JP5405993B2 - Thermoelectric conversion module and its joining member - Google Patents

Thermoelectric conversion module and its joining member Download PDF

Info

Publication number
JP5405993B2
JP5405993B2 JP2009271626A JP2009271626A JP5405993B2 JP 5405993 B2 JP5405993 B2 JP 5405993B2 JP 2009271626 A JP2009271626 A JP 2009271626A JP 2009271626 A JP2009271626 A JP 2009271626A JP 5405993 B2 JP5405993 B2 JP 5405993B2
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
alloy
thermal expansion
conversion module
expansion coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009271626A
Other languages
Japanese (ja)
Other versions
JP2011114291A (en
Inventor
孝洋 越智
尚吾 鈴木
昌晃 菊地
慧遠 耿
哲 伊藤
俊清 郭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Co Ltd
Original Assignee
Furukawa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Co Ltd filed Critical Furukawa Co Ltd
Priority to JP2009271626A priority Critical patent/JP5405993B2/en
Publication of JP2011114291A publication Critical patent/JP2011114291A/en
Application granted granted Critical
Publication of JP5405993B2 publication Critical patent/JP5405993B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、熱エネルギーを電気に、または、電気を熱エネルギーに、直接変換できる熱電変換モジュール、その接合部材、に関する。   The present invention relates to a thermoelectric conversion module capable of directly converting heat energy into electricity or electricity into heat energy, and a joining member thereof.

熱電変換部材は、熱エネルギーを電気に直接変換できる、または、電気エネルギーを熱エネルギーに直接変換し、即ち電気を印加することによって加熱・冷却できる材料である。   The thermoelectric conversion member is a material that can directly convert thermal energy into electricity, or that can be heated and cooled by directly converting electrical energy into thermal energy, that is, by applying electricity.

p型の熱電変換部材とn型の熱電変換部材とを組み合わせたp/n熱電変換部材のペアを多数、電気的に直列に接続すれば、一つの熱電変換モジュールが形成される。熱電変換モジュールを使用すれば、従来あまり利用されていなかった廃熱を電気に変換してエネルギーを有効に活用することができる。   If a large number of p / n thermoelectric conversion member pairs obtained by combining p-type thermoelectric conversion members and n-type thermoelectric conversion members are electrically connected in series, one thermoelectric conversion module is formed. If a thermoelectric conversion module is used, waste heat, which has not been used so far, can be converted into electricity to effectively use energy.

熱電変換モジュールに用いられる熱電変換部材として、今まで研究されてきた代表的なものには、BiTe系、PbTe系、AgSbTe−GeTe系、SiGe系、(Ti、Zr、Hf)NiSn系、CoSb系、ZnSb系、FeSi系、NaCo系酸化物、CaCo系酸化物などがある。 Typical thermoelectric conversion members used in the thermoelectric conversion module include Bi 2 Te 3 system, PbTe system, AgSbTe 2 -GeTe system, SiGe system, (Ti, Zr, Hf) NiSn. Type, CoSb 3 type, Zn 4 Sb 3 type, FeSi 2 type, NaCo 2 O 4 type oxide, Ca 3 Co 4 O 9 type oxide, and the like.

しかしながら、この中で実用化されているのはBiTe系のみである。BiTe系熱電変換部材を用いた熱電変換モジュールは、発電用途として使用できる温度範囲は室温付近からBiTe系材料が耐えうる最大250℃の範囲に限られる。 However, only the Bi 2 Te 3 system is put into practical use among them. In the thermoelectric conversion module using the Bi 2 Te 3 series thermoelectric conversion member, the temperature range that can be used for power generation is limited to the range from about room temperature to the maximum 250 ° C. that the Bi 2 Te 3 system material can withstand.

そこで、種々の廃熱を有効利用するという点で、300℃〜600℃の中温領域で使用可能な熱電変換モジュールが求められている。近年、特にこの温度域で使用可能な熱電変換部材として、充填スクッテルダイト構造の熱電変換部材が注目されている。   Therefore, there is a demand for a thermoelectric conversion module that can be used in an intermediate temperature range of 300 ° C. to 600 ° C. in that various waste heat is effectively used. In recent years, a thermoelectric conversion member having a filled skutterudite structure has attracted attention as a thermoelectric conversion member usable particularly in this temperature range.

充填スクッテルダイト化合物は、化学式MT12(M=金属、T=遷移金属、X=プニコゲン)で表され、空間群Im3の立方晶構造を有する。式中、Mはアルカリ土類金属、ランタノイド系、またはアクチノイド系元素、TはFe、Ru、Os、Co、Pd、Ptなどの遷移金属、XはAs、P、Sbなどのプニコゲン元素である。 The filled skutterudite compound is represented by the chemical formula MT 4 X 12 (M = metal, T = transition metal, X = punicogen), and has a cubic structure of the space group Im3. In the formula, M is an alkaline earth metal, lanthanoid or actinoid element, T is a transition metal such as Fe, Ru, Os, Co, Pd, and Pt, and X is a nicotine element such as As, P, and Sb.

特にXがSbとなる充填スクッテルダイト系の熱電変換部材が盛んに研究されている。充填スクッテルダイト系の熱電変換部材は、このような中温度領域で高い熱電性能を示す。   In particular, a filled skutterudite thermoelectric conversion member in which X is Sb has been actively studied. The filled skutterudite-based thermoelectric conversion member exhibits high thermoelectric performance in such an intermediate temperature region.

熱電変換部材を使用して熱電変換モジュールを作製する場合、p型、n型の各熱電変換部材と電極部材とを高温部および、低温部で接合する必要がある。上記BiTe系熱電変換部材を使用した熱電変換モジュールは室温〜250℃の温度範囲において用いられる。 When producing a thermoelectric conversion module using a thermoelectric conversion member, it is necessary to join each p-type and n-type thermoelectric conversion member and an electrode member at a high temperature part and a low temperature part. The thermoelectric conversion module using the Bi 2 Te 3 system thermoelectric conversion member is used in a temperature range of room temperature to 250 ° C.

従って、これらの接合は、あまり熱の影響を考慮することなくハンダ、ロウ材等を使用した比較的容易な方法によっている。一方、300℃〜600℃の中温領域で使用可能な熱電変換モジュールを製作するには、p型の熱電変換部材とn型の熱電変換部材を連結する電極部材の材料の選択および、接合法が重要な課題である。   Therefore, these joinings are performed by a relatively easy method using solder, brazing material, etc. without considering the influence of heat. On the other hand, in order to manufacture a thermoelectric conversion module that can be used in the middle temperature region of 300 ° C. to 600 ° C., the selection of the material of the electrode member that connects the p-type thermoelectric conversion member and the n-type thermoelectric conversion member, and the joining method include This is an important issue.

電極部材と熱電変換部材との間は、接合性がよく、かつ電極部材による熱電変換部材の性能劣化が発生しないことが必須である。これを実現するには、600℃までの使用温度範囲における、熱電変換部材、電極部材および、その接合に用いる材料との間の熱膨張係数の整合性、接合界面における接合層の安定性が不可欠である。   It is essential that the electrode member and the thermoelectric conversion member have good bondability and that the performance deterioration of the thermoelectric conversion member due to the electrode member does not occur. In order to achieve this, it is essential to have consistency in the thermal expansion coefficient between the thermoelectric conversion member, the electrode member, and the material used for bonding in the operating temperature range up to 600 ° C., and the stability of the bonding layer at the bonding interface. It is.

熱膨張係数の差が大きいと、そこで大きな熱応力が発生し、接合部の破断が起きる問題が生じる。また、電極部材と熱電変換部材は接合界面において元素拡散が進行すれば、熱電性能の劣化および、電極部材の性能低下が生じる。   When the difference in thermal expansion coefficient is large, a large thermal stress is generated there, causing a problem that the joint is broken. In addition, if element diffusion proceeds at the bonding interface between the electrode member and the thermoelectric conversion member, the thermoelectric performance deteriorates and the electrode member performance deteriorates.

充填スクッテルダイト系の熱電変換部材を使用して熱電変換モジュールを製作することができれば、従来のBiTeが用いられている熱電変換モジュールよりも、さらに高い温度域において変換効率の高い素子の使用が可能となる。しかしながら、高温部における熱電変換部材と電極部材との接合部分にはハンダは使用できない。 If a thermoelectric conversion module can be manufactured using a filled skutterudite-based thermoelectric conversion member, an element with higher conversion efficiency in a higher temperature range than a thermoelectric conversion module using conventional Bi 2 Te 3 Can be used. However, solder cannot be used at the junction between the thermoelectric conversion member and the electrode member in the high temperature portion.

また、充填スクッテルダイト系の熱電変換部材の構成成分であるアンチモン(Sb)と、従来用いられる銅(Cu)などの電極部材、電極部材を接合するためのロウ材、またはペースト材とは互いに反応してしまうため、これらを接合すると構成材料の経時劣化が著しい。従って、本来の熱電変換部材の性能が発揮できないまま熱電変換モジュールが寿命を迎えてしまい、耐久性の点で問題があった。   In addition, antimony (Sb), which is a constituent component of a filled skutterudite-based thermoelectric conversion member, and a conventionally used electrode member such as copper (Cu), a brazing material for bonding the electrode member, or a paste material are mutually Since they react, when they are joined, the deterioration of the constituent materials over time is significant. Therefore, the thermoelectric conversion module has reached the end of its life without the performance of the original thermoelectric conversion member, and there has been a problem in terms of durability.

上記の問題に対し、スクッテルダイト構造の熱電変換部材に関する高温部における熱電変換部材と電極部材との間にチタンまたはチタン合金の合金層を設けた熱電変換モジュールの提案がある。   In order to solve the above problem, there is a proposal of a thermoelectric conversion module in which a titanium or titanium alloy alloy layer is provided between a thermoelectric conversion member and an electrode member in a high-temperature portion related to a thermoelectric conversion member having a skutterudite structure.

より具体的には、n型の熱電素子とp型の熱電素子とを有する熱電モジュールにおいて、n型の熱電素子とp型の熱電素子との内の少なくとも一方に10μm以上の厚さを有するチタン層またはチタン合金層が形成されている。   More specifically, in a thermoelectric module having an n-type thermoelectric element and a p-type thermoelectric element, titanium having a thickness of 10 μm or more in at least one of the n-type thermoelectric element and the p-type thermoelectric element. A layer or a titanium alloy layer is formed.

n型素子の材料としては、スクッテルダイト型結晶構造を有する化合物を用いられることが開示されており、例えば、以下のようなものが例示されている。   It is disclosed that a compound having a skutterudite-type crystal structure is used as a material for an n-type element. Examples thereof include the following.

(1)M1−AM’AXBで表される化合物
ここで、Mは、Co、Rh、Irの内の何れかを表し、M’は、n型とするためのドーパントであり、Pd、Pt、PdPtの内の何れかを表し、Xは、As、P、Sbの内の何れかを表しており、0<A≦0.2、かつ、2.9≦B≦4.2の条件を満たすものが適している。
(1) Compound represented by M1-AM′AXB Here, M represents any one of Co, Rh, and Ir, and M ′ is a dopant for making n-type, and Pd, Pt, Represents any one of PdPt, X represents any of As, P, and Sb, and satisfies the condition of 0 <A ≦ 0.2 and 2.9 ≦ B ≦ 4.2 Things are suitable.

特に、B=3とすれば、簡単な組成比の化合物が得られる。具体例としては、Co−Sb系の化合物、例えば、Co0.9(PdPt)0.1Sbを挙げることができる。ここでは、Co0.9(PdPt)0.1Sbに替えて、これと同様の構造を有するCoSbでもよい。 In particular, when B = 3, a compound having a simple composition ratio can be obtained. As a specific example, a Co—Sb-based compound, for example, Co 0.9 (PdPt) 0.1 Sb 3 can be given. Here, CoSb 3 having a similar structure may be used instead of Co 0.9 (PdPt) 0.1 Sb 3 .

(2)M(X1−AX’A)3で表される化合物
ここで、Mは、Co、Rh、Irの内の何れかを表し、Xは、As、P、Sbの内の何れかを表し、X’は、Te、Ni、Pdの内の何れかを表しており、0<A≦0.1の条件を満たすものが適している。
(2) Compound represented by M (X1-AX′A) 3 Here, M represents any one of Co, Rh, and Ir, and X represents any one of As, P, and Sb. X ′ represents any one of Te, Ni, and Pd, and those satisfying the condition of 0 <A ≦ 0.1 are suitable.

(3)M1−AM’A(X1−BX’B)Cで表される化合物
ここで、Mは、Co、Rh、Irの内の何れかを表し、M’は、n型とするためのドーパントであり、Pd、Pt、PdPtの内の何れかを表し、Xは、As、P、Sbの内の何れかを表し、X’は、Te、Ni、Pdの内の何れかを表しており、0<A≦0.2、0≦B≦0.1、かつ、C=3の条件を満たすものが適している。
(3) Compound represented by M1-AM′A (X1-BX′B) C Here, M represents any one of Co, Rh, and Ir, and M ′ represents n-type. It is a dopant and represents one of Pd, Pt, and PdPt, X represents one of As, P, and Sb, and X ′ represents one of Te, Ni, and Pd. And satisfying the conditions of 0 <A ≦ 0.2, 0 ≦ B ≦ 0.1, and C = 3 are suitable.

上述のような熱電モジュールでは、温度が500℃周辺の高温域まで優れた特性を有するn型および、p型の熱電素子を用いた熱電モジュールにおいて、接合部における元素の拡散等を防止することができる(例えば、特許文献1参照)。   In the thermoelectric module as described above, in the thermoelectric module using the n-type and p-type thermoelectric elements having excellent characteristics up to a high temperature range around 500 ° C., it is possible to prevent element diffusion and the like at the junction. (For example, refer to Patent Document 1).

特開2003−309294号公報JP 2003-309294 A

しかしながら、本発明者らが充填スクッテルダイト系の熱電変換部材および、接合材料としてTiを用いて追試を行ったところ、充填スクッテルダイト系の熱電変換部材と電極部材とに充分な接合強度を確保できないことが判明した。   However, when the inventors conducted additional tests using a filled skutterudite-based thermoelectric conversion member and Ti as a bonding material, sufficient bonding strength was obtained between the filled skutterudite-based thermoelectric conversion member and the electrode member. It turned out that it could not be secured.

その原因の一つとしては、高温になるにつれて、特に400℃以上の温度において、熱電変換部材の熱膨張係数と、電極部材との熱膨張係数の差が大きくなり、熱応力が発生したと考えられる。   As one of the causes, it is considered that the thermal stress is generated due to the difference between the thermal expansion coefficient of the thermoelectric conversion member and the thermal expansion coefficient of the electrode member as the temperature rises, particularly at a temperature of 400 ° C. or higher. It is done.

本発明は上述のような課題に鑑みてなされたものであり、作動などにより温度が大幅に変化しても熱電変換部材と電極部材との接合を良好に維持することができる熱電変換モジュールを提供するものである。   The present invention has been made in view of the above-described problems, and provides a thermoelectric conversion module capable of maintaining good bonding between a thermoelectric conversion member and an electrode member even if the temperature changes greatly due to operation or the like. To do.

本発明の熱電変換モジュールは、充填スクッテルダイト構造のSb系の熱電変換部材と、電極部材と、を有する熱電変換モジュールであって、熱電変換部材と電極部材とが接合部材で接合されており、接合部材は、Fe−M(Mは、Cr、Mo、W、V、Nb、Ta、からなる群から選択される少なくとも一種の元素)合金、Co−M合金、および、Ni−M合金、からなる群より選択される少なくとも一種の合金からなる。   The thermoelectric conversion module of the present invention is a thermoelectric conversion module having an Sb-based thermoelectric conversion member having a filled skutterudite structure and an electrode member, and the thermoelectric conversion member and the electrode member are joined by a joining member. The joining members are Fe-M (M is at least one element selected from the group consisting of Cr, Mo, W, V, Nb, Ta) alloys, Co-M alloys, and Ni-M alloys, It consists of at least 1 type of alloy selected from the group which consists of.

従って、本発明の熱電変換モジュールでは、熱電変換部材と電極部材とを接合する接合部材が、Fe−M合金、Co−M合金、Ni−M合金、の少なくとも一つで形成されていることにより、その組成を適正に調整することで、例えば、接合部材の20℃〜600℃における熱膨張係数を8×10−6(/K)以上15×10−6(/K)以下とすることができる。すると、熱電変換部材と接合部材との20℃〜600℃における熱膨張係数の差を、例えば、熱電変換部材の熱膨張係数の値に対して20%以下とすることができる。しかも、Fe−M合金、Co−M合金、Ni−M合金(Mは、Cr、Mo、W、V、Nb、Ta、からなる群から選択される少なくとも一種の元素)は、加熱された電極部材および熱電変換部材の構成成分の拡散も防止することができる。 Therefore, in the thermoelectric conversion module of the present invention, the joining member that joins the thermoelectric conversion member and the electrode member is formed of at least one of an Fe-M alloy, a Co-M alloy, and a Ni-M alloy. By adjusting the composition appropriately, for example, the thermal expansion coefficient of the joining member at 20 ° C. to 600 ° C. may be 8 × 10 −6 (/ K) or more and 15 × 10 −6 (/ K) or less. it can. Then, the difference of the thermal expansion coefficient in 20 degreeC-600 degreeC of a thermoelectric conversion member and a joining member can be 20% or less with respect to the value of the thermal expansion coefficient of a thermoelectric conversion member, for example. In addition, the Fe-M alloy, Co-M alloy, Ni-M alloy (M is at least one element selected from the group consisting of Cr, Mo, W, V, Nb, Ta) is a heated electrode. Diffusion of constituent components of the member and the thermoelectric conversion member can also be prevented.

上述のような熱電変換モジュールにおいて、接合部材は、Fe−Mからなり、接合部材の合金が、Feを50重量%以上100重量%未満含み、Cr、Mo、W、V、Nb、Ta、からなる群から選択される少なくとも一種の元素Mを、0重量%を超え、50重量%以下のFe−M合金を含んでもよい。   In the thermoelectric conversion module as described above, the joining member is made of Fe-M, and the alloy of the joining member contains 50 wt% or more and less than 100 wt% of Fe, and Cr, Mo, W, V, Nb, Ta, At least one element M selected from the group may include an Fe-M alloy that is greater than 0 wt% and less than 50 wt%.

上述のような熱電変換モジュールにおいて、接合部材は、Co−Mからなり、接合部材の合金が、Coを50重量%以上100重量%未満含み、Cr、Mo、W、V、Nb、Ta、からなる群から選択される少なくとも一種の元素Mを、0重量%を超え、50重量%以下のCo−M合金を含んでもよい。   In the thermoelectric conversion module as described above, the joining member is made of Co-M, and the alloy of the joining member contains 50 wt% or more and less than 100 wt% of Co, and includes Cr, Mo, W, V, Nb, and Ta. The at least one element M selected from the group may include a Co-M alloy that is greater than 0 wt% and less than 50 wt%.

上述のような熱電変換モジュールにおいて、接合部材は、Ni−Mからなり、接合部材の合金が、Niを50重量%以上100重量%未満含み、Cr、Mo、W、V、Nb、Ta、からなる群から選択される少なくとも一種の元素Mを、0重量%を超え、50重量%以下のNi−M合金を含んでもよい。   In the thermoelectric conversion module as described above, the joining member is made of Ni-M, and the alloy of the joining member contains Ni of 50 wt% or more and less than 100 wt%, and Cr, Mo, W, V, Nb, Ta, At least one element M selected from the group may include a Ni-M alloy of more than 0 wt% and not more than 50 wt%.

上述のような熱電変換モジュールにおいて、熱電変換部材と接合部材との20℃〜600℃における熱膨張係数の差が、熱電変換部材の熱膨張係数の値に対して20%以下であってもよい。   In the thermoelectric conversion module as described above, the difference in thermal expansion coefficient between 20 ° C. and 600 ° C. between the thermoelectric conversion member and the joining member may be 20% or less with respect to the value of the thermal expansion coefficient of the thermoelectric conversion member. .

また、上述のような熱電変換モジュールにおいて、接合部材の20℃〜600℃における熱膨張係数が8×10−6(/K)以上15×10−6(/K)以下であってもよい。 Further, in the thermoelectric conversion module as described above, the thermal expansion coefficient at 20 ° C. to 600 ° C. of the joining member may be 8 × 10 −6 (/ K) or more and 15 × 10 −6 (/ K) or less.

また、上述のような熱電変換モジュールにおいて、電極部材が、鉄合金、ニッケル合金、コバルト合金、チタン合金、および、銅合金、からなる群より選択される合金を含んでもよい。   In the thermoelectric conversion module as described above, the electrode member may include an alloy selected from the group consisting of an iron alloy, a nickel alloy, a cobalt alloy, a titanium alloy, and a copper alloy.

上述のような熱電変換モジュールにおいて、電極部材は、20℃〜600℃における熱膨張係数が8×10−6(/K)以上15×10−6(/K)以下の範囲にある金属または合金であってもよい。 In the thermoelectric conversion module as described above, the electrode member is a metal or alloy having a coefficient of thermal expansion at 20 ° C. to 600 ° C. in the range of 8 × 10 −6 (/ K) to 15 × 10 −6 (/ K). It may be.

また、上述のような熱電変換モジュールにおいて、電極部材と接合部材とが同じ組成の合金からなってもよい。   In the thermoelectric conversion module as described above, the electrode member and the joining member may be made of an alloy having the same composition.

本発明の接合部材は、熱電変換モジュールの充填スクッテルダイト構造のSb系の熱電変換部材と電極部材とを接合する接合部材であって、Fe−M(Mは、Cr、Mo、W、V、Nb、Ta、からなる群から選択される少なくとも一種の元素)合金、Co−M合金、および、Ni−M合金、からなる群より選択される少なくとも一種の合金からなる接合部材。   The joining member of the present invention is a joining member that joins an Sb-based thermoelectric conversion member having a filled skutterudite structure of a thermoelectric conversion module and an electrode member, and is Fe-M (M is Cr, Mo, W, V And at least one element selected from the group consisting of Nb, Ta), a joining member made of at least one alloy selected from the group consisting of alloys, Co-M alloys, and Ni-M alloys.

また、上述のような接合部材において、熱電変換部材との20℃〜600℃における熱膨張係数の差が、熱電変換部材の熱膨張係数に対して20%以下であってもよい。   In the joining member as described above, the difference in thermal expansion coefficient at 20 ° C. to 600 ° C. with respect to the thermoelectric conversion member may be 20% or less with respect to the thermal expansion coefficient of the thermoelectric conversion member.

また、上述のような接合部材において、20℃〜600℃における熱膨張係数が8×10−6(/K)以上15×10−6(/K)以下であってもよい。 Further, in the above-described joining member, the thermal expansion coefficient at 20 ° C. to 600 ° C. may be 8 × 10 −6 (/ K) or more and 15 × 10 −6 (/ K) or less.

なお、本発明で云う熱電変換部材と接合部材との熱膨張係数の差とは、熱電変換部材の熱膨張係数と接合部材の熱膨張係数との差分の絶対値を意味している。   The difference in thermal expansion coefficient between the thermoelectric conversion member and the joining member in the present invention means the absolute value of the difference between the thermal expansion coefficient of the thermoelectric conversion member and the thermal expansion coefficient of the joining member.

本発明の熱電変換モジュールでは、熱電変換部材と電極部材とを接合する接合部材が、Fe−M合金、Co−M合金、Ni−M合金、の少なくとも一つで形成されていることにより、その組成を適正に調整することで、例えば、接合部材の20℃〜600℃における熱膨張係数を8×10−6(/K)以上15×10−6(/K)以下とすることができる。すると、熱電変換部材と接合部材との20℃〜600℃における熱膨張係数の差を、例えば、熱電変換部材の熱膨張係数の値に対して20%以下とすることができるので、熱電変換モジュールの温度が作動などにより大幅に変化しても、熱電変換部材と電極部材との接合を良好に維持することができる。しかも、Fe−M合金、Co−M合金、Ni−M合金(Mは、Cr、Mo、W、V、Nb、Ta、からなる群から選択される少なくとも一種の元素)は、加熱された電極部材および熱電変換部材の構成成分の拡散も防止することができるので、熱電変換モジュールの耐久性および安定性を向上させることもできる。 In the thermoelectric conversion module of the present invention, the joining member that joins the thermoelectric conversion member and the electrode member is formed of at least one of Fe-M alloy, Co-M alloy, and Ni-M alloy. By adjusting the composition appropriately, for example, the thermal expansion coefficient of the joining member at 20 ° C. to 600 ° C. can be 8 × 10 −6 (/ K) or more and 15 × 10 −6 (/ K) or less. Then, since the difference of the thermal expansion coefficient in 20 degreeC-600 degreeC of a thermoelectric conversion member and a joining member can be made into 20% or less with respect to the value of the thermal expansion coefficient of a thermoelectric conversion member, for example, a thermoelectric conversion module Even if the temperature of the tube greatly changes due to operation or the like, the bonding between the thermoelectric conversion member and the electrode member can be maintained well. In addition, the Fe-M alloy, Co-M alloy, Ni-M alloy (M is at least one element selected from the group consisting of Cr, Mo, W, V, Nb, Ta) is a heated electrode. Since the diffusion of the constituent components of the member and the thermoelectric conversion member can also be prevented, the durability and stability of the thermoelectric conversion module can be improved.

本発明の実施の形態の熱電変換モジュールの構造を示す模式的な正面図である。It is a typical front view which shows the structure of the thermoelectric conversion module of embodiment of this invention.

本発明の実施の一形態を図面を参照して以下に説明する。図1は本実施の形態に係る熱電変換モジュールの一例を示す模式図である。図1に示すように、本実施の形態の熱電変換モジュールは、少なくともp型の熱電変換部材1、n型の熱電変換部材2、接合部材3、電極部材4を備える。   An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram showing an example of a thermoelectric conversion module according to the present embodiment. As shown in FIG. 1, the thermoelectric conversion module of the present embodiment includes at least a p-type thermoelectric conversion member 1, an n-type thermoelectric conversion member 2, a joining member 3, and an electrode member 4.

p型の熱電変換部材1およびn型の熱電変換部材2は、接合部材3で電極部材4に接合されている。熱電変換部材1,2は、充填スクッテルダイト構造のSb系の化合物で形成されている。   The p-type thermoelectric conversion member 1 and the n-type thermoelectric conversion member 2 are joined to the electrode member 4 by a joining member 3. The thermoelectric conversion members 1 and 2 are formed of an Sb-based compound having a filled skutterudite structure.

接合部材3は、Fe−M(Mは、Cr、Mo、W、V、Nb、Ta、からなる群から選択される少なくとも一種の元素)合金、Co−M合金、および、Ni−M合金、からなる群より選択される少なくとも一種の合金からなる。なお、接合部材3は一種の合金層で形成されていてもよいが、二種以上の合金層で形成されていてもよい。   The joining member 3 includes an Fe-M (M is at least one element selected from the group consisting of Cr, Mo, W, V, Nb, Ta) alloy, Co-M alloy, and Ni-M alloy, It consists of at least 1 type of alloy selected from the group which consists of. In addition, although the joining member 3 may be formed of a kind of alloy layer, it may be formed of two or more kinds of alloy layers.

接合部材3の合金層としては、例えば、鉄を主成分とし、Cr、Mo、W、V、Nb、Taの少なくとも一種を含有したFe系合金、コバルトを主成分とし、Cr、Mo、W、V、Nb、Taの少なくとも一種を含有したCo系合金、ニッケルを主成分として、Cr、Mo、W、V、Nb、Taの少なくとも一種を含有したNi系合金が挙げられる。   As the alloy layer of the joining member 3, for example, an Fe-based alloy containing iron as a main component and containing at least one of Cr, Mo, W, V, Nb, Ta, cobalt as a main component, Cr, Mo, W, Examples thereof include a Co-based alloy containing at least one of V, Nb, and Ta, and a Ni-based alloy containing nickel as a main component and containing at least one of Cr, Mo, W, V, Nb, and Ta.

また、接合部材3の合金層における組成比は、熱電変換部材の熱膨張係数に合致するように調整する。接合部材3の合金層がFe合金で形成されていてもよい。接合部材3のFe合金からなる合金層は、Fe合金層全体を基準として、Feを50重量%以上100重量%未満含み、Cr、Mo、W、V、Nb、Taの少なくとも一種を、0重量%を超え、50重量%以下、含む。   Moreover, the composition ratio in the alloy layer of the joining member 3 is adjusted to match the thermal expansion coefficient of the thermoelectric conversion member. The alloy layer of the joining member 3 may be formed of an Fe alloy. The alloy layer made of the Fe alloy of the bonding member 3 contains 50 wt% or more and less than 100 wt% of Fe based on the entire Fe alloy layer, and contains 0 wt% of at least one of Cr, Mo, W, V, Nb, and Ta. % And not more than 50% by weight.

接合部材3がCr、Mo、W、V、Nb、Taを含むことにより、p型の熱電変換部材1、n型の熱電変換部材2、および、電極部材4、に含まれる構成成分の拡散が抑制できる。また、接合部材3の合金層における組成比は、熱電変換部材の熱膨張係数に合致するように調整する。   When the bonding member 3 contains Cr, Mo, W, V, Nb, and Ta, diffusion of the constituent components contained in the p-type thermoelectric conversion member 1, the n-type thermoelectric conversion member 2, and the electrode member 4 is prevented. Can be suppressed. Moreover, the composition ratio in the alloy layer of the joining member 3 is adjusted to match the thermal expansion coefficient of the thermoelectric conversion member.

接合部材3の合金層がCo合金で形成されていてもよい。接合部材3のCo合金からなる合金層は、Co合金層全体を基準として、Coを50重量%以上100重量%未満含み、Cr、Mo、W、V、Nb、Taの少なくとも一種を、0重量%を超え、50重量%以下、含む。   The alloy layer of the bonding member 3 may be formed of a Co alloy. The alloy layer made of the Co alloy of the joining member 3 contains 50 wt% or more and less than 100 wt% of Co based on the entire Co alloy layer, and contains 0 wt% of at least one of Cr, Mo, W, V, Nb, and Ta. % And not more than 50% by weight.

接合部材3がCr、Mo、W、V、Nb、Taを含むことにより、p型の熱電変換部材1、n型の熱電変換部材2、および、電極部材4に含まれる構成成分の拡散が抑制できる。また、接合部材3の合金層における組成比は、熱電変換部材の熱膨張係数に合致するように調整する。   When the bonding member 3 contains Cr, Mo, W, V, Nb, and Ta, diffusion of components included in the p-type thermoelectric conversion member 1, the n-type thermoelectric conversion member 2, and the electrode member 4 is suppressed. it can. Moreover, the composition ratio in the alloy layer of the joining member 3 is adjusted to match the thermal expansion coefficient of the thermoelectric conversion member.

接合部材3の合金層がNi合金で形成されていてもよい。接合部材3のNi合金からなる合金層は、Ni合金層全体を基準として、Niを50重量%以上100重量%未満含み、Cr、Mo、W、V、Nb、Taの少なくとも一種を、0重量%を超え、50重量%以下、含む。   The alloy layer of the bonding member 3 may be formed of a Ni alloy. The alloy layer made of the Ni alloy of the bonding member 3 contains 50 wt% or more and less than 100 wt% of Ni based on the entire Ni alloy layer, and contains 0 wt% of at least one of Cr, Mo, W, V, Nb, and Ta. % And not more than 50% by weight.

接合部材3がCr、Mo、W、V、Nb、Taを含むことにより、p型の熱電変換部材1、n型の熱電変換部材2、および、電極部材4に含まれる構成成分の拡散が抑制できる。   When the bonding member 3 contains Cr, Mo, W, V, Nb, and Ta, diffusion of components included in the p-type thermoelectric conversion member 1, the n-type thermoelectric conversion member 2, and the electrode member 4 is suppressed. it can.

充填スクッテルダイト構造の熱電変換部材1,2、特にSb系の充填スクッテルダイト構造の熱電変換部材1,2は、20℃〜600℃における熱膨張係数が通常、8×10−6(/K)以上、15×10−6(/K)以下の範囲である。 The thermoelectric conversion members 1 and 2 having a filled skutterudite structure, particularly the thermoelectric conversion members 1 and 2 having an Sb-based filled skutterudite structure, usually have a thermal expansion coefficient of 8 × 10 −6 (/ K) and 15 × 10 −6 (/ K) or less.

接合部材3の合金層は、20℃〜600℃における熱膨張係数が8×10−6(/K)以上15×10−6(/K)以下であることが好ましい。これにより、p型の熱電変換部材1、n型の熱電変換部材2、および、電極部材4との良好な接合性が得られる。 The alloy layer of the bonding member 3 preferably has a thermal expansion coefficient at 20 ° C. to 600 ° C. of 8 × 10 −6 (/ K) or more and 15 × 10 −6 (/ K) or less. Thereby, the favorable joining property with the p-type thermoelectric conversion member 1, the n-type thermoelectric conversion member 2, and the electrode member 4 is obtained.

また、p型の熱電変換部材1、および、n型の熱電変換部材2と、接合部材3の合金層との、20℃〜600℃における熱膨張係数の差が、熱電変換部材1,2の値に対して20%以下が好ましい。熱膨張係数の差が、20%以下であることにより、p型の熱電変換部材1、n型の熱電変換部材2、および、電極部材4とのさらに良好な接合性が得られる。   Further, the difference in thermal expansion coefficient between 20 ° C. and 600 ° C. between the p-type thermoelectric conversion member 1, the n-type thermoelectric conversion member 2, and the alloy layer of the joining member 3 is the difference between the thermoelectric conversion members 1 and 2. 20% or less is preferable with respect to the value. When the difference in coefficient of thermal expansion is 20% or less, better bondability with the p-type thermoelectric conversion member 1, the n-type thermoelectric conversion member 2, and the electrode member 4 is obtained.

本実施の形態において、「熱膨張係数の差」とは、「p型の熱電変換部材1またはn型の熱電変換部材2の何れか」の熱膨張係数と、「接合部材3の合金層の熱膨張係数」との差分の絶対値を意味しており、本実施の形態では、この差分が20%以下である。   In the present embodiment, the “difference in thermal expansion coefficient” means the thermal expansion coefficient of “any one of the p-type thermoelectric conversion member 1 or the n-type thermoelectric conversion member 2” and “the alloy layer of the joining member 3. It means the absolute value of the difference from the “thermal expansion coefficient”, and in the present embodiment, this difference is 20% or less.

接合部材3の合金層は、スパッタリング、蒸着、メッキ、溶射、SPS法(放電プラズマ焼結法)ロウ付けなどの公知の方法によって作製することができる。   The alloy layer of the bonding member 3 can be produced by a known method such as sputtering, vapor deposition, plating, thermal spraying, SPS (discharge plasma sintering) brazing.

本発明は、充填スクッテルダイト構造のSb系のp型およびn型の熱電変換部材と、鉄合金、コバルト合金、および、ニッケル合金とが密着性に優れるという知見から完成されたものである。   The present invention has been completed from the knowledge that Sb-based p-type and n-type thermoelectric conversion members having a filled skutterudite structure and an iron alloy, a cobalt alloy, and a nickel alloy are excellent in adhesion.

接合部材3の合金層は、p型の熱電変換部材1およびn型の熱電変換部材2と各電極部材4との間に密着性の良い安定な化合物を形成し、p型の熱電変換部材1およびn型の熱電変換部材2と各電極部材4間の元素拡散を防止すると共に、その熱膨張係数の値がp型の熱電変換部材1、n型の熱電変換部材2および電極部材4の材料の値に近いことで熱応力を緩和することができる。   The alloy layer of the bonding member 3 forms a stable compound with good adhesion between the p-type thermoelectric conversion member 1 and the n-type thermoelectric conversion member 2 and each electrode member 4, and the p-type thermoelectric conversion member 1. In addition to preventing element diffusion between the n-type thermoelectric conversion member 2 and each electrode member 4, the material of the p-type thermoelectric conversion member 1, n-type thermoelectric conversion member 2, and electrode member 4 has a coefficient of thermal expansion. The thermal stress can be relaxed by being close to the value of.

本実施の形態において、充填スクッテルダイト構造のSb系のp型の熱電変換部材1および、n型の熱電変換部材2との熱膨張係数の変化に充分整合するように、所定の鉄合金、コバルト合金、および、ニッケル合金、からなる群より選択される合金を用いることによって、良好な接合性を達成することができる。   In the present embodiment, a predetermined iron alloy so as to sufficiently match the change in the thermal expansion coefficient between the Sb-based p-type thermoelectric conversion member 1 having a filled skutterudite structure and the n-type thermoelectric conversion member 2; By using an alloy selected from the group consisting of a cobalt alloy and a nickel alloy, good bondability can be achieved.

電極部材4は、接合部材3を介して、p型の熱電変換部材1および、n型の熱電変換部材2とそれぞれ接続されている。電極部材4の材料としては、鉄合金、コバルト合金、および、ニッケル合金、からなる群より選択される合金を含むことが好ましい。また、電極部材4の材料は、接合部材3の合金層と同じ組成の合金を使用することがより好ましい。これにより、両者の密着性を高めることができる。   The electrode member 4 is connected to the p-type thermoelectric conversion member 1 and the n-type thermoelectric conversion member 2 via the joining member 3. The material of the electrode member 4 preferably includes an alloy selected from the group consisting of an iron alloy, a cobalt alloy, and a nickel alloy. The electrode member 4 is more preferably an alloy having the same composition as the alloy layer of the bonding member 3. Thereby, both adhesiveness can be improved.

または、電極部材4の材料として用いるものは、20℃〜600℃における熱膨張係数が8×10−6(/K)以上、15×10−6(/K)以下の範囲にある金属または合金であってもよい。 Alternatively, the material used for the electrode member 4 is a metal or alloy having a thermal expansion coefficient in the range of 20 × 10 −6 (/ K) or more and 15 × 10 −6 (/ K) or less at 20 ° C. to 600 ° C. It may be.

ここで、金属または合金は、例えば、鉄、コバルト、ニッケル、クロム、銅、チタン、アルミニウム、および、ニオブからなる群より選択される少なくとも一種の元素である。   Here, the metal or alloy is, for example, at least one element selected from the group consisting of iron, cobalt, nickel, chromium, copper, titanium, aluminum, and niobium.

例えば、SUS403、SUS430など、20℃〜600℃における熱膨張係数が8×10−6(/K)以上、15×10−6(/K)以下となる合金鋼でも構わない。これらは、スパッタリング、蒸着、メッキ、溶射、SPS(Spark Plasma Sintering)法(放電プラズマ焼結法)、ロウ付け、または、微小レーザ溶接などの公知の方法によって接合することができる。 For example, SUS403, SUS430, etc., alloy steels having a thermal expansion coefficient at 20 ° C. to 600 ° C. of 8 × 10 −6 (/ K) or more and 15 × 10 −6 (/ K) or less may be used. These can be joined by a known method such as sputtering, vapor deposition, plating, thermal spraying, SPS (Spark Plasma Sintering) method (discharge plasma sintering method), brazing, or micro laser welding.

上記の構造により、充填スクッテルダイト系のp型の熱電変換部材1およびn型の熱電変換部材2と電極部材4とが安定に接合した熱電変換モジュールを提供することができる。   With the above structure, a filled skutterudite-based p-type thermoelectric conversion member 1 and a thermoelectric conversion module in which the n-type thermoelectric conversion member 2 and the electrode member 4 are stably bonded can be provided.

なお、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変更、改良等は本発明に含まれるものである。以下、実施例によって本発明の熱電変換モジュールを具体的に説明する。   It should be noted that the present invention is not limited to the above-described embodiment, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention. Hereinafter, the thermoelectric conversion module of the present invention will be specifically described by way of examples.

(実施例1)
p型の熱電変換部材1として、La0.7Ba0.01Ga0.1Ti0.1FeCoSb12(20℃〜600℃における熱膨張係数が約12.8×10−6(/K))を、n型の熱電変換部材2として、Yb0.3Ca0.1Al0.1Ga0.1In0.1Fe0.25Co3.75Sb12(20℃〜600℃における熱膨張係数が約11.5×10−6(/K))を、ともに5mm×5mm×7mmの角柱状に切削加工した。
Example 1
As the p-type thermoelectric conversion member 1, La 0.7 Ba 0.01 Ga 0.1 Ti 0.1 Fe 3 Co 1 Sb 12 (the thermal expansion coefficient at 20 ° C. to 600 ° C. is about 12.8 × 10 −6. (/ K)) as the n-type thermoelectric conversion member 2, Yb 0.3 Ca 0.1 Al 0.1 Ga 0.1 In 0.1 Fe 0.25 Co 3.75 Sb 12 (20 ° C. to 20 ° C.) Both the thermal expansion coefficients at 600 ° C. of about 11.5 × 10 −6 (/ K) were cut into prismatic shapes of 5 mm × 5 mm × 7 mm.

角柱状のp/n型の熱電変換部材1,2を、それぞれ18個使用し、40mm角の面積に18ペアのp/n型の熱電変換部材1,2を並べた。そして、20℃〜600℃における熱膨張係数が12.2×10−6(/K)であるFe87重量%−Cr13重量%の合金層をp型の熱電変換部材1の接合部材3とし、20℃〜600℃における熱膨張係数が10×10−6(/K)であるFe65重量%−Cr35重量%の合金層をn型の熱電変換部材2の接合部材3とした。 Eighteen prismatic p / n-type thermoelectric conversion members 1 and 2 were used, respectively, and 18 pairs of p / n-type thermoelectric conversion members 1 and 2 were arranged in an area of 40 mm square. Then, an alloy layer of Fe 87 wt% -Cr 13 wt% having a thermal expansion coefficient of 12.2 × 10 −6 (/ K) at 20 ° C. to 600 ° C. is used as the joining member 3 of the p-type thermoelectric conversion member 1, 20 An alloy layer of Fe 65 wt% -Cr 35 wt% having a thermal expansion coefficient of 10 × 10 −6 (/ K) at from −600 ° C. to 600 ° C. was used as the joining member 3 of the n-type thermoelectric conversion member 2.

さらに、20℃〜600℃における熱膨張係数が11.5×10−6(/K)であるFe83重量%−Cr17重量%の合金で電極部材4を形成し、溶射処理によって18ペアのp/n型の熱電変換部材1,2の両端を電気的に直列に連結し、40mm角の熱電変換モジュールを作製した。 Furthermore, the electrode member 4 is formed of an alloy of Fe 83 wt% -Cr 17 wt% having a thermal expansion coefficient of 11.5 × 10 −6 (/ K) at 20 ° C. to 600 ° C., and 18 pairs of p / p are obtained by thermal spraying. Both ends of the n-type thermoelectric conversion members 1 and 2 were electrically connected in series to produce a 40 mm square thermoelectric conversion module.

以上の方法によって作製した熱電変換モジュールについて、ヒートサイクル試験を行った。具体的にはアルゴン雰囲気中において、高温側にはブロックヒーターを使用し、低温側にはファンとヒートシンクによる空冷をしてヒートサイクル試験を行った。   About the thermoelectric conversion module produced by the above method, the heat cycle test was done. Specifically, in an argon atmosphere, a heat cycle test was performed using a block heater on the high temperature side and air cooling with a fan and a heat sink on the low temperature side.

高温側の電極部材4の温度を200℃から30分で昇温し、600℃で2時間保持した後、30分で200℃まで降温するように制御して、この1サイクルを計100サイクルになるまで行った。その結果、サイクル毎に測定した熱電変換モジュールの内部抵抗の増加は認められず、非常に良好な接合がされていることが判明した。   The temperature of the electrode member 4 on the high temperature side is raised from 200 ° C. in 30 minutes, held at 600 ° C. for 2 hours, and then controlled to drop to 200 ° C. in 30 minutes. I went until. As a result, it was found that the internal resistance of the thermoelectric conversion module measured for each cycle was not increased, and very good bonding was achieved.

ヒートサイクル試験後、高温端600℃、700℃/低温端50℃の条件で熱電変換モジュールの発電特性を測定した結果、それぞれの最大電気出力は16W、21Wであった。   After the heat cycle test, the power generation characteristics of the thermoelectric conversion module were measured under conditions of a high temperature end of 600 ° C. and 700 ° C./low temperature end of 50 ° C. As a result, the maximum electric outputs were 16 W and 21 W, respectively.

以上の実験結果から、本実施例の熱電モジュールでは、熱電変換部材1,2と接合部材3との熱膨張係数の差を大幅に低減することができるので、熱電変換モジュールの温度が作動などにより大幅に変化しても、熱電変換部材1,2と電極部材3との接合を良好に維持できることが確認された。しかも、本実施例の熱電変換モジュールは、昇温と降温とが繰り返されても、高効率な発電を安定に実行できることも確認された。   From the above experimental results, in the thermoelectric module of the present embodiment, the difference in the thermal expansion coefficient between the thermoelectric conversion members 1 and 2 and the joining member 3 can be greatly reduced. It was confirmed that the bonding between the thermoelectric conversion members 1 and 2 and the electrode member 3 can be satisfactorily maintained even if it changes significantly. Moreover, it was also confirmed that the thermoelectric conversion module of the present example can stably perform highly efficient power generation even when the temperature rise and the temperature fall are repeated.

(実施例2)
p型の熱電変換部材1として、La0.7Ga0.1Fe2.8Co1.2Sb12(20℃〜600℃における熱膨張係数が約12.5×10−6(/K))を、n型の熱電変換部材2として、Yb0.3Ca0.1Al0.1Ga0.1CoSb12(20℃〜600℃における熱膨張係数が約11.3×10−6(/K))を、ともに5mm×5mm×7mmの角柱状に切削加工した。
(Example 2)
As the p-type thermoelectric conversion member 1, La 0.7 Ga 0.1 Fe 2.8 Co 1.2 Sb 12 (the coefficient of thermal expansion at 20 ° C. to 600 ° C. is about 12.5 × 10 −6 (/ K)). ) As an n-type thermoelectric conversion member 2, Yb 0.3 Ca 0.1 Al 0.1 Ga 0.1 Co 4 Sb 12 (the coefficient of thermal expansion at 20 ° C. to 600 ° C. is about 11.3 × 10 − 6 (/ K)) were both cut into a prismatic shape of 5 mm × 5 mm × 7 mm.

角柱状のp/n型の熱電変換部材1,2を、それぞれ18個使用し、40mm角の面積に18ペアのp/n型の熱電変換部材1,2を並べた。そして、20℃〜600℃における熱膨張係数が12.6×10−6(/K)であるFe80重量%−V10重量%−Nb5重量%−Ta5重量%の合金層をp型の熱電変換部材1の接合部材3とし、20℃〜600℃における熱膨張係数が11×10−6(/K)であるFe70重量%−V20重量%−Nb5重量%−Ta5重量%の合金層をn型の熱電変換部材2の接合部材3とした。 Eighteen prismatic p / n-type thermoelectric conversion members 1 and 2 were used, respectively, and 18 pairs of p / n-type thermoelectric conversion members 1 and 2 were arranged in an area of 40 mm square. And an alloy layer of Fe 80 wt% -V 10 wt% -Nb 5 wt% -Ta 5 wt%, whose thermal expansion coefficient at 20 ° C. to 600 ° C. is 12.6 × 10 −6 (/ K), is a p-type thermoelectric conversion member. 1, an alloy layer of Fe 70 wt% -V 20 wt% -Nb 5 wt% -Ta 5 wt% having a thermal expansion coefficient of 11 × 10 −6 (/ K) at 20 ° C. to 600 ° C. is an n-type. The joining member 3 of the thermoelectric conversion member 2 was used.

さらに、20℃〜600℃における熱膨張係数が11.5×10−6(/K)であるSUS430を電極部材4の材料とし、溶射処理によって18ペアのp/n型の熱電変換部材1,2の両端を電気的に直列に連結し、40mm角の熱電変換モジュールを作製した。 Further, SUS430 having a thermal expansion coefficient of 11.5 × 10 −6 (/ K) at 20 ° C. to 600 ° C. is used as the material of the electrode member 4, and 18 pairs of p / n type thermoelectric conversion members 1 are formed by thermal spraying treatment. Both ends of 2 were electrically connected in series to produce a 40 mm square thermoelectric conversion module.

以上の方法によって作製した熱電変換モジュールについて、ヒートサイクル試験を行った。具体的にはアルゴン雰囲気中において、高温側にはブロックヒーターを使用し、低温側にはファンとヒートシンクによる空冷をしてヒートサイクル試験を行った。   About the thermoelectric conversion module produced by the above method, the heat cycle test was done. Specifically, in an argon atmosphere, a heat cycle test was performed using a block heater on the high temperature side and air cooling with a fan and a heat sink on the low temperature side.

高温側の電極部材4の温度を200℃から30分で昇温し、600℃で2時間保持した後、30分で200℃まで降温するように制御して、この1サイクルを計100サイクルになるまで行った。その結果、サイクル毎に測定した熱電変換モジュールの内部抵抗の増加は認められず、非常に良好な接合がされていることが判明した。   The temperature of the electrode member 4 on the high temperature side is raised from 200 ° C. in 30 minutes, held at 600 ° C. for 2 hours, and then controlled to drop to 200 ° C. in 30 minutes. I went until. As a result, it was found that the internal resistance of the thermoelectric conversion module measured for each cycle was not increased, and very good bonding was achieved.

ヒートサイクル試験後、高温端600℃、700℃/低温端50℃の条件で熱電変換モジュールの発電特性を測定した結果、それぞれの最大電気出力は15W、20Wであった。   After the heat cycle test, the power generation characteristics of the thermoelectric conversion module were measured under conditions of a high temperature end of 600 ° C. and 700 ° C./low temperature end of 50 ° C. As a result, the maximum electric outputs were 15 W and 20 W, respectively.

以上の実験結果から、本実施例の熱電モジュールでは、熱電変換部材1,2と接合部材3との熱膨張係数の差を大幅に低減することができるので、熱電変換モジュールの温度が作動などにより大幅に変化しても、熱電変換部材1,2と電極部材3との接合を良好に維持できることが確認された。しかも、本実施例の熱電変換モジュールは、昇温と降温とが繰り返されても、高効率な発電を安定に実行できることも確認された。   From the above experimental results, in the thermoelectric module of the present embodiment, the difference in the thermal expansion coefficient between the thermoelectric conversion members 1 and 2 and the joining member 3 can be greatly reduced. It was confirmed that the bonding between the thermoelectric conversion members 1 and 2 and the electrode member 3 can be satisfactorily maintained even if it changes significantly. Moreover, it was also confirmed that the thermoelectric conversion module of the present example can stably perform highly efficient power generation even when the temperature rise and the temperature fall are repeated.

(実施例3)
p型の熱電変換部材1として、La0.7Ti0.1FeCoSb12(20℃〜600℃における熱膨張係数が約12.4×10−6(/K))を、n型の熱電変換部材2として、Yb0.3Ca0.1Al0.1Fe0.25Co3.75Sb12(20℃〜600℃における熱膨張係数が約11.2×10−6(/K))を、ともに5mm×5mm×7mmの角柱状に切削加工した。
Example 3
As the p-type thermoelectric conversion member 1, La 0.7 Ti 0.1 Fe 3 Co 1 Sb 12 (the coefficient of thermal expansion at 20 ° C. to 600 ° C. is about 12.4 × 10 −6 (/ K)), n Yb 0.3 Ca 0.1 Al 0.1 Fe 0.25 Co 3.75 Sb 12 (thermal expansion coefficient at 20 ° C. to 600 ° C. is about 11.2 × 10 −6 ( / K)) were both cut into prismatic shapes of 5 mm × 5 mm × 7 mm.

角柱状のp/n型の熱電変換部材1,2を、それぞれ18個使用し、40mm角の面積に18ペアのp/n型の熱電変換部材1,2を並べた。そして、20℃〜600℃における熱膨張係数が12×10−6(/K)であるNi65重量%−Cr12重量%−Mo8重量%−W15重量%の合金層をp型の熱電変換部材1の接合部材3とし、20℃〜600℃における熱膨張係数が10.8×10−6(/K)であるFe70重量%−Cr30重量%の合金層をn型の熱電変換部材2の接合部材3とした。 Eighteen prismatic p / n-type thermoelectric conversion members 1 and 2 were used, respectively, and 18 pairs of p / n-type thermoelectric conversion members 1 and 2 were arranged in an area of 40 mm square. Then, an alloy layer of Ni 65 wt% -Cr 12 wt% -Mo 8 wt% -W 15 wt% having a thermal expansion coefficient of 12 × 10 −6 (/ K) at 20 ° C. to 600 ° C. is applied to the p-type thermoelectric conversion member 1. As the joining member 3, an alloy layer of Fe 70 wt% -Cr 30 wt% having a thermal expansion coefficient of 10.8 × 10 −6 (/ K) at 20 ° C. to 600 ° C. is used as the joining member 3 of the n-type thermoelectric conversion member 2. It was.

さらに、20℃〜600℃における熱膨張係数が11.5×10−6(/K)であるSUS430を電極部材4の材料とし、溶射処理によって18ペアのp/n型の熱電変換部材1,2の両端を電気的に直列に連結し、40mm角の熱電変換モジュールを作製した。 Further, SUS430 having a thermal expansion coefficient of 11.5 × 10 −6 (/ K) at 20 ° C. to 600 ° C. is used as the material of the electrode member 4, and 18 pairs of p / n type thermoelectric conversion members 1 are formed by thermal spraying treatment. Both ends of 2 were electrically connected in series to produce a 40 mm square thermoelectric conversion module.

以上の方法によって作製した熱電変換モジュールについて、ヒートサイクル試験を行った。具体的にはアルゴン雰囲気中において、高温側にはブロックヒーターを使用し、低温側にはファンとヒートシンクによる空冷をしてヒートサイクル試験を行った。   About the thermoelectric conversion module produced by the above method, the heat cycle test was done. Specifically, in an argon atmosphere, a heat cycle test was performed using a block heater on the high temperature side and air cooling with a fan and a heat sink on the low temperature side.

高温側の電極部材4の温度を200℃から30分で昇温し、600℃で2時間保持した後、30分で200℃まで降温するように制御して、この1サイクルを計100サイクルになるまで行った。その結果、サイクル毎に測定した熱電変換モジュールの内部抵抗の増加は認められず、非常に良好な接合がされていることが判明した。   The temperature of the electrode member 4 on the high temperature side is raised from 200 ° C. in 30 minutes, held at 600 ° C. for 2 hours, and then controlled to drop to 200 ° C. in 30 minutes. I went until. As a result, it was found that the internal resistance of the thermoelectric conversion module measured for each cycle was not increased, and very good bonding was achieved.

ヒートサイクル試験後、高温端600℃、700℃/低温端50℃の条件で熱電変換モジュールの発電特性を測定した結果、それぞれの最大電気出力は15W、20Wであった。   After the heat cycle test, the power generation characteristics of the thermoelectric conversion module were measured under conditions of a high temperature end of 600 ° C. and 700 ° C./low temperature end of 50 ° C. As a result, the maximum electric outputs were 15 W and 20 W, respectively.

以上の実験結果から、本実施例の熱電モジュールでは、熱電変換部材1,2と接合部材3との熱膨張係数の差を大幅に低減することができるので、熱電変換モジュールの温度が作動などにより大幅に変化しても、熱電変換部材1,2と電極部材3との接合を良好に維持できることが確認された。しかも、本実施例の熱電変換モジュールは、昇温と降温とが繰り返されても、高効率な発電を安定に実行できることも確認された。   From the above experimental results, in the thermoelectric module of the present embodiment, the difference in the thermal expansion coefficient between the thermoelectric conversion members 1 and 2 and the joining member 3 can be greatly reduced. It was confirmed that the bonding between the thermoelectric conversion members 1 and 2 and the electrode member 3 can be satisfactorily maintained even if it changes significantly. Moreover, it was also confirmed that the thermoelectric conversion module of the present example can stably perform highly efficient power generation even when the temperature rise and the temperature fall are repeated.

(実施例4)
p型の熱電変換部材1として、La0.7Ba0.1FeCoSb12(20℃〜600℃における熱膨張係数が約12×10−6(/K))を、n型の熱電変換部材2として、Yb0.3Ca0.1Fe0.3Co3.7Sb12(20℃〜600℃における熱膨張係数が約11×10−6(/K))を、ともに5mm×5mm×7mmの角柱状に切削加工した。
Example 4
As the p-type thermoelectric conversion member 1, La 0.7 Ba 0.1 Fe 3 Co 1 Sb 12 (coefficient of thermal expansion at 20 ° C. to 600 ° C. of about 12 × 10 −6 (/ K)) is used. As the thermoelectric conversion member 2, Yb 0.3 Ca 0.1 Fe 0.3 Co 3.7 Sb 12 (thermal expansion coefficient at 20 ° C. to 600 ° C. is about 11 × 10 −6 (/ K)), both 5 mm It cut into a prismatic shape of × 5 mm × 7 mm.

角柱状のp/n型の熱電変換部材1,2を、それぞれ32個使用し、50mm角の面積に32ペアのp/n型の熱電変換部材1,2を並べた。そして、20℃〜600℃における熱膨張係数が12.5×10−6(/K)であるCo88重量%−Cr12重量%の合金層をp型の熱電変換部材1の接合部材3とし、20℃〜600℃における熱膨張係数が10.7×10−6(/K)であるNi65重量%−Cr35重量%の合金層をn型の熱電変換部材2の接合部材3とした。 Thirty-two prismatic p / n-type thermoelectric conversion members 1 and 2 were used, respectively, and 32 pairs of p / n-type thermoelectric conversion members 1 and 2 were arranged in a 50 mm square area. Then, an alloy layer of Co 88 wt% -Cr 12 wt% having a thermal expansion coefficient of 12.5 × 10 −6 (/ K) at 20 ° C. to 600 ° C. is used as the joining member 3 of the p-type thermoelectric conversion member 1, 20 An alloy layer of Ni 65 wt% -Cr 35 wt% having a coefficient of thermal expansion of 10.7 × 10 −6 (/ K) at −600 ° C. was used as the joining member 3 of the n-type thermoelectric conversion member 2.

さらに、20℃〜600℃における熱膨張係数が11.5×10−6(/K)であるSUS430を電極部材4の材料とし、溶射処理によって32ペアのp/n型の熱電変換部材1,2の両端を電気的に直列に連結し、50mm角の熱電変換モジュールを作製した。 Further, SUS430 having a thermal expansion coefficient of 11.5 × 10 −6 (/ K) at 20 ° C. to 600 ° C. is used as the material of the electrode member 4, and 32 pairs of p / n type thermoelectric conversion members 1 are formed by thermal spraying treatment. Both ends of 2 were electrically connected in series to produce a 50 mm square thermoelectric conversion module.

以上の方法によって作製した熱電変換モジュールについて、ヒートサイクル試験を行った。具体的にはアルゴン雰囲気中において、高温側にはブロックヒーターを使用し、低温側にはファンとヒートシンクによる空冷をしてヒートサイクル試験を行った。   About the thermoelectric conversion module produced by the above method, the heat cycle test was done. Specifically, in an argon atmosphere, a heat cycle test was performed using a block heater on the high temperature side and air cooling with a fan and a heat sink on the low temperature side.

高温側の電極部材4の温度を200℃から30分で昇温し、600℃で2時間保持した後、30分で200℃まで降温するように制御して、この1サイクルを計100サイクルになるまで行った。その結果、サイクル毎に測定した熱電変換モジュールの内部抵抗の増加は認められず、非常に良好な接合がされていることが判明した。   The temperature of the electrode member 4 on the high temperature side is raised from 200 ° C. in 30 minutes, held at 600 ° C. for 2 hours, and then controlled to drop to 200 ° C. in 30 minutes. I went until. As a result, it was found that the internal resistance of the thermoelectric conversion module measured for each cycle was not increased, and very good bonding was achieved.

ヒートサイクル試験後、高温端600℃、700℃/低温端50℃の条件で熱電変換モジュールの発電特性を測定した結果、それぞれの最大電気出力は24W、32Wであった。   After the heat cycle test, the power generation characteristics of the thermoelectric conversion module were measured under conditions of a high temperature end of 600 ° C. and 700 ° C./low temperature end of 50 ° C. As a result, the maximum electric outputs were 24 W and 32 W, respectively.

以上の実験結果から、本実施例の熱電モジュールでは、熱電変換部材1,2と接合部材3との熱膨張係数の差を大幅に低減することができるので、熱電変換モジュールの温度が作動などにより大幅に変化しても、熱電変換部材1,2と電極部材3との接合を良好に維持できることが確認された。しかも、本実施例の熱電変換モジュールは、昇温と降温とが繰り返されても、高効率な発電を安定に実行できることも確認された。   From the above experimental results, in the thermoelectric module of the present embodiment, the difference in the thermal expansion coefficient between the thermoelectric conversion members 1 and 2 and the joining member 3 can be greatly reduced. It was confirmed that the bonding between the thermoelectric conversion members 1 and 2 and the electrode member 3 can be satisfactorily maintained even if it changes significantly. Moreover, it was also confirmed that the thermoelectric conversion module of the present example can stably perform highly efficient power generation even when the temperature rise and the temperature fall are repeated.

(実施例5)
p型の熱電変換部材1として、Yb0.75FeCoSb12(20℃〜600℃における熱膨張係数が約11.8×10−6(/K))を、n型の熱電変換部材2として、Yb0.15CoSb12(20℃〜600℃における熱膨張係数が約10×10−6(/K))を、ともに5mm×5mm×7mmの角柱状に切削加工した。
(Example 5)
As the p-type thermoelectric conversion member 1, Yb 0.75 Fe 2 Co 2 Sb 12 (the coefficient of thermal expansion at 20 ° C. to 600 ° C. is approximately 11.8 × 10 −6 (/ K)) is used as the n-type thermoelectric conversion. As member 2, Yb 0.15 Co 4 Sb 12 (having a thermal expansion coefficient of about 10 × 10 −6 (/ K) at 20 ° C. to 600 ° C.) was cut into a prismatic shape of 5 mm × 5 mm × 7 mm.

角柱状のp/n型の熱電変換部材1,2を、それぞれ32個使用し、50mm角の面積に32ペアのp/n型の熱電変換部材1,2を並べた。そして、20℃〜600℃における熱膨張係数が12.4×10−6(/K)であるNi90重量%−Mo10重量%の合金層をp型の熱電変換部材1の接合部材3とし、20℃〜600℃における熱膨張係数が11×10−6(/K)であるNi75重量%−Mo25重量%の合金層をn型の熱電変換部材2の接合部材3とした。 Thirty-two prismatic p / n-type thermoelectric conversion members 1 and 2 were used, respectively, and 32 pairs of p / n-type thermoelectric conversion members 1 and 2 were arranged in a 50 mm square area. Then, an alloy layer of Ni 90 wt% -Mo 10 wt% having a thermal expansion coefficient of 12.4 × 10 −6 (/ K) at 20 ° C. to 600 ° C. is used as the bonding member 3 of the p-type thermoelectric conversion member 1, 20 An alloy layer of Ni 75 wt% -Mo 25 wt% having a thermal expansion coefficient of 11 × 10 −6 (/ K) in the temperature range of 600 ° C. to 600 ° C. was used as the joining member 3 of the n-type thermoelectric conversion member 2.

さらに、20℃〜600℃における熱膨張係数が11.5×10−6(/K)であるSUS430を電極部材4の材料とし、溶射処理によって32ペアのp/n型の熱電変換部材1,2の両端を電気的に直列に連結し、50mm角の熱電変換モジュールを作製した。 Further, SUS430 having a thermal expansion coefficient of 11.5 × 10 −6 (/ K) at 20 ° C. to 600 ° C. is used as the material of the electrode member 4, and 32 pairs of p / n type thermoelectric conversion members 1 are formed by thermal spraying treatment. Both ends of 2 were electrically connected in series to produce a 50 mm square thermoelectric conversion module.

以上の方法によって作製した熱電変換モジュールについて、ヒートサイクル試験を行った。具体的にはアルゴン雰囲気中において、高温側にはブロックヒーターを使用し、低温側にはファンとヒートシンクによる空冷をしてヒートサイクル試験を行った。   About the thermoelectric conversion module produced by the above method, the heat cycle test was done. Specifically, in an argon atmosphere, a heat cycle test was performed using a block heater on the high temperature side and air cooling with a fan and a heat sink on the low temperature side.

高温側の電極部材4の温度を200℃から30分で昇温し、600℃で2時間保持した後、30分で200℃まで降温するように制御して、この1サイクルを計100サイクルになるまで行った。その結果、サイクル毎に測定した熱電変換モジュールの内部抵抗の増加は認められず、非常に良好な接合がされていることが判明した。   The temperature of the electrode member 4 on the high temperature side is raised from 200 ° C. in 30 minutes, held at 600 ° C. for 2 hours, and then controlled to drop to 200 ° C. in 30 minutes. I went until. As a result, it was found that the internal resistance of the thermoelectric conversion module measured for each cycle was not increased, and very good bonding was achieved.

ヒートサイクル試験後、高温端600℃、700℃/低温端50℃の条件で熱電変換モジュールの発電特性を測定した結果、それぞれの最大電気出力は20W、30Wであった。   After the heat cycle test, the power generation characteristics of the thermoelectric conversion module were measured under the conditions of a high temperature end of 600 ° C. and 700 ° C./low temperature end of 50 ° C. As a result, the maximum electric outputs were 20 W and 30 W, respectively.

以上の実験結果から、本実施例の熱電モジュールでは、熱電変換部材1,2と接合部材3との熱膨張係数の差を大幅に低減することができるので、熱電変換モジュールの温度が作動などにより大幅に変化しても、熱電変換部材1,2と電極部材3との接合を良好に維持できることが確認された。しかも、本実施例の熱電変換モジュールは、昇温と降温とが繰り返されても、高効率な発電を安定に実行できることも確認された。   From the above experimental results, in the thermoelectric module of the present embodiment, the difference in the thermal expansion coefficient between the thermoelectric conversion members 1 and 2 and the joining member 3 can be greatly reduced. It was confirmed that the bonding between the thermoelectric conversion members 1 and 2 and the electrode member 3 can be satisfactorily maintained even if it changes significantly. Moreover, it was also confirmed that the thermoelectric conversion module of the present example can stably perform highly efficient power generation even when the temperature rise and the temperature fall are repeated.

(実施例6)
p型の熱電変換部材1として、Yb0.7FeCoSb12(20℃〜600℃における熱膨張係数が約11.5×10−6(/K))を、n型の熱電変換部材2として、Yb0.15CoSb11.9Te0.1(20℃〜600℃における熱膨張係数が約10.2×10−6(/K))を、ともに5mm×5mm×7mmの角柱状に切削加工した。
Example 6
As the p-type thermoelectric conversion member 1, Yb 0.7 Fe 3 CoSb 12 (coefficient of thermal expansion at 20 ° C. to 600 ° C. of about 11.5 × 10 −6 (/ K)) is used as the n-type thermoelectric conversion member 2. Yb 0.15 Co 4 Sb 11.9 Te 0.1 (the coefficient of thermal expansion at 20 ° C. to 600 ° C. is about 10.2 × 10 −6 (/ K)), both of which are 5 mm × 5 mm × 7 mm square It was cut into a column shape.

角柱状のp/n型の熱電変換部材1,2を、それぞれ32個使用し、50mm角の面積に32ペアのp/n型の熱電変換部材1,2を並べた。そして、20℃〜600℃における熱膨張係数が12.1×10−6(/K)であるNi90重量%−W10重量%の合金層をp型の熱電変換部材1の接合部材3とし、20℃〜600℃における熱膨張係数が10.8×10−6(/K)であるNi75重量%−W25重量%の合金層をn型の熱電変換部材2の接合部材3とした。 Thirty-two prismatic p / n-type thermoelectric conversion members 1 and 2 were used, respectively, and 32 pairs of p / n-type thermoelectric conversion members 1 and 2 were arranged in a 50 mm square area. Then, an alloy layer of Ni 90 wt% -W 10 wt% having a thermal expansion coefficient of 12.1 × 10 −6 (/ K) at 20 ° C. to 600 ° C. is used as the joining member 3 of the p-type thermoelectric conversion member 1, 20 An alloy layer of Ni 75 wt% -W 25 wt% having a coefficient of thermal expansion of 10.8 × 10 −6 (/ K) at ˜600 ° C. was used as the joining member 3 of the n-type thermoelectric conversion member 2.

さらに、20℃〜600℃における熱膨張係数が11.5×10−6(/K)であるSUS430を電極部材4の材料とし、溶射処理によって32ペアのp/n型の熱電変換部材1,2の両端を電気的に直列に連結し、50mm角の熱電変換モジュールを作製した。 Further, SUS430 having a thermal expansion coefficient of 11.5 × 10 −6 (/ K) at 20 ° C. to 600 ° C. is used as the material of the electrode member 4, and 32 pairs of p / n type thermoelectric conversion members 1 are formed by thermal spraying treatment. Both ends of 2 were electrically connected in series to produce a 50 mm square thermoelectric conversion module.

以上の方法によって作製した熱電変換モジュールについて、ヒートサイクル試験を行った。具体的にはアルゴン雰囲気中において、高温側にはブロックヒーターを使用し、低温側にはファンとヒートシンクによる空冷をしてヒートサイクル試験を行った。   About the thermoelectric conversion module produced by the above method, the heat cycle test was done. Specifically, in an argon atmosphere, a heat cycle test was performed using a block heater on the high temperature side and air cooling with a fan and a heat sink on the low temperature side.

高温側の電極部材4の温度を200℃から30分で昇温し、600℃で2時間保持した後、30分で200℃まで降温するように制御して、この1サイクルを計100サイクルになるまで行った。その結果、サイクル毎に測定した熱電変換モジュールの内部抵抗の増加は認められず、非常に良好な接合がされていることが判明した。   The temperature of the electrode member 4 on the high temperature side is raised from 200 ° C. in 30 minutes, held at 600 ° C. for 2 hours, and then controlled to drop to 200 ° C. in 30 minutes. I went until. As a result, it was found that the internal resistance of the thermoelectric conversion module measured for each cycle was not increased, and very good bonding was achieved.

ヒートサイクル試験後、高温端600℃、700℃/低温端50℃の条件で熱電変換モジュールの発電特性を測定した結果、それぞれの最大電気出力は20W、28Wであった。   After the heat cycle test, the power generation characteristics of the thermoelectric conversion module were measured under the conditions of a high temperature end of 600 ° C. and 700 ° C./low temperature end of 50 ° C. As a result, the maximum electric outputs were 20 W and 28 W, respectively.

以上の実験結果から、本実施例の熱電モジュールでは、熱電変換部材1,2と接合部材3との熱膨張係数の差を大幅に低減することができるので、熱電変換モジュールの温度が作動などにより大幅に変化しても、熱電変換部材1,2と電極部材3との接合を良好に維持できることが確認された。しかも、本実施例の熱電変換モジュールは、昇温と降温とが繰り返されても、高効率な発電を安定に実行できることも確認された。   From the above experimental results, in the thermoelectric module of the present embodiment, the difference in the thermal expansion coefficient between the thermoelectric conversion members 1 and 2 and the joining member 3 can be greatly reduced. It was confirmed that the bonding between the thermoelectric conversion members 1 and 2 and the electrode member 3 can be satisfactorily maintained even if it changes significantly. Moreover, it was also confirmed that the thermoelectric conversion module of the present example can stably perform highly efficient power generation even when the temperature rise and the temperature fall are repeated.

(比較例1)
実施例1の熱電変換モジュール作製プロセスにおいて、接合部材だけをTiに変え、実施例1と同じ条件でモジュール作製したが、電極部材はp/n熱電変換部材と接合が充分な強度とならなかった。
(Comparative Example 1)
In the thermoelectric conversion module manufacturing process of Example 1, only the bonding member was changed to Ti, and a module was manufactured under the same conditions as in Example 1. However, the electrode member did not have sufficient strength for bonding with the p / n thermoelectric conversion member. .

(比較例2)
実施例2の熱電変換モジュール作製プロセスにおいて、接合部材だけをTiに変え、実施例2と同じ条件でモジュール作製したが、電極部材とp/n熱電変換部材とが充分な接合の強度を維持することができなかった。
(Comparative Example 2)
In the thermoelectric conversion module manufacturing process of Example 2, only the bonding member was changed to Ti and a module was manufactured under the same conditions as in Example 2. However, the electrode member and the p / n thermoelectric conversion member maintain sufficient bonding strength. I couldn't.

以上のように、比較例1と比較例2との実験結果により、特許文献1(特開2003−309294号公報)が開示したTi層が本発明の接合部材に適用できないことを裏付けられた。   As described above, the experimental results of Comparative Example 1 and Comparative Example 2 confirmed that the Ti layer disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2003-309294) cannot be applied to the joining member of the present invention.

以上、実施の形態および、実施例を用いて本発明を詳細に説明したが、本発明は上記内容に限定されるものではなく、本発明の範疇を逸脱しない範囲においてあらゆる変形や変更が可能である。   As described above, the present invention has been described in detail using the embodiments and examples. However, the present invention is not limited to the above contents, and various modifications and changes can be made without departing from the scope of the present invention. is there.

1 p型の熱電変換部材
2 n型の熱電変換部材
3 接合部材
4 電極部材
1 p-type thermoelectric conversion member 2 n-type thermoelectric conversion member 3 joining member 4 electrode member

Claims (12)

充填スクッテルダイト構造のSb系の熱電変換部材と、電極部材と、を有する熱電変換モジュールであって、
前記熱電変換部材と前記電極部材とが接合部材で接合されており、
前記接合部材は、Fe−M(Mは、Cr、Mo、W、V、Nb、Ta、からなる群から選択される少なくとも一種の元素)合金、Co−M合金、および、Ni−M合金、からなる群より選択される少なくとも一種の合金からなることを特徴とする熱電変換モジュール。
A thermoelectric conversion module having an Sb-based thermoelectric conversion member having a filled skutterudite structure, and an electrode member,
The thermoelectric conversion member and the electrode member are joined by a joining member,
The bonding member includes an Fe-M (M is at least one element selected from the group consisting of Cr, Mo, W, V, Nb, Ta) alloy, Co-M alloy, and Ni-M alloy, A thermoelectric conversion module comprising at least one alloy selected from the group consisting of:
前記接合部材は、前記Fe−Mからなり、
前記接合部材の合金が、Feを50重量%以上100重量%未満含み、Cr、Mo、W、V、Nb、Ta、からなる群から選択される少なくとも一種の元素Mを、0重量%を超え、50重量%以下のFe−M合金を含むことを特徴とする請求項1に記載の熱電変換モジュール。
The joining member is made of the Fe-M,
The alloy of the joining member contains at least one element M selected from the group consisting of Cr, Mo, W, V, Nb, Ta, and more than 0% by weight, including Fe of 50% by weight or more and less than 100% by weight. The thermoelectric conversion module according to claim 1, further comprising 50 wt% or less of an Fe—M alloy.
前記接合部材は、前記Co−Mからなり、
前記接合部材の合金が、Coを50重量%以上100重量%未満含み、Cr、Mo、W、V、Nb、Ta、からなる群から選択される少なくとも一種の元素Mを、0重量%を超え、50重量%以下のCo−M合金を含むことを特徴とする請求項1に記載の熱電変換モジュール。
The joining member is made of the Co-M,
The alloy of the joining member contains at least 50% by weight and less than 100% by weight of Co, and at least one element M selected from the group consisting of Cr, Mo, W, V, Nb, and Ta exceeds 0% by weight. 2. The thermoelectric conversion module according to claim 1, further comprising a Co-M alloy in an amount of 50% by weight or less.
前記接合部材は、前記Ni−Mからなり、
前記接合部材の合金が、Niを50重量%以上100重量%未満含み、Cr、Mo、W、V、Nb、Ta、からなる群から選択される少なくとも一種の元素Mを、0重量%を超え、50重量%以下のNi−M合金を含むことを特徴とする請求項1に記載の熱電変換モジュール。
The joining member is made of the Ni-M,
The alloy of the joining member contains Ni in an amount of 50 wt% or more and less than 100 wt%, and contains at least one element M selected from the group consisting of Cr, Mo, W, V, Nb, Ta, and more than 0 wt%. The thermoelectric conversion module according to claim 1, further comprising a Ni-M alloy of 50 wt% or less.
前記熱電変換部材と前記接合部材との20℃〜600℃における熱膨張係数の差が、前記熱電変換部材の熱膨張係数の値に対して20%以下であることを特徴とする請求項1ないし4の何れか一項に記載の熱電変換モジュール。   The difference in thermal expansion coefficient between 20 ° C and 600 ° C between the thermoelectric conversion member and the joining member is 20% or less with respect to the value of the thermal expansion coefficient of the thermoelectric conversion member. The thermoelectric conversion module according to any one of 4. 前記接合部材の20℃〜600℃における熱膨張係数が8×10−6(/K)以上15×10−6(/K)以下であることを特徴とする請求項1ないし5の何れか一項に記載の熱電変換モジュール。 6. The thermal expansion coefficient at 20 ° C. to 600 ° C. of the joining member is 8 × 10 −6 (/ K) or more and 15 × 10 −6 (/ K) or less. 6. The thermoelectric conversion module according to item. 前記電極部材が、鉄合金、ニッケル合金、コバルト合金、チタン合金、および、銅合金、からなる群より選択される合金を含むことを特徴とする請求項1ないし6の何れか一項に記載の熱電変換モジュール。   7. The electrode member according to claim 1, wherein the electrode member includes an alloy selected from the group consisting of an iron alloy, a nickel alloy, a cobalt alloy, a titanium alloy, and a copper alloy. Thermoelectric conversion module. 前記電極部材は、20℃〜600℃における熱膨張係数が8×10−6(/K)以上15×10−6(/K)以下の範囲にある金属または合金であることを特徴とする請求項1ないし7の何れか一項に記載の熱電変換モジュール。 The electrode member is a metal or alloy having a thermal expansion coefficient in the range of 8 × 10 −6 (/ K) to 15 × 10 −6 (/ K) in a range of 20 ° C. to 600 ° C. Item 8. The thermoelectric conversion module according to any one of Items 1 to 7. 前記電極部材と前記接合部材とが同じ組成の合金からなることを特徴とする請求項1ないし9の何れか一項に記載の熱電変換モジュール。   The thermoelectric conversion module according to any one of claims 1 to 9, wherein the electrode member and the bonding member are made of an alloy having the same composition. 熱電変換モジュールの充填スクッテルダイト構造のSb系の熱電変換部材と電極部材とを接合する接合部材であって、
Fe−M(Mは、Cr、Mo、W、V、Nb、Ta、からなる群から選択される少なくとも一種の元素)合金、Co−M合金、および、Ni−M合金、からなる群より選択される少なくとも一種の合金からなることを特徴とする接合部材。
A joining member for joining the Sb-based thermoelectric conversion member and the electrode member of the filled skutterudite structure of the thermoelectric conversion module,
Fe-M (M is at least one element selected from the group consisting of Cr, Mo, W, V, Nb and Ta), a group selected from the group consisting of Co-M alloys and Ni-M alloys A joining member comprising at least one kind of alloy.
前記熱電変換部材との20℃〜600℃における熱膨張係数の差が、前記熱電変換部材の熱膨張係数に対して20%以下であることを特徴とする請求項10に記載の接合部材。   The joining member according to claim 10, wherein a difference in thermal expansion coefficient between 20 ° C. and 600 ° C. with respect to the thermoelectric conversion member is 20% or less with respect to the thermal expansion coefficient of the thermoelectric conversion member. 20℃〜600℃における熱膨張係数が8×10−6(/K)以上15×10−6(/K)以下であることを特徴とする請求項11に記載の接合部材。 The thermal expansion coefficient in 20 to 600 degreeC is 8 * 10 < -6 > (/ K) or more and 15 * 10 < -6 > (/ K) or less, The joining member of Claim 11 characterized by the above-mentioned.
JP2009271626A 2009-11-30 2009-11-30 Thermoelectric conversion module and its joining member Expired - Fee Related JP5405993B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009271626A JP5405993B2 (en) 2009-11-30 2009-11-30 Thermoelectric conversion module and its joining member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009271626A JP5405993B2 (en) 2009-11-30 2009-11-30 Thermoelectric conversion module and its joining member

Publications (2)

Publication Number Publication Date
JP2011114291A JP2011114291A (en) 2011-06-09
JP5405993B2 true JP5405993B2 (en) 2014-02-05

Family

ID=44236372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009271626A Expired - Fee Related JP5405993B2 (en) 2009-11-30 2009-11-30 Thermoelectric conversion module and its joining member

Country Status (1)

Country Link
JP (1) JP5405993B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9209378B2 (en) 2013-06-20 2015-12-08 University Of Houston System Fabrication of stable electrode/diffusion barrier layers for thermoelectric filled skutterudite devices
JP6317113B2 (en) * 2014-01-09 2018-04-25 昭和電工株式会社 Thermoelectric converter
CN106299099B (en) * 2015-05-19 2019-01-29 中国科学院上海硅酸盐研究所 A kind of alloy electrode and preparation method thereof for skutterudite thermoelectric element
KR102129050B1 (en) 2017-06-15 2020-07-01 주식회사 엘지화학 Thermoelectric module
KR102120273B1 (en) * 2017-08-18 2020-06-08 주식회사 엘지화학 Thermoelectric module and thermoelectric generator

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000188426A (en) * 1998-12-21 2000-07-04 Ngk Insulators Ltd Thermo-electric conversion module and its manufacture
JP2002084005A (en) * 2000-07-03 2002-03-22 Komatsu Ltd Thermoelectric module
JP2002094131A (en) * 2000-09-13 2002-03-29 Sumitomo Special Metals Co Ltd Thermoelectric conversion element
JP2002246659A (en) * 2001-02-14 2002-08-30 Komatsu Ltd Thermoelectric module
JP2003092435A (en) * 2001-09-17 2003-03-28 Komatsu Ltd Thermoelectric module and its manufacturing method
JP4279594B2 (en) * 2003-05-16 2009-06-17 財団法人電力中央研究所 Thermoelectric conversion module assembling method and brazing material used for assembling the module
EP1835551B1 (en) * 2004-12-20 2018-01-24 Kabushiki Kaisha Toshiba Thermoelectric conversion module, heat exchanger using same, and thermoelectric power generating system
EP2242121B1 (en) * 2008-01-23 2018-10-24 Furukawa Co., Ltd. Thermoelectric conversion material and thermoelectric conversion module

Also Published As

Publication number Publication date
JP2011114291A (en) 2011-06-09

Similar Documents

Publication Publication Date Title
JP5671258B2 (en) Thermoelectric conversion module
JP5749437B2 (en) Thermoelectric conversion material and thermoelectric conversion module
WO2013076765A1 (en) Thermoelectric conversion module
JP5386239B2 (en) Thermoelectric conversion module
Zhang et al. Thermoelectric devices for power generation: recent progress and future challenges
JP5405993B2 (en) Thermoelectric conversion module and its joining member
JP5780254B2 (en) Thermoelectric conversion element
JPWO2014084315A1 (en) Thermoelectric conversion module
JP2006156993A (en) Thermoelectric conversion module, apparatus and method for thermoelectric generation using it, exhaust heat recovery system, solar heat using system, peltier cooling/heating system, nuclear thermoelectric generation system, and biomass system
JP2014508395A5 (en)
WO2013019382A1 (en) High temperature thermoelectrics
JP4850083B2 (en) Thermoelectric conversion module, power generation device and cooling device using the same
JP6122736B2 (en) Thermoelectric generator module
JP2003309294A (en) Thermoelectric module
JP5695612B2 (en) Thermoelectric module and method for manufacturing thermoelectric module
JP5922323B2 (en) Double-phase thermoelectric conversion material
US11309477B2 (en) Thermoelectric module
JP2003092435A (en) Thermoelectric module and its manufacturing method
JP2017168609A (en) Thermoelectric conversion element, thermoelectric conversion module, and thermoelectric conversion system
US9960335B2 (en) Thermoelectric element, thermoelectric module and method of manufacturing thermoelectric element
JP2004119648A (en) p-TYPE THERMOELECTRIC CONVERSION MATERIAL AND THERMOELECTRIC CONVERSION ELEMENT USING IT
JP2002084005A (en) Thermoelectric module
JP2003234516A (en) Thermoelectric module
JPH11195817A (en) Thermoelectric conversion element
JP4918672B2 (en) Thermoelectric conversion segment element and manufacturing method thereof.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131031

R150 Certificate of patent or registration of utility model

Ref document number: 5405993

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees