JP5403197B2 - Modified phosphor particle powder, method for producing the modified phosphor particle powder, and EL device using the modified phosphor particle powder - Google Patents

Modified phosphor particle powder, method for producing the modified phosphor particle powder, and EL device using the modified phosphor particle powder Download PDF

Info

Publication number
JP5403197B2
JP5403197B2 JP2005283099A JP2005283099A JP5403197B2 JP 5403197 B2 JP5403197 B2 JP 5403197B2 JP 2005283099 A JP2005283099 A JP 2005283099A JP 2005283099 A JP2005283099 A JP 2005283099A JP 5403197 B2 JP5403197 B2 JP 5403197B2
Authority
JP
Japan
Prior art keywords
particle powder
phosphor
phosphor particle
modified
modified phosphor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005283099A
Other languages
Japanese (ja)
Other versions
JP2006124680A (en
Inventor
一之 林
弘子 森井
峰子 大杉
敬介 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2005283099A priority Critical patent/JP5403197B2/en
Publication of JP2006124680A publication Critical patent/JP2006124680A/en
Application granted granted Critical
Publication of JP5403197B2 publication Critical patent/JP5403197B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、耐水性に優れると共に、初期発光輝度の低下が抑制された改質蛍光体粒子粉末、該改質蛍光体粒子粉末を得るための表面処理方法及び該改質蛍光体粒子粉末を用いたEL素子を提供する。   The present invention uses a modified phosphor particle powder that is excellent in water resistance and suppresses a decrease in initial emission luminance, a surface treatment method for obtaining the modified phosphor particle powder, and the modified phosphor particle powder. The EL device was provided.

現在、蛍光体は様々な用途に用いられており、代表的な例としては各種ディスプレイ(CRT、プラズマディスプレイ、ELディスプレイ、FED)をはじめ、ディスプレイのバックライト、LED等が挙げられる。   Currently, phosphors are used in various applications, and typical examples include various displays (CRT, plasma display, EL display, FED), display backlights, LEDs, and the like.

これらの用途に用いられる蛍光体としては、例えばZnS:Mn、YS:Eu、SrGa:Eu等の硫化物系蛍光体、BaMgAl1017:Eu、YAl12:Ce等の酸化物蛍光体が挙げられる。 Examples of phosphors used in these applications include sulfide phosphors such as ZnS: Mn, Y 2 O 2 S: Eu, SrGa 2 S 4 : Eu, BaMgAl 10 O 17 : Eu, Y 3 Al 5 O. 12 : Oxide phosphor such as Ce.

一般に、これら蛍光体は耐水性が低いことが知られており、とりわけ硫化物系蛍光体は蛍光体表面と水が反応することにより硫化水素が発生し、蛍光特性が著しく低下するという問題を有しており、耐水性の向上が望まれている。   In general, these phosphors are known to have low water resistance. In particular, sulfide-based phosphors have a problem that hydrogen sulfide is generated by the reaction between the phosphor surface and water, and the fluorescence characteristics are significantly deteriorated. Therefore, improvement in water resistance is desired.

また近年、ディスプレイのフラット化、薄型化の点からフィールドエミッションディスプレイ(FED)用蛍光膜が注目されているが、使用中に電子線による劣化を受けて経時的な発光輝度の低下や発光色の変化が起こりやすく、とりわけ硫化物系蛍光体の場合、その傾向が顕著であり、その改善が望まれている。   In recent years, fluorescent films for field emission displays (FEDs) have been attracting attention from the viewpoint of flattening and thinning the display. Changes are likely to occur, especially in the case of sulfide-based phosphors, and this tendency is remarkable, and improvement is desired.

例えばEL素子の場合、その一般的な構造例としては、EL蛍光体からなる発光体層の両面に絶縁膜を設け、更にこの絶縁膜の片面に透明電極を、もう一方の面に背面電極を設け、これら電極間に交流電圧を印加することにより発光させるものである。しかしながら、前述の通り硫化物系蛍光体は耐水性に劣るため、現在では、EL素子作製の際に、一般的に、ポリクロロトリフルオロエチレンフィルム等の防湿フィルムによる被覆が行われているが、これらのフィルムは高価、且つ、剥離しやすいと共に、フィルムの光吸収作用によりEL発光効率が低下する傾向にある。   For example, in the case of an EL element, as a general structural example, an insulating film is provided on both sides of a phosphor layer made of an EL phosphor, a transparent electrode is provided on one side of the insulating film, and a back electrode is provided on the other side. It is made to emit light by applying an alternating voltage between these electrodes. However, as described above, since the sulfide-based phosphor is inferior in water resistance, at present, when an EL element is produced, it is generally covered with a moisture-proof film such as a polychlorotrifluoroethylene film. These films are expensive and easy to peel off, and the EL luminous efficiency tends to decrease due to the light absorption action of the film.

EL蛍光体に耐水性を付与するために、蛍光体に表面処理を施すことが試みられており、これまでに、化学的気相成長法(CVD法)により蛍光体表面に酸化アルミニウムの非粒状膜をコーティングする方法(特許文献1)及びチタンテトライソプロポキシドをキャリヤガス中で気化して蛍光体粒子の流動床に送入し、250〜300℃に加熱して、該蛍光体の表面に二酸化チタンの連続的被膜を形成させる方法(特許文献2)が開示されている。   In order to impart water resistance to the EL phosphor, it has been attempted to perform surface treatment on the phosphor, and so far, non-particulate aluminum oxide on the phosphor surface by chemical vapor deposition (CVD). A method of coating a film (Patent Document 1) and titanium tetraisopropoxide are vaporized in a carrier gas, sent to a fluidized bed of phosphor particles, heated to 250 to 300 ° C., and applied to the surface of the phosphor. A method for forming a continuous coating of titanium dioxide (Patent Document 2) is disclosed.

また、気相加水分解反応により蛍光体表面を酸化物被膜でコーティングする方法(特許文献3)が開示されている。   Also disclosed is a method (Patent Document 3) in which the phosphor surface is coated with an oxide film by a gas phase hydrolysis reaction.

また、水溶液中に蛍光体を分散させた分散液に、ケイ酸エチルまたはチタンテトラプロポキシドの溶液を添加して、ゾルゲル反応で酸化ケイ素または酸化チタンからなる保護膜を形成させる方法(特許文献4)、蛍光体粒子を純水中に分散させ、硫酸亜鉛とアルミナを添加しpHを調整することで、水酸化亜鉛を介してアルミナ粒子を蛍光体表面に付着させる方法(特許文献5)及びアルカリ溶液中に蛍光体を分散させた蛍光体分散溶液にアルミニウム等から選択される金属イオンを含有する酸性塩溶液を添加し、中和反応によって蛍光体表面に金属水酸化物を析出させる方法(特許文献6)が開示されている。   Also, a method of adding a solution of ethyl silicate or titanium tetrapropoxide to a dispersion in which a phosphor is dispersed in an aqueous solution to form a protective film made of silicon oxide or titanium oxide by a sol-gel reaction (Patent Document 4). ), Phosphor particles are dispersed in pure water, zinc sulfate and alumina are added to adjust pH, and the alumina particles are adhered to the phosphor surface via zinc hydroxide (Patent Document 5) and alkali A method in which an acidic salt solution containing a metal ion selected from aluminum or the like is added to a phosphor dispersion solution in which the phosphor is dispersed in a solution, and a metal hydroxide is precipitated on the phosphor surface by a neutralization reaction (patented) Document 6) is disclosed.

また、流動化された蛍光体粒子に金属アルコキシドオリゴマーもしくは金属アルコキシドを噴霧して粒子表面に金属酸化物被膜を形成する方法(特許文献7乃至8)及び蛍光体、金属酸化物微粒子及び金属アルコキシドを有機溶媒中に分散させた後、100〜200℃の温度範囲でスプレードライヤーに供給して有機溶媒を揮散させることにより蛍光体表面を被覆する方法(特許文献9)が開示されている。   Further, a method of forming a metal oxide film on the particle surface by spraying metal alkoxide oligomer or metal alkoxide on fluidized phosphor particles (Patent Documents 7 to 8), and phosphor, metal oxide fine particles, and metal alkoxide. A method (Patent Document 9) is disclosed in which a phosphor surface is coated by dispersing in an organic solvent and then supplying the spray dryer in a temperature range of 100 to 200 ° C. to volatilize the organic solvent.

また、無機蛍光体を大気圧プラズマCVD法により、無機蛍光体粒子表面に酸化物を付着させる方法が開示されている(特許文献10)。   Also disclosed is a method of attaching an oxide to the surface of inorganic phosphor particles by atmospheric pressure plasma CVD (Patent Document 10).

特開平2−38482号公報Japanese Patent Laid-Open No. 2-38482 特開平6−25857号公報JP-A-6-25857 特開平4−230996号公報JP-A-4-230996 米国特許第5196229号公報US Pat. No. 5,196,229 特開平10−212475号公報JP-A-10-212475 特開平11−256150号公報JP-A-11-256150 特開平9−263753号公報JP-A-9-263653 特開平11−172243号公報Japanese Patent Laid-Open No. 11-172243 特開平9−272866号公報Japanese Patent Laid-Open No. 9-272866 特開2003−336046号公報JP 2003-336046 A

耐水性に優れ、且つ、初期発光輝度の低下が抑制されている蛍光体粒子粉末は、現在最も要求されているところであるが、未だ得られていない。   A phosphor particle powder that is excellent in water resistance and that suppresses a decrease in initial light emission luminance is the most demanded at present, but has not yet been obtained.

即ち、特許文献1及び2には、化学的気相成長法(CVD法)により蛍光体表面にアルミナ被膜もしくは二酸化チタン被膜をコーティングする方法が記載されているが、この方法では300℃もしくは400℃以上の高温に蛍光体が曝されるため、処理後に得られたEL蛍光体の初期発光輝度が著しく低下してしまうという問題を有している。   That is, Patent Documents 1 and 2 describe a method of coating the phosphor surface with an alumina film or a titanium dioxide film by a chemical vapor deposition method (CVD method). In this method, 300 ° C. or 400 ° C. Since the phosphor is exposed to the above high temperature, there is a problem that the initial emission luminance of the EL phosphor obtained after the processing is remarkably lowered.

特許文献3には、実質140℃以下の温度で気相加水分解反応により蛍光体表面を酸化物被膜でコーティングする方法が記載されているが、処理後の蛍光体の初期輝度は未処理のものと比べて50%程度、最も好ましいものでも82%程度であり、該処理方法では、十分に高い初期発光輝度を得ることが困難である。   Patent Document 3 describes a method of coating a phosphor surface with an oxide film by a gas phase hydrolysis reaction at a temperature substantially below 140 ° C., but the initial luminance of the phosphor after treatment is untreated. It is about 50% compared to that of the product, and most preferably about 82%. With this processing method, it is difficult to obtain a sufficiently high initial light emission luminance.

また、特許文献4乃至6には、ゾル−ゲル反応もしくは中和反応により蛍光体表面に金属酸化物もしくは金属水酸化物からなる保護膜を形成させる方法が記載されているが、反応を水溶液中で行うため、殊に耐水性に劣る硫化物系蛍光体はこの時点で発光輝度が著しく低下してしまうため、十分に高い初期発光輝度を有する蛍光体を得ることは困難である。   Patent Documents 4 to 6 describe a method of forming a protective film made of a metal oxide or a metal hydroxide on the phosphor surface by a sol-gel reaction or a neutralization reaction. Therefore, it is difficult to obtain a phosphor having a sufficiently high initial emission luminance because the emission luminance of a sulfide-based phosphor particularly inferior in water resistance is significantly reduced at this point.

また、特許文献7には、100〜200℃に加熱された蛍光体粒子の流動層に金属アルコキシドオリゴマーもしくは金属アルコキシドを噴霧して粒子表面に金属酸化物被膜を形成する方法が記載されているが、表面被覆処理前に既に100〜200℃の温度に曝されるため、処理後に得られた蛍光体の初期発光輝度が著しく低下するという問題を有している。   Patent Document 7 describes a method of forming a metal oxide film on the particle surface by spraying a metal alkoxide oligomer or metal alkoxide on a fluidized bed of phosphor particles heated to 100 to 200 ° C. Since it is already exposed to a temperature of 100 to 200 ° C. before the surface coating treatment, there is a problem that the initial emission luminance of the phosphor obtained after the treatment is remarkably lowered.

また、特許文献8には、流動化された蛍光体粒子に金属アルコキシドの有機溶媒溶液を噴霧して粒子表面に保護膜を形成する方法が記載されているが、蛍光体と流動化させるキャリアガスが調湿により水分を含んでいるため、殊に耐水性に劣る硫化物系蛍光体はこの時点で発光輝度が著しく低下してしまうため、十分に高い初期発光輝度を有する蛍光体を得ることは困難である。   Patent Document 8 describes a method of forming a protective film on a particle surface by spraying an organic solvent solution of a metal alkoxide on fluidized phosphor particles, and a carrier gas to be fluidized with the phosphor. However, the sulfide phosphors that are inferior in water resistance particularly have low luminance at this point, so that it is possible to obtain a phosphor having sufficiently high initial emission luminance. Have difficulty.

また、特許文献9には、蛍光体、金属酸化物微粒子及び金属アルコキシドを有機溶媒中に分散させた後、スプレードライヤーに供給して有機溶媒を揮散させることにより蛍光体表面を被覆する方法が記載されているが、蛍光体と金属酸化物微粒子を金属アルコキシドと同時にスプレードライヤーに供給しているため、金属アルコキシドの加水分解が蛍光体粒子表面のみならず金属酸化物微粒子表面でもおこる。また、同時に供給された金属酸化物微粒子は必ずしも蛍光体表面に付着するとは限らないことから十分な耐水性を得る事は困難である。   Patent Document 9 describes a method of coating a phosphor surface by dispersing phosphor, metal oxide fine particles and metal alkoxide in an organic solvent, and then supplying the spray dryer to volatilize the organic solvent. However, since the phosphor and the metal oxide fine particles are supplied to the spray dryer simultaneously with the metal alkoxide, the hydrolysis of the metal alkoxide occurs not only on the surface of the phosphor particles but also on the surface of the metal oxide fine particles. Further, since the metal oxide fine particles supplied at the same time do not always adhere to the phosphor surface, it is difficult to obtain sufficient water resistance.

また、特許文献10には、無機蛍光体をプラズマ状態の反応性ガスに曝し、無機蛍光体粒子表面に酸化物を付着させる方法が記載されているが、無機蛍光体がプラズマ状態の反応性ガスと接触することによって、少なからずダメージを受けることにより、無機蛍光体の初期発光輝度は未処理の無機蛍光体のそれと比べて低下する傾向にある。   Patent Document 10 describes a method in which an inorganic phosphor is exposed to a reactive gas in a plasma state and an oxide is deposited on the surface of the inorganic phosphor particles. The initial emission luminance of the inorganic phosphor tends to be lower than that of the untreated inorganic phosphor due to the damage caused by the contact with the substrate.

そこで、本発明は、耐水性に優れると共に、初期発光輝度の低下が抑制されている改質蛍光体粒子粉末を得ることを技術的課題とする。   In view of this, an object of the present invention is to obtain a modified phosphor particle powder that is excellent in water resistance and in which a decrease in initial light emission luminance is suppressed.

本発明者らは、前記課題を解決すべく鋭意研究を重ねた結果、水分含有量が0.5%未満である有機溶剤に蛍光体粒子粉末を分散した懸濁液中に、金属アルコキシド溶液を加え、風乾後、乾燥させることにより得られたEL蛍光体粒子粉末は、耐水性に優れると共に、初期発光輝度の低下が抑制されていることを見いだし、本発明をなすに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that a metal alkoxide solution is added to a suspension in which phosphor particle powder is dispersed in an organic solvent having a water content of less than 0.5%. In addition, the EL phosphor particle powder obtained by drying after air drying was found to be excellent in water resistance and to suppress a decrease in the initial light emission luminance, thereby achieving the present invention.

即ち、本発明は、蛍光体粒子表面に、ケイ素、アルミニウム、チタン又はジルコニウムのいずれかの元素を含有する化合物から選ばれる少なくとも一種からなる被膜が均一にコーティングされた改質蛍光体粒子粉末であり、該改質蛍光体粒子粉末の初期発光輝度がコーティング処理前の蛍光体粒子粉末の初期発光輝度に対して85%以上であることを特徴とする改質蛍光体粒子粉末である(本発明1)。   That is, the present invention is a modified phosphor particle powder in which the phosphor particle surface is uniformly coated with a film made of at least one compound selected from compounds containing any element of silicon, aluminum, titanium or zirconium. The modified phosphor particle powder is characterized in that the initial emission luminance of the modified phosphor particle powder is 85% or more with respect to the initial emission luminance of the phosphor particle powder before the coating treatment (Invention 1). ).

また、本発明は、蛍光体粒子表面に、ケイ素、アルミニウム、チタン又はジルコニウムのいずれかの元素を含有する化合物から選ばれる少なくとも一種からなる被膜が均一にコーティングされた改質蛍光体粒子粉末であり、該改質蛍光体粒子粉末の耐水性が90%以上であることを特徴とする改質蛍光体粒子粉末である(本発明2)。   In addition, the present invention is a modified phosphor particle powder in which the phosphor particle surface is uniformly coated with a film made of at least one compound selected from compounds containing any element of silicon, aluminum, titanium, or zirconium. The modified phosphor particle powder is characterized in that the water resistance of the modified phosphor particle powder is 90% or more (Invention 2).

また、本発明は、蛍光体粒子表面に、ケイ素、アルミニウム、チタン又はジルコニウムのいずれかの元素を含有する化合物から選ばれる少なくとも一種からなる被膜が均一にコーティングされた改質蛍光体粒子粉末であり、該改質蛍光体粒子粉末の初期発光輝度がコーティング処理前の蛍光体粒子粉末の初期発光輝度に対して85%以上であり、且つ、耐水性が90%以上であることを特徴とする改質蛍光体粒子粉末である(本発明3)。   In addition, the present invention is a modified phosphor particle powder in which the phosphor particle surface is uniformly coated with a film made of at least one compound selected from compounds containing any element of silicon, aluminum, titanium, or zirconium. The modified phosphor particle powder has an initial emission luminance of 85% or more of the initial emission luminance of the phosphor particle powder before the coating treatment, and water resistance of 90% or more. Phosphor powder (Invention 3).

また、本発明は、前記蛍光体が蛍光体を構成する元素として硫黄元素を含む硫化物系蛍光体であることを特徴とする本発明1乃至本発明3のいずかれの改質蛍光体粒子粉末である(本発明4)。   In the present invention, any one of the modified phosphor particles according to any one of the present invention 1 to the present invention 3, wherein the phosphor is a sulfide-based phosphor containing sulfur as an element constituting the phosphor. It is a powder (Invention 4).

また、本発明は、蛍光体粒子粉末を、水分含有量が0.5%未満である有機溶剤に分散させた懸濁液中に、金属アルコキシド溶液を添加・攪拌後、風乾し、乾燥させることを特徴とする本発明1乃至本発明4のいずれかの改質蛍光体粒子粉末の製造方法である(本発明5)。   In the present invention, the phosphor particles are dispersed in an organic solvent having a water content of less than 0.5%, and the metal alkoxide solution is added and stirred, followed by air drying and drying. A method for producing a modified phosphor particle powder according to any one of the present invention 1 to the present invention 4 (Invention 5).

また、本発明は、本発明1乃至本発明4のいずれかの改質蛍光体粒子粉末を蛍光体層に用いたことを特徴とするEL素子である(本発明6)。     Further, the present invention is an EL device characterized in that the modified phosphor particle powder of any one of the present invention 1 to the present invention 4 is used for a phosphor layer (the present invention 6).

本発明に係る改質蛍光体粒子粉末は、耐水性に優れると共に、初期発光輝度の低下が抑制され蛍光体粒子粉末が本来有する特性を十分に発揮できるので、各種用途の蛍光体粒子粉末として好適である。   The modified phosphor particle powder according to the present invention is excellent in water resistance and is suitable as a phosphor particle powder for various applications because it can sufficiently exhibit the inherent properties of the phosphor particle powder while suppressing a decrease in initial light emission luminance. It is.

本発明に係るEL素子は、前記改質蛍光体粒子粉末を用いたことにより、初期発光輝度が高いと共に、輝度半減期が長いため、高性能EL素子として好適である。   The EL element according to the present invention is suitable as a high-performance EL element because it uses the modified phosphor particle powder and thus has high initial emission luminance and a long luminance half-life.

本発明の構成をより詳しく説明すれば次の通りである。   The configuration of the present invention will be described in more detail as follows.

先ず、本発明に係る改質蛍光体粒子粉末について述べる。   First, the modified phosphor particle powder according to the present invention will be described.

本発明1に係る改質蛍光体粒子粉末は、蛍光体粒子の粒子表面に、ケイ素、アルミニウム、チタン又はジルコニウムのいずれかの元素を含有する化合物から選ばれる少なくとも一種からなる被膜が均一にコーティングされた改質蛍光体粒子粉末であり、該改質蛍光体粒子粉末の初期発光輝度がコーティング処理前の蛍光体粒子粉末の初期発光輝度に対して85%以上であることを特徴とする改質蛍光体粒子からなる。   In the modified phosphor particle powder according to the first aspect of the present invention, the particle surface of the phosphor particle is uniformly coated with a film made of at least one compound selected from compounds containing any element of silicon, aluminum, titanium, or zirconium. The modified phosphor particle powder, wherein the modified phosphor particle powder has an initial emission luminance of 85% or more with respect to the initial emission luminance of the phosphor particle powder before the coating treatment. It consists of body particles.

本発明2に係る改質蛍光体粒子粉末は、蛍光体粒子の粒子表面に、ケイ素、アルミニウム、チタン又はジルコニウムのいずれかの元素を含有する化合物から選ばれる少なくとも一種からなる被膜が均一にコーティングされた改質蛍光体粒子粉末であり、該改質蛍光体粒子粉末の耐水性が90%以上であることを特徴とする改質蛍光体粒子である。   In the modified phosphor particle powder according to the second aspect of the present invention, the particle surface of the phosphor particle is uniformly coated with a film made of at least one compound selected from compounds containing any element of silicon, aluminum, titanium, or zirconium. The modified phosphor particles are characterized in that the modified phosphor particles have a water resistance of 90% or more.

本発明に係る改質蛍光体粒子粉末の被膜の被覆量は、各元素換算の合計で0.5〜25重量%が好ましく、より好ましくは0.75〜22.5重量%、更により好ましくは1.0〜20重量%である。0.5重量%未満の場合には、十分な耐水性改善効果が得られない。25重量%を超える場合には、蛍光体以外の物質の含有量が多くなり過ぎ蛍光体の初期発光輝度が低下するため好ましくない。   The coating amount of the modified phosphor particle powder according to the present invention is preferably 0.5 to 25% by weight in total in terms of each element, more preferably 0.75 to 22.5% by weight, and still more preferably. 1.0 to 20% by weight. If it is less than 0.5% by weight, a sufficient effect of improving water resistance cannot be obtained. If it exceeds 25% by weight, the content of substances other than the phosphor increases so much that the initial light emission luminance of the phosphor decreases, which is not preferable.

本発明に係る改質蛍光体粒子粉末の粒子径及び粒子形状は、用途や特性に応じて選べばよく、特には限定されないが、平均粒子径は1〜30μmの範囲が好ましい。   The particle diameter and particle shape of the modified phosphor particle powder according to the present invention may be selected according to the application and characteristics and are not particularly limited, but the average particle diameter is preferably in the range of 1 to 30 μm.

本発明に係る改質蛍光体粒子粉末の初期発光輝度は、コーティング処理前の初期発光輝度に対して85%以上である。改質蛍光体粒子粉末の初期発光輝度が、コーティング処理前の蛍光体粒子粉末の初期発光輝度に対して85%未満である場合には、処理による初期発光輝度の低下が激しく、コーティング処理後、高い初期発光輝度を有する蛍光体粒子粉末を得ることが困難となる。より好ましくは87.5%以上、更により好ましくは90%以上である。   The initial emission luminance of the modified phosphor particle powder according to the present invention is 85% or more with respect to the initial emission luminance before the coating treatment. When the initial emission luminance of the modified phosphor particle powder is less than 85% with respect to the initial emission luminance of the phosphor particle powder before the coating treatment, the initial emission luminance is greatly reduced by the treatment. It becomes difficult to obtain phosphor particle powder having high initial emission luminance. More preferably, it is 87.5% or more, and still more preferably 90% or more.

本発明に係る改質蛍光体粒子粉末の耐水性は、後述する測定条件において、90%以上であり、好ましくは92.5%以上、より好ましくは95%以上である。耐水性が90%未満の場合には、これを用いて得られたEL素子の発光輝度半減時間もまた短いものとなり、実用上問題がある。   The water resistance of the modified phosphor particle powder according to the present invention is 90% or more, preferably 92.5% or more, more preferably 95% or more under the measurement conditions described later. When the water resistance is less than 90%, the EL device obtained using this has a short emission luminance half-life, which causes a practical problem.

次に、本発明に係る改質蛍光体粒子粉末の製造法について述べる。   Next, a method for producing the modified phosphor particle powder according to the present invention will be described.

本発明に係る改質蛍光体粒子粉末は、被処理粒子粉末である蛍光体粒子粉末を水分含有量が0.5%未満である有機溶剤に分散させた懸濁液中に、金属アルコキシド溶液を添加・攪拌後、風乾し、乾燥させることにより得ることができる。   The modified phosphor particle powder according to the present invention comprises a metal alkoxide solution in a suspension in which a phosphor particle powder, which is a particle to be treated, is dispersed in an organic solvent having a water content of less than 0.5%. After addition and stirring, it can be obtained by air drying and drying.

本発明における被処理粒子である蛍光体粒子は、Y1512、YSiO、ZnSiO、Y、BaMgAl1017、BaAl1219、(Ba、Sr、Mg)O・aAl、(Y、Gd)BO、YO、SnO、Ca10(PO(F、Cl)、(Ba、Sr)(Mg、Mn)Al1017、(Sr、Ca、Ba、Mg)10(PO12、(La、Ce)PO、CeMgAl1119、GdMgB10、Sr、SrAl1425等を母体とする酸化物系の蛍光体、YCl、LaCl、GdClの希土類塩化物及び、CdCl、PbCl、TlClの重金属塩化物等の塩化物系蛍光体、蛍光体の基本構成元素として窒素を含有する窒化物系蛍光体、ZnS、YS、CdS、LnS(Ln:Y、Gd、La)、MAl、MS、MGa(M:アルカリ土類金属)等を母体とし、蛍光体の基本構成元素として硫黄を含有する硫化物系蛍光体である。本発明に用いられる蛍光体としては、以上に例示した蛍光体に限られるものではない。 The phosphor particles that are the particles to be treated in the present invention are Y 3 A 15 O 12 , Y 2 SiO 3 , Zn 2 SiO 4 , Y 2 O 3 , BaMgAl 10 O 17 , BaAl 12 O 19 , (Ba, Sr, Mg) O.aAl 2 O 3 , (Y, Gd) BO 3 , YO 3 , SnO 2 , Ca 10 (PO 4 ) 6 (F, Cl) 2 , (Ba, Sr) (Mg, Mn) Al 10 O 17, (Sr, Ca, Ba , Mg) 10 (PO 4) 6 C 12, (La, Ce) PO 4, CeMgAl 11 O 19, GdMgB 5 O 10, Sr 2 P 2 O 7, Sr 4 Al 14 O oxide phosphor system for a 25 or the like as a base, YCl 3, LaCl 3, rare earth chlorides GdCl 3 and, CdCl 2, PbCl 2, TlCl chloride-based phosphor of heavy metal chlorides 3, firefly Nitride phosphor containing nitrogen as a basic constituent element of the body, ZnS, Y 2 O 2 S , CdS, Ln 2 O 2 S (Ln: Y, Gd, La), MAl 2 S 4, MS, MGa 2 A sulfide-based phosphor containing S 4 (M: alkaline earth metal) or the like as a base material and containing sulfur as a basic constituent element of the phosphor. The phosphor used in the present invention is not limited to the phosphors exemplified above.

本発明における被処理粒子である蛍光体粒子の粒子径及び粒子形状は、用途や特性に応じて選べばよく、特には限定されないが、平均粒子径は1〜30μmの範囲が好ましい。   The particle diameter and particle shape of the phosphor particles, which are the particles to be treated in the present invention, may be selected according to the application and characteristics and are not particularly limited, but the average particle diameter is preferably in the range of 1 to 30 μm.

本発明に用いる有機溶剤としては、一般的に用いられているものであれば何を用いてもよい。具体的には、エチルアルコール、プロピルアルコール又はブチルアルコール等のアルコール系溶剤、アセトン又はメチルエチルケトン等のケトン系溶剤、トルエン、キシレン又はベンゼン等の芳香族炭化水素系溶剤、メチルセロソルブ、エチルセロソルブ、プロピルセロソルブ又はブチルセロソルブ等のグリコールエーテル系溶剤、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ジプロピレングリコール又はトリプロピレングリコール、ポリプロピレングリコール等のオキシエチレン、オキシプロピレン付加重合体、エチレングリコール、プロピレングリコール又は1,2,6−ヘキサントリオール等のアルキレングリコール、グリセリン、2−ピロリドン等を好適に用いることができるが、より好ましくは、エチルアルコール、プロピルアルコール、ブチルアルコール等のアルコール系溶剤、アセトン、メチルエチルケトン等のケトン系溶剤である。   Any organic solvent may be used as long as it is generally used. Specifically, alcohol solvents such as ethyl alcohol, propyl alcohol or butyl alcohol, ketone solvents such as acetone or methyl ethyl ketone, aromatic hydrocarbon solvents such as toluene, xylene or benzene, methyl cellosolve, ethyl cellosolve, propyl cellosolve Or glycol ether solvent such as butyl cellosolve, diethylene glycol, triethylene glycol, polyethylene glycol, dipropylene glycol or tripropylene glycol, oxyethylene such as polypropylene glycol, oxypropylene addition polymer, ethylene glycol, propylene glycol or 1,2,6 -Alkylene glycol such as hexanetriol, glycerin, 2-pyrrolidone and the like can be preferably used, but more preferably, Chill alcohol, propyl alcohol, alcohol-based solvents such as butyl alcohol, acetone, ketone solvents such as methyl ethyl ketone.

本発明に用いる有機溶剤の水分含有量は0.5%未満であり、好ましくは0.4%未満、より好ましくは0.3%未満である。水分含有量が0.5%以上の場合には、溶液中の水分で蛍光体粒子の蛍光特性が低下すると共に、下記金属アルコキシドを用いて表面被覆処理を行った場合に、加水分解反応が急激に進行する場合があり、均一な被覆処理が困難となる。   The water content of the organic solvent used in the present invention is less than 0.5%, preferably less than 0.4%, more preferably less than 0.3%. When the moisture content is 0.5% or more, the fluorescence characteristics of the phosphor particles are degraded by moisture in the solution, and when the surface coating treatment is performed using the following metal alkoxide, the hydrolysis reaction is abrupt. It may be difficult to achieve uniform coating.

本発明に用いる金属アルコキシドを構成する金属元素としては、アルミニウム、ジルコニウム、チタニウム、ケイ素を用いることができる。また、アルコキシドの種類としては、メトキシド、エトキシド、プロポキシド、イソプロポキシド、オキシイソプロポキシド、ブトキシド等を用いることができる。また、テトラエトキシシラン又はテトラメトキシシランを部分的に加水分解、縮合することにより得られるエチルシリケート及びメチルシリケートを用いることができる。処理の均一性及び処理効果を考慮すれば、テトラエトキシシラン、テトラメトキシシラン、テトラエチルシリケート、テトラメチルシリケート、アルミニウムトリイソプロポキシド、ジルコニウムテトライソプロポキシド、チタニウムテトライソプロポキシド等が好ましい。   Aluminum, zirconium, titanium, and silicon can be used as the metal element constituting the metal alkoxide used in the present invention. Moreover, as a kind of alkoxide, methoxide, ethoxide, propoxide, isopropoxide, oxyisopropoxide, butoxide, etc. can be used. Further, ethyl silicate and methyl silicate obtained by partially hydrolyzing and condensing tetraethoxysilane or tetramethoxysilane can be used. Considering the uniformity of treatment and the treatment effect, tetraethoxysilane, tetramethoxysilane, tetraethyl silicate, tetramethyl silicate, aluminum triisopropoxide, zirconium tetraisopropoxide, titanium tetraisopropoxide and the like are preferable.

また、上記金属アルコキシドは、より均一な処理を行うために、前述の有機溶剤に予め分散又は溶解させて用いることが好ましい。   The metal alkoxide is preferably used after being dispersed or dissolved in advance in the above-mentioned organic solvent in order to perform a more uniform treatment.

金属アルコキシドの添加量は、蛍光体粒子粉末の比表面積によって異なるが、通常、蛍光体粒子粉末100重量部当たり、処理に用いる金属アルコキシドの各元素換算の合計で0.5〜33.3重量部が好ましく、より好ましくは0.75〜29.0重量部、更により好ましくは1.0〜25.0重量部である。0.5重量部未満の場合には、十分な耐水性の効果が得られない。33.3重量部を超える場合には、蛍光体以外の物質の含有量が多くなり過ぎ蛍光特性が低下するため好ましくない。   The addition amount of the metal alkoxide varies depending on the specific surface area of the phosphor particle powder, but usually 0.5 to 33.3 parts by weight in terms of each element equivalent of the metal alkoxide used for the treatment per 100 parts by weight of the phosphor particle powder. Is preferred, more preferably 0.75 to 29.0 parts by weight, still more preferably 1.0 to 25.0 parts by weight. When the amount is less than 0.5 part by weight, a sufficient water resistance effect cannot be obtained. When the amount exceeds 33.3 parts by weight, the content of substances other than the phosphor increases so much that the fluorescence characteristics deteriorate, such being undesirable.

蛍光体粒子粉末と金属アルコキシド溶液を混合するための機器としては、ヘンシェルミキサー、スピードミキサー、ボールカッター、パワーミキサー、ハイブリッドミキサー等の高速・アジテート式混練機、転動ボールミル、振動ボールミル、遊星ミル等のボール型混練機及びコーンブレンダー等を好適に用いることができる。   Equipment for mixing phosphor particle powder and metal alkoxide solution includes Henschel mixer, speed mixer, ball cutter, power mixer, hybrid mixer and other high-speed / agitated kneaders, rolling ball mill, vibrating ball mill, planetary mill, etc. A ball-type kneader and a cone blender can be suitably used.

得られた表面被覆蛍光体粒子粉末を室温下、ドラフト中で3〜24時間風乾させた後、乾燥機を用いて1〜24時間乾燥させることにより改質蛍光体粒子粉末を得ることができる。   The obtained surface-coated phosphor particle powder is air-dried at room temperature in a draft for 3 to 24 hours, and then dried using a dryer for 1 to 24 hours to obtain a modified phosphor particle powder.

乾燥温度は60〜250℃の温度範囲が好ましく、より好ましくは80〜220℃、更により好ましくは100〜200℃である。60℃未満の場合には、金属アルコキシドの反応が十分でなく、表面処理の効果が得られない。250℃を超える場合には、蛍光体がダメージを受け蛍光特性が低下するため好ましくない。本発明における蛍光体は、十分な表面被覆を行うことにより、250℃の温度に曝しても蛍光特性の低下を抑制する事ができる。   The drying temperature is preferably in the temperature range of 60 to 250 ° C, more preferably 80 to 220 ° C, and even more preferably 100 to 200 ° C. When the temperature is less than 60 ° C., the reaction of the metal alkoxide is not sufficient, and the effect of the surface treatment cannot be obtained. When the temperature exceeds 250 ° C., the phosphor is damaged and the fluorescence characteristics are deteriorated. The phosphor in the present invention can suppress deterioration of fluorescence characteristics even when exposed to a temperature of 250 ° C. by sufficiently covering the surface.

次に、本発明に係るEL素子について述べる。   Next, the EL element according to the present invention will be described.

本発明に係るEL素子は、電極層、絶縁体層、本発明に係る改質蛍光体粒子粉末を用いた蛍光体層及び透明電極層を順次積層した積層体から構成されており、該積層体を熱圧着することによって得ることができる。   The EL device according to the present invention is composed of a laminate in which an electrode layer, an insulator layer, a phosphor layer using the modified phosphor particle powder according to the present invention, and a transparent electrode layer are sequentially laminated. Can be obtained by thermocompression bonding.

本発明における電極層は、アルミ箔等の金属箔又は金属膜からなる。また、本発明における絶縁体層は、BaTiO、SrTiO及びその固溶体で代表される強誘電体粉末とシアノエチルセルロース等の高誘電率を有する有機バインダーとからなる。本発明における蛍光体層は、本発明に係る改質蛍光体粒子粉末と前述のシアノエチルセルロース等の高誘電率を有する有機バインダーとからなる。また、本発明における透明電極層は、ポリエステルフィルム等の透明絶縁性フィルム上にITO膜を被着形成した透明導電フィルムからなる。 The electrode layer in this invention consists of metal foils, such as aluminum foil, or a metal film. The insulator layer in the present invention is composed of a ferroelectric powder represented by BaTiO 3 , SrTiO 3 and its solid solution, and an organic binder having a high dielectric constant such as cyanoethyl cellulose. The phosphor layer in the present invention comprises the modified phosphor particle powder according to the present invention and an organic binder having a high dielectric constant such as cyanoethyl cellulose described above. Further, the transparent electrode layer in the present invention is made of a transparent conductive film in which an ITO film is formed on a transparent insulating film such as a polyester film.

本発明のEL素子は、蛍光体粒子粉末自体が耐水性を有しているため、6−ナイロン等の吸湿フィルム又は/及びポリクロロトリフルオロエチレンフィルム等のフッ素樹脂フィルム等よりなる防湿性フィルムで密閉封止する必要はないが、用途に応じては、これら吸湿フィルム又は/及び防湿性フィルムによって密閉封止されていてもよい。   The EL element of the present invention is a moisture-proof film made of a moisture-absorbing film such as 6-nylon or / and a fluororesin film such as a polychlorotrifluoroethylene film because the phosphor particle powder itself has water resistance. There is no need to hermetically seal, but depending on the application, it may be hermetically sealed with these moisture-absorbing films and / or moisture-proof films.

本発明に係るEL素子における輝度半減時間は2,000時間以上であり、好ましくは2,500時間以上、より好ましくは3,000時間以上である。   The luminance half time in the EL device according to the present invention is 2,000 hours or more, preferably 2,500 hours or more, more preferably 3,000 hours or more.

<作用>
本発明における最も重要な点は、蛍光体粒子表面に、ケイ素、アルミニウム、チタン又はジルコニウムのいずれかの元素を含有する化合物から選ばれる少なくとも一種からなる被膜が均一にコーティングされた改質蛍光体粒子粉末は、耐水性に優れると共に、初期発光輝度の低下が抑制されているという事実である。
<Action>
The most important point in the present invention is a modified phosphor particle in which the phosphor particle surface is uniformly coated with a film made of at least one compound selected from compounds containing any element of silicon, aluminum, titanium or zirconium This is the fact that the powder has excellent water resistance and suppresses a decrease in the initial light emission luminance.

本発明に係る改質蛍光体粒子粉末の初期発光輝度の低下が抑制されている理由として、蛍光体粒子粉末の粒子表面に付着もしくは被覆させる化合物を水分含有量が0.5%未満である有機溶媒中でゆっくりと生成させることにより、非常に緻密な化合物被膜を形成できたことによるものと、本発明者は考えている。   The reason why the reduction in the initial light emission luminance of the modified phosphor particle powder according to the present invention is suppressed is that the compound having a moisture content of less than 0.5% is attached to or coated on the particle surface of the phosphor particle powder. The present inventor believes that this is due to the fact that a very dense compound film can be formed by slow formation in a solvent.

以下、本発明における実施例を示し、本発明を具体的に説明する。   Hereinafter, the present invention will be described in detail with reference to examples.

各粒子粉末の平均粒子径は、いずれも電子顕微鏡写真に示される粒子350個の粒子径をそれぞれ測定し、その平均値で示した。   The average particle diameter of each particle powder was measured by measuring the particle diameter of 350 particles shown in the electron micrograph, and the average value was shown.

蛍光体の粒子表面に付着もしくは被覆されている被膜を構成する金属元素の含有量は、「蛍光X線分析装置3063M型」(理学電機工業株式会社製)を使用し、JIS K0119の「けい光X線分析通則」に従って測定した。   The content of the metal element constituting the film adhered to or coated on the surface of the phosphor particles is determined by using a “fluorescence X-ray analyzer 3063M type” (manufactured by Rigaku Denki Kogyo Co., Ltd.). Measurement was performed according to the "General Rules for X-ray Analysis".

各蛍光体粒子粉末のコーティング処理前及びコーティング処理後の発光輝度は、「分光蛍光光度計 RF−5300PC(株式会社島津製作所)」を用いて40℃、相対湿度90%の環境下測定を行った。   The emission luminance before and after the coating treatment of each phosphor particle powder was measured under an environment of 40 ° C. and relative humidity of 90% using “Spectrofluorimeter RF-5300PC (Shimadzu Corporation)”. .

改質蛍光体粒子粉末のコーティング前の発光輝度に対するコーティング後の発光輝度は、上述で測定した発光輝度をもとに、下記数1にそれぞれの測定値を挿入して求めた。   The light emission luminance after coating with respect to the light emission luminance before coating of the modified phosphor particle powder was determined by inserting each measured value into the following equation 1 based on the light emission luminance measured above.

<数1>
コーティング後の発光輝度/コーティング前の発光輝度(%)=コーティング後の発光輝度/コーティング前の発光輝度×100
<Equation 1>
Luminance after coating / Luminance before coating (%) = Luminance after coating / Luminance before coating × 100

改質蛍光体粒子粉末の耐水性は、被測定粒子粉末を40℃、相対湿度90%の環境下1週間放置後、発光輝度を測定し、下記数2にそれぞれの測定値を挿入して求めた。   The water resistance of the modified phosphor particle powder is determined by allowing the measured particle powder to stand for 1 week in an environment of 40 ° C. and 90% relative humidity, then measuring the emission luminance, and inserting each measured value into the following formula 2. It was.

<数2>
耐水性(%)=40℃、相対湿度90%にて1週間放置後の発光輝度/放置前の発光輝度×100
<Equation 2>
Water resistance (%) = 40 ° C., 90% relative humidity, light emission luminance after standing for 1 week / light emission luminance before standing × 100

各EL素子の初期発光輝度は、後述する方法によりELパネルを作製し、これらのELパネルに40℃、相対湿度90%の環境下、100V/400Hzの交流電圧を印加し、初期発光輝度を測定した。   The initial light emission luminance of each EL element is measured by preparing an EL panel by a method described later, applying an AC voltage of 100 V / 400 Hz to these EL panels in an environment of 40 ° C. and a relative humidity of 90%, and measuring the initial light emission luminance. did.

各EL素子の輝度半減期は、前述のELパネルを40℃、相対湿度90%の環境下、発光輝度が初期発光輝度の半分となるまでの時間を測定し、これを輝度半減時間とした。   The luminance half-life of each EL element was determined by measuring the time until the light emission luminance became half of the initial light emission luminance in an environment of 40 ° C. and 90% relative humidity in the above-described EL panel, and setting this as the luminance half-life.

<実施例1−1:改質蛍光体粒子粉末の製造>
蛍光体A(母体蛍光体:ZnS、付活剤:Cu、共付活剤:Cl、粒子形状:粒状、平均粒子径25.7μm)250gを、水分含有量0.212%のアセトン500mlに攪拌機を用いて邂逅し、蛍光体粒子粉末を含むアセトンのスラリーを得た。
<Example 1-1: Production of modified phosphor particle powder>
250 g of phosphor A (maternal phosphor: ZnS, activator: Cu, coactivator: Cl, particle shape: granular, average particle diameter 25.7 μm) was stirred into 500 ml of acetone having a water content of 0.212%. Was used to obtain an acetone slurry containing phosphor particles.

次に、前記蛍光体粒子粉末を含むアセトンのスラリー中に、アルミニウムイソプロポキシド37.8gを分散させたアセトン溶液200mlを加え、60分間攪拌・混合させた。   Next, 200 ml of an acetone solution in which 37.8 g of aluminum isopropoxide was dispersed was added to the slurry of acetone containing the phosphor particle powder, and the mixture was stirred and mixed for 60 minutes.

得られた混合溶液をドラフト中で3時間風乾させた後、乾燥機を用いて80℃で60分間乾燥を行い、耐水性改質蛍光体粒子粉末を得た。   The obtained mixed solution was air-dried in a fume hood for 3 hours, and then dried at 80 ° C. for 60 minutes using a dryer to obtain water-resistant modified phosphor particle powder.

得られた改質蛍光体粒子粉末は、平均粒子径が25.8μmの粒状粒子であった。付着もしくは被覆している表面処理物はAl換算で1.95重量%であった。コーティング前の発光輝度に対するコーティング後の発光輝度は101%であり、耐水性は97.8%であった。   The obtained modified phosphor particle powder was granular particles having an average particle size of 25.8 μm. The surface-treated product adhered or coated was 1.95% by weight in terms of Al. The light emission luminance after coating with respect to the light emission luminance before coating was 101%, and the water resistance was 97.8%.

<実施例2−1:EL素子の製造>
Al箔からなる背面電極層の上面に、BaTiOをシアノエチルセルロースに分散させた絶縁体層と、前記改質蛍光体粒子粉末をシアノエチルセルロースに分散させた蛍光体層及び透明導電ITO膜からなる透明電極層とを積層し、防湿フィルムを用いないELパネルを作成した。
<Example 2-1: Production of EL element>
A transparent electrode composed of an insulating layer in which BaTiO 3 is dispersed in cyanoethyl cellulose, a phosphor layer in which the modified phosphor particle powder is dispersed in cyanoethyl cellulose, and a transparent conductive ITO film are formed on the upper surface of the back electrode layer made of Al foil. An EL panel was formed by laminating an electrode layer and not using a moisture-proof film.

得られたELパネルの初期発光輝度は、140cd/mであり、輝度半減時間は4,510時間であった。 The obtained EL panel had an initial light emission luminance of 140 cd / m 2 and a luminance half-life of 4,510 hours.

前記実施例1−1及び2−1に従って改質蛍光体粒子粉末及びEL素子を作製した。各製造条件及び得られた改質蛍光体粒子粉末及びEL素子の諸特性を示す。   A modified phosphor particle powder and an EL device were prepared according to Examples 1-1 and 2-1. Various characteristics of each production condition and the obtained modified phosphor particle powder and EL device are shown.

蛍光体粒子A〜E:
被処理粒子粉末として表1に示す特性を有する蛍光体粒子粉末を用意した。
Phosphor particles A to E:
A phosphor particle powder having the characteristics shown in Table 1 was prepared as a particle to be treated.

Figure 0005403197
Figure 0005403197

実施例1−2〜1−8、比較例1〜3:
蛍光体粒子粉末の種類、表面処理工程における有機溶剤の種類、表面処理剤の種類及び添加量を種々変化させた以外は、前記実施例1−1と同様にして改質蛍光体粒子粉末を得た。
Examples 1-2 to 1-8, Comparative Examples 1-3:
A modified phosphor particle powder was obtained in the same manner as in Example 1-1 except that the type of phosphor particle powder, the type of organic solvent in the surface treatment step, the type of surface treatment agent, and the amount added were variously changed. It was.

このときの製造条件を表2に、得られた改質蛍光体粒子粉末の諸特性を表3に示す。   The production conditions at this time are shown in Table 2, and the properties of the obtained modified phosphor particle powder are shown in Table 3.

Figure 0005403197
Figure 0005403197

Figure 0005403197
Figure 0005403197

実施例2−2〜2−7、比較例4〜11:
蛍光体粒子の種類を種々変化させた以外は、前記実施例2−1と同様にしてEL素子を得た。
Examples 2-2 to 2-7, comparative examples 4 to 11:
An EL device was obtained in the same manner as in Example 2-1, except that the type of phosphor particles was variously changed.

得られたEL素子の諸特性を表4に示す。   Table 4 shows various properties of the obtained EL element.

Figure 0005403197
Figure 0005403197

本発明に係る改質蛍光体粒子粉末は、表面処理により被膜をコーティングすることによって耐水性が優れると共に、初期発光輝度の低下が抑制されているので、EL素子用蛍光体粒子粉末として好適である。   The modified phosphor particle powder according to the present invention is suitable as a phosphor particle powder for EL elements because it has excellent water resistance by coating a film by surface treatment and suppresses a decrease in initial light emission luminance. .

本発明に係るEL素子は、前記改質蛍光体粒子粉末を用いたことにより、初期発光輝度が高いと共に、輝度半減期が長いため、高性能EL素子として好適である。

The EL element according to the present invention is suitable as a high-performance EL element because it uses the modified phosphor particle powder and thus has high initial emission luminance and a long luminance half-life.

Claims (4)

蛍光体粒子表面に、ケイ素、アルミニウム、チタン又はジルコニウムのいずれかの元素を含有する化合物から選ばれる少なくとも一種からなる被膜が均一にコーティングされた改質蛍光体粒子粉末であり、該改質蛍光体粒子粉末の初期発光輝度がコーティング処理前の蛍光体粒子粉末の初期発光輝度に対して90%以上である改質蛍光体粒子粉末の製造方法であって、蛍光体粒子粉末を、水分含有量が0.5%未満である有機溶剤に分散させた懸濁液中に、金属アルコキシド溶液を添加・攪拌後、風乾し、乾燥させることを特徴とする改質蛍光体粒子粉末の製造方法。 A modified phosphor particle powder in which a film made of at least one selected from compounds containing any element of silicon, aluminum, titanium or zirconium is uniformly coated on the surface of the phosphor particle, and the modified phosphor A method for producing a modified phosphor particle powder in which the initial emission luminance of the particle powder is 90% or more with respect to the initial emission luminance of the phosphor particle powder before the coating treatment, wherein the phosphor particle powder has a water content of A method for producing a modified phosphor particle powder, characterized in that a metal alkoxide solution is added and stirred in a suspension dispersed in an organic solvent of less than 0.5%, followed by air drying and drying. 蛍光体粒子表面に、ケイ素、アルミニウム、チタン又はジルコニウムのいずれかの元素を含有する化合物から選ばれる少なくとも一種からなる被膜が均一にコーティングされた改質蛍光体粒子粉末であり、該改質蛍光体粒子粉末の耐水性が90%以上である改質蛍光体粒子粉末の製造方法であって、蛍光体粒子粉末を、水分含有量が0.5%未満である有機溶剤に分散させた懸濁液中に、金属アルコキシド溶液を添加・攪拌後、風乾し、乾燥させることを特徴とする改質蛍光体粒子粉末の製造方法。 A modified phosphor particle powder in which a film made of at least one selected from compounds containing any element of silicon, aluminum, titanium or zirconium is uniformly coated on the surface of the phosphor particle, and the modified phosphor A method for producing modified phosphor particle powder in which the water resistance of the particle powder is 90% or more, wherein the phosphor particle powder is dispersed in an organic solvent having a water content of less than 0.5% A method for producing modified phosphor particle powder, characterized in that a metal alkoxide solution is added and stirred, followed by air drying and drying. 蛍光体粒子表面に、ケイ素、アルミニウム、チタン又はジルコニウムのいずれかの元素を含有する化合物から選ばれる少なくとも一種からなる被膜が均一にコーティングされた改質蛍光体粒子粉末であり、該改質蛍光体粒子粉末の初期発光輝度がコーティング処理前の蛍光体粒子粉末の初期発光輝度に対して90%以上であり、且つ、耐水性が90%以上である改質蛍光体粒子粉末の製造方法であって、蛍光体粒子粉末を、水分含有量が0.5%未満である有機溶剤に分散させた懸濁液中に、金属アルコキシド溶液を添加・攪拌後、風乾し、乾燥させることを特徴とする改質蛍光体粒子粉末の製造方法。 A modified phosphor particle powder in which a film made of at least one selected from compounds containing any element of silicon, aluminum, titanium or zirconium is uniformly coated on the surface of the phosphor particle, and the modified phosphor A method for producing a modified phosphor particle powder in which the initial emission luminance of the particle powder is 90% or more with respect to the initial emission luminance of the phosphor particle powder before the coating treatment, and the water resistance is 90% or more. The metal alkoxide solution is added and stirred in a suspension in which the phosphor particle powder is dispersed in an organic solvent having a water content of less than 0.5%, and then air-dried and dried. Method for producing phosphor particle powder 前記蛍光体が蛍光体を構成する元素として硫黄元素を含む硫化物系蛍光体であることを特徴とする請求項1乃至請求項3のいずれかに記載の改質蛍光体粒子粉末の製造方法。 The method for producing a modified phosphor particle powder according to any one of claims 1 to 3, wherein the phosphor is a sulfide-based phosphor containing sulfur as an element constituting the phosphor.
JP2005283099A 2004-09-29 2005-09-28 Modified phosphor particle powder, method for producing the modified phosphor particle powder, and EL device using the modified phosphor particle powder Active JP5403197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005283099A JP5403197B2 (en) 2004-09-29 2005-09-28 Modified phosphor particle powder, method for producing the modified phosphor particle powder, and EL device using the modified phosphor particle powder

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004285501 2004-09-29
JP2004285501 2004-09-29
JP2005283099A JP5403197B2 (en) 2004-09-29 2005-09-28 Modified phosphor particle powder, method for producing the modified phosphor particle powder, and EL device using the modified phosphor particle powder

Publications (2)

Publication Number Publication Date
JP2006124680A JP2006124680A (en) 2006-05-18
JP5403197B2 true JP5403197B2 (en) 2014-01-29

Family

ID=36719711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005283099A Active JP5403197B2 (en) 2004-09-29 2005-09-28 Modified phosphor particle powder, method for producing the modified phosphor particle powder, and EL device using the modified phosphor particle powder

Country Status (1)

Country Link
JP (1) JP5403197B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008111350A1 (en) * 2007-03-09 2010-06-24 株式会社東芝 Phosphor surface treatment method and flat panel display manufacturing method
JP5369295B2 (en) * 2007-11-08 2013-12-18 住友金属鉱山株式会社 Surface-coated strontium silicate phosphor particles, method for producing the same, and light-emitting diode comprising the phosphor particles
WO2010103773A1 (en) * 2009-03-12 2010-09-16 バンドー化学株式会社 Composite particle and manufacturing method therefor
EP2554628B1 (en) * 2010-03-31 2016-07-13 Sekisui Chemical Co., Ltd. Surface-treated fluorescent bodies and process for production of surface-treated fluorescent bodies
JP5375733B2 (en) * 2010-04-30 2013-12-25 住友金属鉱山株式会社 Method for producing oxide phosphor particles with coating film having excellent moisture resistance
JP5375758B2 (en) * 2010-06-25 2013-12-25 住友金属鉱山株式会社 Method for producing sulfide phosphor particles with coating film excellent in moisture resistance
TWI509052B (en) * 2010-08-04 2015-11-21 Sekisui Chemical Co Ltd And a method of manufacturing a surface-treated phosphor and a surface-treated phosphor
JPWO2013011890A1 (en) * 2011-07-15 2015-02-23 タツモ株式会社 Dispersion type EL phosphor and dispersion type EL element
JP2013213094A (en) * 2012-03-30 2013-10-17 Sumitomo Chemical Co Ltd Coated sulfide-based red phosphor particle and its manufacturing method
JP2013213093A (en) * 2012-03-30 2013-10-17 Sumitomo Chemical Co Ltd Coated silicate-based orange-colored phosphor particle and its manufacturing method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62195894A (en) * 1986-02-22 1987-08-28 アルプス電気株式会社 Electroluminescence device
JPH01284583A (en) * 1988-05-12 1989-11-15 Mitsubishi Metal Corp El phosphor based on dispersed zns
JPH09263753A (en) * 1996-03-29 1997-10-07 Toshiba Corp Method for surface-coating phosphor particle
JPH09272866A (en) * 1996-04-03 1997-10-21 Toshiba Corp Electric field-luminescent phosphor and its production
JPH10298544A (en) * 1997-04-24 1998-11-10 Toshiba Corp Fluorescent material emitting light in electrical field, and its production
JPH11172243A (en) * 1997-12-10 1999-06-29 Toshiba Corp Electroluminescent phosphor and method for forming protective film thereof
JP2005330490A (en) * 1998-04-23 2005-12-02 Konica Minolta Holdings Inc Stimulable phosphor and its preparation process, and radiation image transformation panel and its preparation process
JP4042372B2 (en) * 2001-09-12 2008-02-06 松下電器産業株式会社 Method for manufacturing phosphor
JP2003336046A (en) * 2002-05-17 2003-11-28 Konica Minolta Holdings Inc Surface treatment method for inorganic phosphor and display element using the same
JP4562453B2 (en) * 2004-08-10 2010-10-13 富士フイルム株式会社 Electroluminescent phosphor, method for producing the same, and electroluminescent device

Also Published As

Publication number Publication date
JP2006124680A (en) 2006-05-18

Similar Documents

Publication Publication Date Title
JP5403197B2 (en) Modified phosphor particle powder, method for producing the modified phosphor particle powder, and EL device using the modified phosphor particle powder
JP5443662B2 (en) Method for producing moisture-resistant phosphor particle powder and LED element or dispersion-type EL element using moisture-resistant phosphor particle powder obtained by the production method
JP5036975B2 (en) Nitrogen-containing phosphor, method for producing the same, and light-emitting device
KR101366491B1 (en) Metal hydroxy carbonate Nano Particle Coated phosphor and Method for preparing the same
EP1710289A1 (en) Method for making phosphors
JP5196084B1 (en) Method for producing alkaline earth metal silicate phosphor particles with coating film
US20040256601A1 (en) Method for coating particles
JPH09272866A (en) Electric field-luminescent phosphor and its production
JP2007224262A (en) Phosphor particle
KR20090016416A (en) A blue light-emitting phosphor
TW200817493A (en) Phosphor, phosphor paste containing the same, and light-emitting device
US20080057343A1 (en) Phosphor, Method for Manufacturing Same, and Particle Dispersed El Device Using Same
CN1854243A (en) Phosphor composition for plasma display panel, and plasma display panel having phosphor layer composed of the phosphor composition
JPH11256150A (en) Electroluminescent fluorescent substance, its production and el panel
KR100808912B1 (en) Process for preparing phosphor paste composition, phosphor paste composition and vacuum-ultraviolet-exited light-emitting element
JP3721811B2 (en) Phosphor and gas discharge device using the same
US20010054869A1 (en) Process for producing light-emitting phosphor
Lin et al. Influence of sol–gel-derived ZnO: Al coating on luminescent properties of Y 2 O 3: Eu 3+ phosphor
CN1872947A (en) Blue phosphor for plasma display panel and method of preparing the same
US20050122034A1 (en) Electroluminescent device
JP2009120681A (en) Rare earth phosphorus vanadate phosphor and vacuum ultraviolet-excitable light-emitting device using the same
KR100716110B1 (en) Method of surface-treating phosphor
JP4672231B2 (en) Plasma display panel
JP5766454B2 (en) Blue light emitting phosphor
TWI706025B (en) Preparation method of manganese-titanium co-activated magnesium stannate spinel fluorescent powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130605

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131015

R150 Certificate of patent or registration of utility model

Ref document number: 5403197

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250