JP5391761B2 - Vehicle testing apparatus and control method thereof - Google Patents

Vehicle testing apparatus and control method thereof Download PDF

Info

Publication number
JP5391761B2
JP5391761B2 JP2009067175A JP2009067175A JP5391761B2 JP 5391761 B2 JP5391761 B2 JP 5391761B2 JP 2009067175 A JP2009067175 A JP 2009067175A JP 2009067175 A JP2009067175 A JP 2009067175A JP 5391761 B2 JP5391761 B2 JP 5391761B2
Authority
JP
Japan
Prior art keywords
rear wheels
speed difference
dead band
rear wheel
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009067175A
Other languages
Japanese (ja)
Other versions
JP2010217123A (en
Inventor
雅彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2009067175A priority Critical patent/JP5391761B2/en
Publication of JP2010217123A publication Critical patent/JP2010217123A/en
Application granted granted Critical
Publication of JP5391761B2 publication Critical patent/JP5391761B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arrangement And Driving Of Transmission Devices (AREA)

Description

本発明は、車両の試験装置に係り、特に、実路と試験装置上とのトルク−速度特性誤差を抑制した試験装置に関するものである。   The present invention relates to a vehicle test apparatus, and more particularly to a test apparatus that suppresses torque-speed characteristic errors between an actual road and the test apparatus.

前後輪分離制御される試験装置として、4WD車両(4輪駆動車両)用などがあり、その4輪駆動方式は種々存在する。各方式の4WD車両用の試験装置の1つであるシャシーダイナモメータとしては、特許文献1で知られているように4WD車の前後輪の平均速度を求め、この平均速度を基に走行抵抗指令値を作成し、前後輪の負荷配分が設定比率になるように前後輪のダイナモメータが発生する走行抵抗を制御している。   There are test devices for front / rear wheel separation control, such as for 4WD vehicles (four-wheel drive vehicles), and there are various four-wheel drive systems. As known from Patent Document 1, the chassis dynamometer, which is one of the test devices for 4WD vehicles of each system, calculates the average speed of the front and rear wheels of a 4WD vehicle and based on this average speed, a running resistance command A value is created to control the running resistance generated by the front and rear wheel dynamometers so that the load distribution of the front and rear wheels becomes a set ratio.

図6はその構成例で、前後輪用それぞれ左右1対のローラ1FL,1FR、1RL,1RRに被試験車両のタイヤが搭載される。この試験装置は、前後輪の速度検出器4,5により検出された速度信号をそれぞれ前後平均速度演算部8、電気慣性制御部9、及び前後輪同期制御部10に入力する。前後平均速度演算部8は前後タイヤの速度平均値を求め、その速度平均信号を走行抵抗指令発生部11とメカロス指令発生部12に出力する。走行抵抗指令発生部11は、速度平均信号に基づいて走行抵抗値を求め、また、メカロス指令発生部12は速度平均信号から機械設備が発生するメカロスを算出する。 FIG. 6 shows an example of the configuration. Tires of the vehicle under test are mounted on a pair of left and right rollers 1F L , 1F R , 1R L , 1R R for front and rear wheels. In this test apparatus, the speed signals detected by the front and rear wheel speed detectors 4 and 5 are respectively input to the front and rear average speed calculation unit 8, the electric inertia control unit 9, and the front and rear wheel synchronization control unit 10. The front-rear average speed calculation unit 8 calculates a speed average value of the front and rear tires and outputs the speed average signal to the running resistance command generation unit 11 and the mechanical loss command generation unit 12. The running resistance command generation unit 11 calculates a running resistance value based on the speed average signal, and the mechanical loss command generation unit 12 calculates a mechanical loss generated by the mechanical equipment from the speed average signal.

電気慣性制御部9は、前後輪車速と車体重量データから被試験車両の慣性分を求め、ダイナモメータ2,3が発生する電気慣性とする。この電気慣性信号は、加算部13において走行抵抗値とメカロス値との差信号と加算されてトルク指令とされ、負荷分配器14,15に入力される。負荷分配器14,15はデファレンシャルギヤ相当と仮定したもので、前後輪の負荷配分比が、例えば50%ずつと予め設定されて加算部13からのトルク指令とそれぞれ乗算され、加算部16と減算部17に出力される。前後輪同期制御部10は、前後輪の検出速度の差分と極性(正負)を検出して補償信号を算出し、この差分を加算部16と減算部17に出力してトルク指令に加算/減算し、前後輪の差速度がゼロになるよう制御する。18は前輪トルク制御部、19は後輪トルク制御部で、それぞれのトルク制御部18,19では、入力されたトルク指令とロードセル6,7で検出したトルクからダイナモメータ2,3で吸収するトルクを求め、これをそれぞれインバータINVの電流制御信号とし、各インバータを介してダイナモメータ2,3を電流制御する。   The electric inertia control unit 9 obtains the inertia of the vehicle under test from the front and rear wheel speeds and the vehicle body weight data, and uses it as the electric inertia generated by the dynamometers 2 and 3. This electric inertia signal is added to the difference signal between the running resistance value and the mechanical loss value in the adding unit 13 to be a torque command, and is input to the load distributors 14 and 15. The load distributors 14 and 15 are assumed to be equivalent to a differential gear, and the load distribution ratio of the front and rear wheels is preset to, for example, 50%, respectively, and multiplied by the torque command from the adder 13, and subtracted from the adder 16. Is output to the unit 17. The front and rear wheel synchronization control unit 10 calculates a compensation signal by detecting the difference and polarity (positive / negative) of the detection speed of the front and rear wheels, and outputs the difference to the addition unit 16 and the subtraction unit 17 to add / subtract to the torque command. Then, control is performed so that the differential speed between the front and rear wheels becomes zero. 18 is a front wheel torque control unit, 19 is a rear wheel torque control unit, and each torque control unit 18, 19 absorbs torque received by the dynamometers 2, 3 from the input torque command and the torque detected by the load cells 6, 7. Are used as current control signals for the inverters INV, respectively, and the dynamometers 2 and 3 are subjected to current control via the inverters.

特開2001−91411JP 2001-91411 A

4WD車両の試験装置では、図7で示すように前後輪に分離した4WD用シャシーダイナモメータとなって前後輪のローラが等速となるよう同期制御が実行され、また、制御的には前後左右の各輪を同期制御することで、機械的に直結した場合と同様に、車両が実路を走行する路面のシミュレーションを実行している。すなわち、車両の4輪を同期回しながら排ガス・燃費・動力性能などの計測を実路走行と同様な状態で行っている。   In the test apparatus for 4WD vehicles, as shown in FIG. 7, it becomes a chassis dynamometer for 4WD separated into front and rear wheels, and synchronous control is executed so that the front and rear wheel rollers are at a constant speed. By synchronously controlling these wheels, a simulation of the road surface on which the vehicle travels on the actual road is executed in the same manner as when mechanically connected directly. In other words, exhaust gas, fuel consumption, power performance, and the like are measured in the same state as on an actual road while rotating the four wheels of the vehicle synchronously.

ところで、4WD車両は構造により前後輪の駆動方式が種々存在し、且つAT,MTなどで変速装置も多種多様となっており、また、試験時における運転モードも、10−15モードやLAモードなどが存在していること等の理由により、試験装置の制御回路内に負荷分配器を設置して一意的に負荷分配し、速度差ゼロとなるような制御を実行しても、統計的手法に基づいて等速性・同期性の評価を実行すると、負荷分配が設計値と異なる現象が発生し、実路走行に忠実となるより高精度な計測が困難となっていた。   By the way, the 4WD vehicle has various front and rear wheel drive systems depending on the structure, and there are various transmissions such as AT and MT, and the operation mode at the time of test is 10-15 mode, LA mode, etc. Even if a load distributor is installed in the control circuit of the test equipment to uniquely distribute the load and control is performed so that the speed difference is zero, the statistical method is not used. When the evaluation of isokinetic and synchronicity is performed based on this, a phenomenon in which load distribution differs from the design value occurs, and it is difficult to perform highly accurate measurement that is faithful to actual road running.

本発明は、かかる点に鑑みてなされたもので、その目的とするとこは、高精度な計測を可能とする車両の試験装置とその制御方法を提供することにある。   The present invention has been made in view of the above points, and an object of the present invention is to provide a vehicle test apparatus and a control method thereof that enable highly accurate measurement.

本発明は、前後輪用に分離して制御を実行する試験装置であって、前後輪同期制御部により求められた信号でトルク指令を補正し、前後輪の同期制御を行うものにおいて、
前記試験装置の前後輪用の速度信号をそれぞれ入力し、予め設定された速度差が所定値以内では出力を阻止するデッドバンド設定部と、このデッドバンド設定部による信号の有無を判定するデッドバンド判定部を設け、このデッドバンド判定部により前記速度差が所定値以上となるまで前記前後輪同期制御部からの出力信号を阻止するよう構成したことを特徴としたものである。
The present invention is a test device that performs control separately for front and rear wheels, corrects a torque command with a signal obtained by a front and rear wheel synchronization control unit, and performs synchronous control of front and rear wheels.
A dead band setting unit that inputs speed signals for the front and rear wheels of the test apparatus and blocks output when a preset speed difference is within a predetermined value, and a dead band for determining the presence or absence of a signal by the dead band setting unit A determination unit is provided, and the dead band determination unit is configured to block an output signal from the front and rear wheel synchronization control unit until the speed difference becomes a predetermined value or more.

また、本発明は、前後輪用に分離した試験装置であって、前後輪同期制御部により求められた信号でトルク指令を補正し、前後輪の同期制御を行うものにおいて、
前記前後輪用の速度差を求め、この速度差が予め設定された速度差以上となるまで前記前後輪同期制御部による同期制御を停止することを特徴としたものである。
Further, the present invention is a test apparatus separated for front and rear wheels, which corrects a torque command with a signal obtained by a front and rear wheel synchronization control unit and performs synchronous control of front and rear wheels.
The speed difference for the front and rear wheels is obtained, and the synchronization control by the front and rear wheel synchronization control unit is stopped until the speed difference becomes equal to or greater than a preset speed difference.

また、本発明は、前記予め設定された速度差は、前後輪の同期制御をオフ状態にした試験装置で前後輪の速度差ートルク差特性から求めることを特徴としたものである。 Further, the present invention, the preset speed difference is obtained by said Rukoto determined from the speed difference Toruku difference characteristic of the front and rear wheels in the test device in the synchronous control of the front and rear wheels to the OFF state.

以上のとおり、本発明によれば、差速度△N−差トルク△Tデッドバンド特性から、例えば±0.5km/hまで△Vが発生してもシャシーダイナモメータの前後輪等速性制御をオフ状態とすることで、デファレンシャルギヤのフリクションロスが発生しても、実路上と同様なシミュレーションが実施できる。これにより、より高精度な計測が可能となるものである。   As described above, according to the present invention, the front / rear wheel constant velocity control of the chassis dynamometer can be performed even if ΔV is generated up to ± 0.5 km / h from the differential speed ΔN−differential torque ΔT dead band characteristics. By setting the off state, even if a friction loss of the differential gear occurs, a simulation similar to that on the actual road can be performed. As a result, more accurate measurement is possible.

図1は、本発明の実施例を示す構成図で、図7との相違点はデッドバンド設定部20とデッドバンド判定部21を設けたことで、他は同様である。デッドバンド設定部20は、予めある範囲のトルク指令△T変化しても、回転の差分△Nが出力しないようにバンド幅が設定される。デッドバンド判定部21は、回転差分△Nの発生の有無を判断し、差分発生時に前後輪同期制御部10に対して制御開始信号を発生する。したがって、前後輪同期制御部10は、回転差△N以上となるまで、前輪トルク制御部18、及び後輪トルク制御部19に対して補正信号は出力しない。   FIG. 1 is a block diagram showing an embodiment of the present invention. The difference from FIG. 7 is that a dead band setting unit 20 and a dead band determination unit 21 are provided, and the other points are the same. The dead band setting unit 20 sets the bandwidth so that the rotation difference ΔN is not output even if the torque command ΔT within a certain range is changed. The dead band determination unit 21 determines whether or not the rotation difference ΔN has occurred, and generates a control start signal to the front and rear wheel synchronization control unit 10 when the difference occurs. Therefore, the front and rear wheel synchronization control unit 10 does not output a correction signal to the front wheel torque control unit 18 and the rear wheel torque control unit 19 until the rotation difference ΔN or more.

次に、デッドバンド設定部20を設けた理由について説明する。
図2は被試験車両におけるエンジンEGからの駆動力伝達経路を示したもので、(a)は実路上、(b)はシャシーダイナモメータ上である。(a)で示す実路の場合、走行抵抗や慣性負荷の授受は路面間で実施されることから、前後輪の路面等速性は物理的に実現され、等速性に対する補正力は存在せず路面速度差はゼロに規定される。したがって、デファレンシャルギヤ(分配器)を介しての前後輪間での力の授受は負荷トルクのみとなるため、トルク差△Tは、
△T=Tf−Tr=0(ただし、前後輪負荷分配比を50:50に仮定)
となり、前後輪等速などを修正するトルクを発生せずに速度差△V=0となる。
Next, the reason why the dead band setting unit 20 is provided will be described.
FIG. 2 shows a driving force transmission path from the engine EG in the vehicle under test, where (a) is on the actual road and (b) is on the chassis dynamometer. In the case of the actual road shown in (a), since the traveling resistance and inertial load are exchanged between the road surfaces, the road surface constant speed of the front and rear wheels is physically realized and there is no correction force for the constant speed. The road surface speed difference is defined as zero. Therefore, since the transfer of force between the front and rear wheels via the differential gear (distributor) is only the load torque, the torque difference ΔT is
ΔT = Tf−Tr = 0 (assuming the front / rear wheel load distribution ratio is 50:50)
Thus, a speed difference ΔV = 0 is obtained without generating a torque for correcting the front and rear wheel constant speeds.

一方、図2(b)で示すシャシーダイナモメータ上では、走行抵抗や慣性負荷、及び前後輪用ローラの等速性はダイナモメータのトルクにより補償している。また、走行抵抗や慣性負荷については、負荷分配器14,15で示すように目標値の50%ずつを補償すべく前後輪に設定し、等速性については、前後輪速度差がゼロとなるよう同期制御部10により制御することで、前後輪への加減算による補正を行っている。このときの前後のトルク差△Tchは、
△Tch=Tchf−Tchr=2Tθ
となり、等速補正量は前後の差トルクとなっている。
On the other hand, on the chassis dynamometer shown in FIG. 2B, the running resistance, inertia load, and constant velocity of the front and rear wheel rollers are compensated by the torque of the dynamometer. Further, as shown by the load distributors 14 and 15, the running resistance and the inertia load are set to the front and rear wheels so as to compensate 50% of the target value, and the front-rear wheel speed difference is zero for the constant speed property. Thus, the control by the synchronous control unit 10 performs correction by addition / subtraction to the front and rear wheels. The torque difference ΔTch before and after this time is
ΔTch = Tchf−Tchr = 2Tθ
Thus, the constant velocity correction amount is the difference torque between the front and rear.

上記のことから、シャシーダイナモメータ上で負荷分配が設計値と異なる現象発生を推定すると、車両前後のデファレンシャルギヤ実績から推定しても負荷分配器はデッドバンドを有し、このデッドバンドはデファレンシャルギヤのピニオンギヤが作動するまでのフリクションロスと判断され、フリクションは駆動力の大きさに比例する。この結果、トルク差△Tが或る範囲で存在しても差動が起こらず、前後での回転差ΔVは発生しない。   From the above, when it is estimated that the load distribution is different from the design value on the chassis dynamometer, the load distributor has a dead band even if estimated from the differential gear performance before and after the vehicle. The friction loss until the pinion gear is activated is determined, and the friction is proportional to the magnitude of the driving force. As a result, even if the torque difference ΔT exists within a certain range, the differential does not occur, and the rotation difference ΔV before and after does not occur.

一方、ダイナモメータ側で前後輪同期制御を実施しても、デッドバンド範囲では回転変化が物理的に発生せず(車両側で規制される)、デッドバンドを超えてから回転変化が生じる。シャシーダイナモメータの同期制御では、回転変化が生じ、その方向性を確認して制御を止めているが、デッドバンド範囲では回転変化が生じないために制御が進行し、デッドバンド端で制御が停止する。これにより、負荷バランスが崩れることで差速度−差トルク特性に設計値とは異なる変化が生じるものと推定される。   On the other hand, even if the front-rear wheel synchronization control is performed on the dynamometer side, the rotation change does not physically occur in the dead band range (regulated on the vehicle side), and the rotation change occurs after the dead band is exceeded. In synchronous control of the chassis dynamometer, the rotation change occurs and the direction is confirmed to stop the control. However, since the rotation change does not occur in the dead band range, the control proceeds, and the control stops at the dead band end. To do. Thereby, it is estimated that a change different from the design value occurs in the differential speed-difference torque characteristics due to the load balance being lost.

図3、及び図4は、上記観点から4WDシャシーダイナモメータ上で速度差△Vートルク差△Tの関係を把握するために求めた△Vー△T特性結果図で、横軸に速度差△Vを、縦軸にトルク差△Tをとったものである。この特性図は、次のようにして求めたものである。
図3は、実路を走行して求めた車両データを基に、4WDシャシーダイナモメータ上で同期制御をオン状態とし、10−15運転モード前後輪同期制御したものであり、トルク差が発生している。
また、図4は同期制御をオフ状態としたときの△Vー△T特性結果図で、4WDシャシーダイナモメータ上で同期制御をオフ状態としても、速度差が0.4〜0.5km/h近傍まで発生している。

FIGS. 3 and 4 are ΔV-ΔT characteristic results obtained for grasping the relationship between the speed difference ΔV-torque difference ΔT on the 4WD chassis dynamometer from the above viewpoint, and the horizontal axis indicates the speed difference Δ V represents the torque difference ΔT on the vertical axis. This characteristic diagram is obtained as follows.
3, based on the vehicle data obtained by running a real road, and turns on the synchronous control on 4WD chassis dynamometer, and also to a and the front and rear wheels synchronization control 10-15 operating mode, the torque difference It has occurred.
FIG. 4 is a ΔV-ΔT characteristic result graph when the synchronous control is turned off, and the speed difference is 0.4 to 0.5 km / h even when the synchronous control is turned off on the 4WD chassis dynamometer. It has occurred to the vicinity.

また、図5、図6は△Vー△T特性把握過程の1例で、4WDシャシーダイナモメータの定常運転で前後輪同期制御を行った時の合計トルクATと差トルクΔTの特性図である。線アは前輪車速、線イは合計トルクATで20区間の移動平均、線ウは差トルクΔTの20区間の移動平均で、シャシーダイナモメータを走行抵抗制御で2km/hまでを前後輪同期制御をオフとし、その後オンとして車両から10km/hのピッチで階段状に速度上昇したときの各データである。
図6は同様にして求めた前後差速度ΔV(線エ)で、図5、図6で求めた各データよりシャシーダイナモメータの前後差速度−前後差トルクを求めたものが図3の△Vー△T特性である。
5 and 6 are examples of the ΔV-ΔT characteristic grasping process, and are characteristic diagrams of the total torque AT and the differential torque ΔT when the front and rear wheel synchronous control is performed in the steady operation of the 4WD chassis dynamometer. . Line A is the front wheel speed, Line A is the moving average of 20 sections with total torque AT, Line C is the moving average of 20 sections with differential torque ΔT, and the front and rear wheels are synchronously controlled up to 2 km / h with the running resistance control of the chassis dynamometer Each data when is turned off and then turned on, and the speed is increased stepwise from the vehicle at a pitch of 10 km / h.
FIG. 6 shows the front-rear differential speed ΔV (line d) obtained in the same manner, and the front-rear differential speed-front-rear differential torque of the chassis dynamometer is obtained from the data obtained in FIGS. 5 and 6. -ΔT characteristics.

上記したデファレンシャルギヤの振舞いに基づく不都合を除去するために、本発明ではデッドバンド設定部20を設けたものである。図3、図5、及び図6は定常運転で前後輪同期制御をオンとした場合のデータであるが、10−15運転モードで前後輪同期制御オン、或いはオフ(図4)とした各データを求め、差速度△N−差トルク△Tの関係を把握してデッドバンド設定部20でのデッドバンド範囲が決められる。デッドバンド幅は、例えば差速度幅が±0.5km/h以内の場合、前後同期制御部10から補正信号が出力されないよう設定される等、その幅は把握された特性図の結果から適時設定される。   In order to eliminate the inconvenience based on the behavior of the differential gear described above, the present invention is provided with the dead band setting unit 20. 3, 5, and 6 are data when the front and rear wheel synchronization control is turned on in the steady operation, but each data that the front and rear wheel synchronization control is turned on or off (FIG. 4) in the 10-15 operation mode. And the dead band range in the dead band setting unit 20 is determined by grasping the relationship of the differential speed ΔN−the differential torque ΔT. For example, when the differential speed width is within ± 0.5 km / h, the dead band width is set so that the correction signal is not output from the front-rear synchronization control unit 10. Is done.

また、前記実施例では4WD用シャシーダイナモメータについて説明してきたが、本発明が適用できる前後輪分離制御される試験装置としては、エンジン駆動し、トランスアクセルなど2台のモータを配置したドライブトレーン試験装置、エンジン駆動し、トランスアクセル、トランスファーなど4台のモータを配置したドライブトレーン試験装置、エンジンの代わりにモータ駆動し、トランスアクセルなど2台のモータを配置したドライブトレーン試験装置、エンジンの代わりにモータ駆動し、トランスアクセルなど4台のモータを配置したドライブトレーン試験装置などに適用できるものである。   In the above-described embodiment, the 4WD chassis dynamometer has been described. However, as a test apparatus that can control the front and rear wheels to which the present invention can be applied, an engine drive and a drive train test in which two motors such as a transaxle are arranged. Drive train test device with 4 motors such as transaxle, transfer, etc. driven by equipment, engine, drive train test device with 2 motors, such as transaxle, driven by motor instead of engine, instead of engine The present invention can be applied to a drive train test apparatus that is driven by a motor and has four motors such as a transaxle.

以上のように、本発明によれば、差速度△N−差トルク△Tデッドバンド特性から、例えば±0.5km/hまで△Vが発生してもシャシーダイナモメータの前後輪等速性制御をオフ状態とすることで、デファレンシャルギヤのフリクションロスが発生しても、実路上と同様なシミュレーションが実施できる。これにより、より高精度な計測が可能となるものである。   As described above, according to the present invention, even if ΔV is generated up to, for example, ± 0.5 km / h from the differential speed ΔN−differential torque ΔT dead band characteristics, the front and rear wheel constant velocity control of the chassis dynamometer is achieved. By setting to the OFF state, even if a differential gear friction loss occurs, a simulation similar to that on an actual road can be performed. As a result, more accurate measurement is possible.

本発明の実施形態を示す構成図。The block diagram which shows embodiment of this invention. 等速性・同期性評価の差異発生説明図で、(a)は実路上、(b)はシャシーダイナモ上。It is explanatory drawing of difference occurrence of isokinetic / synchronous evaluation, (a) on the actual road, (b) on the chassis dynamo. オン時の△V−△T特性図。ΔV-ΔT characteristic diagram when on. オフ時の△V−△T特性図。ΔV-ΔT characteristic diagram when off. 定常運転時の前後同期制御における合計トルクと差トルク図。The total torque and difference torque figure in the front-rear synchronous control at the time of steady operation. 定常運転時の前後同期制御における前後差速度図。Front-rear differential speed diagram in front-rear synchronous control during steady operation. 従来のシャシーダイナモメータの制御構成図。The control block diagram of the conventional chassis dynamometer.

1… ローラ
2,3… ダイナモメータ
4,5… 速度検出器
6,7… ロードセル
8… 前後平均速度演算部8
9… 電気慣性制御部
10… 前後輪同期制御部
11… 走行抵抗指令発生部
12… メカロス指令発生部
14,15… 負荷分配部
20… デッドバンド設定部
21… デッドバンド判定部
DESCRIPTION OF SYMBOLS 1 ... Roller 2, 3 ... Dynamometer 4, 5 ... Speed detector 6, 7 ... Load cell 8 ... Front-rear average speed calculation part 8
DESCRIPTION OF SYMBOLS 9 ... Electric inertia control part 10 ... Front-and-rear wheel synchronous control part 11 ... Running resistance command generation part 12 ... Mechanical loss command generation part 14, 15 ... Load distribution part 20 ... Dead band setting part 21 ... Dead band determination part

Claims (3)

前後輪用に分離して制御を実行する試験装置であって、前後輪同期制御部により求められた信号でトルク指令を補正し、前後輪の同期制御を行うものにおいて、
前記試験装置の前後輪用の速度信号をそれぞれ入力し、予め設定された速度差が所定値以内では出力を阻止するデッドバンド設定部と、このデッドバンド設定部による信号の有無を判定するデッドバンド判定部を設け、このデッドバンド判定部により前記速度差が所定値以上となるまで前記前後輪同期制御部からの出力信号を阻止するよう構成したことを特徴とした車両の試験装置。
A test device that performs control separately for front and rear wheels, corrects the torque command with a signal obtained by the front and rear wheel synchronization control unit, and performs synchronous control of the front and rear wheels.
A dead band setting unit that inputs speed signals for the front and rear wheels of the test apparatus and blocks output when a preset speed difference is within a predetermined value, and a dead band for determining the presence or absence of a signal by the dead band setting unit A test apparatus for a vehicle, comprising: a determination unit configured to block an output signal from the front and rear wheel synchronization control unit until the speed difference becomes equal to or greater than a predetermined value by the dead band determination unit.
前後輪用に分離した試験装置であって、前後輪同期制御部により求められた信号でトルク指令を補正し、前後輪の同期制御を行うものにおいて、
前記前後輪用の速度差を求め、この速度差が予め設定された速度差以上となるまで前記前後輪同期制御部による同期制御を停止することを特徴とした車両の試験方法。
In the test device separated for the front and rear wheels, which corrects the torque command with the signal obtained by the front and rear wheel synchronization control unit, and performs the synchronous control of the front and rear wheels,
A vehicle test method characterized in that a speed difference for the front and rear wheels is obtained and synchronization control by the front and rear wheel synchronization control unit is stopped until the speed difference becomes equal to or greater than a preset speed difference.
前記予め設定された速度差は、前後輪の同期制御をオフ状態にした試験装置で前後輪の速度差ートルク差特性から求めることを特徴とした請求項2記載の車両の試験方法。 Wherein the preset speed difference, the method of testing a vehicle according to claim 2 which is characterized in Rukoto determined from the speed difference Toruku difference characteristic of the front and rear wheels in the test device in the synchronous control of the front and rear wheels to the OFF state.
JP2009067175A 2009-03-19 2009-03-19 Vehicle testing apparatus and control method thereof Expired - Fee Related JP5391761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009067175A JP5391761B2 (en) 2009-03-19 2009-03-19 Vehicle testing apparatus and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009067175A JP5391761B2 (en) 2009-03-19 2009-03-19 Vehicle testing apparatus and control method thereof

Publications (2)

Publication Number Publication Date
JP2010217123A JP2010217123A (en) 2010-09-30
JP5391761B2 true JP5391761B2 (en) 2014-01-15

Family

ID=42976119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009067175A Expired - Fee Related JP5391761B2 (en) 2009-03-19 2009-03-19 Vehicle testing apparatus and control method thereof

Country Status (1)

Country Link
JP (1) JP5391761B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61734A (en) * 1984-06-13 1986-01-06 Toyota Motor Corp Chassis dynamometer for 4wd vehicle
JP3132028B2 (en) * 1991-03-14 2001-02-05 トヨタ自動車株式会社 Chassis dynamometer speed difference controller
US5375461A (en) * 1991-06-24 1994-12-27 Kabushiki Kaisha Meidensha Control system for chassis dynamometer for simulating road test of automotive vehicle
JP2001091411A (en) * 1999-09-27 2001-04-06 Meidensha Corp Front-rear axle load controlling method in four-wheel drive vehicle bench test
JP4781859B2 (en) * 2006-03-14 2011-09-28 株式会社小野測器 Chassis dynamometer controller for automobiles

Also Published As

Publication number Publication date
JP2010217123A (en) 2010-09-30

Similar Documents

Publication Publication Date Title
KR101679669B1 (en) Testing system for drive-train
JP3019478B2 (en) Chassis dynamometer controller for four-wheel drive vehicle
EP3591368B1 (en) Chassis dynamometer, control method for the same, and chassis dynamometer program
CN107284447B (en) Driveline input torque control system
US10502661B2 (en) Method and device for performing a test run on a test stand
KR20180066417A (en) Control system and method for distributing drive torque between front and rear wheels of four-wheel drive vehicle
JP2009055703A (en) Friction coefficient estimation device for road surface
CN104057952A (en) Ramp resistance obtaining method for hybrid electric vehicle
CN103991447A (en) Measurement method and automobile
JP2020082767A (en) Drive power distribution control device
JP5139168B2 (en) Chassis dynamometer controller
JP5245679B2 (en) Chassis dynamometer for 4WD vehicles
JP4781859B2 (en) Chassis dynamometer controller for automobiles
JP6020122B2 (en) Chassis dynamometer
JP6525076B1 (en) Controller of dynamometer system
JP2013142633A (en) Electric-vehicle testing apparatus
JP5391761B2 (en) Vehicle testing apparatus and control method thereof
JP5830870B2 (en) Rotating body speed / acceleration measurement / control device
JP2006184041A (en) Travel condition simulation testing system and travel condition simulator for vehicle mounted with drive motor
JP5217830B2 (en) Chassis dynamometer and synchronous control method for 4WD vehicle
JP2007285903A (en) Control device of chassis dynamometer
JP2001091411A (en) Front-rear axle load controlling method in four-wheel drive vehicle bench test
JP6747143B2 (en) Dynamometer system
JP2005265417A (en) Control method of dynamometer
JP2017051016A (en) Vehicle motor drive device and vehicle equipped with the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130827

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130930

R150 Certificate of patent or registration of utility model

Ref document number: 5391761

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees