JP5390996B2 - Rare earth highly oriented magnetic thin film and manufacturing method thereof, porcelain member and rare earth permanent magnet - Google Patents

Rare earth highly oriented magnetic thin film and manufacturing method thereof, porcelain member and rare earth permanent magnet Download PDF

Info

Publication number
JP5390996B2
JP5390996B2 JP2009199092A JP2009199092A JP5390996B2 JP 5390996 B2 JP5390996 B2 JP 5390996B2 JP 2009199092 A JP2009199092 A JP 2009199092A JP 2009199092 A JP2009199092 A JP 2009199092A JP 5390996 B2 JP5390996 B2 JP 5390996B2
Authority
JP
Japan
Prior art keywords
thin film
rare earth
highly oriented
magnetic thin
oriented magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009199092A
Other languages
Japanese (ja)
Other versions
JP2011049506A (en
Inventor
佐藤  岳
敏之 嶋
哲也 庄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2009199092A priority Critical patent/JP5390996B2/en
Publication of JP2011049506A publication Critical patent/JP2011049506A/en
Application granted granted Critical
Publication of JP5390996B2 publication Critical patent/JP5390996B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、非常に薄いにもかかわらず著しく高い配向を示す希土類高配向磁性薄膜とその製造方法およびそれを利用した磁器部材並びにそれを応用した希土類永久磁石に関する。   The present invention relates to a rare-earth highly oriented magnetic thin film that exhibits a remarkably high orientation despite being very thin, a manufacturing method thereof, a porcelain member using the same, and a rare-earth permanent magnet using the same.

Nd−Fe−B系を代表とする希土類磁石は、非常に高い磁気特性を示すことから、電磁機器や電動機の小型化、高出力化、高密度化さらには環境負荷の低減化等の観点から、幅広い分野で種々の利用が検討されている。もっとも、実用化されている希土類磁石は、粒径が数〜数十μm程度の結晶粒を主相に焼結させた物と、数百nmの微細粒の集合組織からなる超急冷薄帯を樹脂に混ぜてボンド磁石としている物に留まる。   Rare earth magnets typified by the Nd-Fe-B system exhibit very high magnetic properties, so from the viewpoints of miniaturization, high output, high density, and reduction of environmental load of electromagnetic devices and motors. Various uses are being studied in a wide range of fields. However, the rare earth magnets that have been put into practical use include ultra-quenched ribbons that consist of sintered grains with a grain size of several to several tens of μm as the main phase and a texture of fine grains of several hundred nm. It stays in what is a bonded magnet mixed with resin.

それらよりもさらに微細な希土類磁石、特に厚さが数〜数十nmレベルの薄膜(または箔)は、実用化に至っておらず、研究成果も多くない。それに関連する文献は、例えば、下記のようなものがあるにすぎない。   Finer rare-earth magnets, especially thin films (or foils) with a thickness of several to several tens of nanometers, have not been put into practical use and do not have much research results. There are only the following literatures related to this, for example.

特開2000−150234号公報JP 2000-150234 A 特開2003−289005号公報JP 2003-289005 A

Journal of Magnetism and Magnetic Materials 308 (2007) 126−130.Journal of Magnetism and Magnetic Materials 308 (2007) 126−130. JOURNAL OF APPLIED PHYSICS 103, 07E104 (2008)JOURNAL OF APPLIED PHYSICS 103, 07E104 (2008)

ところで、磁気特性の高い希土類磁石を得るには、Nd2Fe14Bに代表されるようなR-Fe−B系(R:希土類元素)の結晶構造が特定(磁化容易軸またはc軸)方向に配向していることが必要である。
ここで、強い磁気特性を示すNd2Fe14B相は、結晶構造が複雑で、薄膜作成時に常温域では得られず、少なくとも一旦は高温にする必要がある。しかしそのような高温域でR-Fe−B系の各結晶を特定方向へ配向成長させることは容易でなく、この傾向は磁石のサイズが小さくなるほど顕著である。
By the way, in order to obtain a rare earth magnet having high magnetic properties, the crystal structure of an R—Fe—B system (R: rare earth element) represented by Nd 2 Fe 14 B is in a specific (easy magnetization axis or c axis) direction. It is necessary to be oriented.
Here, the Nd 2 Fe 14 B phase exhibiting strong magnetic properties has a complicated crystal structure and cannot be obtained at room temperature when forming a thin film, and must be at least once heated. However, it is not easy to grow the R—Fe—B based crystals in a specific direction in such a high temperature range, and this tendency becomes more prominent as the size of the magnet becomes smaller.

上記の非特許文献2には、高配向した厚さが数〜数十nmのNd-Fe−B層が紹介されている。しかし、その配向度(残留磁化(Mr)/飽和磁化(Ms))は高々70〜75%程度であり、未だその配向度は十分に高いとはいえない。またその配向度からして、Nd2Fe14Bの結晶方位も不十分に揃っているとは考えられない。 Non-Patent Document 2 introduces a highly oriented Nd—Fe—B layer having a thickness of several to several tens of nm. However, the degree of orientation (residual magnetization (Mr) / saturation magnetization (Ms)) is at most about 70 to 75%, and the degree of orientation is not yet sufficiently high. Also, from the degree of orientation, it cannot be considered that the crystal orientation of Nd 2 Fe 14 B is inadequate.

本発明は、このような事情に鑑みて為されたものである。すなわち、数十nm以下の非常に薄い膜状でありながら、主相の結晶が特定方向へ揃っており、高い配向度を示す希土類高配向磁性薄膜およびその製造方法と、それらを利用・応用した磁器部材または希土類永久磁石を提供することを目的とする。   The present invention has been made in view of such circumstances. That is, a rare-earth highly oriented magnetic thin film showing a high degree of orientation in which the crystals of the main phase are aligned in a specific direction while being a very thin film of several tens of nanometers or less, a method for producing the same, and the use and application thereof An object is to provide a porcelain member or a rare earth permanent magnet.

本発明者はこの課題を解決すべく鋭意研究し、試行錯誤を重ねた結果、従来とは異なる成膜方法を思いつき、これにより結晶方位が揃った高配向度の磁性薄膜が得られることを新たに見出した。この成果を発展させることにより、以降に述べるような本発明を完成するに至った。   As a result of extensive research and trial and error, the present inventor has come up with a film formation method different from the conventional one, and it is possible to obtain a highly oriented magnetic thin film with a uniform crystal orientation. I found it. By developing this result, the present invention described below has been completed.

《希土類高配向磁性薄膜の製造方法》
(1)本発明の希土類高配向磁性薄膜の製造方法は、基材の被覆面上に第1組成の第1被覆層を形成する第1被覆工程と、該第1被覆層上に該第1組成とは異なる第2組成の第2被覆層を形成する第2被覆工程とを少なくとも備え、
少なくとも前記第1被覆層と前記第2被覆層は、500〜1000℃に加熱された状態で該第1被覆層と該第2被覆層の間で熱拡散による原子移動を生じて、薄膜全体を100原子%としたときに8〜30原子%の希土類元素(以下「R」と記す)と4〜20原子%のホウ素(B)と残部である鉄(Fe)とを含むようになると共に薄膜全体として特定方向に配向して結晶成長した希土類高配向磁性薄膜となることを特徴とする。
《Method of manufacturing rare-earth highly oriented magnetic thin film》
(1) The method for producing a rare earth highly oriented magnetic thin film according to the present invention includes a first coating step of forming a first coating layer having a first composition on a coating surface of a substrate, and the first coating layer on the first coating layer. A second coating step of forming a second coating layer of a second composition different from the composition,
At least the first coating layer and the second coating layer cause atomic migration by thermal diffusion between the first coating layer and the second coating layer while being heated to 500 to 1000 ° C. 8-30 atomic% of the rare earth element is 100 atomic% (hereinafter referred to as "R") of 4 to 20 atomic percent boron (B) and iron (Fe) and the balance together becomes free useless, thin the Rukoto such as the crystal growth rare earth highly oriented magnetic thin film oriented in a specific direction as a whole, characterized.

(2)本発明の製造方法によれば、薄膜全体の組成を所望のR-Fe−B系希土類磁石合金の組成に調整しつつ、成膜に至る途中で、基材上に積層させていく組成を変化させることによって、R-Fe−B系結晶が磁化容易軸方向へ揃った高配向の希土類高配向磁性薄膜が得られる。 (2) According to the manufacturing method of the present invention, the composition of the entire thin film is adjusted to the composition of the desired R—Fe—B rare earth magnet alloy, and is laminated on the substrate in the middle of the film formation. By changing the composition, a highly oriented rare earth highly oriented magnetic thin film in which R—Fe—B based crystals are aligned in the direction of the easy axis of magnetization can be obtained.

このような成膜過程を本発明では、便宜的に、第1被覆工程および第2被覆工程によって表現している。従って本発明の製造方法は、さらに第3被覆工程さらには第4被覆工程など、より多くの工程を備えても勿論よい。つまり、2種の組成の被覆層が交互に繰り返し積層される場合(交互積層)に限らず、各被覆工程ごとに積層される被覆層の組成が異なっていても良い。要するに本発明の被覆工程は、異なる組成の被覆層を順次、断続的または連続的に積層していき、被膜全体として所望の磁石合金組成となる限り、各被覆工程間の組成、回数、順序などの施工条件は任意に調整可能である。   In the present invention, such a film forming process is expressed by a first coating process and a second coating process for convenience. Therefore, the manufacturing method of the present invention may further include more steps such as a third coating step and a fourth coating step. That is, the composition of the coating layer laminated | stacked for every coating process may differ not only in the case where the coating layer of 2 types of compositions is laminated | stacked alternately alternately (alternate lamination | stacking). In short, in the coating process of the present invention, the coating layers of different compositions are sequentially, intermittently or continuously laminated, and as long as the entire coating film has a desired magnetic alloy composition, the composition, number of times, order, etc. between the coating processes. The construction conditions can be arbitrarily adjusted.

(3)ところで本発明の製造方法により、従来よりも著しく高い配向の希土類磁性薄膜が得られる理由やメカニズムは必ずしも定かではないが、本発明者が鋭意研究した現状では次のように考えられる。すなわち、任意の方向に形成した組成勾配を高温状態にすることで、熱拡散による原子移動がその組成勾配の影響を受けて異方的となり、高い配向が得られたと考えられる。 (3) By the way, although the reason and mechanism by which the rare earth magnetic thin film having a significantly higher orientation than the conventional one is obtained by the manufacturing method of the present invention is not necessarily clear, the present state of the present inventor's diligent research is considered as follows. In other words, it is considered that by setting the composition gradient formed in an arbitrary direction to a high temperature state, atomic migration due to thermal diffusion becomes anisotropic due to the influence of the composition gradient, and high orientation is obtained.

《希土類高配向磁性薄膜》
(1)本発明は、単に上記の製造方法としてのみならず、それにより得られた配向度の著しく高い希土類高配向磁性薄膜としても把握される。
本明細書でいう配向度とは、飽和磁化(Ms)に対する残留磁化(Mr)の比(Mr/Ms)である。本発明の希土類高配向磁性薄膜の場合、この配向度が97%以上さらには98%以上ともなり得る。
<Rare earth highly oriented magnetic thin film>
(1) The present invention can be grasped not only as the above-described production method but also as a rare-earth highly oriented magnetic thin film having a remarkably high degree of orientation obtained thereby.
The degree of orientation as used herein is the ratio (Mr / Ms) of remanent magnetization (Mr) to saturation magnetization (Ms). In the case of the rare earth highly oriented magnetic thin film of the present invention, this degree of orientation can be 97% or more, further 98% or more.

(2)本発明の希土類高配向磁性薄膜は、厚さが薄いにもかかわらず高配向である点に特徴がある。そこで本発明の希土類高配向磁性薄膜は、薄膜全体を100原子%としたときに8〜30原子%のRと4〜20原子%のBと残部であるFeとを含み、膜厚が1〜200nmであり、配向度(Mr/Ms)が薄膜全体として98%以上である特定方向に配向して結晶成長していることを特徴とするものでもよい。 (2) The rare-earth highly oriented magnetic thin film of the present invention is characterized in that it is highly oriented despite its thin thickness. Therefore earth highly oriented magnetic thin film of the present invention, the whole thin film and a Fe is 8-30 atomic% of R and 4 to 20 atomic% of B and the remainder is taken as 100 atomic%, the film thickness is 1 The crystal growth may be characterized by being 200 nm and oriented in a specific direction in which the degree of orientation (Mr / Ms) is 98% or more as a whole thin film .

《磁器部材》
さらに本発明は、基材上に形成された希土類高配向磁性薄膜のみならず、その希土類高配向磁性薄膜とそれが形成される基材とからなる磁器部材としても把握され得る。磁器部材の種類、用途などは問わないが、例えば、高密度記録媒体、超小型電動機の界磁部材(ロータまたはステータ)などがある。
《Porcelain member》
Furthermore, this invention can be grasped | ascertained not only as the rare earth highly oriented magnetic thin film formed on the base material but also as a porcelain member comprising the rare earth highly oriented magnetic thin film and the base material on which the rare earth highly oriented magnetic thin film is formed. There are no particular restrictions on the type and use of the porcelain member, but examples include a high-density recording medium and a field member (rotor or stator) for a micro electric motor.

《希土類永久磁石》
上述した希土類高配向磁性薄膜は、基材の被覆面上に形成されたものであるが、その薄膜自体を単独でみれば希土類永久磁石となり得る。そこで本発明は、薄膜全体を100原子%としたときに8〜30原子%のRと4〜20原子%のBと残部であるFeとを含み、膜厚が1〜200nmであり、配向度(Mr/Ms)が薄膜全体として98%以上である特定方向へ配向して結晶成長した希土類高配向磁性箔からなることを特徴とする希土類永久磁石としても把握される。この希土類永久磁石は、希土類高配向磁性箔単体のみならず、その箔を結合させた結合体等でもよい。なお、希土類高配向磁性箔は一旦形成された薄膜を基材から剥離したものでもよい。
《Rare earth permanent magnet》
The rare earth highly oriented magnetic thin film described above is formed on the coated surface of the base material, but if the thin film itself is viewed alone, it can be a rare earth permanent magnet. Therefore, the present invention includes 8 to 30 atomic% R, 4 to 20 atomic% B and the remaining Fe when the whole thin film is 100 atomic%, the film thickness is 1 to 200 nm, and the degree of orientation. It is also grasped as a rare earth permanent magnet characterized by being composed of a rare earth highly oriented magnetic foil oriented and grown in a specific direction with (Mr / Ms) of 98% or more as a whole thin film . This rare earth permanent magnet may be not only a rare earth highly oriented magnetic foil alone but also a combined body obtained by bonding the foil. The rare earth highly oriented magnetic foil may be a thin film once formed and peeled from the substrate.

《その他》
特に断らない限り、本明細書でいう「x〜y」は、下限xおよび上限yを含む。また、本明細書に記載した各下限および各上限は任意に組合わせて「a〜b」のような範囲を構成し得る。さらに、本明細書に記載した範囲内に含まれる任意の数値を、数値範囲を設定するための上限値または下限値とすることができる。
<Others>
Unless otherwise specified, “x to y” in the present specification includes the lower limit x and the upper limit y. Each lower limit and each upper limit described in this specification can be arbitrarily combined to constitute a range such as “ab”. Furthermore, any numerical value included in the range described in the present specification can be used as an upper limit value or a lower limit value for setting the numerical value range.

各試料の希土類磁性薄膜を観察したX線回折図である。It is the X-ray diffraction pattern which observed the rare earth magnetic thin film of each sample. 試料No.1の希土類磁性薄膜について求めた磁化曲線である。Sample No. 1 is a magnetization curve obtained for one rare earth magnetic thin film.

発明の実施形態を挙げて本発明をより詳しく説明する。なお、以下の実施形態を含め、本明細書で説明する内容は、本発明に係る希土類高配向磁性薄膜の製造方法のみならず、その希土類高配向磁性薄膜(希土類高配向磁性箔を含む)、希土類永久磁石および磁器部材にも適宜適用される。上述した構成に、次に列挙する構成中から任意に選択した一つまたは二つ以上の構成がさらに付加されて、本発明が形成されてもよい。下記の構成はいずれも、カテゴリーを越えて重畳的または任意的に選択可能である。例えば、成分組成に関する構成であれば、物のみならず製造方法にも関連する。また製造方法に関する構成でも、プロダクトバイプロセスとして理解すれば、希土類高配向磁性薄膜等に関する構成ともなり得る。なお、いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。   The present invention will be described in more detail with reference to embodiments of the invention. In addition, the contents described in this specification including the following embodiments include not only the method for producing a rare earth highly oriented magnetic thin film according to the present invention, but also a rare earth highly oriented magnetic thin film (including a rare earth highly oriented magnetic foil), Applicable to rare earth permanent magnets and porcelain members as appropriate. One or more configurations arbitrarily selected from the configurations listed below may be further added to the configuration described above to form the present invention. Any of the following configurations can be selected in a superimposed manner or arbitrarily across categories. For example, if it is the structure regarding a component composition, it is related not only to a thing but to a manufacturing method. Also, the structure related to the manufacturing method can be a structure related to a rare-earth highly oriented magnetic thin film if understood as a product-by-process. Note that which embodiment is the best depends on the target, required performance, and the like.

《希土類高配向磁性薄膜、希土類高配向磁性箔》
(1)組成
希土類高配向磁性薄膜(以下、希土類高配向磁性箔を含む)は、全体として、強力な磁気特性を発現するR-Fe−B系合金結晶からなる。Rがネオジウム(Nd)の場合であれば、Nd2Fe14Bが主相となると好ましい。
<< rare earth highly oriented magnetic thin film, rare earth highly oriented magnetic foil >>
(1) Composition A rare earth highly oriented magnetic thin film (hereinafter, including a rare earth highly oriented magnetic foil) is composed of an R—Fe—B alloy crystal that exhibits strong magnetic properties as a whole. If R is neodymium (Nd), Nd 2 Fe 14 B is preferably the main phase.

薄膜全体の好ましい組成は、Rの種類、R-Fe−B以外の改質元素の有無などによって変化し得るが、全体を100原子%としたときに8〜30原子%のRと4〜20原子%のBと残部であるFeを含むと好適である。いずれの元素も過少または過多では、R2Fe141相(2−14−1相)の体積比率に影響し、かつ異相が生成するため、磁気特性を悪化させる。 The preferred composition of the entire thin film can vary depending on the type of R, the presence or absence of modifying elements other than R-Fe-B, etc., but when the total is 100 atomic%, 8-30 atomic% R and 4-20 It is preferable to contain atomic% B and the balance Fe. If either element is too small or excessive, the volume ratio of the R 2 Fe 14 B 1 phase (2-14-1 phase) is affected, and a heterogeneous phase is generated, which deteriorates the magnetic properties.

Rの下限値または上限値は上記範囲内で任意に選択し設定し得るが、特に9〜15%の範囲で高配向膜が得られ易い。   The lower limit value or upper limit value of R can be arbitrarily selected and set within the above range, but a highly oriented film is easily obtained particularly in the range of 9 to 15%.

Bの下限値または上限値は上記範囲内で任意に選択し設定し得るが、特に8〜16%の範囲で微細組織が得られ易く、本発明の目的の達成に好ましい。   The lower limit value or upper limit value of B can be arbitrarily selected and set within the above range, but a fine structure is easily obtained particularly in the range of 8 to 16%, which is preferable for achieving the object of the present invention.

Feは基本的に主たる残部であるが、あえていえばFeは69〜82原子%であると好ましい。Feの上限値または下限値はその範囲内で任意に選択し設定し得る。ただし、このFe量は、上記のRやB以外に、希土類高配向磁性薄膜の種々の特性を改善するのに有効な元素(改質元素)や不可避不純物の存在割合によって変化する。   Fe is basically the main balance, but it is preferable that Fe is 69 to 82 atomic%. The upper limit value or lower limit value of Fe can be arbitrarily selected and set within the range. However, in addition to the above R and B, the amount of Fe varies depending on the existence ratio of elements (modified elements) and inevitable impurities effective for improving various characteristics of the rare earth highly oriented magnetic thin film.

ちなみに本明細書でいうRは、スカンジウム(Sc)、イットリウム(Y)、ランタノイドを含む。ランタノイドは、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、Nd、サマリウム(Sm)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)およびルテチウム(Lu)を含む。本発明でいうRは、これら元素の少なくとも1種以上であればよく、複数種の希土類元素でもよい。もっとも、コストや磁気特性などの観点から、Rは主にNd、Sm、PrおよびDyの一種以上からなると好ましい。   Incidentally, R in this specification includes scandium (Sc), yttrium (Y), and lanthanoid. Lanthanoids include lanthanum (La), cerium (Ce), praseodymium (Pr), Nd, samarium (Sm), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), Contains thulium (Tm) and lutetium (Lu). R in the present invention may be at least one of these elements, and may be a plurality of rare earth elements. However, from the viewpoint of cost, magnetic characteristics, and the like, it is preferable that R is mainly composed of one or more of Nd, Sm, Pr, and Dy.

改質元素には、希土類高配向磁性薄膜の耐熱性を向上させるコバルト(Co)、ランタン(La)、保磁力などの磁気特性の向上に有効なガリウム(Ga)、ニオブ(Nb)、アルミニウム(Al)、ケイ素(Si)、チタン(Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、ニッケル(Ni)、銅(Cu)、ゲルマニウム(Ge)、ジルコニウム(Zr)、モリブデン(Mo)、インジウム(In)、スズ(Sn)、ハフニウム(Hf)、タンタル(Ta)、タングステン(W)または鉛(Pb)の少なくとも1種以上がある。改質元素の組合せは任意である。また、その含有量は通常微量であり、例えば、0.1〜10原子%程度である。   Examples of the modifying element include cobalt (Co), lanthanum (La), gallium (Ga), niobium (Nb), aluminum (which is effective in improving the magnetic properties such as coercive force, which improve the heat resistance of the rare-earth highly oriented magnetic thin film. Al), silicon (Si), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), nickel (Ni), copper (Cu), germanium (Ge), zirconium (Zr), molybdenum ( There are at least one or more of Mo), indium (In), tin (Sn), hafnium (Hf), tantalum (Ta), tungsten (W), or lead (Pb). The combination of the modifying elements is arbitrary. Moreover, the content is usually a trace amount, for example, about 0.1 to 10 atomic%.

不可避不純物は、原料中に含まれる不純物や各工程時に混入等する不純物などであって、コスト的または技術的な理由等により除去することが困難な元素である。本発明に係る希土類高配向磁性薄膜の場合であれば、例えば、C、Ca、Na、K、O、H、N、Ar等がある。なお、ここで述べたことは、各被覆層またはその原料の組成についても適宜該当する。   Inevitable impurities are impurities contained in the raw material, impurities mixed in at each step, and the like, and are elements that are difficult to remove due to cost or technical reasons. In the case of the rare earth highly oriented magnetic thin film according to the present invention, for example, there are C, Ca, Na, K, O, H, N, Ar, and the like. In addition, what was described here corresponds suitably also about the composition of each coating layer or its raw material.

(2)膜厚
本発明の希土類高配向磁性薄膜の膜厚は、非常に小さくnmレベルである。具体体には、膜厚が1〜200nmであると好ましい。膜厚の上限値または下限値は上記範囲内で任意に選択し設定し得る。特に膜厚が5〜100nmのときに高配向でかつ高特性の薄膜が得られる。
(2) Film thickness The film thickness of the rare earth highly oriented magnetic thin film of the present invention is very small and is on the nm level. The specific body preferably has a film thickness of 1 to 200 nm. The upper limit or lower limit of the film thickness can be arbitrarily selected and set within the above range. In particular, when the film thickness is 5 to 100 nm, a highly oriented thin film having high characteristics can be obtained.

(3)保護被膜
本発明の希土類高配向磁性薄膜は、その構成元素からして酸化され易い。酸化されると、結晶構造が所望のNd2Fe14Bなどから部分的に変化するため磁気特性が低下する。そこで本発明の希土類高配向磁性薄膜は、そのような酸化を抑制する保護被膜を少なくとも最表面に有すると好ましい。
この保護被膜は、Cr、Ag、Au、Pt、Mo、Cu、Ti、Ta、Ru、W、Irなどの単体、合金または化合物からなると好ましい。
(3) Protective coating The rare earth highly oriented magnetic thin film of the present invention is easily oxidized from its constituent elements. When oxidized, the crystal structure is partially changed from the desired Nd 2 Fe 14 B or the like, so that the magnetic characteristics are deteriorated. Therefore, it is preferable that the rare earth highly oriented magnetic thin film of the present invention has a protective film for suppressing such oxidation at least on the outermost surface.
This protective film is preferably made of a simple substance such as Cr, Ag, Au, Pt, Mo, Cu, Ti, Ta, Ru, W, Ir, an alloy, or a compound.

《製造方法》
(1)被覆層の組成
本発明の製造方法は、組成の異なる複数の被覆層を積層しつつ、薄膜全体としては所望の磁石合金組成からなる希土類高配向磁性薄膜を形成する方法である。既述したように、各被覆層の組成は特に限定されるものではなく、積層する被覆層の組成の種類は2つでもそれ以上でもよい。
"Production method"
(1) Composition of coating layer The production method of the present invention is a method of forming a rare earth highly oriented magnetic thin film having a desired magnet alloy composition as a whole while laminating a plurality of coating layers having different compositions. As described above, the composition of each coating layer is not particularly limited, and the number of coating layers to be laminated may be two or more.

もっとも、2種の組成の組み合わせでも十分に高い配向度の希土類磁性薄膜を得ることが可能であり、その方が成膜の簡素化、効率化を図れて好ましい。このような被覆層の組成として、例えば、被覆層全体を100原子%としたときに、8〜30原子%のRと4〜20原子%のBと残部がFeの場合(組成A)、0〜25原子%(25原子%以下)のBと残部がFeの場合(組成B)などがある。各元素の上限値または下限値は上記のそれぞれの範囲内で任意に選択し設定し得る。なお、Bが0原子%のとき、組成BはFeのみ(純鉄)となる。   However, it is possible to obtain a rare earth magnetic thin film having a sufficiently high degree of orientation even with a combination of two kinds of compositions, which is preferable in view of simplifying and improving the efficiency of film formation. As the composition of such a coating layer, for example, when the entire coating layer is 100 atomic%, 8-30 atomic% R, 4-20 atomic% B, and the balance is Fe (composition A), 0 -25 atomic% (25 atomic% or less) of B and the balance being Fe (composition B). The upper limit value or lower limit value of each element can be arbitrarily selected and set within the above ranges. When B is 0 atomic%, the composition B is only Fe (pure iron).

ところで、本発明の場合、基板に最初に形成する被覆層(初期被覆層)の組成は特に限定されない。もっとも、初期被覆層がR、FeおよびBを備えるR-Fe−B系合金組成からなる方が、Nd2Fe14B結晶などがその後に成長し易いと考えられる。そこで例えば、初期被覆層(第1被覆層)が上記の組成Aであり、その次の被覆層(第2被覆層)が上記の組成Bであると好適である。
なお、希土類磁性薄膜の結晶構造または配向度が初期被覆層の影響を受けるメカニズムは必ずしも定かではないが、現状では次のように考えられる。すなわち、形成したい合金膜に近い組成を初期層に用いることで、それ以降の層が初期層の結晶構造を反映して結晶成長を行うため所望の合金膜が成長し易くなる。
By the way, in the case of this invention, the composition of the coating layer (initial coating layer) formed initially on a board | substrate is not specifically limited. However, if the initial coating layer is made of an R—Fe—B alloy composition comprising R, Fe, and B, it is considered that Nd 2 Fe 14 B crystals and the like are likely to grow later. Therefore, for example, it is preferable that the initial coating layer (first coating layer) has the composition A described above and the subsequent coating layer (second coating layer) has the composition B described above.
The mechanism by which the crystal structure or orientation degree of the rare earth magnetic thin film is affected by the initial coating layer is not necessarily known, but at present, it is considered as follows. That is, by using a composition close to the alloy film to be formed for the initial layer, the subsequent layers reflect the crystal structure of the initial layer, and thus the desired alloy film can be easily grown.

(2)加熱被覆工程
組成により相違するものの、Nd2Fe14B相などの希土類磁石合金を得るには、約500℃以上の高温にする必要がある。もっとも高温環境下では、一般的に各結晶の方位が乱れ、結晶方位の揃った希土類磁性薄膜を得ることは一般的に難しい。
(2) Although different by heating the coating process the composition, in order to obtain a rare earth magnet alloy such as Nd 2 Fe 14 B phase, it is necessary to high temperature of at least about 500 ° C.. However, in a high temperature environment, the orientation of each crystal is generally disturbed, and it is generally difficult to obtain a rare earth magnetic thin film having a uniform crystal orientation.

しかし本発明の製造方法によれば、むしろ、所定の高温下で第1被覆工程や第2被覆工程を行うことにより、配向度のより高い希土類磁性薄膜が得られる。従って、本発明の第1被覆工程または第2被覆工程は、500〜1000℃の被覆温度でなされる加熱被覆工程であると好適である。   However, according to the manufacturing method of the present invention, a rare earth magnetic thin film having a higher degree of orientation can be obtained by performing the first coating step and the second coating step at a predetermined high temperature. Therefore, the first coating step or the second coating step of the present invention is preferably a heat coating step performed at a coating temperature of 500 to 1000 ° C.

その被覆温度が過小になれば、そもそも高い磁気特性を発現する合金相が得難く、被覆温度が過大になるとその合金相が溶融状態となり、希土類磁性薄膜が形成され難い。この被覆温度の上限値または下限値は上記範囲内で任意に選択し設定し得る。特に被覆温度が500〜700℃で、高配向および高特性の薄膜が得られ易い。なお、所望の被覆温度は、被覆時の基材温度や雰囲気温度の調整により得られる。   If the coating temperature is too low, it is difficult to obtain an alloy phase that exhibits high magnetic properties in the first place. If the coating temperature is too high, the alloy phase is in a molten state, and it is difficult to form a rare earth magnetic thin film. The upper limit or lower limit of the coating temperature can be arbitrarily selected and set within the above range. In particular, when the coating temperature is 500 to 700 ° C., a highly oriented and highly characteristic thin film is easily obtained. The desired coating temperature can be obtained by adjusting the substrate temperature and the atmospheric temperature during coating.

(3)被覆速度
被覆工程中の被覆層の形成速度(厚さ方向)である被覆速度は0.1〜5Å/sであると好適である。被覆速度が過小では形成時間が長く酸化の影響が現れて好ましくない。被覆速度が過大では膜厚制御が困難となり好ましくない。特に被覆速度が0.4〜1Å/sで高配向および高特性の薄膜が得られ易い。
(3) Coating speed It is suitable that the coating speed which is the formation speed (thickness direction) of the coating layer during the coating process is 0.1 to 5 Å / s. If the coating speed is too low, the formation time is long and the influence of oxidation appears, which is not preferable. If the coating speed is excessive, film thickness control becomes difficult, which is not preferable. In particular, it is easy to obtain a thin film having high orientation and high characteristics at a coating speed of 0.4 to 1 Å / s.

(4)被覆工程
被覆工程は、既述したように、組成の異なる被覆層を形成する第1被覆工程と第2被覆工程とを少なくとも備えれば足りる。本発明の場合、希土類磁性薄膜の最終的な厚さは高々数十nmである。従って、途中段階の被覆層の厚さも数〜十数nmレベルである。薄膜の形成方法として真空蒸着などもあるが、本発明のような非常に薄い被覆層を均一に安定して形成するには、スパッタリングなどが好ましい。
(4) Coating process As described above, the coating process is sufficient if it includes at least a first coating process and a second coating process for forming coating layers having different compositions. In the case of the present invention, the final thickness of the rare earth magnetic thin film is at most several tens of nm. Therefore, the thickness of the coating layer in the middle stage is also on the order of several to several tens of nm. As a method for forming a thin film, there is vacuum deposition or the like, but sputtering or the like is preferable in order to form a very thin coating layer as in the present invention uniformly and stably.

スパッタリングなどを行う場合、ターゲットには、所望する被覆層の組成に応じた原料を用いればよい。例えば、初期被覆層であれば前記した組成AのR-Fe−B系合金、次の被覆層には前記した組成bのFe−B系合金などである。また、複数のターゲットを用いて所望の組成の薄膜を形成することも有効である。   When sputtering or the like is performed, a raw material corresponding to the desired composition of the coating layer may be used for the target. For example, the R—Fe—B alloy having the composition A described above is used as the initial coating layer, and the Fe—B alloy having the composition b described above is used as the next coating layer. It is also effective to form a thin film having a desired composition using a plurality of targets.

(5)保護被覆工程
本発明の製造方法は、前述したように、希土類磁性薄膜の酸化による劣化を抑制し得るために、その表面に保護被膜を形成する保護被覆工程を備えると好適である。
保護被覆工程も前記の被覆工程と同様にスパッタリングなどにより行える。この場合、保護被膜用のターゲットの種類にも依るが、保護被覆工程は通常、室温域で行えば足りる。また、そのターゲットには、Cr、Ag、Au、Pt、Mo、Cu、Ti、Ta、Ru、W、Irなどの単体、合金または化合物などを用いることができる。
(5) Protective coating step As described above, the production method of the present invention preferably includes a protective coating step for forming a protective coating on the surface of the rare earth magnetic thin film in order to suppress deterioration due to oxidation.
The protective coating process can also be performed by sputtering or the like, similar to the above coating process. In this case, although it depends on the type of the target for the protective coating, it is usually sufficient to perform the protective coating step in a room temperature range. As the target, a simple substance such as Cr, Ag, Au, Pt, Mo, Cu, Ti, Ta, Ru, W, Ir, an alloy, a compound, or the like can be used.

《基材》
本発明の希土類高配向磁性薄膜が形成される基材の材質や形態は基本的には問わない。もっとも、希土類磁性薄膜の結晶成長に適した基材(またはその被覆面)を用意することで、希土類磁石合金結晶をエピタキシャル成長させて希土類磁性薄膜を形成することも可能となる。これにより、結晶方位が特定方向に揃った(つまり配向した)、配向度の大きな(磁化異方性の大きな)希土類磁性薄膜が得られ得る。
"Base material"
The material and form of the base material on which the rare earth highly oriented magnetic thin film of the present invention is formed are not particularly limited. However, by preparing a base material (or a coated surface thereof) suitable for crystal growth of a rare earth magnetic thin film, it is possible to form a rare earth magnetic thin film by epitaxial growth of a rare earth magnet alloy crystal. As a result, a rare-earth magnetic thin film having a large orientation degree (large magnetization anisotropy) having a crystal orientation aligned in a specific direction (that is, oriented) can be obtained.

エピタキシャル成長は、基材(被覆面)の結晶にそろって薄膜(または被覆層)の結晶が成長する。エピタキシャル成長させるには、基材側の結晶と薄膜側の結晶との格子定数がほぼ等しく、両者の熱膨張係数が近接していると好適である。そこで、少なくとも基材の被覆面の結晶構造を、希土類磁性薄膜を構成する希土類磁石合金の結晶構造に近づけるとよい。基材自体がそのような結晶構造をもたない場合でも、下地処理により、そのような結晶構造をもつ下地層を基材の表面に形成すれば足る。   In epitaxial growth, crystals of a thin film (or coating layer) grow along with crystals of the base material (coating surface). For epitaxial growth, it is preferable that the crystal constants of the base-side crystal and the thin-film side are substantially equal and the thermal expansion coefficients of the two are close to each other. Therefore, at least the crystal structure of the coated surface of the base material should be close to the crystal structure of the rare earth magnet alloy constituting the rare earth magnetic thin film. Even when the base material itself does not have such a crystal structure, it is sufficient to form a base layer having such a crystal structure on the surface of the base material by base processing.

そこで本発明の製造方法は、希土類高配向磁性薄膜の配向結晶面と整合的な体心立方格子(b.c.c.)の結晶構造を有する下地層を基材上に形成する下地処理工程を備えると好適である。ここで希土類高配向磁性薄膜の結晶配向面とは、基材面に平行に成長した面である。また、下地処理した基材の場合、その下地層が新たに基材の被覆面となる。   In view of this, the manufacturing method of the present invention provides a base treatment process for forming a base layer having a body-centered cubic lattice (bc) crystal structure that is consistent with the oriented crystal plane of the rare earth highly oriented magnetic thin film on the substrate. Is preferably provided. Here, the crystal orientation plane of the rare earth highly oriented magnetic thin film is a plane grown parallel to the substrate surface. Moreover, in the case of the base material which carried out the base treatment, the base layer becomes a covering surface of a base material newly.

下地層を構成する下地材として、Mo、Ta、W、Ti、Cr、V、Nbなどが好適である。下地処理工程は、例えば、スパッタリングにより下地材を形成後、加熱処理による平坦化などによりなされる。   As the base material constituting the base layer, Mo, Ta, W, Ti, Cr, V, Nb and the like are suitable. The base treatment process is performed by, for example, flattening by heat treatment after forming the base material by sputtering.

さらに基材は、前記希土類高配向磁性薄膜の配向面をもつ単結晶からなると好適である。具体的には、酸化マグネシウム(MgO)の単結晶からなるMgO単結晶基材の他、W、Mo、Cu、Siの単結晶基材などがある。ここで基材の被覆面に垂直な方向を希土類磁性薄膜の磁化容易軸(c軸)の方向とする場合、その被覆面はミラー指数でいう(001)面であるとよい。   Further, it is preferable that the substrate is made of a single crystal having the orientation plane of the rare earth highly oriented magnetic thin film. Specifically, there are single crystal base materials of W, Mo, Cu, Si and the like in addition to the single crystal base material of MgO (MgO) single crystal. Here, when the direction perpendicular to the coated surface of the base material is the direction of the easy axis of magnetization (c-axis) of the rare earth magnetic thin film, the coated surface is preferably a (001) plane in terms of the Miller index.

ここで前述した下地層の結晶構造が基材の結晶構造の影響を受ける場合、基材の結晶構造と下地層の結晶構造を整合させるようにするとよい。例えば、MgO単結晶基材上にMoまたはTaの下地層を形成すると好ましい。   When the crystal structure of the base layer described above is affected by the crystal structure of the base material, the crystal structure of the base material and the crystal structure of the base layer are preferably matched. For example, it is preferable to form a Mo or Ta underlayer on an MgO single crystal substrate.

《その他》
本発明の希土類高配向磁性薄膜の用途として、磁気記録媒体などが考えられる。希土類高配向磁性薄膜で被覆された基材からなる磁器部材として、磁気ケース、磁気ディスク、超小型電動機のロータまたはステータなどがある。
<Others>
As a use of the rare earth highly oriented magnetic thin film of the present invention, a magnetic recording medium or the like can be considered. Examples of the porcelain member made of a base material coated with a rare earth highly oriented magnetic thin film include a magnetic case, a magnetic disk, a rotor or a stator of a micro electric motor.

実施例を挙げて本発明をより具体的に説明する。
《試料の製造》
〈試料No.A1〉
(1)基材と下地処理工程
本発明に係る希土類高配向磁性薄膜を形成する基材として、MgO単結晶基板(以下単に「基板」という。)を用意した。このMgO単結晶基板は、(001)面が基板面になるように加工し、表面粗度を低くするため研磨を行ったものである(フルウチ化学株式会社製、MgO(100)単結晶)。
The present invention will be described more specifically with reference to examples.
<Production of sample>
<Sample No. A1>
(1) Base Material and Substrate Treatment Step As a base material for forming the rare earth highly oriented magnetic thin film according to the present invention, an MgO single crystal substrate (hereinafter simply referred to as “substrate”) was prepared. This MgO single crystal substrate is processed so that the (001) plane becomes the substrate surface and polished to reduce the surface roughness (MgO (100) single crystal manufactured by Furuuchi Chemical Co., Ltd.).

この基板の(001)面上にMoからなる平坦な下地層を形成した(下地処理工程)。Moは、Nd2Fe14B相(単位は原子%、以下同様)の結晶配向面(c面)と格子整合性の高いb.c.c.材料である。下地処理は、スパッタリングにより下地材を積層後、加熱処理により行った。 A flat base layer made of Mo was formed on the (001) plane of this substrate (base processing step). Mo is a bc.c. material having high lattice matching with the crystal orientation plane (c-plane) of the Nd 2 Fe 14 B phase (unit: atomic%, the same applies hereinafter). The base treatment was performed by heat treatment after laminating the base material by sputtering.

(2)被覆工程(加熱被覆工程)
加熱した基板の下地層上に、スパッタリングによってFeを主成分とする磁性層(被覆層)を積層した(被覆工程)。
具体的には、625℃に加熱した基板の下地層上に、組成の異なる2種の磁性層を交互に積層した。すなわち、先ずはNd15Fe7015 組成(第1組成)の鉄合金をターゲットにして、基板の被覆面上に膜厚4nmの初期被覆層(第1被覆層)を形成した(第1被覆工程)。次に、その初期被覆層上に、Fe8020 組成(第2組成)の鉄合金をターゲットにして、初期被覆層上に膜厚1nmの第2被覆層を形成した(第2被覆工程)。その後、この第1被覆工程と第2被覆工程を順次交互に合計6回繰り返すことで、膜厚合計が30nmとなる磁性層を形成した。なお、いずれの被覆工程でも、被覆層の被覆速度は0.4〜1Å/sにした。
(2) Coating process (heat coating process)
On the base layer of the heated substrate, a magnetic layer (coating layer) containing Fe as a main component was laminated by sputtering (coating step).
Specifically, two kinds of magnetic layers having different compositions were alternately laminated on the base layer of the substrate heated to 625 ° C. Specifically, an initial coating layer (first coating layer) having a film thickness of 4 nm was formed on the coating surface of the substrate by using an iron alloy of Nd 15 Fe 70 B 15 composition (first composition) as a target (first coating layer). Process). Next, a second coating layer having a thickness of 1 nm was formed on the initial coating layer by using an Fe 80 B 20 composition (second composition) iron alloy as a target (second coating step). . Thereafter, the first coating step and the second coating step were alternately repeated a total of 6 times to form a magnetic layer having a total film thickness of 30 nm. In any coating step, the coating speed of the coating layer was set to 0.4 to 1 kg / s.

なお、本実施例で用いたスパッタリングは、マグネトロンスパッタ法であり、被覆(成膜)前の到達真空度は1x10-8Pa以下、被覆形状はφ8mmとした。また、被覆層の膜厚は、被覆速度と被覆(成膜)時間の積から算出した。 The sputtering used in this example was a magnetron sputtering method, the ultimate vacuum before coating (film formation) was 1 × 10 −8 Pa or less, and the coating shape was φ8 mm. The film thickness of the coating layer was calculated from the product of the coating speed and the coating (film formation) time.

(3)保護被覆工程
こうして基板上に磁性層(希土類磁性薄膜)を積層した後、それを室温まで冷却してから、その最表面にCrからなる保護被膜を上述のスパッタリングにより積層した(保護被覆工程)。この保護被膜は磁性層の酸化を抑止するために形成した。こうして、基板上を被覆する希土類磁性薄膜からなる試料No.A1を得た。
(3) Protective coating step After laminating the magnetic layer (rare earth magnetic thin film) on the substrate in this way, after cooling it to room temperature, the protective coating made of Cr was laminated on the outermost surface by the above-mentioned sputtering (protective coating) Process). This protective film was formed to suppress oxidation of the magnetic layer. In this way, sample no. A1 was obtained.

〈試料No.B1〜B5の製造〉
上記の試料No.A1に対して、第1被覆層の膜厚を4nmから8nmに、第2被覆層の膜厚を1nmから2nmに増加させた被覆工程を、順次交互に合計3回繰り返した。この際、基板の加熱温度(被覆温度)を200〜700℃の範囲で種々変化させることにより、5種類の希土類磁性薄膜(試料No.B1〜B5)を製作した。
<Sample No. Production of B1 to B5>
In the above sample No. For A1, the coating process in which the film thickness of the first coating layer was increased from 4 nm to 8 nm and the film thickness of the second coating layer was increased from 1 nm to 2 nm was sequentially repeated three times in total. At this time, five kinds of rare earth magnetic thin films (sample Nos. B1 to B5) were manufactured by variously changing the heating temperature (coating temperature) of the substrate in the range of 200 to 700 ° C.

〈試料No.C1〜C8の製造〉
上記の試料No.A1に対して、交互積層した被覆層の膜厚合計を5〜100nmの範囲で種々変化させて、5種類の希土類磁性薄膜(試料No.C1〜C8)を製作した。
<Sample No. Production of C1 to C8>
In the above sample No. Five kinds of rare earth magnetic thin films (Sample Nos. C1 to C8) were manufactured by changing the total thickness of the alternately laminated coating layers in a range of 5 to 100 nm with respect to A1.

〈試料No.D1およびD2の製造〉
上記の試料No.A1に対して、交互積層をせず(一つの被覆工程のみで)、単一組成の30nm(目標膜厚)の磁性層からなる試料No.D1およびD2も製作した。試料No.D1の磁性層はNd12Fe7216 組成からなり、試料No.D2の磁性層はNd15Fe7015組成からなる。
以上の各試料の成膜条件を表1にまとめて示した。
<Sample No. Production of D1 and D2>
In the above sample No. Sample No. A1 consisting of a magnetic layer having a single composition of 30 nm (target film thickness) without alternating lamination (only in one coating step) was used. D1 and D2 were also produced. Sample No. The magnetic layer of D1 is composed of Nd 12 Fe 72 B 16 composition. The magnetic layer of D2 is composed of Nd 15 Fe 70 B 15 composition.
The film forming conditions for each of the above samples are summarized in Table 1.

《各試料の測定》
X線回折(XRD)または磁化曲線の測定により、上記した各種試料の特性を評価した。その結果を表1にまとめて記載した。また、一例として、試料No.A1、D1およびD2に係るXRDを図1に、試料No.A1に係る磁化曲線を図2に示した。なお、表1中に示したXRDピーク強度比は、Nd2Fe14B相のピーク強度の、Nd2Fe14B以外の相の強度に対する比( Nd2Fe14B (004)/ Nd1+eFe44 (004))である。また配向度は、飽和磁化(Ms)に対する残留磁化(Mr)の比(Mr/Ms)であり、磁化曲線から求めた。
<< Measurement of each sample >>
The characteristics of the various samples described above were evaluated by measuring X-ray diffraction (XRD) or magnetization curves. The results are summarized in Table 1. As an example, sample No. The XRD relating to A1, D1 and D2 is shown in FIG. A magnetization curve according to A1 is shown in FIG. Incidentally, XRD peak intensity ratio shown in Table 1, Nd 2 Fe 14 of peak intensity of the B-phase, Nd 2 Fe 14 ratio amplitude of the phase other than B (Nd 2 Fe 14 B ( 004) / Nd 1+ a e Fe 4 B 4 (004) ). The degree of orientation is the ratio (Mr / Ms) of residual magnetization (Mr) to saturation magnetization (Ms), and was obtained from the magnetization curve.

《各試料の評価》
(1)試料No.A1、D1およびD2
表1のXRDピーク強度比および図1のXRD図から明らかなように、本発明に係る試料No.A1は、XRDピーク強度比が試料No.D1またはD2よりも格段に大きくなっている。これにより、本発明のように組成の異なる被覆層を交互に積層する被覆工程を行うことで、c面配向したNd2Fe14B結晶成長がより促進されることが確認された。
<< Evaluation of each sample >>
(1) Sample No. A1, D1 and D2
As apparent from the XRD peak intensity ratio in Table 1 and the XRD diagram in FIG. A1 has an XRD peak intensity ratio of sample No. It is much larger than D1 or D2. Thus, it was confirmed that the c-plane oriented Nd 2 Fe 14 B crystal growth was further promoted by performing a coating step of alternately laminating coating layers having different compositions as in the present invention.

また、表1の配向度から、試料No.A1は98%を超える非常に大きな配向度(磁気異方性)を示すことがわかる。このことは図2の磁化曲線からも明らかである。すなわち、基板の被覆面に対して垂直方向の磁化曲線がきれいな角形を保っており、残留磁化(Mr)が飽和磁化(Ms)にほぼ等しくなっている。
一方、基板の被覆面に対して平行な平面方向の磁化曲線は角形が崩れており、飽和磁化(Ms)に対して残留磁化(Mr)が相当小さくなっている。
Further, from the degree of orientation in Table 1, sample No. It can be seen that A1 exhibits a very high degree of orientation (magnetic anisotropy) exceeding 98%. This is apparent from the magnetization curve of FIG. That is, the magnetization curve in the direction perpendicular to the coated surface of the substrate maintains a clean square, and the residual magnetization (Mr) is substantially equal to the saturation magnetization (Ms).
On the other hand, the magnetization curve in the plane direction parallel to the coating surface of the substrate is not square, and the residual magnetization (Mr) is considerably smaller than the saturation magnetization (Ms).

これらのことから、本発明に係る試料No.A1の希土類磁性薄膜は、磁化困難軸方向(被覆面方向)に対する磁化容易軸方向(被覆面に垂直方向)の異方性(磁気異方性)が非常に大きいといえる。   From these facts, sample no. It can be said that the rare earth magnetic thin film of A1 has a very large anisotropy (magnetic anisotropy) in the easy axis direction (perpendicular to the coated surface) with respect to the hard axis direction (coated surface direction).

なお、試料No.D1およびD2の配向度が97%を超える大きな値となっているのは、R−Fe−B系合金が一軸異方性をもつため、その結晶軸の方向に分散が存在しても、それらの方向ベクトルの和の方向に磁気的に配向しているように現れるためと考えられる。しかし、98%以上の配向度を発現させるためには、さらに、結晶軸の方向の分散を可能な限り低減する必要がある。   Sample No. The degree of orientation of D1 and D2 exceeds 97% because the R—Fe—B alloy has uniaxial anisotropy, so even if there is dispersion in the direction of the crystal axis, This is thought to be due to appearing magnetically oriented in the direction of the sum of the direction vectors. However, in order to develop an orientation degree of 98% or more, it is necessary to further reduce the dispersion in the direction of the crystal axis as much as possible.

(2)試料No.B1〜B5
表1に示した被覆温度と配向度の関係から、被覆工程を行う際の温度は300℃以上さらには500℃以上であると、より大きな配向度が得られて好ましいことがわかる。
(2) Sample No. B1-B5
From the relationship between the coating temperature and the degree of orientation shown in Table 1, it can be seen that the temperature during the coating step is preferably 300 ° C. or higher, more preferably 500 ° C. or higher, because a higher degree of orientation is obtained.

(3)試料No.C1〜C8
表1に示す合計膜厚保と配向度の関係から、交互積層する被覆層の膜厚が5nm程度でも、十分に高い配向度の希土類磁性薄膜が得られていることが解る。もっとも15〜100nm程度であると、より高い配向度の希土類磁性薄膜が安定的に得られて好ましいこともわかる。
(3) Sample No. C1-C8
From the relationship between the total film thickness maintenance and the orientation degree shown in Table 1, it can be seen that a rare earth magnetic thin film having a sufficiently high orientation degree is obtained even when the thickness of the coating layers alternately laminated is about 5 nm. However, it is understood that a thickness of about 15 to 100 nm is preferable because a rare-earth magnetic thin film having a higher degree of orientation can be stably obtained.

(4)試料No.A1、B4およびC6
試料No.A1、C6と試料No.B4とは、交互積層した第1被覆層と第2被覆層の膜厚が異なっている。多少のばらつきはあるものの、いずれの希土類磁性薄膜も高い配向度を示している。このことから交互積層する各被覆層の膜厚が配向度へ及ぼす影響は小さいと考えられる。
(4) Sample No. A1, B4 and C6
Sample No. A1, C6 and sample No. The thickness of the first coating layer and the second coating layer that are alternately stacked is different from that of B4. Although there are some variations, all the rare earth magnetic thin films show a high degree of orientation. From this, it is considered that the influence of the film thickness of each coating layer laminated alternately on the degree of orientation is small.

Figure 0005390996
Figure 0005390996

Claims (19)

基材の被覆面上に第1組成の第1被覆層を形成する第1被覆工程と、
該第1被覆層上に該第1組成とは異なる第2組成の第2被覆層を形成する第2被覆工程とを少なくとも備え、
少なくとも前記第1被覆層と前記第2被覆層は、500〜1000℃に加熱された状態で該第1被覆層と該第2被覆層の間で熱拡散による原子移動を生じて、薄膜全体を100原子%としたときに8〜30原子%の希土類元素(以下「R」と記す)と4〜20原子%のホウ素(B)と残部である鉄(Fe)とを含むようになると共に薄膜全体として特定方向に配向して結晶成長した希土類高配向磁性薄膜となることを特徴とする希土類高配向磁性薄膜の製造方法。
A first coating step of forming a first coating layer of the first composition on the coated surface of the substrate;
A second coating step of forming a second coating layer having a second composition different from the first composition on the first coating layer,
At least the first coating layer and the second coating layer cause atomic migration by thermal diffusion between the first coating layer and the second coating layer while being heated to 500 to 1000 ° C. 8-30 atomic% of the rare earth element is 100 atomic% (hereinafter referred to as "R") of 4 to 20 atomic percent boron (B) and iron (Fe) and the balance together becomes free useless, thin overall method for producing a specific direction to the orientation to earth highly oriented magnetic thin film characterized Rukoto such as the crystal growth rare earth highly oriented magnetic thin film.
前記第1被覆工程または前記第2被覆工程は、500〜1000℃でなされる加熱被覆工程である請求項1に記載の希土類高配向磁性薄膜の製造方法。   The method for producing a rare earth highly oriented magnetic thin film according to claim 1, wherein the first coating step or the second coating step is a heat coating step performed at 500 to 1000 ° C. 前記希土類高配向磁性薄膜は、膜厚が1〜200nmである請求項1または2に記載の希土類高配向磁性薄膜の製造方法。   The method of manufacturing a rare earth highly oriented magnetic thin film according to claim 1, wherein the rare earth highly oriented magnetic thin film has a thickness of 1 to 200 nm. 前記第1被覆工程または前記第2被覆工程は、前記第1被覆層または前記第2被覆層の形成される速度である被覆速度が、0.1〜5Å/sである請求項1または3に記載の希土類高配向磁性薄膜の製造方法。   In the first coating step or the second coating step, a coating speed, which is a speed at which the first coating layer or the second coating layer is formed, is 0.1 to 5 Å / s. The manufacturing method of the rare earth highly oriented magnetic thin film of description. 前記第1組成は、前記第1被覆層全体を100原子%としたときに8〜30原子%のRと4〜20原子%のBと残部であるFeとからなり、
前記第2組成は、前記第2被覆層全体を100原子%としたときに25原子%以下のBと残部であるFeとからなる請求項1または4に記載の希土類高配向磁性薄膜の製造方法。
The first composition is composed of 8 to 30 atomic% R, 4 to 20 atomic% B, and the remaining Fe when the entire first coating layer is 100 atomic%.
5. The method for producing a rare earth highly oriented magnetic thin film according to claim 1, wherein the second composition is composed of 25 atomic% or less of B and the balance Fe when the second coating layer as a whole is 100 atomic%. .
前記第1被覆工程もしくは前記第2被覆工程は、前記第1組成を有する第1原料もしくは前記第2組成を有する第2原料をターゲットとしたスパッタリング、または組成の異なる複数のターゲットを用いたスパッタリングによりなされる請求項1または5に記載の希土類高配向磁性薄膜の製造方法。   The first coating step or the second coating step is performed by sputtering using a first raw material having the first composition or a second raw material having the second composition as a target, or sputtering using a plurality of targets having different compositions. The method for producing a rare-earth highly oriented magnetic thin film according to claim 1 or 5 made. さらに、前記希土類高配向磁性薄膜の配向結晶面と整合的な体心立方格子(b.c.c.)の結晶構造を有する下地層を、前記基材上に形成する下地処理工程を備える請求項1または6に記載の希土類高配向磁性薄膜の製造方法。   And a base treatment step of forming on the base material a base layer having a body-centered cubic lattice (bc) crystal structure that is consistent with the oriented crystal plane of the rare earth highly oriented magnetic thin film. Item 7. The method for producing a rare earth highly oriented magnetic thin film according to Item 1 or 6. 前記下地材は、モリブデン(Mo)またはタンタル(Ta)からなる請求項7に記載の希土類高配向磁性薄膜の製造方法。   The method of manufacturing a rare earth highly oriented magnetic thin film according to claim 7, wherein the base material is made of molybdenum (Mo) or tantalum (Ta). 前記基材は、前記希土類高配向磁性薄膜の結晶の配向方向に垂直な結晶面もつ単結晶からなる請求項1または8に記載の希土類高配向磁性薄膜の製造方法。   9. The method for producing a rare earth highly oriented magnetic thin film according to claim 1 or 8, wherein the base material comprises a single crystal having a crystal plane perpendicular to the crystal orientation direction of the rare earth highly oriented magnetic thin film. 前記基材は、酸化マグネシウム(MgO)の単結晶からなるMgO単結晶基材である請求項1または9に記載の希土類高配向磁性薄膜の製造方法。   The method for producing a rare earth highly oriented magnetic thin film according to claim 1, wherein the base material is a MgO single crystal base material made of a single crystal of magnesium oxide (MgO). さらに、前記希土類高配向磁性薄膜の表面に該希土類高配向磁性薄膜の酸化を抑制する保護被膜を形成する保護被覆工程を備える請求項1に記載の希土類高配向磁性薄膜の製造方法。   The method for producing a rare earth highly oriented magnetic thin film according to claim 1, further comprising a protective coating step of forming a protective coating for suppressing oxidation of the rare earth highly oriented magnetic thin film on the surface of the rare earth highly oriented magnetic thin film. 前記保護被膜は、クロム(Cr)からなる請求項11に記載の希土類高配向磁性薄膜の製造方法。   The method for producing a highly oriented rare earth magnetic thin film according to claim 11, wherein the protective coating is made of chromium (Cr). 請求項1〜12のいずれかに記載の製造方法により得られたことを特徴とする希土類高配向磁性薄膜。   A rare-earth highly oriented magnetic thin film obtained by the production method according to claim 1. 飽和磁化(Ms)に対する残留磁化(Mr)の比である配向度(Mr/Ms)は薄膜全体として98%以上である請求項13に記載の希土類高配向磁性薄膜。 14. The rare earth highly oriented magnetic thin film according to claim 13, wherein the degree of orientation (Mr / Ms), which is the ratio of residual magnetization (Mr) to saturation magnetization (Ms), is 98% or more as a whole . 薄膜全体を100原子%としたときに8〜30原子%のRと4〜20原子%のBと残部であるFeとを含み、
膜厚が1〜200nmであり、
飽和磁化(Ms)に対する残留磁化(Mr)の比である配向度(Mr/Ms)が薄膜全体として98%以上である特定方向に配向して結晶成長していることを特徴とする希土類高配向磁性薄膜。
When the whole thin film is 100 atomic%, it contains 8-30 atomic% R, 4-20 atomic% B, and the remaining Fe.
The film thickness is 1 to 200 nm,
High degree of rare earth alignment characterized in that the degree of orientation (Mr / Ms), which is the ratio of residual magnetization (Mr) to saturation magnetization (Ms), is 98% or more of the whole thin film and is grown in a specific direction. Magnetic thin film.
酸化を抑制する保護被膜を少なくとも最表面に有する請求項13〜15のいずれかに記載の希土類高配向磁性薄膜。   The rare-earth highly oriented magnetic thin film according to any one of claims 13 to 15, which has a protective coating for suppressing oxidation on at least the outermost surface. 基材と、該基材の表面に形成された請求項13〜16のいずれかに記載の希土類高配向磁性薄膜とからなることを特徴とする磁器部材。   A porcelain member comprising a base material and the rare earth highly oriented magnetic thin film according to any one of claims 13 to 16 formed on the surface of the base material. 薄膜全体を100原子%としたときに8〜30原子%のRと4〜20原子%のBと残部であるFeとを含み、
膜厚が1〜200nmであり、
飽和磁化(Ms)に対する残留磁化(Mr)の比である配向度(Mr/Ms)が薄膜全体として98%以上である特定方向に配向して結晶成長した希土類高配向磁性箔からなることを特徴とする希土類永久磁石。
When the whole thin film is 100 atomic%, it contains 8-30 atomic% R, 4-20 atomic% B, and the remaining Fe.
The film thickness is 1 to 200 nm,
A degree of orientation (Mr / Ms), which is a ratio of residual magnetization (Mr) to saturation magnetization (Ms), is 98% or more as a whole thin film , and is made of a rare earth highly oriented magnetic foil grown in a specific direction. Rare earth permanent magnet.
酸化を抑制する保護被膜を少なくとも最表面に有する請求項18に記載の希土類永久磁石。   The rare earth permanent magnet according to claim 18, which has a protective coating for suppressing oxidation on at least the outermost surface.
JP2009199092A 2009-08-28 2009-08-28 Rare earth highly oriented magnetic thin film and manufacturing method thereof, porcelain member and rare earth permanent magnet Expired - Fee Related JP5390996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009199092A JP5390996B2 (en) 2009-08-28 2009-08-28 Rare earth highly oriented magnetic thin film and manufacturing method thereof, porcelain member and rare earth permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009199092A JP5390996B2 (en) 2009-08-28 2009-08-28 Rare earth highly oriented magnetic thin film and manufacturing method thereof, porcelain member and rare earth permanent magnet

Publications (2)

Publication Number Publication Date
JP2011049506A JP2011049506A (en) 2011-03-10
JP5390996B2 true JP5390996B2 (en) 2014-01-15

Family

ID=43835515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009199092A Expired - Fee Related JP5390996B2 (en) 2009-08-28 2009-08-28 Rare earth highly oriented magnetic thin film and manufacturing method thereof, porcelain member and rare earth permanent magnet

Country Status (1)

Country Link
JP (1) JP5390996B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6814916B2 (en) * 2015-12-18 2021-01-20 アドバンストマテリアルテクノロジーズ株式会社 Method for manufacturing membrane structure, actuator, motor and membrane structure
US10734143B2 (en) * 2017-03-30 2020-08-04 Tdk Corporation R-T-B based sintered magnet

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04219912A (en) * 1990-12-19 1992-08-11 Yaskawa Electric Corp Formation of rare-earth thin film magnet
JP2957421B2 (en) * 1994-09-09 1999-10-04 三菱電機株式会社 Thin film magnet, method of manufacturing the same, and cylindrical ferromagnetic thin film
JPH09162034A (en) * 1995-12-08 1997-06-20 Yaskawa Electric Corp Film magnet and its formation method
JP3598171B2 (en) * 1995-12-27 2004-12-08 株式会社Neomax Exchange spring magnet and method of manufacturing the same
JP2003289005A (en) * 2002-03-28 2003-10-10 National Institute For Materials Science Manufacturing method for highly oriented magnetic thin film
JP2004356544A (en) * 2003-05-30 2004-12-16 Matsushita Electric Ind Co Ltd Thick-film-exchange spring magnet, manufacturing method thereof, and magnet motor

Also Published As

Publication number Publication date
JP2011049506A (en) 2011-03-10

Similar Documents

Publication Publication Date Title
JP6256360B2 (en) Permanent magnet and method for manufacturing the same
JP5739093B2 (en) Rare earth magnet, manufacturing method thereof, and magnet composite member
WO2007119271A1 (en) Thin-film rare earth magnet and method for manufacturing the same
JPS62192566A (en) Permanent magnet material and its production
WO2001063628A1 (en) tHIN PERMANENT-MAGNET FILM AND PROCESS FOR PRODUCING THE SAME
JP3318204B2 (en) Perpendicular magnetic film, method of manufacturing the same, and perpendicular magnetic recording medium
JP5732877B2 (en) Magnetic material and method for producing the same
JP5390996B2 (en) Rare earth highly oriented magnetic thin film and manufacturing method thereof, porcelain member and rare earth permanent magnet
JP3598171B2 (en) Exchange spring magnet and method of manufacturing the same
JP4803398B2 (en) Multilayer permanent magnet
WO2002015206A1 (en) Thin film rare earth permanent magnet, and method for manufacturing the permanent magnet
JPH0616445B2 (en) Permanent magnet material and manufacturing method thereof
JP6398911B2 (en) Permanent magnet and method for manufacturing the same
JP3392444B2 (en) Magnetic artificial lattice film
JP3556782B2 (en) Magnetoresistive film with high electrical resistance
JPH07272929A (en) Rare earth element-fe-b-thin film permanent magnet
Takahashi et al. Perpendicular Exchange Anisotropy in Mn-Ir/Fe-Co/[Pt/Co] $ _ {4} $ Multilayers
JPS61159708A (en) Permanent magnet
JPH11214219A (en) Thin film magnet and its manufacture
JP3956061B2 (en) Uniaxial magnetic anisotropic film
JP6175889B2 (en) Permanent magnet and method for manufacturing the same
JP7224582B2 (en) Magnets, membranes, laminates, motors, generators, and automobiles
JP3810881B2 (en) High frequency soft magnetic film
JP2016207680A (en) Thin film magnet
JP3969125B2 (en) Fe-Pt magnet and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131011

R150 Certificate of patent or registration of utility model

Ref document number: 5390996

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees