-20 weight part normally with respect to 100 weight part of pyrroline nitroxide compounds. In the polymerization reaction, additives such as a chain transfer agent such as isopropyl alcohol and a polymerization terminator such as methanol may be added as necessary.

反応温度としては、使用する重合開始剤の種類により異なるが、通常、−100〜100℃が好ましく、−50〜80℃がより好ましい。反応時間は前記反応温度により異なるため一概には言えないが、通常、5〜40時間である。 As reaction temperature, although it changes with kinds of polymerization initiator to be used, -100-100 degreeC is preferable normally and -50-80 degreeC is more preferable. Although the reaction time varies depending on the reaction temperature, it cannot be generally stated, but it is usually 5 to 40 hours.

かくして得られたピロリン系ニトロキシド重合体は、例えば、反応液をヘキサン等の脂肪族炭化水素等の溶媒と混合し、当該重合反応生成物を沈澱させた後、ろ過することにより単離することができる。さらに、メタノール、ヘキサン等を用いて未反応物等を除去、洗浄し、また希塩酸、水等を用いて重合開始剤残渣を除去、洗浄し、乾燥することにより精製することができる。 The pyrroline-based nitroxide polymer thus obtained can be isolated by, for example, mixing the reaction solution with a solvent such as an aliphatic hydrocarbon such as hexane, precipitating the polymerization reaction product, and then filtering. it can. Furthermore, it can be purified by removing and washing unreacted substances using methanol, hexane or the like, and removing, washing and drying the polymerization initiator residue using dilute hydrochloric acid, water or the like.

本発明に係るピロリン系ニトロキシド重合体は、架橋構造を有するものであってもよい。架橋構造を有するピロリン系ニトロキシド重合体は、例えば、前記ピロリン系ニトロキシド化合物を重合する際に架橋剤を添加して、これと共重合させることにより製造することができる。 The pyrroline-based nitroxide polymer according to the present invention may have a crosslinked structure. The pyrroline-based nitroxide polymer having a crosslinked structure can be produced, for example, by adding a crosslinking agent when copolymerizing the pyrroline-based nitroxide compound and copolymerizing it.

前記架橋剤としては、分子内に複数個の重合性不飽和基を有する化合物であれば特に限定されず、例えば、1,2,3,4−ジエポキシブタン、1,2,4,5−ジエポキシペンタン、1,2,5,6−ジエポキシヘキサン、1,2,6,7−ジエポキシヘプタン、1,2,7,8−ジエポキシオクタン、1,2,8,9−ジエポキシノナン、1,2,9,10−ジエポキシデカン等が挙げられる。これらの中でも、高い重合反応性を有する観点から、1,2,7,8−ジエポキシオクタン、1,2,8,9−ジエポキシノナンおよび1,2,9,10−ジエポキシデカンが好適に用いられる。なお、これら架橋剤は、それぞれ1種単独で用いてもよいし、あるいは2種以上を併用してもよい。 The crosslinking agent is not particularly limited as long as it is a compound having a plurality of polymerizable unsaturated groups in the molecule. For example, 1,2,3,4-diepoxybutane, 1,2,4,5- Diepoxypentane, 1,2,5,6-diepoxyhexane, 1,2,6,7-diepoxyheptane, 1,2,7,8-diepoxyoctane, 1,2,8,9-diepoxy Nonane, 1,2,9,10-diepoxydecane and the like can be mentioned. Among these, 1,2,7,8-diepoxyoctane, 1,2,8,9-diepoxynonane and 1,2,9,10-diepoxydecane are preferable from the viewpoint of high polymerization reactivity. Used for. In addition, these crosslinking agents may be used individually by 1 type, respectively, or may use 2 or more types together.

前記架橋剤の使用割合は、特に限定されるものではないが、前記ピロリン系ニトロキシド化合物1モルに対して0.00001〜0.25モルの割合であることが好ましく、0.00005〜0.1モルの割合であることがより好ましく、0.0001〜0.05モルの割合であることがさらに好ましい。 The ratio of the crosslinking agent used is not particularly limited, but is preferably a ratio of 0.00001 to 0.25 mol with respect to 1 mol of the pyrroline nitroxide compound, and 0.00005 to 0.1. A molar ratio is more preferable, and a 0.0001 to 0.05 molar ratio is even more preferable.

本発明に係るピロリン系ニトロキシド重合体の数平均分子量は500〜10000000であることが好ましく、1000〜1000000であることがより好ましい。500未満であると、ピロリン系ニトロキシド重合体が電解液に溶解することにより、当該ピロリン系ニトロキシド重合体を含有する電極活物質を用いた電池の容量が低下するおそれがあり、10000000を超えると、取り扱いが困難になるおそれがある。
なお、上記数平均分子量は、ゲルパーミエーションクロマトグラフィー法によって測定された標準ポリスチレン換算値のことをいう。
The number average molecular weight of the pyrroline-based nitroxide polymer according to the present invention is preferably 500 to 10000000, and more preferably 1000 to 1000000. If it is less than 500, the capacity of the battery using the electrode active material containing the pyrroline nitroxide polymer may be reduced by dissolving the pyrroline nitroxide polymer in the electrolytic solution, and if it exceeds 10000000, Handling may be difficult.
In addition, the said number average molecular weight means the standard polystyrene conversion value measured by the gel permeation chromatography method.

本発明に係る電極活物質は、本発明に係るピロリン系ニトロキシド重合体を含有するものである。このような電極活物質もまた本発明の1つである。
また、本発明に係る電池は、本発明に係る電極活物質を用いたものである。
このような電池もまた本発明の1つである。
The electrode active material according to the present invention contains the pyrroline nitroxide polymer according to the present invention. Such an electrode active material is also one aspect of the present invention.
The battery according to the present invention uses the electrode active material according to the present invention.
Such a battery is also one aspect of the present invention.

図1に本発明に係る電池の実施形態の一例を示す。図1に示す電池は、正極5と負極3とを、電解質を含有するセパレータ4を介して対向するように重ね合わせ、さらに正極5に正極集電体6を重ね合わせた構成となっている。これらは負極側のステンレス外装1と正極側のステンレス外装1とで外装され、その間には、両者の電気的接触を防ぐ目的で、プラスチック樹脂等の絶縁性材料からなる絶縁パッキン2が配置されている。なお、電解質として固体電解質やゲル電解質を用いる場合は、電解質を含有するセパレータ4に代えて、これらの電解質を電極間に介在させる形態とすることもできる。 FIG. 1 shows an example of an embodiment of a battery according to the present invention. The battery shown in FIG. 1 has a configuration in which a positive electrode 5 and a negative electrode 3 are stacked so as to face each other with a separator 4 containing an electrolyte, and a positive electrode current collector 6 is further stacked on the positive electrode 5. These are covered with a stainless steel outer sheath 1 on the negative electrode side and a stainless steel outer sheath 1 on the positive electrode side, and an insulating packing 2 made of an insulating material such as a plastic resin is disposed between them for the purpose of preventing electrical contact between them. Yes. In addition, when using solid electrolyte and gel electrolyte as electrolyte, it can replace with the separator 4 containing electrolyte, and can also be set as the form which interposes these electrolytes between electrodes.

本発明に係る電極活物質は、このような電池において、負極3、正極5または両電極に用いることができる。また、本発明に係る電池は、負極3、正極5または両電極の電極活物質として、本発明に係る電極活物質を用いたものである。
以下に、電池を構成する主な部材等に関して説明する。
The electrode active material according to the present invention can be used for the negative electrode 3, the positive electrode 5, or both electrodes in such a battery. In addition, the battery according to the present invention uses the electrode active material according to the present invention as the electrode active material of the negative electrode 3, the positive electrode 5, or both electrodes.
Below, the main members etc. which comprise a battery are demonstrated.

(1)電極活物質
本発明において「電極活物質」とは、充電反応および放電反応等の電極反応に直接寄与する物質のことをいい、電池システムの中心的役割を果たすものである。
本発明に係る電極活物質は、本発明に係るピロリン系ニトロキシド重合体を含有するものであり、正極および/または負極の電極活物質として、本発明に係るピロリン系ニトロキシド重合体をそれぞれ単独で用いてもよいし、また、他の電極活物質と組み合わせて電極活物質としてもよい。
(1) Electrode Active Material In the present invention, the “electrode active material” refers to a material that directly contributes to electrode reactions such as charge reaction and discharge reaction, and plays a central role in the battery system.
The electrode active material according to the present invention contains the pyrroline nitroxide polymer according to the present invention, and each of the pyrroline nitroxide polymer according to the present invention is used alone as the positive electrode and / or negative electrode active material. Alternatively, the electrode active material may be combined with other electrode active materials.

本発明に係るピロリン系ニトロキシド重合体を正極の電極活物質に用いる場合、他の電極活物質としては、金属酸化物、ジスルフィド化合物、他の安定ラジカル化合物および導電性高分子等を挙げることができる。 When the pyrroline-based nitroxide polymer according to the present invention is used as an electrode active material for a positive electrode, examples of other electrode active materials include metal oxides, disulfide compounds, other stable radical compounds, and conductive polymers. .

前記金属酸化物としては、例えば、LiMnO、LiMn(0<x<2)等のマンガン酸リチウムまたはスピネル構造を有するマンガン酸リチウム、MnO、LiCoO、LiNiO、あるいはLi(0<y<2)、オリビン系材料LiFePO、スピネル構造中のMnの一部を他の遷移金属で置換した材料LiNi0.5Mn1.5、LiCr0.5Mn1.5、LiCo0.5Mn1.5、LiCoMnO、LiNi0.5Mn0.5、LiNi0.33Mn0,33Co0.33、LiNi0.8Co0.2、LiN0.5Mn1.5−zTi(0<z<1.5)等が挙げられる。Examples of the metal oxide include lithium manganate such as LiMnO 2 and Li x Mn 2 O 4 (0 <x <2), lithium manganate having a spinel structure, MnO 2 , LiCoO 2 , LiNiO 2 , or Li y V 2 O 5 (0 <y <2), olivine-based material LiFePO 4 , materials obtained by substituting a part of Mn in the spinel structure with other transition metals, LiNi 0.5 Mn 1.5 O 4 , LiCr 0. 5 Mn 1.5 O 4 , LiCo 0.5 Mn 1.5 O 4 , LiCoMnO 4 , LiNi 0.5 Mn 0.5 O 2 , LiNi 0.33 Mn 0,33 Co 0.33 O 2 , LiNi 0 0.8 Co 0.2 O 2 , LiN 0.5 Mn 1.5-z Ti z O 4 (0 <z <1.5) and the like.

前記ジスルフィド化合物としては、ジチオグリコール、2,5−ジメルカプト−1,3,4−チアジアゾール、S−トリアジン−2,4,6−トリチオール等が挙げられる。 Examples of the disulfide compound include dithioglycol, 2,5-dimercapto-1,3,4-thiadiazole, S-triazine-2,4,6-trithiol and the like.

前記他の安定ラジカル化合物としては、ポリ(2,2,6,6−テトラメチルピペリジノキシル−4−イル メタクリレート)等が挙げられる。 Examples of the other stable radical compound include poly (2,2,6,6-tetramethylpiperidinoxyl-4-yl methacrylate).

前記導電性高分子としては、ポリアセチレン、ポリフェニレン、ポリアニリン、ポリピロール等が挙げられる。 Examples of the conductive polymer include polyacetylene, polyphenylene, polyaniline, and polypyrrole.

これらの中では、マンガン酸リチウムおよびLiCoOが好適に用いられる。これら他の電極活物質は、1種単独を前記ピロリン系ニトロキシド重合体と組み合わせてもよいし、2種以上を組み合わせて使用してもよい。Among these, lithium manganate and LiCoO 2 are preferably used. These other electrode active materials may be used alone or in combination with the pyrroline nitroxide polymer, or may be used in combination of two or more.

前記ピロリン系ニトロキシド重合体を負極の電極活物質に用いる場合、他の電極活物質としては、グラファイトや非晶質カーボン、金属リチウムやリチウム合金、リチウムイオン吸蔵炭素、金属ナトリウム、他の安定ラジカル化合物および導電性高分子等を挙げることができる。 When the pyrroline-based nitroxide polymer is used as an electrode active material for a negative electrode, other electrode active materials include graphite, amorphous carbon, metallic lithium and lithium alloy, lithium ion storage carbon, metallic sodium, and other stable radical compounds. And conductive polymers.

他の安定ラジカル化合物としては、ポリ(2,2,6,6−テトラメチルピペリジノキシル−4−イル−メタクリレート)等が挙げられる。 Other stable radical compounds include poly (2,2,6,6-tetramethylpiperidinoxyl-4-yl-methacrylate) and the like.

これらの中でも特に、金属リチウムまたはグラファイトと組み合わせることが好ましい。なお、これらの形状としては特に限定されず、薄膜状のもの、バルク状のもの、粉末を固めたもの、繊維状のもの、フレーク状のもの等であってもよい。これら他の電極活物質は、1種単独を前記ピロリン系ニトロキシド重合体と組み合わせてもよいし、2種以上を組み合わせて使用してもよい。 Among these, it is preferable to combine with metallic lithium or graphite. These shapes are not particularly limited, and may be a thin film, a bulk, a powder, a fiber, a flake, or the like. These other electrode active materials may be used alone or in combination with the pyrroline nitroxide polymer, or may be used in combination of two or more.

本発明に係る電池は、正極もしくは負極の一方の電極、または両方の電極における電極活物質として、本発明に係るピロリン系ニトロキシド重合体を含有する電極活物質を用いるが、一方の電極にのみ前記ピロリン系ニトロキシド重合体を含有する電極活物質を用いる場合、もう一方の電極における電極活物質としては、前記他の電極活物質として例示した従来公知の電極活物質を用いることができる。 The battery according to the present invention uses the electrode active material containing the pyrroline-based nitroxide polymer according to the present invention as the electrode active material of one of the positive electrode or the negative electrode, or both electrodes, but only for one electrode. When an electrode active material containing a pyrroline-based nitroxide polymer is used, a conventionally known electrode active material exemplified as the other electrode active material can be used as the electrode active material in the other electrode.

本発明において、エネルギー密度の観点から、前記ピロリン系ニトロキシド重合体を含有する電極活物質は、正極の電極活物質として用いるのが好ましく、ピロリン系ニトロキシド重合体を前記他の電極活物質と組み合わせることなく単独で用いるのがより好ましい。また、このときの負極の電極活物質としては、金属リチウムまたはグラファイトを用いることが好ましい。 In the present invention, from the viewpoint of energy density, the electrode active material containing the pyrroline-based nitroxide polymer is preferably used as a positive electrode active material, and the pyrroline-based nitroxide polymer is combined with the other electrode active material. It is more preferable to use it alone. Moreover, it is preferable to use metallic lithium or graphite as the electrode active material of the negative electrode at this time.

(2)導電付与剤(補助導電材)およびイオン伝導補助材
本発明に係る電極活物質を正極の電極活物質として使用する場合、インピーダンスを低下させ、エネルギー密度、出力特性を向上させる目的で、導電付与剤(補助導電材)やイオン伝導補助材を混合させてもよい。
(2) Conductivity-imparting agent (auxiliary conductive material) and ion conduction auxiliary material When the electrode active material according to the present invention is used as an electrode active material for a positive electrode, for the purpose of reducing impedance and improving energy density and output characteristics, A conductivity-imparting agent (auxiliary conductive material) or an ion conduction auxiliary material may be mixed.

前記補助導電材としては、グラファイト、カーボンブラック、アセチレンブラック等の炭素質微粒子、気相成長炭素繊維(VGCF)、カーボンナノチューブ等の炭素繊維、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリアセン等の導電性高分子が挙げられる。
また、前記イオン伝導補助材としては、高分子ゲル電解質、高分子固体電解質等が挙げられる。これらの中でも、炭素繊維が好適に用いられ、中でも気相成長炭素繊維がより好適に用いられる。炭素繊維を用いることにより、電極の引張り強度がより大きくなり、電極にひびが入ったり剥がれたりすることが少なくなる。これら補助導電材やイオン伝導補助材は、1種単独で用いてもよいし、あるいは2種以上を併用してもよい。
前記補助導電材やイオン伝導補助材を用いる場合、電極中における混合割合としては、10〜80重量%が好ましい。
Examples of the auxiliary conductive material include carbonaceous fine particles such as graphite, carbon black, and acetylene black, carbon fibers such as vapor grown carbon fiber (VGCF) and carbon nanotubes, polyaniline, polypyrrole, polythiophene, polyacetylene, and polyacene. Molecule.
Examples of the ion conduction auxiliary material include polymer gel electrolytes and polymer solid electrolytes. Among these, carbon fibers are preferably used, and vapor-grown carbon fibers are more preferably used. By using carbon fiber, the tensile strength of the electrode is increased, and the electrode is less likely to crack or peel off. These auxiliary conductive materials and ion conductive auxiliary materials may be used alone or in combination of two or more.
When the auxiliary conductive material or the ion conductive auxiliary material is used, the mixing ratio in the electrode is preferably 10 to 80% by weight.

(3)結着剤
本発明に係る電極活物質では、各構成材料間の結びつきを強めるために、結着剤を混合させてもよい。
前記結着剤としては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ビニリデンフロライド−ヘキサフルオロプロピレン共重合体、ビニリデンフロライド−テトラフルオロエチレン共重合体、スチレン−ブタジエン共重合ゴム、ポリプロピレン、ポリエチレン、ポリイミド、各種ポリウレタン等の樹脂バインダーが挙げられる。これら結着剤は、1種単独で用いてもよいし、あるいは2種以上を併用してもよい。
前記結着剤を用いる場合、電極中の混合割合としては、5〜30重量%が好ましい。
(3) Binder In the electrode active material according to the present invention, a binder may be mixed in order to strengthen the connection between the constituent materials.
Examples of the binder include polytetrafluoroethylene, polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer rubber, polypropylene, polyethylene, and polyimide. And resin binders such as various polyurethanes. These binders may be used individually by 1 type, or may use 2 or more types together.
When the binder is used, the mixing ratio in the electrode is preferably 5 to 30% by weight.

(4)増粘剤
本発明に係る電極活物質を形成させるためのスラリーを作製しやすくするために、増粘剤を混合させてもよい。
前記増粘剤としては、カルボキシメチルセルロース、ポリエチレンオキシド、ポリプロピレンオキシド、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルヒドロキシエチルセルロース、ポリビニルアルコール、ポリアクリルアミド、ポリアクリル酸ヒドロキシエチル、ポリアクリル酸アンモニウム、ポリアクリル酸ソーダ等が挙げられる。これら増粘剤は、1種単独で用いてもよいし、あるいは2種以上を併用してもよい。
前記増粘剤を用いる場合、電極中の混合割合としては、0.1〜5重量%が好ましい。
(4) Thickener In order to make it easy to produce a slurry for forming the electrode active material according to the present invention, a thickener may be mixed.
Examples of the thickener include carboxymethyl cellulose, polyethylene oxide, polypropylene oxide, hydroxyethyl cellulose, hydroxypropyl cellulose, carboxymethyl hydroxyethyl cellulose, polyvinyl alcohol, polyacrylamide, polyethyl acrylate, ammonium polyacrylate, and sodium polyacrylate. Is mentioned. These thickeners may be used individually by 1 type, or may use 2 or more types together.
When the thickener is used, the mixing ratio in the electrode is preferably 0.1 to 5% by weight.

(5)触媒
本発明に係る電極活物質において、電極反応をより円滑に行うために、酸化還元反応を助ける触媒を混合させてもよい。
前記触媒としては、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリアセン等の導電性高分子、ピリジン誘導体、ピロリドン誘導体、ベンズイミダゾール誘導体、ベンゾチアゾール誘導体、アクリジン誘導体等の塩基性化合物、金属イオン錯体等が挙げられる。これら触媒は、1種単独で用いてもよいし、あるいは2種以上を併用してもよい。
前記触媒を用いる場合、電極中の混合割合としては、10重量%以下が好ましい。
(5) Catalyst In the electrode active material according to the present invention, a catalyst that assists the oxidation-reduction reaction may be mixed in order to perform the electrode reaction more smoothly.
Examples of the catalyst include conductive polymers such as polyaniline, polypyrrole, polythiophene, polyacetylene, and polyacene, basic compounds such as pyridine derivatives, pyrrolidone derivatives, benzimidazole derivatives, benzothiazole derivatives, and acridine derivatives, and metal ion complexes. . These catalysts may be used individually by 1 type, or may use 2 or more types together.
When the catalyst is used, the mixing ratio in the electrode is preferably 10% by weight or less.

(6)集電体およびセパレータ
本発明に係る電極活物質に接触させて用いられる集電体としては、ニッケル、アルミニウム、銅、金、銀、アルミニウム合金、ステンレス、炭素等が挙げられ、箔、金属平板、メッシュ状等の形状のものを用いることができる。また、集電体に触媒効果を持たせたり、電極活物質と集電体とを化学結合させたりしてもよい。
一方、セパレータとしては、ポリエチレン、ポリプロピレン等からなる多孔質フィルムや不織布等を挙げることができる。
(6) Current collector and separator Examples of the current collector used in contact with the electrode active material according to the present invention include nickel, aluminum, copper, gold, silver, aluminum alloy, stainless steel, carbon, and the like. A metal flat plate or mesh shape can be used. Further, the current collector may have a catalytic effect, or the electrode active material and the current collector may be chemically bonded.
On the other hand, examples of the separator include porous films and nonwoven fabrics made of polyethylene, polypropylene, and the like.

(7)電解質
本発明に係る電池において、電解質は、負極と正極の両極間の荷電担体輸送を行うものであり、一般には20℃で10−5〜10−1S/cmのイオン伝導性を有していることが好ましい。前記電解質としては、例えば、電解質塩を溶媒に溶解した電解液を用いることができる。
前記電解質塩としては、例えば、LiPF、LiClO、LiBF、LiCFSO、Li(CFSON、Li(CSON、Li(CFSOC、Li(CSOC等の従来公知の材料を挙げることができる。これら電解質塩は、1種単独で用いてもよいし、あるいは2種以上を併用してもよい。
前記溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、γ−ブチロラクトン、テトラヒドロフラン、ジオキソラン、スルホラン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン等の有機溶媒を挙げることができる。これら溶媒は、1種単独で用いてもよいし、あるいは2種以上を併用してもよい。
(7) Electrolyte In the battery according to the present invention, the electrolyte performs charge carrier transport between the negative electrode and the positive electrode, and generally has an ionic conductivity of 10 −5 to 10 −1 S / cm at 20 ° C. It is preferable to have. As the electrolyte, for example, an electrolytic solution in which an electrolyte salt is dissolved in a solvent can be used.
Examples of the electrolyte salt include LiPF 6 , LiClO 4 , LiBF 4 , LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N, Li (C 2 F 5 SO 2 ) 2 N, Li (CF 3 SO 2 ) Conventionally known materials such as 3 C and Li (C 2 F 5 SO 2 ) 3 C can be mentioned. These electrolyte salts may be used individually by 1 type, or may use 2 or more types together.
Examples of the solvent include ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, γ-butyrolactone, tetrahydrofuran, dioxolane, sulfolane, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl. An organic solvent such as -2-pyrrolidone can be mentioned. These solvents may be used alone or in combination of two or more.

また、前記電解質として高分子化合物に前記電解質塩を含有させた固体電解質や高分子化合物に前記電解液を含ませてゲル状にした固体電解質を用いることもできる。
前記高分子化合物としては、ポリフッ化ビニリデン、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−エチレン共重合体、フッ化ビニリデン−モノフルオロエチレン共重合体、フッ化ビニリデン−トリフルオロエチレン共重合体、フッ化ビニリデン−テトラフルオロエチレン共重合体、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン三元共重合体等のフッ化ビニリデン系重合体や、アクリロニトリル−メチルメタクリレート共重合体、アクリロニトリル−メチルアクリレート共重合体、アクリロニトリル−エチルメタクリレート共重合体、アクリロニトリル−エチルアクリレート共重合体、アクリロニトリル−メタクリル酸共重合体、アクリロニトリル−アクリル酸共重合体、アクリロニトリル−ビニルアセテート共重合体等のアクリロニトリル系重合体、さらにポリエチレンオキサイド、エチレンオキサイド−プロピレンオキサイド共重合体、これらのアクリレート体やメタクリレート体の重合体等が挙げられる。
Further, as the electrolyte, a solid electrolyte in which the electrolyte salt is contained in a polymer compound or a solid electrolyte in which the electrolyte solution is contained in a polymer compound to form a gel can be used.
Examples of the polymer compound include polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-ethylene copolymer, vinylidene fluoride-monofluoroethylene copolymer, and vinylidene fluoride-trifluoroethylene copolymer. Polymers, vinylidene fluoride-tetrafluoroethylene copolymers, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene terpolymers, etc., vinylidene fluoride polymers, acrylonitrile-methyl methacrylate copolymers, acrylonitrile- Methyl acrylate copolymer, acrylonitrile-ethyl methacrylate copolymer, acrylonitrile-ethyl acrylate copolymer, acrylonitrile-methacrylic acid copolymer, acrylonitrile-acrylic acid copolymer, acrylo Tolyl - vinyl acetate copolymer, acrylonitrile-based polymer, further polyethylene oxide, ethylene oxide - propylene oxide copolymer, polymer and the like of these acrylates body or methacrylate products thereof.

(8)電池形状
本発明に係る電池の形状は特に限定されず、従来公知のものを用いることができる。例えば、電極積層体、あるいは巻回体を金属ケース、樹脂ケース、あるいはアルミニウム箔等の金属箔と合成樹脂フィルムからなるラミネートフィルム等によって封止したもの等が挙げられ、円筒型、角型、コイン型、およびシート型等が挙げられる。
(8) Battery shape The shape of the battery according to the present invention is not particularly limited, and conventionally known batteries can be used. For example, an electrode laminate or a wound body is sealed with a metal case, a resin case, or a laminate film composed of a metal foil such as an aluminum foil and a synthetic resin film, etc. Examples include molds and sheet molds.

(9)電池の製造方法
本発明に係る電池の製造方法としては特に限定されず、材料に応じて適宜選択した方法を用いることができる。例えば、本発明に係る電極活物質、導電付与剤等に溶媒を加えスラリー状にして電極集電体に塗布し、加熱もしくは常温で溶媒を揮発させることにより電極を作製し、さらにこの電極を対極、セパレータを挟んで積層または巻回して外装体で包み、電解液を注入して封止するといった方法である。スラリー化のための溶媒としては、テトラヒドロフラン、ジエチルエーテル、エチレングリコールジメチルエーテル、ジオキサン等のエーテル系溶媒、N,N−ジメチルホルムアミド、N−メチル−2−ピロリドン等のアミン系溶媒、ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒、ヘキサン、ヘプタン等の脂肪族炭化水素系溶媒、クロロホルム、ジクロロメタン、ジクロロエタン、トリクロロエタン、四塩化炭素等のハロゲン化炭化水素系溶媒、アセトン、メチルエチルケトン等のアルキルケトン系溶媒、メタノール、エタノール、イソプロピルアルコール等のアルコール系溶媒、ジメチルスルホキシド、水等が挙げられる。また、電極の作製法としては、電極活物質、導電付与剤等を乾式で混練した後、薄膜化し電極集電体上に積層する方法もある。
(9) Battery Manufacturing Method The battery manufacturing method according to the present invention is not particularly limited, and a method appropriately selected according to the material can be used. For example, a solvent is added to the electrode active material, the conductivity-imparting agent, etc. according to the present invention to form a slurry, which is applied to the electrode current collector, and the electrode is produced by heating or volatilizing the solvent at room temperature. In this method, the separators are stacked or wound, wrapped with an outer package, and injected with an electrolyte solution to be sealed. Solvents for slurrying include ether solvents such as tetrahydrofuran, diethyl ether, ethylene glycol dimethyl ether and dioxane, amine solvents such as N, N-dimethylformamide and N-methyl-2-pyrrolidone, benzene, toluene and xylene. Aromatic hydrocarbon solvents such as hexane, heptane, etc., halogenated hydrocarbon solvents such as chloroform, dichloromethane, dichloroethane, trichloroethane, carbon tetrachloride, alkyl ketone solvents such as acetone, methyl ethyl ketone, etc. , Alcohol solvents such as methanol, ethanol and isopropyl alcohol, dimethyl sulfoxide, water and the like. In addition, as an electrode manufacturing method, there is a method in which an electrode active material, a conductivity-imparting agent, and the like are kneaded in a dry manner and then thinned and laminated on an electrode current collector.

本発明に係る電池の製造方法では、電極活物質を構成する化合物として前記ピロリン系ニトロキシド重合体そのものを用いる場合と、電極反応によって前記ピロリン系ニトロキシド重合体に変化する重合体を用いる場合とがある。このような電極反応によって前記ピロリン系ニトロキシド重合体に変化する重合体の例としては、前記ピロリン系ニトロキシド重合体を還元したアニオン体と、リチウムイオンやナトリウムイオンといった電解質カチオンとからなるリチウム塩やナトリウム塩、および、前記ピロリン系ニトロキシド重合体を酸化したカチオン体と、PF やBF といった電解質アニオンとからなる塩等が挙げられる。
本発明に係る電池において、電極からのリードの取り出し、外装等のその他の製造条件は電池の製造方法として従来公知の方法を用いることができる。
In the battery manufacturing method according to the present invention, the pyrroline nitroxide polymer itself may be used as a compound constituting the electrode active material, or a polymer that changes to the pyrroline nitroxide polymer by an electrode reaction may be used. . Examples of the polymer that changes to the pyrroline nitroxide polymer by such an electrode reaction include a lithium salt or sodium consisting of an anion obtained by reducing the pyrroline nitroxide polymer and an electrolyte cation such as lithium ion or sodium ion. salt, and a cation body oxidizing the pyrophosphate-based nitroxide polymer, PF 6 - and BF 4 - salts, and the like made of an electrolyte anions such.
In the battery according to the present invention, a conventionally known method can be used as the battery manufacturing method for other manufacturing conditions such as lead extraction from the electrode and outer packaging.

本発明によると、大きな電流を取り出すことができ、かつ、繰り返し充放電を行っても容量の低下が少ない電池の電極材料として用いられるピロリン系ニトロキシド重合体、当該重合体を含有する電極活物質および当該電極活物質を用いた電池を提供することができる。 According to the present invention, a pyrroline-based nitroxide polymer that can be used as an electrode material of a battery that can take out a large current and has little decrease in capacity even after repeated charge and discharge, an electrode active material containing the polymer, and A battery using the electrode active material can be provided.

以下に、実施例により本発明を具体的に説明するが、本発明は、これら実施例によってなんら限定されるものではない。 EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

製造例1(ピロリン系ニトロキシド化合物の製造)
撹拌機、温度計、還流冷却管および流量計を備えた100mL容の4つ口フラスコに、3−カルバモイル−2,2,5,5−テトラメチルピロリン−1−オキシル1.17gおよび10wt%水酸化ナトリウム水溶液16.8mLを仕込み、懸濁させ、100℃にて2時間保持した。その後、適量の希塩酸を加えて中和し、黄色溶液を得た。これにジエチルエーテル50mLを加えて抽出した後、濃縮することにより、黄色結晶の3−カルボキシ−2,2,5,5−テトラメチルピロリン−1−オキシル1.12gを得た。
Production Example 1 (Production of pyrroline nitroxide compound)
To a 100 mL four-necked flask equipped with a stirrer, thermometer, reflux condenser and flow meter, 1.17 g of 3-carbamoyl-2,2,5,5-tetramethylpyrrolin-1-oxyl and 10 wt% water 16.8 mL of an aqueous sodium oxide solution was charged, suspended, and held at 100 ° C. for 2 hours. Thereafter, an appropriate amount of dilute hydrochloric acid was added for neutralization to obtain a yellow solution. This was extracted with 50 mL of diethyl ether, and concentrated to obtain 1.12 g of 3-carboxy-2,2,5,5-tetramethylpyrroline-1-oxyl as yellow crystals.

得られた3−カルボキシ−2,2,5,5−テトラメチルピロリン−1−オキシルは、下記の物性を有することから同定することができた。
IR(KBr):3300,2500,1707cm−1
分子量(大気圧イオン化法による質量分析):184
The obtained 3-carboxy-2,2,5,5-tetramethylpyrroline-1-oxyl could be identified from the following physical properties.
IR (KBr): 3300, 2500, 1707 cm −1
Molecular weight (mass spectrometry by atmospheric pressure ionization method): 184

得られた3−カルボキシ−2,2,5,5−テトラメチルピロリン−1−オキシル1gを、撹拌機、アルゴンガス導入管、温度計および還流冷却管を備え、あらかじめアルゴンガスで置換した100mL容の4つ口フラスコに仕込み、ベンゼン12mL/ピリジン0.44mLの混合溶媒を加えて溶解させた。次に、アルゴン雰囲気下、5℃に冷却し、塩化チオニル0.44mL/ベンゼン2mLを加え、1時間撹拌した後、溶媒を留去し、THF10mLを加えて溶解させた。その後、−78℃に冷却し、同温度で1mol/L水素化リチウムアルミニウム−tert−ブトキシドTHF溶液10mLを2時間かけて滴下した。次いで、酢酸エチル50mLを用いて抽出した後、濃縮することにより、黄色結晶の3−ホルミル−2,2,5,5−テトラメチルピロリン−1−オキシル0.44gを得た。 The obtained 3-carboxy-2,2,5,5-tetramethylpyrrolin-1-oxyl (1 g) was equipped with a stirrer, an argon gas introduction tube, a thermometer and a reflux condenser, and was previously substituted with argon gas in a volume of 100 mL. Were mixed and dissolved by adding a mixed solvent of benzene 12 mL / pyridine 0.44 mL. Next, it was cooled to 5 ° C. in an argon atmosphere, 0.44 mL of thionyl chloride / 2 mL of benzene was added and stirred for 1 hour, and then the solvent was distilled off, and 10 mL of THF was added and dissolved. Then, it cooled to -78 degreeC and 10 mL of 1 mol / L lithium aluminum hydride-tert-butoxide THF solution was dripped at the same temperature over 2 hours. Subsequently, extraction was performed using 50 mL of ethyl acetate, followed by concentration to obtain 0.44 g of 3-formyl-2,2,5,5-tetramethylpyrroline-1-oxyl as yellow crystals.

得られた3−ホルミル−2,2,5,5−テトラメチルピロリン−1−オキシルは、下記の物性を有することから同定することができた。
IR(KBr):2834,2736,1688cm−1
分子量(大気圧イオン化法による質量分析):168
The obtained 3-formyl-2,2,5,5-tetramethylpyrroline-1-oxyl could be identified from the following physical properties.
IR (KBr): 2834, 2736, 1688 cm −1
Molecular weight (mass spectrometry by atmospheric pressure ionization method): 168

次に、撹拌機、アルゴンガス導入管、温度計および還流冷却管を備え、あらかじめアルゴンガスで置換した100mL容の4つ口フラスコに、水素化ナトリウム125mgおよびジメチルスルホキシド2mLを仕込み、アルゴンガス雰囲気下、65℃で1時間撹拌した。その後、THF2.5mLを加えた後、食塩氷浴により−10℃に冷却し、同温度でトリメチルスルホニウムヨージド0.64g/ジメチルスルホキシド溶液2.5mLを加え、5分間撹拌した。これに前記3−ホルミル−2,2,5,5−テトラメチルピロリン−1−オキシル0.44g/THF溶液1mLを−10℃にて30分かけて滴下し、さらに室温で2時間撹拌した。次いで、酢酸エチル50mLを用いて抽出した後、濃縮することにより、一般式(1)で表されるピロリン系ニトロキシド化合物のうちnが0である3−オキシラニル−2,2,5,5−テトラメチルピロリン−1−オキシルの燈色液体0.34gを得た。 Next, 125 mg of sodium hydride and 2 mL of dimethyl sulfoxide were charged into a 100 mL four-necked flask equipped with a stirrer, an argon gas introduction tube, a thermometer, and a reflux condenser and previously substituted with argon gas, And stirred at 65 ° C. for 1 hour. Thereafter, 2.5 mL of THF was added, and the mixture was cooled to −10 ° C. with a salt ice bath. At the same temperature, 0.64 g of a trimethylsulfonium iodide / 2.5 mL of dimethylsulfoxide solution was added, and the mixture was stirred for 5 minutes. The 3-formyl-2,2,5,5-tetramethylpyrrolin-1-oxyl 0.44 g / THF solution 1 mL was added dropwise at -10 ° C over 30 minutes, and the mixture was further stirred at room temperature for 2 hours. Next, after extracting with 50 mL of ethyl acetate and concentrating, 3-oxiranyl-2,2,5,5-tetra in which n is 0 among the pyrroline nitroxide compounds represented by the general formula (1) 0.34 g of an amber liquid of methylpyrroline-1-oxyl was obtained.

得られた3−オキシラニル−2,2,5,5−テトラメチルピロリン−1−オキシルは、下記の物性を有することから同定することができた。
H NMR(CDCl):5.49,3.27,2.93,2.64,1.35,1.30,1.24,1.22ppm
13C NMR(CDCl):142.0,129.0,70.2,68.0,49.2,47.5,25.7,25.2,25.0,24.4ppm
IR(KBr):1249,932,846cm−1
分子量(大気圧イオン化法による質量分析):182
The obtained 3-oxiranyl-2,2,5,5-tetramethylpyrroline-1-oxyl could be identified from the following physical properties.
1 H NMR (CDCl 3 ): 5.49, 3.27, 2.93, 2.64, 1.35, 1.30, 1.24, 1.22 ppm
13 C NMR (CDCl 3 ): 142.0, 129.0, 70.2, 68.0, 49.2, 47.5, 25.7, 25.2, 25.0, 24.4 ppm
IR (KBr): 1249, 932, 846 cm −1
Molecular weight (mass spectrometry by atmospheric pressure ionization method): 182

製造例2(ピロリン系ニトロキシド化合物の製造)
撹拌機、温度計および還流冷却管を備えた100mL容の4つ口フラスコに、50wt%水酸化ナトリウム水溶液4mL、エピクロロヒドリン3.1g(39.6ミリモル)およびテトラブチルアンモニウム硫酸水素ナトリウム84mgを仕込み、激しく撹拌した。4−ヒドロキシプロキシル1.03g(6.6ミリモル)を加え、25℃にて12時間反応させた。反応終了後、これにジエチルエーテル50mLを加えて抽出した後、濃縮することにより、一般式(1)で表されるピロリン系ニトロキシド化合物のうちnが1であるピロリン系ニトロキシド置換グリシジルエーテルの黄色液体1.11gを得た。
Production Example 2 (Production of pyrroline nitroxide compound)
In a 100 mL four-necked flask equipped with a stirrer, a thermometer and a reflux condenser, 4 mL of a 50 wt% aqueous sodium hydroxide solution, 3.1 g (39.6 mmol) of epichlorohydrin and 84 mg of sodium tetrabutylammonium hydrogen sulfate And stirred vigorously. 4-hydroxy proxyl 1.03g (6.6 mmol) was added, and it was made to react at 25 degreeC for 12 hours. After completion of the reaction, 50 mL of diethyl ether was added thereto for extraction, followed by concentration, whereby a yellow liquid of a pyrroline nitroxide-substituted glycidyl ether in which n is 1 among the pyrroline nitroxide compounds represented by the general formula (1) 1.11 g was obtained.

得られたピロリン系ニトロキシド置換グリシジルエーテルは、下記の物性を有することから同定することができた。
H NMR(CDCl):5.53,4.03,3.73,3.39,3.17,2.79,2.61,1.26,1.24ppm
13C NMR(CDCl):140.2,130.7,70.3,69.5,67.3,67.1,50.2,43.7,25.4,24.2ppm
IR(KBr):1253,903,842cm−1
分子量(大気圧イオン化法による質量分析):226
The obtained pyrroline-based nitroxide-substituted glycidyl ether could be identified from the following physical properties.
1 H NMR (CDCl 3 ): 5.53, 4.03, 3.73, 3.39, 3.17, 2.79, 2.61, 1.26, 1.24 ppm
13 C NMR (CDCl 3 ): 140.2, 130.7, 70.3, 69.5, 67.3, 67.1, 50.2, 43.7, 25.4, 24.2 ppm
IR (KBr): 1253, 903, 842 cm −1
Molecular weight (mass spectrometry by atmospheric pressure ionization method): 226

実施例1(ピロリン系ニトロキシド重合体の製造)
撹拌機、アルゴンガス導入管、温度計および還流冷却管を備えた5mL容の4つ口フラスコに、製造例1と同様にして得られた3−オキシラニル−2,2,5,5−テトラメチルピロリン−1−オキシル0.18g(1ミリモル)を仕込み、25℃に保ちながら、アルゴンガスを通じて反応系内の酸素を除去した。次に、重合開始剤としてのtert−ブトキシカリウム5.6mg(0.05ミリモル)を加えて、アルゴンガス雰囲気下、60℃に昇温し、同温度で撹拌下24時間重合反応させた後、適量のメタノールを添加して反応を停止させた。反応終了後、反応液を室温にもどし、ヘキサン50mL中に加え、ろ過した後、ヘキサン10mLで洗浄し、減圧乾燥することにより燈色粘稠固体のピロリン系ニトロキシド重合体0.02gを得た(収率13%)。
得られたピロリン系ニトロキシド重合体について、数平均分子量を測定したところ、1700であった。なお、数平均分子量は、ゲルパーミエーションクロマトグラフィー(東ソー株式会社製、商品名:HLC−8020)を用いて、LiBr(0.01mol/L)を含むN,N−ジメチルホルムアミド中30℃にて測定し、標準ポリスチレンを基準にして算出した。
Example 1 (Production of pyrroline nitroxide polymer)
3-oxiranyl-2,2,5,5-tetramethyl obtained in the same manner as in Production Example 1 was added to a 5-mL four-necked flask equipped with a stirrer, an argon gas introduction tube, a thermometer, and a reflux condenser. 0.18 g (1 mmol) of pyrrolin-1-oxyl was charged, and oxygen in the reaction system was removed through argon gas while maintaining the temperature at 25 ° C. Next, 5.6 mg (0.05 mmol) of tert-butoxy potassium as a polymerization initiator was added, the temperature was raised to 60 ° C. under an argon gas atmosphere, and the polymerization reaction was performed at the same temperature for 24 hours with stirring, An appropriate amount of methanol was added to stop the reaction. After completion of the reaction, the reaction solution was returned to room temperature, added into 50 mL of hexane, filtered, washed with 10 mL of hexane, and dried under reduced pressure to obtain 0.02 g of a pyrroline nitroxide polymer as an amber viscous solid ( Yield 13%).
The number average molecular weight of the obtained pyrroline nitroxide polymer was measured and found to be 1700. The number average molecular weight is 30 ° C in N, N-dimethylformamide containing LiBr (0.01 mol / L) using gel permeation chromatography (trade name: HLC-8020, manufactured by Tosoh Corporation). Measured and calculated with reference to standard polystyrene.

実施例2(ピロリン系ニトロキシド重合体の製造)
撹拌機、アルゴンガス導入管、温度計および還流冷却管を備え、あらかじめアルゴンガスで置換した5mL容の4つ口フラスコに、ジエチル亜鉛の1mol/Lヘキサン溶液2mL(ジエチル亜鉛0.25g)を仕込み、−78℃に冷却後、水36μLを加え、室温にもどして1時間反応させることにより、重合開始剤としての黄色液体のジエチル亜鉛/水系開始剤を製造した。
次に、撹拌機、アルゴンガス導入管、温度計および還流冷却管を備え、あらかじめアルゴンガスで置換した5mL容の4つ口フラスコに、製造例1と同様にして得られた3−オキシラニル−2,2,5,5−テトラメチルピロリン−1−オキシル0.18g(1ミリモル)を仕込み、前記ジエチル亜鉛/水系開始剤0.2mLを加えた後、アルゴンガス雰囲気下、室温にて48時間重合反応させた。その後、適量のメタノールを添加して反応を停止させた後、反応液をヘキサン50mL中に加え、ろ過した後、ヘキサン10mLで洗浄し、減圧乾燥することにより燈色固体のピロリン系ニトロキシド重合体0.03gを得た(収率15%)。
得られたピロリン系ニトロキシド重合体について、数平均分子量を測定したところ、180000であった。なお、数平均分子量は、ゲルパーミエーションクロマトグラフィー(東ソー株式会社製、商品名:HLC−8020)を用いて、LiBr(0.01mol/L)を含むN,N−ジメチルホルムアミド中30℃にて測定し、標準ポリスチレンを基準にして算出した。
Example 2 (Production of pyrroline nitroxide polymer)
A 5 mL 4-neck flask equipped with a stirrer, argon gas introduction tube, thermometer, and reflux condenser and charged with argon gas in advance was charged with 2 mL of 1 mol / L hexane solution of diethyl zinc (0.25 g of diethyl zinc). After cooling to −78 ° C., 36 μL of water was added, and the mixture was returned to room temperature and reacted for 1 hour to produce a yellow liquid diethylzinc / water-based initiator as a polymerization initiator.
Next, 3-oxiranyl-2 obtained in the same manner as in Production Example 1 was added to a 5-mL four-necked flask equipped with a stirrer, an argon gas introduction tube, a thermometer, and a reflux condenser and previously substituted with argon gas. , 2,5,5-tetramethylpyrrolin-1-oxyl (0.18 g, 1 mmol) was added, and 0.2 mL of the diethylzinc / water initiator was added, followed by polymerization at room temperature in an argon gas atmosphere for 48 hours. Reacted. Thereafter, an appropriate amount of methanol was added to stop the reaction, and then the reaction solution was added to 50 mL of hexane, filtered, washed with 10 mL of hexane, and dried under reduced pressure to obtain an amber solid pyrroline nitroxide polymer 0. 0.03 g was obtained (15% yield).
The number average molecular weight of the obtained pyrroline nitroxide polymer was measured and found to be 180,000. The number average molecular weight is 30 ° C in N, N-dimethylformamide containing LiBr (0.01 mol / L) using gel permeation chromatography (trade name: HLC-8020, manufactured by Tosoh Corporation). Measured and calculated with reference to standard polystyrene.

実施例3(ピロリン系ニトロキシド重合体の製造)
撹拌機、アルゴンガス導入管、温度計および還流冷却管を備え、あらかじめアルゴンガスで置換した10mL容の4つ口フラスコに、製造例1と同様にして得られた3−オキシラニル−2,2,5,5−テトラメチルピロリン−1−オキシル0.18g(1ミリモル)を仕込み、実施例2で製造したジエチル亜鉛/水系開始剤0.2mLを加えた後、アルゴンガス雰囲気下、60℃に昇温し、同温度で24時間重合反応させた。その後、適量のメタノールを添加して反応を停止させた後、反応液を室温にもどし、ヘキサン50mL中に加え、ろ過した後、ヘキサン10mLで洗浄し、減圧乾燥することにより燈色固体のピロリン系ニトロキシド重合体0.05gを得た(収率28%)。
得られたピロリン系ニトロキシド重合体について、数平均分子量を測定したところ、580000であった。なお、数平均分子量は、ゲルパーミエーションクロマトグラフィー(東ソー株式会社製、商品名:HLC−8020)を用いて、LiBr(0.01mol/L)を含むN,N−ジメチルホルムアミド中30℃にて測定し、標準ポリスチレンを基準にして算出した。
Example 3 (Production of pyrroline nitroxide polymer)
The 3-oxiranyl-2,2, obtained in the same manner as in Production Example 1 was added to a 10 mL four-necked flask equipped with a stirrer, an argon gas introduction tube, a thermometer, and a reflux condenser and previously substituted with argon gas. After charging 0.18 g (1 mmol) of 5,5-tetramethylpyrrolin-1-oxyl and adding 0.2 mL of diethylzinc / water initiator prepared in Example 2, the temperature was raised to 60 ° C. under an argon gas atmosphere. The mixture was heated and polymerized at the same temperature for 24 hours. Then, after adding an appropriate amount of methanol to stop the reaction, the reaction solution is returned to room temperature, added to 50 mL of hexane, filtered, washed with 10 mL of hexane, and dried under reduced pressure to obtain a pyrroline system of amber solid. 0.05 g of nitroxide polymer was obtained (yield 28%).
The number average molecular weight of the obtained pyrroline nitroxide polymer was measured and found to be 580000. The number average molecular weight is 30 ° C in N, N-dimethylformamide containing LiBr (0.01 mol / L) using gel permeation chromatography (trade name: HLC-8020, manufactured by Tosoh Corporation). Measured and calculated with reference to standard polystyrene.

実施例4(ピロリン系ニトロキシド重合体の製造)
撹拌機、アルゴンガス導入管、温度計および還流冷却管を備え、あらかじめアルゴンガスで置換した10mL容の4つ口フラスコに、製造例2で得られたピロリン系ニトロキシド置換グリシジルエーテル0.23g(1ミリモル)を仕込み、実施例2で製造したジエチル亜鉛/水系開始剤0.2mLを加えた後、アルゴンガス雰囲気下、室温にて24時間重合反応させた。その後、適量のメタノールを添加して反応を停止させた後、反応液をヘキサン50mL中に加え、ろ過した後、ヘキサン10mLで洗浄し、減圧乾燥することにより、黄色固体のピロリン系ニトロキシド重合体0.14gを得た(収率62%)。
得られたピロリン系ニトロキシド重合体について、数平均分子量を測定したところ、400000であった。なお、数平均分子量は、ゲルパーミエーションクロマトグラフィー(東ソー株式会社製、商品名:HLC−8020)を用いて、LiBr(0.01mol/L)を含むN,N−ジメチルホルムアミド中30℃にて測定し、標準ポリスチレンを基準にして算出した。
Example 4 (Production of pyrroline nitroxide polymer)
A 10 mL four-neck flask equipped with a stirrer, an argon gas introduction tube, a thermometer, and a reflux condenser and previously substituted with argon gas was added to 0.23 g of pyrroline-based nitroxide-substituted glycidyl ether obtained in Production Example 2 (1 The diethyl zinc / water-based initiator 0.2 mL produced in Example 2 was added, followed by polymerization reaction at room temperature in an argon gas atmosphere for 24 hours. Then, after adding an appropriate amount of methanol to stop the reaction, the reaction solution was added to 50 mL of hexane, filtered, washed with 10 mL of hexane, and dried under reduced pressure, whereby a yellow solid pyrroline nitroxide polymer 0 was obtained. .14 g was obtained (62% yield).
The number average molecular weight of the obtained pyrroline nitroxide polymer was measured and found to be 400,000. The number average molecular weight is 30 ° C in N, N-dimethylformamide containing LiBr (0.01 mol / L) using gel permeation chromatography (trade name: HLC-8020, manufactured by Tosoh Corporation). Measured and calculated with reference to standard polystyrene.

実施例5(ピロリン系ニトロキシド重合体を含有する電極活物質を用いた電池)
実施例2で得られたピロリン系ニトロキシド重合体0.01g、補助導電材としてのグラファイト粉末0.08gおよび結着剤としてのポリテトラフルオロエチレン0.01gをそれぞれ量りとり、メノウ乳鉢を用いて混練した。10分ほど乾式混合して得られた混合体を、圧力を掛けてローラー延伸することにより、厚さ約150μmの薄膜とした。これを、真空中100℃で一晩乾燥した後、直径12mmの円形に打ち抜き、コイン電池用電極を成型した。なお、この電極の質量は13.1mgであった。
次に、得られた電極を電解液に浸して、電極中の空隙に電解液を染み込ませた。電解液としては、1.0mol/LのLiPF電解質塩を含むエチレンカーボネート/ジエチルカーボネート混合溶液(混合体積比1:1)を用いた。電解液を含浸させた電極は、正極集電体を兼ねたステンレス外装(かがつう株式会社製)上に置き、その上に同じく電解液を含浸させたポリプロピレン多孔質フィルムセパレータを積層した。さらに負極となるリチウムディスクを積層し、周囲に絶縁パッキンを配置した状態で負極側ステンレス外装(かがつう株式会社製)を重ね合わせた。これを、かしめ機によって圧力を加えることで、正極活物質として実施例2で得られたピロリン系ニトロキシド重合体を、負極活物質として金属リチウムを用いた密閉型のコイン型電池を製造した。
このコイン型電池について、電位掃引範囲3.2〜4.2Vでのサイクリックボルタモグラムを測定したところ、3.66Vにニトロキシドラジカルのp型レドックス由来の酸化還元波が現れ、繰り返し掃引しても酸化還元波は安定していた。また、定電流0.1mA(電流密度150μA/cm)での充放電曲線を測定したところ、3.64Vにプラトー電位が現れ、500サイクル後も顕著な容量低下は見られず、安定な充放電挙動を示した。
Example 5 (Battery using an electrode active material containing a pyrroline nitroxide polymer)
0.01 g of the pyrroline nitroxide polymer obtained in Example 2, 0.08 g of graphite powder as an auxiliary conductive material, and 0.01 g of polytetrafluoroethylene as a binder were weighed and kneaded using an agate mortar. did. The mixture obtained by dry-mixing for about 10 minutes was subjected to roller stretching under pressure to obtain a thin film having a thickness of about 150 μm. This was dried overnight at 100 ° C. in a vacuum and then punched into a circle having a diameter of 12 mm to form a coin battery electrode. The mass of this electrode was 13.1 mg.
Next, the obtained electrode was immersed in an electrolytic solution, and the electrolytic solution was infiltrated into voids in the electrode. As the electrolytic solution, an ethylene carbonate / diethyl carbonate mixed solution (mixing volume ratio 1: 1) containing 1.0 mol / L LiPF 6 electrolyte salt was used. The electrode impregnated with the electrolytic solution was placed on a stainless steel sheath (manufactured by Kagatsu Co., Ltd.) that also served as a positive electrode current collector, and a polypropylene porous film separator that was also impregnated with the electrolytic solution was laminated thereon. Furthermore, the lithium disk used as a negative electrode was laminated | stacked, and the negative electrode side stainless steel exterior (made by Kagatsu Co., Ltd.) was piled up in the state which has arrange | positioned the insulating packing around. By applying pressure with a caulking machine, a sealed coin-type battery using the pyrroline nitroxide polymer obtained in Example 2 as the positive electrode active material and metallic lithium as the negative electrode active material was produced.
The cyclic voltammogram of this coin-type battery was measured in a potential sweep range of 3.2 to 4.2 V. When a redox wave derived from the p-type redox of the nitroxide radical appeared at 3.66 V, it was oxidized even after repeated sweeps. The reduction wave was stable. Further, when a charge / discharge curve at a constant current of 0.1 mA (current density of 150 μA / cm 2 ) was measured, a plateau potential appeared at 3.64 V, and no significant decrease in capacity was observed even after 500 cycles, and stable charge and discharge were observed. The discharge behavior was shown.

実施例6(ピロリン系ニトロキシド重合体を含有する電極活物質を用いた電池)
実施例5において、実施例2で得られたピロリン系ニトロキシド重合体0.01gに代えて実施例4で得られたピロリン系ニトロキシド重合体0.01gを用いた以外は実施例5と同様にして、密閉型のコイン型電池を製造した。
このコイン型電池について、電位掃引範囲3.2〜4.5Vでのサイクリックボルタモグラムを測定したところ、3.66Vにニトロキシドラジカルのp型レドックス由来の酸化還元波が現れ、繰り返し掃引しても酸化還元波は安定していた。また、定電流0.1mA(電流密度150μA/cm)での充放電曲線を測定したところ、3.63Vにプラトー電位が現れ、100サイクル後も顕著な容量低下は見られず、安定な充放電挙動を示した。
Example 6 (Battery using an electrode active material containing a pyrroline nitroxide polymer)
In Example 5, the same procedure as in Example 5 was used except that 0.01 g of the pyrroline nitroxide polymer obtained in Example 4 was used instead of 0.01 g of the pyrroline nitroxide polymer obtained in Example 2. A sealed coin-type battery was manufactured.
When a cyclic voltammogram of this coin-type battery was measured in a potential sweep range of 3.2 to 4.5 V, a redox wave derived from the p-type redox of the nitroxide radical appeared at 3.66 V, and it was oxidized even after repeated sweeps. The reduction wave was stable. Further, when a charge / discharge curve at a constant current of 0.1 mA (current density of 150 μA / cm 2 ) was measured, a plateau potential appeared at 3.63 V, and no significant decrease in capacity was observed even after 100 cycles. The discharge behavior was shown.

本発明によれば、大きな電流を取り出すことができ、かつ、繰り返し充放電を行っても容量の低下が少ない電池の電極材料として用いられるピロリン系ニトロキシド重合体、当該重合体を含有する電極活物質および当該電極活物質を用いた電池を提供することができる。 According to the present invention, a pyrroline-based nitroxide polymer that can be used as an electrode material for a battery that can take out a large current and has little decrease in capacity even after repeated charge and discharge, and an electrode active material containing the polymer In addition, a battery using the electrode active material can be provided.

本発明に係る電池の実施形態の一例を示す概念図である。It is a conceptual diagram which shows an example of embodiment of the battery which concerns on this invention.

符号の説明Explanation of symbols

1 ステンレス外装
2 絶縁パッキン
3 負極
4 セパレータ
5 正極
6 正極集電体
DESCRIPTION OF SYMBOLS 1 Stainless steel exterior 2 Insulation packing 3 Negative electrode 4 Separator 5 Positive electrode 6 Positive electrode collector

Claims (3)

一般式(1):
Figure 0005424402
(式中、nは、0または1である。)で表されるピロリン系ニトロキシド化合物を重合して得られ、数平均分子量が1000〜1000000であるピロリン系ニトロキシド重合体。
General formula (1):
Figure 0005424402
A pyrroline nitroxide polymer obtained by polymerizing a pyrroline nitroxide compound represented by the formula (wherein n is 0 or 1) and having a number average molecular weight of 1,000 to 1,000,000 .
請求項1に記載のピロリン系ニトロキシド重合体を含有する電極活物質。 An electrode active material containing the pyrroline-based nitroxide polymer according to claim 1. 請求項2に記載の電極活物質を用いた電池。 A battery using the electrode active material according to claim 2.
JP2009533174A 2007-09-21 2008-09-18 Pyrroline-based nitroxide polymer and battery using the same Expired - Fee Related JP5424402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009533174A JP5424402B2 (en) 2007-09-21 2008-09-18 Pyrroline-based nitroxide polymer and battery using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007245589 2007-09-21
JP2007245589 2007-09-21
JP2009533174A JP5424402B2 (en) 2007-09-21 2008-09-18 Pyrroline-based nitroxide polymer and battery using the same
PCT/JP2008/066855 WO2009038125A1 (en) 2007-09-21 2008-09-18 Pyrroline nitroxide polymer and battery using the same

Publications (2)

Publication Number Publication Date
JPWO2009038125A1 JPWO2009038125A1 (en) 2011-01-06
JP5424402B2 true JP5424402B2 (en) 2014-02-26

Family

ID=40467935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009533174A Expired - Fee Related JP5424402B2 (en) 2007-09-21 2008-09-18 Pyrroline-based nitroxide polymer and battery using the same

Country Status (2)

Country Link
JP (1) JP5424402B2 (en)
WO (1) WO2009038125A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010285408A (en) * 2009-06-15 2010-12-24 Sumitomo Seika Chem Co Ltd Method for producing 3-oxiranyl-2,2,5,5-tetramethylpyrrolin-1-oxyl
JPWO2012133204A1 (en) * 2011-03-31 2014-07-28 学校法人早稲田大学 battery
JP5969981B2 (en) * 2011-03-31 2016-08-17 住友精化株式会社 Radical composition and battery using the same
DE102014003300A1 (en) 2014-03-07 2015-09-10 Evonik Degussa Gmbh New tetracyanoanthraquinone dimethyne polymers and their use
DE102014004760A1 (en) 2014-03-28 2015-10-01 Evonik Degussa Gmbh New 9,10-bis (1,3-dithiol-2-ylidene) -9,10-dihydroanthracene polymers and their use
US10756348B2 (en) 2015-08-26 2020-08-25 Evonik Operations Gmbh Use of certain polymers as a charge store
EP3135704A1 (en) 2015-08-26 2017-03-01 Evonik Degussa GmbH Use of certain polymers as charge storage
EP3136410A1 (en) 2015-08-26 2017-03-01 Evonik Degussa GmbH Use of certain polymers as charge storage
EP3262668B1 (en) 2015-08-26 2018-12-05 Evonik Degussa GmbH Use of certain polymers as a charge store
ES2770105T3 (en) 2016-06-02 2020-06-30 Evonik Operations Gmbh Procedure for the production of an electrode material
EP3279223A1 (en) 2016-08-05 2018-02-07 Evonik Degussa GmbH Use of polymers containing thianthrene as charge storage
TWI686415B (en) 2016-08-05 2020-03-01 德商贏創運營有限公司 Use of thianthrene-containing polymers as charge storage means
ES2795276T3 (en) 2016-09-06 2020-11-23 Evonik Operations Gmbh Procedure for enhanced oxidation of secondary amino groups
DE102017005924A1 (en) 2017-06-23 2018-12-27 Friedrich-Schiller-Universität Jena Use of benzotriazinyl-containing polymers as charge storage

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151084A (en) * 2000-02-25 2002-05-24 Nec Corp Secondary battery
JP2002304996A (en) * 2001-04-03 2002-10-18 Nec Corp Electric storage device
JP2005097409A (en) * 2003-09-24 2005-04-14 Mitsubishi Gas Chem Co Inc Method for producing polymer compound having stable radical

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151084A (en) * 2000-02-25 2002-05-24 Nec Corp Secondary battery
JP2002304996A (en) * 2001-04-03 2002-10-18 Nec Corp Electric storage device
JP2005097409A (en) * 2003-09-24 2005-04-14 Mitsubishi Gas Chem Co Inc Method for producing polymer compound having stable radical

Also Published As

Publication number Publication date
JPWO2009038125A1 (en) 2011-01-06
WO2009038125A1 (en) 2009-03-26

Similar Documents

Publication Publication Date Title
JP5424402B2 (en) Pyrroline-based nitroxide polymer and battery using the same
JP5527667B2 (en) Pyrroline-based nitroxide polymer and battery using the same
JP5493356B2 (en) Polyradical compound production method and battery
JP5969981B2 (en) Radical composition and battery using the same
JP5239160B2 (en) Method for producing polyradical compound
WO2012133204A1 (en) Battery
JP5625151B2 (en) Compound having a radical, polymer, and electricity storage device using the polymer
JP2009298873A (en) Preparation method of polyradical compound and battery
JP2012221575A (en) Radical compound, method for producing the same, and secondary battery
JP2008192452A (en) Secondary battery using polymer which has radical
JP5176130B2 (en) Polyradical compounds, electrode active materials and batteries
JP2009126869A (en) Nitroxide polymer and battery using the same
JP5176129B2 (en) Polyradical compounds and batteries
JP4154561B2 (en) Secondary battery
JP4110980B2 (en) Secondary battery
JP4737365B2 (en) Electrode active material, battery and polymer
JP4752218B2 (en) Electrode active material, battery and polyradical compound
JP4955233B2 (en) Electrode active material, battery and polymer
JP4752217B2 (en) Active materials, batteries and polymers
JP5109670B2 (en) Polymer
JP2005228640A (en) Secondary battery
JP2010165491A (en) Electrode active material and secondary battery using it

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20100601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100602

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110905

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20110905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110905

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees