JP5387062B2 - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
JP5387062B2
JP5387062B2 JP2009053379A JP2009053379A JP5387062B2 JP 5387062 B2 JP5387062 B2 JP 5387062B2 JP 2009053379 A JP2009053379 A JP 2009053379A JP 2009053379 A JP2009053379 A JP 2009053379A JP 5387062 B2 JP5387062 B2 JP 5387062B2
Authority
JP
Japan
Prior art keywords
gas
opening
secondary battery
seal
opening portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009053379A
Other languages
Japanese (ja)
Other versions
JP2010211927A (en
Inventor
博基 田口
雄児 丹上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2009053379A priority Critical patent/JP5387062B2/en
Publication of JP2010211927A publication Critical patent/JP2010211927A/en
Application granted granted Critical
Publication of JP5387062B2 publication Critical patent/JP5387062B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、外装部材により電池要素を内部に封止する二次電池に関するものである。   The present invention relates to a secondary battery in which a battery element is sealed inside by an exterior member.

電池内部で発生したガスを外部に排出するために、外装部材を貼り合わせた接合領域の一部に他の領域よりも接合強度を弱めた架橋構造部と、ガスを外部に開放するためのガス開放室と、を備えた二次電池が知られている(たとえば特許文献1参照。)。   In order to discharge the gas generated inside the battery to the outside, a bridging structure part in which the bonding strength is weaker than in other areas in a part of the bonding area where the exterior member is bonded, and a gas for releasing the gas to the outside A secondary battery including an open chamber is known (see, for example, Patent Document 1).

国際公開2006−098242号International Publication No. 2006-098242

上記の架橋構造部において剥離が始まると、二次電池は短時間で性能が大きく低下するおそれがある。   If peeling starts in the above-mentioned crosslinked structure part, the performance of the secondary battery may be greatly reduced in a short time.

本発明が解決しようとする課題は、性能を長く維持することができる二次電池を提供することである。   The problem to be solved by the present invention is to provide a secondary battery capable of maintaining the performance for a long time.

本発明は、外装部材を貼り合わせたシール部に、シール部内に密閉され、ガスを吸着するガス吸着部と、シール部の内周縁からガス吸着部までの全域に亘って設けられ、シール部の他の部分よりも開封強度が相対的に弱い第1の開封部と、シール部の他の部分よりも開封強度が相対的に弱く、且つ、第1の開封部よりも開封強度が相対的に強い第2の開封部を有するガス排出部と、を設けることで上記課題を解決する。 The present invention relates to a seal portion bonded to the outer member, is sealed in the sealing portion, and a gas suction portion for sucking the gas, provided to extend from the inner circumference of the seal portion in the entire region up to the gas suction part, of the seal portion The first opening portion having relatively lower opening strength than other portions, the opening strength being relatively weaker than other portions of the seal portion, and the opening strength being relatively lower than that of the first opening portion. The above-mentioned problem is solved by providing a gas discharge part having a strong second opening part.

本発明によれば、シール部において他の部分よりも開封強度が相対的に弱い第1の開封部によって、電池内部で発生したガスを先ずガス吸着部に導くことができる。そして、第2の開封部の開封強度をシール部の他の部分よりも相対的に弱く、且つ、第1の開封部よりも相対的に強くしたので、ガス吸着部がガスを十分に吸着した後に第2の開封部が開封してガスを排出することができる。このため、ガスを外部に排出するまでの時間を長くすることができ、二次電池の性能を長く維持することができる。   According to the present invention, the gas generated in the battery can be first guided to the gas adsorbing portion by the first opening portion whose opening strength is relatively weaker than other portions in the sealing portion. And, since the opening strength of the second opening part is relatively weaker than other parts of the seal part and relatively stronger than the first opening part, the gas adsorbing part sufficiently adsorbs the gas. Later, the second opening can be opened and the gas discharged. For this reason, the time until the gas is discharged to the outside can be extended, and the performance of the secondary battery can be maintained long.

図1は、本発明の第1実施形態におけるラミネート電池を示す平面図である。FIG. 1 is a plan view showing a laminated battery according to a first embodiment of the present invention. 図2は、図1のII−II線に沿った断面図である。FIG. 2 is a cross-sectional view taken along line II-II in FIG. 図3は、図1のIII−III線に沿った断面図である。FIG. 3 is a cross-sectional view taken along line III-III in FIG. 図4は、図3のIV部を示す拡大平面図であるFIG. 4 is an enlarged plan view showing the IV portion of FIG. 図5は、図4のV−V線に沿った断面図である。FIG. 5 is a cross-sectional view taken along line VV in FIG. 図6は、本発明の第2実施形態におけるラミネート電池のガス排出部を示す平面図である。FIG. 6 is a plan view showing a gas discharge part of the laminated battery in the second embodiment of the present invention. 図7は、本発明の第3実施形態におけるラミネート電池のガス排出部を示す平面図である。FIG. 7 is a plan view showing a gas discharge part of the laminated battery in the third embodiment of the present invention. 図8Aは、本発明の第1実施形態におけるラミネート電池がガスを排出する様子を示す図である(その1)。FIG. 8A is a diagram showing a state in which the laminated battery in the first embodiment of the present invention discharges gas (part 1). 図8Bは、本発明の第1実施形態におけるラミネート電池がガスを排出する様子を示す図である(その2)。FIG. 8B is a diagram showing a state in which the laminated battery in the first embodiment of the present invention discharges gas (part 2). 図8Cは、本発明の第1実施形態におけるラミネート電池がガスを排出する様子を示す図である(その3)。FIG. 8C is a diagram showing a state in which the laminated battery in the first embodiment of the present invention discharges gas (part 3). 図8Dは、本発明の第1実施形態におけるラミネート電池がガスを排出する様子を示す図である(その4)。FIG. 8D is a diagram showing a state in which the laminated battery in the first embodiment of the present invention discharges gas (part 4).

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

《第1実施形態》
図1は本発明の第1実施形態におけるラミネート電池を示す平面図、図2は図1のII−II線に沿った断面図、図3は図1のIII−III線に沿った断面図である。
<< First Embodiment >>
1 is a plan view showing a laminated battery according to a first embodiment of the present invention, FIG. 2 is a cross-sectional view taken along line II-II in FIG. 1, and FIG. 3 is a cross-sectional view taken along line III-III in FIG. is there.

先ず、本発明の実施形態に係るラミネート電池10は、積層可能な平板状(薄型)のリチウムイオン二次電池である。このラミネート電池10は、図1〜図3に示すように、3枚の正極板101と、5枚のセパレータ102と、3枚の負極板103と、正極端子104と、負極端子105と、上部外装部材106と、下部外装部材107と、特に図示しない電解質と、から構成されており、例えば10mm以下の総厚を有している。本実施形態では、このうちの正極板101、セパレータ102、負極板103及び電解質を特に発電要素108と称する。   First, a laminated battery 10 according to an embodiment of the present invention is a flat (thin) lithium ion secondary battery that can be stacked. As shown in FIGS. 1 to 3, the laminate battery 10 includes three positive plates 101, five separators 102, three negative plates 103, a positive terminal 104, a negative terminal 105, and an upper portion. It is comprised from the exterior member 106, the lower exterior member 107, and the electrolyte which is not specifically illustrated, for example, has a total thickness of 10 mm or less. In the present embodiment, the positive electrode plate 101, the separator 102, the negative electrode plate 103, and the electrolyte are particularly referred to as a power generation element 108.

発電要素108の正極板101は、図2及び図3に示すように、正極端子104まで延びている正極側集電体101aと、この正極側集電体101aの一部の両主面にそれぞれ形成された正極層101b,101cと、を有している。   As shown in FIGS. 2 and 3, the positive electrode plate 101 of the power generation element 108 is respectively provided on the positive electrode side current collector 101a extending to the positive electrode terminal 104 and both main surfaces of a part of the positive electrode side current collector 101a. And formed positive electrode layers 101b and 101c.

正極側集電体101aは、例えば、アルミニウム箔、アルミニウム合金箔、銅箔、又は、ニッケル箔等の電気化学的に安定した金属箔で構成されている。   The positive electrode side current collector 101a is made of an electrochemically stable metal foil such as an aluminum foil, an aluminum alloy foil, a copper foil, or a nickel foil.

正極層101b,101cは、正極活物質と、カーボンブラック等の導電剤と、ポリ四フッ化エチレンの水性ディスパージョン等の接着剤と、を混合したものを、正極側集電体101aの一部の両主面に塗布し、乾燥及び圧延することにより形成されている。正極活物質としては、例えば、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)、又は、コバルト酸リチウム(LiCoO)等のリチウム複合酸化物や、カルコゲン(S、Se、Te)化物等を挙げることができる。 The positive electrode layers 101b and 101c are formed by mixing a positive electrode active material, a conductive agent such as carbon black, and an adhesive such as an aqueous dispersion of polytetrafluoroethylene with a part of the positive electrode side current collector 101a. It is formed by applying to both main surfaces, drying and rolling. Examples of the positive electrode active material include lithium composite oxides such as lithium nickelate (LiNiO 2 ), lithium manganate (LiMnO 2 ), and lithium cobaltate (LiCoO 2 ), and chalcogen (S, Se, Te) compounds. Etc.

発電要素108の負極板103は、負極端子105まで延びている負極側集電体103aと、この負極側集電体103aの一部の両主面にそれぞれ形成された負極層103b,103cと、を有している。   The negative electrode plate 103 of the power generation element 108 includes a negative electrode side current collector 103a extending to the negative electrode terminal 105, and negative electrode layers 103b and 103c respectively formed on both main surfaces of a part of the negative electrode side current collector 103a. have.

負極側集電体103aは、例えば、ニッケル箔、銅箔、ステンレス箔、又は、鉄箔等の電気化学的に安定した金属箔で構成されている。   The negative electrode side current collector 103a is made of an electrochemically stable metal foil such as a nickel foil, a copper foil, a stainless steel foil, or an iron foil.

負極層103b,103cは、上記の正極活物質のリチウムイオンを吸蔵及び放出する負極活物質に、有機物焼成体の前駆体材料としてのスチレンブタジエンゴム樹脂粉末の水性ディスパージョンを混合し乾燥させた後に粉砕することで、炭素粒子表面に炭化したスチレンブタジエンゴムを担持させたものを主材料とし、これにアクリル樹脂エマルジョン等の結着剤をさらに混合し、この混合物を負極側集電体103aの一部の両主面に塗布し、乾燥及び圧延することにより形成されている。負極活物質としては、例えば、非晶質炭素、難黒鉛化炭素、易黒鉛化炭素、又は、黒鉛等を挙げることが出来る。   The negative electrode layers 103b and 103c are prepared by mixing an aqueous dispersion of styrene butadiene rubber resin powder as a precursor material of an organic fired body with the negative electrode active material that absorbs and releases lithium ions of the positive electrode active material, and then drying the negative electrode active material. By pulverizing, the main material is carbonized styrene butadiene rubber supported on the surface of the carbon particles, and a binder such as an acrylic resin emulsion is further mixed therewith, and this mixture is mixed with one of the negative electrode side current collector 103a. It is formed by applying to both main surfaces of the part, drying and rolling. Examples of the negative electrode active material include amorphous carbon, non-graphitizable carbon, graphitizable carbon, and graphite.

特に、負極活物質として非晶質炭素や難黒鉛化炭素を用いると、充放電時における電位の平坦特性に乏しく放電量に伴って出力電圧も低下するので、通信機器や事務機器の電源には不向きであるが、電気自動車の電源として用いる急激な出力低下がないので有利である。   In particular, when amorphous carbon or non-graphitizable carbon is used as the negative electrode active material, the flatness of the potential during charge / discharge is poor and the output voltage decreases with the amount of discharge. Although unsuitable, it is advantageous because there is no sudden drop in output used as a power source for electric vehicles.

発電要素108のセパレータ102は、正極板101と負極板103との短絡を防止するもので、電解質を保持する機能を備えても良い。このセパレータ102は、例えば、ポリエチレン(PE)やポリプロピレン(PP)等のポリオレフィンから構成される微多孔性膜であり、過電流が流れると、その発熱によって層の空孔が閉塞され電流を遮断する機能をも有する。   The separator 102 of the power generation element 108 prevents a short circuit between the positive electrode plate 101 and the negative electrode plate 103 and may have a function of holding an electrolyte. The separator 102 is a microporous film made of a polyolefin such as polyethylene (PE) or polypropylene (PP), for example. When an overcurrent flows, the pores of the layer are blocked by the heat generation, thereby blocking the current. It also has a function.

なお、本発明におけるセパレータは、ポリオレフィン等の単層膜のみに限定されず、ポリプロピレン膜をポリエチレン膜でサンドイッチした三層構造や、ポリオレフィン微多孔性膜と有機不織布等を積層したものを用いることもできる。このように、セパレータを複層化することで、過電流の防止機能、電解質保持機能及びセパレータの形状維持(剛性向上)機能等の諸機能を付与することができる。   The separator in the present invention is not limited to a single-layer film such as polyolefin, but may be a three-layer structure in which a polypropylene film is sandwiched with a polyethylene film, or a laminate of a polyolefin microporous film and an organic nonwoven fabric or the like. it can. Thus, by forming the separator in multiple layers, various functions such as an overcurrent prevention function, an electrolyte holding function, and a separator shape maintenance (stiffness improvement) function can be provided.

以上の発電要素108は、セパレータ102を介して正極板101と負極板103とが交互に積層されている。そして、3枚の正極板101は、正極側集電体101aを介して、金属箔製の正極端子104にそれぞれ接続される一方で、3枚の負極板103は、負極側集電体103aを介して、同様に金属箔製の負極端子105にそれぞれ接続されている。   In the power generation element 108 described above, the positive electrode plates 101 and the negative electrode plates 103 are alternately stacked via the separators 102. The three positive plates 101 are respectively connected to the positive terminal 104 made of metal foil via the positive current collector 101a, while the three negative plates 103 are connected to the negative current collector 103a. In the same manner, each is connected to a negative electrode terminal 105 made of metal foil.

なお、発電要素108の正極板101、セパレータ102、及び、負極板103は、本発明では上記の枚数に何ら限定されず、例えば、1枚の正極板、3枚のセパレータ、1枚の負極板でも発電要素を構成することができ、必要に応じて、正極板、セパレータ及び負極板の枚数を選択して構成することができる。   The positive electrode plate 101, the separator 102, and the negative electrode plate 103 of the power generation element 108 are not limited to the above number in the present invention. For example, one positive plate, three separators, one negative plate However, the power generation element can be configured, and the number of positive plates, separators, and negative plates can be selected and configured as necessary.

正極端子104も負極端子105も電気化学的に安定した金属材料であれば、特に限定されないが、正極端子104としては、上述の正極側集電体101aと同様に、例えば、アルミニウム箔、アルミニウム合金箔、銅箔、又は、ニッケル箔等を挙げることができる。また、負極端子105としては、上述の負極側集電体103aと同様に、例えば、ニッケル箔、銅箔、ステンレス箔、又は、鉄箔等を挙げることができる。また、本実施形態では、電極板101,103の集電体101a,103aを構成する金属箔自体を電極端子104,105まで延長することにより、電極板101,103を電極端子104,105に直接接続しているが、電極板101,103の集電体101a,103aと、電極端子104、105とを、集電体101a,103aを構成する金属箔とは別の材料や部品により接続してもよい。   The positive electrode terminal 104 and the negative electrode terminal 105 are not particularly limited as long as they are electrochemically stable metal materials. Examples of the positive electrode terminal 104 include, for example, an aluminum foil and an aluminum alloy, similar to the positive electrode side current collector 101a described above. A foil, copper foil, nickel foil, etc. can be mentioned. Moreover, as the negative electrode terminal 105, nickel foil, copper foil, stainless steel foil, iron foil, etc. can be mentioned similarly to the above-mentioned negative electrode side collector 103a, for example. In the present embodiment, the metal foil itself constituting the current collectors 101 a and 103 a of the electrode plates 101 and 103 is extended to the electrode terminals 104 and 105, so that the electrode plates 101 and 103 are directly connected to the electrode terminals 104 and 105. Although connected, the current collectors 101a and 103a of the electrode plates 101 and 103 and the electrode terminals 104 and 105 are connected by materials and parts different from the metal foils constituting the current collectors 101a and 103a. Also good.

発電要素108は、図2及び図3に示すようなカップ状に成型された上部外装部材106と、平板状の下部外装部材107との間に収容されている。また、上部外装部材106と下部外装部材107は、それぞれ対向する外縁部分を貼り合わせたシール部20により、封止している。本実施形態における上部外装部材106及び下部外装部材107は何れも、特に図示しないが、内側樹脂層、金属層、及び、外側樹脂層から成るラミネート材(ラミネートフィルム)で構成されている。   The power generation element 108 is accommodated between an upper exterior member 106 molded into a cup shape as shown in FIGS. 2 and 3 and a flat lower exterior member 107. Further, the upper exterior member 106 and the lower exterior member 107 are sealed by the seal portion 20 in which the opposing outer edge portions are bonded together. Both the upper exterior member 106 and the lower exterior member 107 in the present embodiment are made of a laminate material (laminate film) made of an inner resin layer, a metal layer, and an outer resin layer, although not particularly illustrated.

このラミネート材の内側樹脂層は、例えば、ポリエチレン、変性ポリエチレン、ポリプロピレン、変性ポリプロピレン、又は、アイオノマー等の耐電解液性及び熱融着性に優れた樹脂フィルムで構成されている。金属層は、例えばアルミニウム等の金属箔で構成されている。外側樹脂層は、例えば、ポリアミド系樹脂やポリエステル系樹脂等の電気絶縁性に優れた樹脂フィルムで構成されている。   The inner resin layer of the laminate material is made of a resin film excellent in electrolytic solution resistance and heat fusion properties such as polyethylene, modified polyethylene, polypropylene, modified polypropylene, or ionomer. The metal layer is made of a metal foil such as aluminum. The outer resin layer is made of, for example, a resin film excellent in electrical insulation, such as a polyamide resin or a polyester resin.

なお、ラミネート電池10内部の封止性を維持するために、シール部20に、例えば、ポリエチレンやポリプロピレン等から構成されたシールフィルムを介在させても良い。このシールフィルムは、正極端子104及び負極端子105の何れにおいても、外装部材106,107の内側樹脂層を構成する合成樹脂材料と同系統のもので構成することが熱融着性の観点から好ましい。   In order to maintain the sealing performance inside the laminated battery 10, a seal film made of, for example, polyethylene or polypropylene may be interposed in the seal portion 20. It is preferable from the viewpoint of heat-sealability that the sealing film is made of the same system as the synthetic resin material constituting the inner resin layer of the exterior members 106 and 107 in both the positive electrode terminal 104 and the negative electrode terminal 105. .

これらの外装部材106,107によって、上述した発電要素108、電極端子104,105の一部を包み込み、当該外装部材106,107により形成される空間に、有機液体溶媒に過塩素酸リチウムやホウフッ化リチウム、六フッ化リン酸リチウム等のリチウム塩を溶質とした液体電解質を注入しながら、当該空間を真空状態とした後に、外装部材106,107の外周部分を熱プレスにより熱融着してシール部20を形成する。これにより、外装部材106,107の内部に発電要素108及び電極端子104,105の一部が収容されて封止される。   These exterior members 106 and 107 enclose part of the power generation element 108 and the electrode terminals 104 and 105 described above, and in the space formed by the exterior members 106 and 107, lithium perchlorate or borofluoride is added to the organic liquid solvent. While injecting a liquid electrolyte in which a lithium salt such as lithium or lithium hexafluorophosphate as a solute is injected, the space is evacuated, and the outer peripheral portions of the exterior members 106 and 107 are heat-sealed by a hot press and sealed. Part 20 is formed. Thereby, a part of the power generation element 108 and the electrode terminals 104 and 105 are accommodated in the exterior members 106 and 107 and sealed.

有機液体溶媒として、プロピレンカーボネート(PC)やエチレンカーボネート(EC)、ジメチルカーボネート(DMC)、メチルエチルカーボネート等のエステル系溶媒を挙げることができる。なお、本発明の有機液体溶媒はこれに限定されることなく、エステル系溶媒に、γ−ブチラクトン(γ−BL)やジエトシキエタン(DEE)等のエーテル系溶媒その他を混合、調合した有機液体溶媒を用いることもできる。   Examples of the organic liquid solvent include ester solvents such as propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), and methyl ethyl carbonate. The organic liquid solvent of the present invention is not limited to this, and an organic liquid solvent prepared by mixing and preparing an ether solvent such as γ-butylactone (γ-BL) or dietoshietane (DEE) in an ester solvent. It can also be used.

図4は図3のIV部を示す拡大平面図、図5は図4のV−V線に沿った断面図である。   4 is an enlarged plan view showing an IV portion of FIG. 3, and FIG. 5 is a cross-sectional view taken along line VV of FIG.

図4及び図5に示すように、シール部20における長辺の略中央部分には、電池要素108が発生するガスを吸着するガス吸着部21と、ガスをガス吸着部21に導く第1の開封部22と、ガスを電池外部に排出するガス排出部23と、が設けられている。なお、本実施形態では、ガス吸着部21、第1の開封部22、及びガス排出部23をシール部20の短辺部分に設けてもよい。   As shown in FIGS. 4 and 5, a gas adsorbing portion 21 that adsorbs the gas generated by the battery element 108 and a first gas that leads the gas to the gas adsorbing portion 21 are provided at a substantially central portion of the long side of the seal portion 20. An opening portion 22 and a gas discharge portion 23 for discharging gas to the outside of the battery are provided. In the present embodiment, the gas adsorption unit 21, the first opening unit 22, and the gas discharge unit 23 may be provided on the short side portion of the seal unit 20.

ガス吸着部21は、電池の長時間の使用や高温地での使用等に起因して、電解質の分解等により電池要素108が発生したガスを吸着する部材である。ガス吸着部21は、例えば、活性炭、カーボンナノチューブ、カーボンシート、シリカゲル、活性アルミナゼオライト等を用いて構成することができる。ガス吸着部21は、シール部20において、内周縁と外周縁との略中間に配置され、外装部材106,107を熱融着して形成されるシール部20内に密封されている。   The gas adsorbing unit 21 is a member that adsorbs gas generated by the battery element 108 due to electrolyte decomposition due to long-time use of the battery or use in a high temperature area. The gas adsorption unit 21 can be configured using, for example, activated carbon, carbon nanotubes, carbon sheets, silica gel, activated alumina zeolite, or the like. The gas adsorbing portion 21 is disposed in the seal portion 20 approximately in the middle between the inner peripheral edge and the outer peripheral edge, and is sealed in the seal portion 20 formed by heat-sealing the exterior members 106 and 107.

第1の開封部22は、シール部20において開封強度(融着強度、剥離強度)が最も弱く設定されており、電池要素108が発生したガスの内圧上昇によってシール部20の中でも最初に開封して、当該ガスをガス吸着部21に積極的に導く。この第1の開封部22は、たとえば、外装部材106,107を熱融着する際に、シール部20の他の部分を熱融着する際の第1の温度T1よりも低い第2の温度T2で熱融着することで形成される(T1>T2)。なお、外装部材106,107の間に、それらの内側樹脂層よりも融点の高いシートフィルムや架橋処理したメッシュ材を介在させたり、少なくとも一方の外装部材106,107の内側樹脂層を架橋処理することで、第1の開封部22を形成してもよい。   The first opening portion 22 is set to have the weakest opening strength (fusion strength, peel strength) in the seal portion 20, and is opened first in the seal portion 20 due to the increase in the internal pressure of the gas generated by the battery element 108. Thus, the gas is positively guided to the gas adsorption unit 21. For example, when the exterior members 106 and 107 are heat-sealed, the first opening portion 22 has a second temperature lower than the first temperature T1 when heat-sealing other portions of the seal portion 20. It is formed by heat fusion at T2 (T1> T2). In addition, a sheet film having a higher melting point than those of the inner resin layers or a mesh material subjected to crosslinking treatment is interposed between the exterior members 106 and 107, or the inner resin layer of at least one of the exterior members 106 and 107 is crosslinked. Thus, the first opening portion 22 may be formed.

この第1の開封部22は、シール部20の内周縁とガス吸着部21との間に配置されており、本実施形態では、シール部20の内周縁からガス吸着部21までの全域に亘って設けられている。一方、ラミネート電池10の長手方向においては、本実施形態ではガス吸着部21よりも幅が狭くなっているが、ガス吸着部21と同じ程度の幅としてもよいし、或いは、ガス吸着部21からシール部20の内周縁に向かって広がるような形状としてもよい。   The first opening portion 22 is disposed between the inner peripheral edge of the seal portion 20 and the gas adsorption portion 21. In the present embodiment, the first opening portion 22 extends over the entire area from the inner peripheral edge of the seal portion 20 to the gas adsorption portion 21. Is provided. On the other hand, in the longitudinal direction of the laminated battery 10, the width is narrower than that of the gas adsorption unit 21 in the present embodiment, but the width may be the same as that of the gas adsorption unit 21, or from the gas adsorption unit 21. It is good also as a shape which spreads toward the inner periphery of the seal | sticker part 20. As shown in FIG.

ガス排出部23は、第1の開封部22に次いで開封する第2の開封部231と、各外装部材106,107を貫通する貫通孔232と、を有している。   The gas discharge part 23 has a second opening part 231 that is opened next to the first opening part 22, and a through hole 232 that penetrates the exterior members 106 and 107.

第2の開封部231は、シール部20の中で第1の開封部22に次いで開封強度が弱く設定されており、ガス吸着部21がガスを十分に吸着した後にガスを排出する。この第2の開封部231は、たとえば、外装部材106,107を熱融着する際に、第1の温度T1よりも低く、且つ、第2の温度T2よりも高い第3の温度T3で熱融着することで形成されている(T1>T3>T2)。なお、外装部材106,107の間に、それらの内側樹脂層よりも融点の高いシートフィルムや架橋処理したメッシュ材を介在させたり、少なくとも一方の外装部材106,107の内側樹脂層を架橋処理することで、第2の開封部231を形成してもよい。   The second opening portion 231 is set to have a lower opening strength next to the first opening portion 22 in the seal portion 20 and discharges the gas after the gas adsorbing portion 21 has sufficiently adsorbed the gas. For example, when the exterior members 106 and 107 are heat-sealed, the second opening portion 231 is heated at a third temperature T3 that is lower than the first temperature T1 and higher than the second temperature T2. It is formed by fusing (T1> T3> T2). In addition, a sheet film having a higher melting point than those of the inner resin layers or a mesh material subjected to crosslinking treatment is interposed between the exterior members 106 and 107, or the inner resin layer of at least one of the exterior members 106 and 107 is crosslinked. Thus, the second opening portion 231 may be formed.

この第2の開封部231は、本実施形態では、ガス吸着部21とシール部20の外周縁との間に配置されている。また、ラミネート電池10の長手方向においては、本実施形態ではガス吸着部21よりも幅が狭くなっているが、ガス吸着部21と同じ程度の幅としてもよいし、ガス吸着部21からシール部20の外周縁に向かって広がるような形状としてもよい。また、図6に示すように、第2の開封部231を、第1の開封部22及びガス吸着部21とはオフセットした位置に配置し、その一端をシール部20の内周縁と接続させてもよい。   In the present embodiment, the second opening portion 231 is disposed between the gas adsorption portion 21 and the outer peripheral edge of the seal portion 20. In the present embodiment, the width of the laminated battery 10 is narrower than that of the gas adsorbing portion 21. However, the width may be the same as that of the gas adsorbing portion 21. It is good also as a shape which spreads toward 20 outer periphery. Further, as shown in FIG. 6, the second opening portion 231 is disposed at a position offset from the first opening portion 22 and the gas adsorption portion 21, and one end thereof is connected to the inner peripheral edge of the seal portion 20. Also good.

貫通孔232は、図4及び図5に示すように、第2の開封部231において外装部材106,107を貫通しており、第1の開封部22及び第2の開封部231が開封すると、電池内部が貫通孔232を介して外部と連通する。なお、貫通孔232は、それぞれの外装部材106,107のいずれか一方のみを貫通してもよい。また、図7に示すように、ガス排出部23に貫通孔232を設けず、第2の開封部231をシール部20の外周縁に直接接続させて、この第2の開封部231がシール部20の外側端面で開封することでガスを外部に排出してもよい。   As shown in FIGS. 4 and 5, the through-hole 232 penetrates the exterior members 106 and 107 in the second opening portion 231, and when the first opening portion 22 and the second opening portion 231 are opened, The inside of the battery communicates with the outside through the through hole 232. Note that the through hole 232 may penetrate only one of the exterior members 106 and 107. Further, as shown in FIG. 7, the gas discharge part 23 is not provided with the through hole 232, and the second opening part 231 is directly connected to the outer peripheral edge of the seal part 20, and the second opening part 231 is the seal part. The gas may be discharged to the outside by opening at the outer end face of 20.

以下に作用について説明する。   The operation will be described below.

図8A〜図8Dは本発明の第1実施形態におけるラミネート電池がガスを排出する様子を示す図である。   8A to 8D are views showing how the laminated battery in the first embodiment of the present invention discharges gas.

図8Aに示すように、電池要素108がガスを発生して内圧上昇が起こると、外装部材106,107は圧力を受けて、シール部20の内周縁に、引き剥がされる方向の応力が印加される。ここで、シール部20において、第1の開封部22の開封強度が最も弱く設定されているので、シール部20が受ける引き剥がされる方向の応力は、第1の開封部22に集中し、シール部20において最初に第1の開封部22が剥離する。この第1の開封部22の剥離は、シール部20の内周縁からガス吸着部21に向かって進展する。   As shown in FIG. 8A, when the battery element 108 generates gas and the internal pressure rises, the exterior members 106 and 107 receive pressure, and a stress in the peeling direction is applied to the inner peripheral edge of the seal portion 20. The Here, since the opening strength of the first opening portion 22 is set to be the weakest in the seal portion 20, the stress in the peeling direction received by the seal portion 20 is concentrated on the first opening portion 22, and the seal In the part 20, the 1st opening part 22 peels first. The peeling of the first opening portion 22 progresses from the inner peripheral edge of the seal portion 20 toward the gas adsorption portion 21.

図8Bに示すように、第1の開封部22の剥離がガス吸着部21まで到達して、第1の開封部22が開封すると、電池内部で発生したガスがガス吸着部21に至り、ガス吸着部21がガスを吸着する。その結果、ガスによる電池の内圧上昇が抑制される。   As shown in FIG. 8B, when the peeling of the first opening portion 22 reaches the gas adsorbing portion 21 and the first opening portion 22 is opened, the gas generated inside the battery reaches the gas adsorbing portion 21, and the gas The adsorption part 21 adsorbs gas. As a result, an increase in the internal pressure of the battery due to the gas is suppressed.

図8Cに示すように、ガスの発生量がガス吸着部21の吸着許容量を超えると、シール部20は、引き剥がされる方向の応力を再び受ける。シール部20において、第2の開封部231は、第1の開封部22に次いで開封強度を弱く設定されているので、第1の開封部22の開封後においては、引き剥がされる方向の応力が第2の開封部231に集中し、第2の開封部231が剥離する。この第2の開封部231の剥離は、シール部20の外周縁に向かって進展する。また、ガス吸着に伴うガス吸着部21の厚みや温度の増加によっても、第2の開封部231の剥離が促進される。   As shown in FIG. 8C, when the amount of gas generation exceeds the adsorption allowable amount of the gas adsorption unit 21, the seal unit 20 receives the stress in the peeling direction again. In the seal part 20, the second opening part 231 is set to have a weaker opening strength next to the first opening part 22, so that after the opening of the first opening part 22, the stress in the direction to be peeled off is applied. It concentrates on the 2nd opening part 231, and the 2nd opening part 231 peels. The peeling of the second opening portion 231 progresses toward the outer peripheral edge of the seal portion 20. Moreover, peeling of the 2nd opening part 231 is accelerated | stimulated also by the increase in the thickness and temperature of the gas adsorption part 21 accompanying gas adsorption.

図8Dに示すように、第2の開封部231の剥離が貫通孔232まで到達すると、第2の開封部231も開封し、第1の開封部22及び第2の開封部231を介して電池内部と貫通孔232とが連通し、ガスが貫通孔232を介して電池外部に排出される。   As shown in FIG. 8D, when the peeling of the second opening portion 231 reaches the through hole 232, the second opening portion 231 is also opened, and the battery is opened via the first opening portion 22 and the second opening portion 231. The inside and the through hole 232 communicate with each other, and the gas is discharged to the outside of the battery through the through hole 232.

このように本実施形態では、シール部20において他の部分よりも開封強度が相対的に弱い第1の開封部22によって、電池内部で発生したガスを先ずガス吸着部21に導くことができる。そして、第2の開封部231の開封強度をシール部20において他の部分よりも相対的に弱く、且つ第1の開封部22よりも相対的に強くしたので、ガス吸着部21がガスを十分に吸着した後に第2の開封部231が開封してガスを排出することができる。このため、シール部20の剥離が開始してからガスを外部に排出するまでの時間を長くすることができ、ラミネート電池10の性能を長く維持することができる。   As described above, in the present embodiment, the gas generated inside the battery can be first guided to the gas adsorbing portion 21 by the first opening portion 22 having relatively lower opening strength than the other portions in the seal portion 20. Since the opening strength of the second opening portion 231 is relatively weaker than the other portions in the seal portion 20 and relatively stronger than the first opening portion 22, the gas adsorbing portion 21 has sufficient gas. The second unsealing part 231 can be unsealed and the gas can be discharged after adsorbing to the gas. For this reason, it is possible to lengthen the time from the start of peeling of the seal portion 20 until the gas is discharged to the outside, and the performance of the laminated battery 10 can be maintained long.

たとえば、55℃の環境下において、2.5[V]から4.2[V]までの1[C]での充電と、4.2[V]から2.5[V]までの1[C]の放電とを繰り返した場合、単にガス排出部を設けただけの従来構造では100日でガスを外部に排出したのに対し、本実施形態の構造では120日までガスを外部に排出しなかった。このことからも、本実施形態のラミネート電池10では性能を長く維持できることが分かる。   For example, in an environment of 55 ° C., charging at 1 [C] from 2.5 [V] to 4.2 [V] and 1 [C] from 4.2 [V] to 2.5 [V] C] is repeated, the conventional structure in which the gas discharge unit is simply provided discharges the gas to the outside in 100 days, whereas in the structure of this embodiment, the gas is discharged to the outside until 120 days. There wasn't. This also shows that the performance of the laminate battery 10 of this embodiment can be maintained for a long time.

また、本実施形態では、第1の開封部22を第2の開封部231に対して電池内側に配置することで、ガスの発生による内圧上昇の際に、最初に第1の開封部22を開封させてガスをガス吸着部21に積極的に導くことができる。   Further, in the present embodiment, the first opening portion 22 is disposed inside the battery with respect to the second opening portion 231, so that the first opening portion 22 is first formed when the internal pressure increases due to the generation of gas. The gas can be positively guided to the gas adsorbing portion 21 by being opened.

さらに、ガス吸着部21を第1の開封部22と第2の開封部231との間に配置することで、第1の開封部22が確実にガスをガス吸着部21に導いて、ガスをガス吸着部21に吸着させることができる。   Furthermore, by disposing the gas adsorption part 21 between the first opening part 22 and the second opening part 231, the first opening part 22 reliably guides the gas to the gas adsorption part 21, It can be adsorbed by the gas adsorption part 21.

また、本実施形態では、第2の開封部231に貫通孔232を設け、又は第2の開封部231をシール部20の外側端面で露出させることで、ガスを外部に排出させることができる。   In the present embodiment, the through hole 232 is provided in the second opening portion 231, or the second opening portion 231 is exposed at the outer end surface of the seal portion 20, whereby the gas can be discharged to the outside.

10…ラミネート電池
101…正極板
101a…正極側集電体
101b,101c…正極層
102…セパレータ
103…負極板
103a…負極側集電体
103b,103c…負極層
104…正極端子
105…負極端子
106…上部外装部材
107…下部外装部材
108…発電要素
20…シール部
21…ガス吸着部
22…第1の開封部
23…ガス排出部
231…第2の開封部
232…貫通孔
DESCRIPTION OF SYMBOLS 10 ... Laminate battery 101 ... Positive electrode plate 101a ... Positive electrode side collector 101b, 101c ... Positive electrode layer 102 ... Separator 103 ... Negative electrode plate 103a ... Negative electrode side collector 103b, 103c ... Negative electrode layer 104 ... Positive electrode terminal 105 ... Negative electrode terminal 106 ... Upper exterior member 107 ... Lower exterior member 108 ... Power generation element 20 ... Sealing part 21 ... Gas adsorption part 22 ... First opening part 23 ... Gas discharge part 231 ... Second opening part 232 ... Through hole

Claims (5)

外装部材を貼り合わせたシール部により電池要素を内部に封止する二次電池であって、
前記シール部は、
前記電池要素が発生するガスを外部に排出するガス排出部と、
前記シール部内に密閉され、前記ガスを吸着するガス吸着部と、
前記シール部の内周縁から前記ガス吸着部までの全域に亘って設けられ、前記シール部の他の部分よりも開封強度が相対的に弱い第1の開封部と、を備え、
前記ガス排出部は、前記シール部の他の部分よりも開封強度が相対的に弱く、且つ、前記第1の開封部よりも開封強度が相対的に強い第2の開封部を有することを特徴とする二次電池。
It is a secondary battery that seals the battery element inside by a seal portion to which an exterior member is bonded,
The seal portion is
A gas discharge part for discharging the gas generated by the battery element to the outside;
A gas adsorbing part that is sealed in the seal part and adsorbs the gas;
A first opening part that is provided over the entire area from the inner peripheral edge of the seal part to the gas adsorbing part, and has a relatively lower opening strength than other parts of the seal part,
The gas discharge part has a second opening part whose opening strength is relatively weaker than other parts of the sealing part and whose opening strength is relatively stronger than that of the first opening part. Secondary battery.
請求項1記載の二次電池であって、
前記第1の開封部は、前記第2の開封部よりも電池内側に配置されることを特徴とする二次電池。
The secondary battery according to claim 1,
The secondary battery is characterized in that the first opening part is disposed inside the battery with respect to the second opening part.
請求項2記載の二次電池であって、
前記ガス吸着部は、前記第1の開封部と前記第2の開封部との間に配置されていることを特徴とする二次電池。
The secondary battery according to claim 2,
The secondary battery according to claim 1, wherein the gas adsorbing portion is disposed between the first opening portion and the second opening portion.
請求項1〜3の何れかに記載の二次電池であって、
前記ガス排出部は、前記外装部材を貫通する貫通孔を有し、
前記第2の開封部は、前記貫通孔に連通可能であることを特徴とする二次電池。
The secondary battery according to any one of claims 1 to 3,
The gas discharge part has a through-hole penetrating the exterior member,
The secondary battery is characterized in that the second opening portion can communicate with the through hole.
請求項1〜3の何れかに記載の二次電池であって、
前記第2の開封部は、前記シール部の外側端面で露出していること特徴とする二次電池。
The secondary battery according to any one of claims 1 to 3,
The secondary battery is characterized in that the second opening portion is exposed at an outer end face of the seal portion.
JP2009053379A 2009-03-06 2009-03-06 Secondary battery Expired - Fee Related JP5387062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009053379A JP5387062B2 (en) 2009-03-06 2009-03-06 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009053379A JP5387062B2 (en) 2009-03-06 2009-03-06 Secondary battery

Publications (2)

Publication Number Publication Date
JP2010211927A JP2010211927A (en) 2010-09-24
JP5387062B2 true JP5387062B2 (en) 2014-01-15

Family

ID=42971894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009053379A Expired - Fee Related JP5387062B2 (en) 2009-03-06 2009-03-06 Secondary battery

Country Status (1)

Country Link
JP (1) JP5387062B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5673135B2 (en) * 2011-01-24 2015-02-18 日産自動車株式会社 Laminated battery
JP5601253B2 (en) * 2011-03-15 2014-10-08 株式会社デンソー Battery internal pressure state detection device
DE102014013576A1 (en) * 2014-09-13 2016-03-17 Li-Tec Battery Gmbh Electrochemical cell with a cell housing and battery system with corresponding electrochemical cells
JP6365191B2 (en) * 2014-10-01 2018-08-01 株式会社Gsユアサ Power storage device and gas exhaust method thereof
KR101704162B1 (en) 2015-01-20 2017-02-07 현대자동차주식회사 Improved pouch battery overcharging safety
KR102555751B1 (en) * 2017-10-17 2023-07-14 주식회사 엘지에너지솔루션 Gas Dischargeable Pouch-Type Case for Secondary Battery
CN110504392A (en) * 2018-05-18 2019-11-26 宁德新能源科技有限公司 Battery
KR20230056142A (en) * 2021-10-20 2023-04-27 주식회사 엘지에너지솔루션 Secondary battery including pouch interposed with gas adsorbent and method for manufacturing thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007087922A (en) * 2005-03-04 2007-04-05 Toyota Motor Corp Film package energy storage device
JP4860181B2 (en) * 2005-05-20 2012-01-25 Necエナジーデバイス株式会社 Film exterior battery
JP5261908B2 (en) * 2006-09-20 2013-08-14 大日本印刷株式会社 Flat electrochemical cell
JP5456954B2 (en) * 2006-11-30 2014-04-02 日産自動車株式会社 Bipolar type secondary battery module structure
JP5226332B2 (en) * 2007-02-21 2013-07-03 リケンテクノス株式会社 Lithium secondary battery using laminate exterior material
KR100944987B1 (en) * 2007-12-14 2010-03-02 주식회사 엘지화학 Secondary Battery Having Sealing Portion of Novel Structure
JP2010153841A (en) * 2008-11-27 2010-07-08 Jm Energy Corp Safety mechanism for laminate external package electric storage device

Also Published As

Publication number Publication date
JP2010211927A (en) 2010-09-24

Similar Documents

Publication Publication Date Title
JP5387062B2 (en) Secondary battery
CN105374959B (en) Thin power storage device and method for manufacturing same
JP2006324143A (en) Secondary battery
JP2009187889A (en) Battery case and battery pack
JP2009146812A (en) Battery case and battery pack
JP4096664B2 (en) Laminated battery
JP2006318752A (en) Battery
JP4182858B2 (en) Secondary battery and assembled battery
JP2005251617A (en) Secondary battery and battery pack
JP4182856B2 (en) Secondary battery, assembled battery, composite assembled battery, vehicle, and manufacturing method of secondary battery
JP2006236775A (en) Secondary battery
JP5002894B2 (en) Secondary battery
KR20140137603A (en) Pouch type battery case
JP3702868B2 (en) Thin battery
JP2006185709A (en) Secondary battery and battery pack using it
JP2005129393A (en) Secondary battery
JP2010232011A (en) Secondary battery
JP6670086B2 (en) Sealed battery
JP3818244B2 (en) Thin battery
JP4720129B2 (en) Secondary battery
JP2005310667A (en) Bipolar battery, manufacturing method of bipolar battery, battery pack, and vehicle loading these
JP2005340005A (en) Secondary battery and battery pack
JP5157043B2 (en) Assembled battery
JP5434143B2 (en) Thin battery
JP2004031288A (en) Thin battery and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130923

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees