JP5386231B2 - Insulation monitoring device testing apparatus and insulation monitoring device testing method - Google Patents

Insulation monitoring device testing apparatus and insulation monitoring device testing method Download PDF

Info

Publication number
JP5386231B2
JP5386231B2 JP2009124542A JP2009124542A JP5386231B2 JP 5386231 B2 JP5386231 B2 JP 5386231B2 JP 2009124542 A JP2009124542 A JP 2009124542A JP 2009124542 A JP2009124542 A JP 2009124542A JP 5386231 B2 JP5386231 B2 JP 5386231B2
Authority
JP
Japan
Prior art keywords
current
test
insulation monitoring
leakage current
monitoring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009124542A
Other languages
Japanese (ja)
Other versions
JP2010271245A (en
Inventor
順介 井上
真一 丸本
正彦 大山
和邦 崎根
智則 磯田
賢二 安藤
哲男 古本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Tempearl Industrial Co Ltd
Original Assignee
Chugoku Electric Power Co Inc
Tempearl Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc, Tempearl Industrial Co Ltd filed Critical Chugoku Electric Power Co Inc
Priority to JP2009124542A priority Critical patent/JP5386231B2/en
Publication of JP2010271245A publication Critical patent/JP2010271245A/en
Application granted granted Critical
Publication of JP5386231B2 publication Critical patent/JP5386231B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Description

本発明は、単相交流又は三相交流の電路の接地線に取り付けられた変流器を用いて該接地線を流れる漏れ電流を検出し、該漏れ電流の検出状況に基づいて電路の絶縁状態を監視する絶縁監視装置の試験装置、より詳しくは、かかる絶縁監視装置が正常であるか否かを電路を停電させることなく(活線状態のままで)試験する試験装置及び絶縁監視装置の試験方法に関する。   The present invention detects a leakage current flowing through the grounding wire using a current transformer attached to the grounding wire of a single-phase alternating current or a three-phase alternating current circuit, and based on the state of detection of the leakage current, the insulation state of the electrical circuit Insulation monitoring device testing apparatus, more specifically, a test device for testing whether or not the insulation monitoring device is normal without interrupting the electric circuit (while in a live state) and the insulation monitoring device test Regarding the method.

電路の漏れ電流には、絶縁抵抗劣化によって流れる漏れ電流、即ち、絶縁管理で問題となる抵抗分の漏れ電流(有効漏れ電流)と、絶縁状態が健全であっても流れる漏れ電流、即ち、正常状態でも存在する静電容量分の漏れ電流(無効漏れ電流)とがあり、一般的に、漏れ電流はIo、有効漏れ電流はIor、無効漏れ電流はIocで表される。   The leakage current of the electric circuit includes leakage current that flows due to deterioration of insulation resistance, that is, leakage current corresponding to resistance that becomes a problem in insulation management (effective leakage current), and leakage current that flows even if the insulation state is healthy, that is, normal There is a leakage current (reactive leakage current) corresponding to the capacitance that exists even in the state. Generally, the leakage current is represented by Io, the effective leakage current is represented by Ior, and the reactive leakage current is represented by Ioc.

絶縁監視の方式としては、従来より、漏れ電流の大小を把握するだけの簡易的な監視方法があり、また、最近のIT機器、インバータ機器の増加により、漏れ電流に含まれる無効漏れ電流が増えてきているため、Io方式では、純粋な漏れ電流を精度良く検出することが困難となってきているとして、最近では、有効漏れ電流を純粋な漏れ電流として検出する方式が主流となりつつある。前者はIo方式と呼ばれ、また、後者は、接地線に商用周波数よりも低周波数の微小電圧を注入し、その注入電圧と同相の電流を変流器にて検出することで漏れ電流を求める方式(Igr方式)と、変流器が検出する漏れ電流から電圧と同相の電流をベクトル的に抽出する方式(Ior方式)とに分けられ、各方式の絶縁監視装置が運用されている。   As a method of insulation monitoring, there is a simple monitoring method that only grasps the magnitude of the leakage current, and the increase in reactive leakage current included in the leakage current increases due to the recent increase in IT equipment and inverter equipment. Therefore, in the Io method, it has become difficult to detect pure leakage current with high accuracy, and recently, a method of detecting effective leakage current as pure leakage current is becoming mainstream. The former is called the Io method, and the latter is a method in which a minute voltage having a frequency lower than the commercial frequency is injected into the ground line, and the current in phase with the injected voltage is detected by a current transformer to obtain the leakage current. The insulation monitoring device of each method is operated by dividing into a method (Igr method) and a method (Ior method) for extracting a current in phase with a voltage from a leakage current detected by a current transformer.

絶縁監視装置は、装置が正常であることを確認するため、警報動作電流に対する許容誤差の試験を定期的に行う必要がある。この種の試験装置としては、Io方式の絶縁監視装置に適用されるもの(特許文献1)と、Ior方式の絶縁監視装置に適用されるもの(特許文献2)が公知であり、何れにおいても共通している考え方は、接地線に取り付けた絶縁監視装置の変流器に試験装置の電流出力線を挿通し、試験電流を電流出力線に注入することにより、絶縁監視装置の変流器が接地線を流れる漏れ電流と電流出力線を流れる試験電流とを合わせて検出するようにし、その上で、これら漏れ電流と試験電流とを合わせたものが絶縁監視装置の警報動作電流に到達するように試験電流を変化させ、その結果、絶縁監視装置が警報動作するか否かを確認するという点である。   The insulation monitoring device needs to periodically test an allowable error with respect to the alarm operating current in order to confirm that the device is normal. As this type of test apparatus, one that is applied to an Io-type insulation monitoring apparatus (Patent Document 1) and one that is applied to an Ior-type insulation monitoring apparatus (Patent Document 2) are known. The common idea is that the current monitor of the insulation monitoring device attached to the ground wire is inserted into the current output wire of the test device, and the test current is injected into the current output wire. The leakage current that flows through the ground line and the test current that flows through the current output line are detected together, and then the combination of the leakage current and the test current reaches the alarm operating current of the insulation monitoring device. The test current is changed, and as a result, it is confirmed whether or not the insulation monitoring device performs an alarm operation.

特開平9−229985号公報Japanese Patent Laid-Open No. 9-229985 特開2007−285790号公報JP 2007-285790 A

ところで、何れの試験装置も、絶縁抵抗劣化によって流れる漏れ電流、即ち、絶縁管理で問題となる抵抗分の漏れ電流である有効漏れ電流、あるいはそれを含む漏れ電流に対する絶縁管理の観点から、試験を行うものである。絶縁状態が健全であっても流れる漏れ電流、即ち、正常状態でも存在する静電容量分の漏れ電流である無効漏れ電流については、特に認識が及んでいない。   By the way, any of the test apparatuses conduct tests from the viewpoint of insulation management against leakage current flowing due to deterioration of insulation resistance, that is, effective leakage current that is a leakage current corresponding to resistance that causes problems in insulation management, or leakage current including the leakage current. Is what you do. There is no particular recognition about the leakage current that flows even if the insulation state is healthy, that is, the reactive leakage current that is the leakage current corresponding to the capacitance that exists even in the normal state.

しかしながら、本来、絶縁監視装置に求められるものは、第一に、有効漏れ電流の増加によって絶縁監視装置が警報動作し、第二に、無効漏れ電流の増加によっても絶縁監視装置が警報動作しない、の二つであり、この二つの事項に対し、絶縁監視装置が正常であるか否かを確認することは本来のあるべき姿である。しかも、上述したように、IT機器、インバータ機器の増加により、漏れ電流に含まれる無効漏れ電流が増えてきている昨今、これを絶縁管理のパラメータとして捉えることは重要となってくる。   However, what is originally required of the insulation monitoring device is that the insulation monitoring device performs an alarm operation due to an increase in effective leakage current, and secondly, the insulation monitoring device does not perform an alarm operation due to an increase in invalid leakage current. For these two matters, confirming whether the insulation monitoring device is normal or not is an ideal form. Moreover, as described above, due to the increase in IT devices and inverter devices, the reactive leakage current included in the leakage current has increased recently, and it is important to regard this as a parameter for insulation management.

そこで、本発明は、上記問題に鑑みてなされたもので、無効漏れ電流をパラメータとする試験を行うことにより、より高い精度の試験結果を得ることができる絶縁監視装置の試験装置及び絶縁監視装置の試験方法を提供することを課題とする。   Therefore, the present invention has been made in view of the above problems, and a test apparatus and an insulation monitoring apparatus for an insulation monitoring apparatus that can obtain a test result with higher accuracy by performing a test using a reactive leakage current as a parameter. It is an object to provide a test method.

本発明に係る絶縁監視装置の試験装置は、上記課題を解決すべく構成されたもので、単相交流又は3相交流の電路の接地線に取り付けられた変流器を用いて該接地線を流れる漏れ電流を検出し、該漏れ電流の検出状況に基づいて電路の絶縁状態を監視する絶縁監視装置の試験装置であって、絶縁監視装置の前記変流器に挿通される電流出力線を含み、漏れ電流に含まれる無効漏れ電流を増加又は減少させる位相の試験電流を生成すると共に、該試験電流を前記電流出力線に注入する電流注入手段と、前記電流出力線が挿通されるようにして接地線に取り付けられる変流器を含み、該変流器を用いて接地線を流れる漏れ電流と前記電流出力線を流れる試験電流とを合わせて検出する電流検出手段とを備えることを特徴とする。   The test apparatus for an insulation monitoring apparatus according to the present invention is configured to solve the above-described problems, and uses a current transformer attached to the ground line of a single-phase AC or three-phase AC circuit to connect the ground line. A test apparatus for an insulation monitoring device that detects a flowing leakage current and monitors an insulation state of an electric circuit based on a detection state of the leakage current, and includes a current output line inserted into the current transformer of the insulation monitoring device Generating a test current having a phase that increases or decreases the reactive leakage current included in the leakage current, and injecting the test current into the current output line; and the current output line is inserted. A current detector including a current transformer attached to the ground line, and comprising a current detection means for detecting a leakage current flowing through the ground line and a test current flowing through the current output line using the current transformer. .

かかる構成によれば、試験電流が電流出力線に注入されると、絶縁監視装置の変流器は、接地線を流れる漏れ電流と電流出力線を流れる試験電流とを合わせて検出すると共に、本発明に係る試験装置の変流器も、接地線を流れる漏れ電流と電流出力線を流れる試験電流とを合わせて検出する。従って、本発明に係る試験装置が自身の変流器を用いて検出する電流は、絶縁監視装置が自身の変流器を用いて検出する電流と等価であり、それゆえ、本発明に係る試験装置は、絶縁監視装置の状態を把握することができる。   According to such a configuration, when the test current is injected into the current output line, the current transformer of the insulation monitoring device detects the leakage current flowing through the ground line and the test current flowing through the current output line together, and The current transformer of the test apparatus according to the invention also detects the leakage current flowing through the ground line and the test current flowing through the current output line together. Therefore, the current detected by the test apparatus according to the present invention using its own current transformer is equivalent to the current detected by the insulation monitoring apparatus using its own current transformer, and therefore the test according to the present invention. The device can grasp the state of the insulation monitoring device.

そこで、例えば、かかる絶縁監視装置の試験装置を用いて、無効漏れ電流が増加するように試験電流を注入し、所定の電流値(警報不動作電流)に到達させて、絶縁監視装置が警報動作しないことを確認する試験を行うことができる。   Therefore, for example, using a test device for such an insulation monitoring device, a test current is injected so that the reactive leakage current increases, and a predetermined current value (alarm non-operation current) is reached, so that the insulation monitoring device performs an alarm operation. A test can be conducted to confirm that no.

即ち、無効漏れ電流は、絶縁状態が健全であっても流れる漏れ電流であり、これが増加したとしても、絶縁監視装置は警報動作すべきではない。逆に、絶縁監視装置が警報動作するならば、絶縁監視装置に何らかの不具合があると見るべきである。本発明に係る絶縁監視装置の試験装置及び試験方法によれば、それを確認することが可能となる。   That is, the invalid leakage current is a leakage current that flows even if the insulation state is healthy, and even if this increases, the insulation monitoring device should not perform an alarm operation. Conversely, if the insulation monitoring device operates as an alarm, it should be seen that there is some problem with the insulation monitoring device. According to the test apparatus and test method of the insulation monitoring apparatus according to the present invention, it is possible to confirm it.

あるいは、例えば、かかる絶縁監視装置の試験装置を用いて、絶縁監視装置が警報動作している状態で、無効漏れ電流が減少するように試験電流を注入し、絶縁監視装置の警報動作が解除されないことを確認する試験を行うことができる。   Alternatively, for example, using the test device of the insulation monitoring device, in the state where the insulation monitoring device is in an alarm operation, a test current is injected so that the invalid leakage current is reduced, and the alarm operation of the insulation monitoring device is not released. A test can be performed to confirm this.

ここで、本発明に係る絶縁監視装置の試験装置は、前記電流注入手段が、漏れ電流に含まれる有効漏れ電流を増加又は減少させる位相の試験電流を生成すると共に、該試験電流を電流出力線に注入する状態と、漏れ電流に含まれる無効漏れ電流を増加又は減少させる位相の試験電流を生成すると共に、該試験電流を電流出力線に注入する状態の何れに切替可能である構成を採用することができる。   Here, in the test apparatus for an insulation monitoring apparatus according to the present invention, the current injection unit generates a test current having a phase that increases or decreases the effective leakage current included in the leakage current, and the test current is output to the current output line. A test current having a phase for increasing or decreasing the reactive leakage current included in the leakage current is generated, and the test current is injected into the current output line. be able to.

かかる構成によれば、絶縁監視装置の上記した動作確認と、上記した不動作確認とを必要に応じて選択的に行うことができる。   According to such a configuration, the above-described operation check of the insulation monitoring device and the above-mentioned non-operation check can be selectively performed as necessary.

また、本発明に係る絶縁監視装置の試験装置は、前記電流注入手段が、漏れ電流に含まれる有効漏れ電流を増加又は減少させる位相の試験電流を生成すると共に、該試験電流を第1の電流出力線に注入する第1の電流注入手段と、漏れ電流に含まれる無効漏れ電流を増加又は減少させる位相の試験電流を生成すると共に、該試験電流を第2の電流出力線に注入する第2の電流注入手段とからなる構成を採用することができる。   Further, in the test apparatus for an insulation monitoring apparatus according to the present invention, the current injection unit generates a test current having a phase that increases or decreases the effective leakage current included in the leakage current, and the test current is a first current. A first current injection means for injecting into the output line; and a second test current for injecting the test current into the second current output line while generating a test current having a phase for increasing or decreasing the reactive leakage current included in the leakage current. It is possible to adopt a configuration comprising current injection means.

かかる構成によれば、絶縁監視装置の上記した動作確認と、上記した不動作確認とを必要に応じて選択的に行うことができるばかりでなく、第1の電流注入手段と第2の電流注入手段を同時的に作動して、二種類の試験電流を同時的に注入することができる。例えば、一方の試験電流だけでは漏れ電流を大きく変化させることができない場合、もう一方の試験電流を併せて注入することで、漏れ電流を大きく変化させることが可能となる。   According to such a configuration, not only can the above-described operation check and the above-described non-operation check of the insulation monitoring apparatus be selectively performed, but also the first current injection unit and the second current injection. The means can be operated simultaneously to inject two types of test currents simultaneously. For example, when the leakage current cannot be changed greatly by only one test current, the leakage current can be changed greatly by injecting the other test current together.

以上の如く、本発明は、無効漏れ電流をパラメータとする試験を行うことにより、有効漏れ電流あるいはこれを含む漏れ電流をパラメータとする試験を行うだけの場合に比べて、試験が綿密となり、従って、より高い精度の試験結果を得ることができる。   As described above, according to the present invention, the test is performed with the reactive leakage current as a parameter, so that the test becomes more thorough than the case where the test is performed with the effective leakage current or a leakage current including the effective leakage current as a parameter. Higher accuracy test results can be obtained.

また、例えば、絶縁監視装置の対象となるシステムの規模が大きくなると、電線長が増加したり、装置設備の数が増加することにより、全体の無効漏れ電流が増加してくるが、システム拡張に当たり、絶縁監視装置の変更が必要となってくるか否か、どのくらいまでの規模拡張に耐え得るのか、といった検討のためにも役立たせることができる。   In addition, for example, when the scale of a system that is the target of an insulation monitoring device increases, the total reactive leakage current increases due to an increase in the wire length and the increase in the number of device facilities. It can also be used for studying whether or not the insulation monitoring device needs to be changed and how much scale expansion can be tolerated.

本実施形態に係る試験装置の外観構成図を示す。The external appearance block diagram of the test apparatus which concerns on this embodiment is shown. 同試験装置の内部構成図を示す。The internal block diagram of the test apparatus is shown. 同試験装置を用いた絶縁監視装置の動作確認試験(単相交流の電路の場合)の概念図を示す。The conceptual diagram of the operation | movement confirmation test (in the case of a single-phase alternating current circuit) of the insulation monitoring apparatus using the test apparatus is shown. 同試験装置を用いた絶縁監視装置の動作確認試験(三相交流の電路の場合)の概念図を示す。The conceptual diagram of the operation | movement confirmation test (in the case of a three-phase alternating current circuit) of the insulation monitoring apparatus using the test apparatus is shown. 同試験装置を用いた絶縁監視装置の不動作確認試験(単相交流の電路の場合)の概念図を示す。The conceptual diagram of the malfunction confirmation test (in the case of a single-phase alternating current circuit) of the insulation monitoring apparatus using the test apparatus is shown. 同試験装置を用いた絶縁監視装置の不動作確認試験(三相交流の電路の場合)の概念図を示す。The conceptual diagram of the malfunction confirmation test (in the case of a three-phase alternating current circuit) of the insulation monitoring apparatus using the test apparatus is shown. 同試験装置を用いた絶縁監視装置が警報動作してからの動作確認試験の概念図を示す。The conceptual diagram of the operation confirmation test after the insulation monitoring apparatus using the same test apparatus alarmed is shown.

以下、本発明に係る絶縁監視装置の試験装置の一実施形態について、図面を参酌しつつ説明する。   Hereinafter, an embodiment of a test apparatus for an insulation monitoring apparatus according to the present invention will be described with reference to the drawings.

まず、絶縁監視装置について概略を説明する。本実施形態に係る絶縁監視装置は、自家用電気工作物内に設置して使用される。また、純粋な漏れ電流の検出精度が高くないIo方式や、検出精度は高いものの低周波数の電圧を注入するためのトランスが必要となること等により、重量物で高価なIgr方式ではなく、安価なシステム構成で十分に良好な検出精度が得られるIor方式の絶縁監視装置である。   First, an outline of the insulation monitoring apparatus will be described. The insulation monitoring apparatus according to the present embodiment is used by being installed in a private electric workpiece. In addition, the Io method, which does not have high detection accuracy of pure leakage current, and a transformer that injects low-frequency voltage with high detection accuracy, but it is not an expensive and expensive Igr method. This is an Ior type insulation monitoring device that can obtain sufficiently good detection accuracy with a simple system configuration.

配電線から引込線にて電気設備に引き込まれた6.6kVの高圧は、変圧器にて、単相2線、単相3線、三相3線等に適用される100V、200V等の低電圧に変圧され、変圧器の2次側(低圧側)の一端は接地線(一般には、B種接地線)にて接地されるが、この接地線に、漏れ電流を検出する漏れ電流検出センサとして、絶縁監視装置の変流器(CT)、より詳しくは、貫通型や分割型の変流器が取り付けられる。   The high voltage of 6.6kV drawn from the distribution line to the electrical equipment by the lead-in line is reduced to a low voltage of 100V, 200V, etc. applied to single-phase two-wire, single-phase three-wire, three-phase three-wire, etc. One end of the secondary side (low voltage side) of the transformer is grounded by a grounding wire (generally a B-type grounding wire), and as a leakage current detection sensor for detecting a leakage current, A current transformer (CT) of the insulation monitoring device, more specifically, a through-type or split-type current transformer is attached.

絶縁監視装置は、上記変流器を用いて漏れ電流を検出する電流検出部と、該電流検出部が設定量(警報動作電流)以上の漏れ電流を検出した場合、視覚的及び/又は聴覚的、接点出力などで警報動作する警報処理部とを備える。また、電流検出部は、検出した漏れ電流から有効漏れ電流をベクトル演算によって抽出する。有効漏れ電流を抽出するための具体的な方法としては、漏れ電流の位相と電圧位相との位相差を検出し、その位相差(角度)から有効漏れ電流をベクトル演算する方法や、線間電圧から生成した位相判定信号を利用してベクトル演算する方法といった、漏れ電流と電路の電圧位相とに基づいて有効漏れ電流を求める方法が一般的である。   The insulation monitoring device detects a leakage current using the current transformer, and when the current detection unit detects a leakage current greater than a set amount (alarm operating current), it is visually and / or audibly And an alarm processing unit that performs an alarm operation by a contact output or the like. Further, the current detection unit extracts an effective leakage current from the detected leakage current by vector calculation. Specific methods for extracting the effective leakage current include detecting the phase difference between the phase of the leakage current and the voltage phase, and calculating the effective leakage current from the phase difference (angle), and the line voltage In general, there is a method for obtaining an effective leakage current based on the leakage current and the voltage phase of the electric circuit, such as a vector calculation using a phase determination signal generated from the above.

〔試験装置の概略構成〕
次に、かかる絶縁監視装置の試験装置について説明する。本実施形態に係る試験装置は、Ior方式の絶縁監視装置に対応してIor方式が採用され、漏れ電流及び有効漏れ電流はもちろんのこと、無効漏れ電流も検出することができるようになっている。
[Schematic configuration of test equipment]
Next, a test apparatus for the insulation monitoring apparatus will be described. The test apparatus according to the present embodiment adopts the Ior system corresponding to the Ior system insulation monitoring apparatus, and can detect not only the leakage current and the effective leakage current but also the reactive leakage current. .

具体的には、電路に接続される一対のケーブル線を含み、該ケーブル線を介して電路から得た電力を電源とする電源部と、電路の電圧位相を検出する電圧位相検出手段と、絶縁監視装置の変流器に挿通される電流出力線を含み、電圧位相検出手段により検出された電路の電圧位相に対して位相が所定角度ずれた試験電流を生成すると共に、該試験電流を電流出力線に注入する電流注入手段と、電流出力線が挿通されるようにして接地線に取り付けられる変流器を含み、該変流器を用いて接地線を流れる漏れ電流と電流出力線を流れる試験電流とを合わせて検出する電流検出手段と、該電流検出手段による検出結果から得られた漏れ電流に関する情報を表示する表示手段とを備える。   Specifically, the power supply unit includes a pair of cable lines connected to the electric circuit, the electric power obtained from the electric line via the cable line as a power source, voltage phase detection means for detecting the voltage phase of the electric circuit, and insulation A test current that includes a current output line inserted into the current transformer of the monitoring device and that is out of phase by a predetermined angle with respect to the voltage phase of the electric circuit detected by the voltage phase detection means, and outputs the test current as a current output A current injection means for injecting into the wire, and a current transformer attached to the ground line so that the current output line is inserted, and a leakage current flowing through the ground line and a test through the current output line using the current transformer Current detecting means for detecting the current together and display means for displaying information on the leakage current obtained from the detection result by the current detecting means.

〔試験装置の外観構成〕
本実施形態に係る試験装置の外観構成を図1に示す。筐体1の正面パネル2には、電源スイッチ3、各ケーブル線(電源コード)4のプラグを接続するためのコネクタ5,5、電流出力線6の両端部に設けられた各プラグを接続するためのコネクタ7,7、クランプ式変流器(クランプCT)8の信号線のプラグを接続するためのコネクタ9、DC電圧入力用のコネクタ10、LCDパネル11、電気方式切替スイッチ12、注入電流切替スイッチ13、電流レンジ切替スイッチ14、極性切替スイッチ15、画面選択ボタン16及び電流調節ボリューム17といった各種のコネクタ、表示部及び操作要素が設けられる。
[External configuration of test equipment]
An external configuration of the test apparatus according to the present embodiment is shown in FIG. Connected to the front panel 2 of the housing 1 are a power switch 3, connectors 5 and 5 for connecting plugs of each cable line (power cord) 4, and plugs provided at both ends of the current output line 6. Connectors 7 and 7, a connector 9 for connecting a signal line plug of a clamp type current transformer (clamp CT) 8, a DC voltage input connector 10, an LCD panel 11, an electric system changeover switch 12, an injection current Various connectors such as a changeover switch 13, a current range changeover switch 14, a polarity changeover switch 15, a screen selection button 16, and a current adjustment volume 17, a display unit, and operation elements are provided.

ケーブル線4は、先端にクリップ4aを有し、電路をクリップすることにより、電路から電力を得ることができる。単相交流の電路であれば、一方のクリップ4aをL1相、他方のクリップ4aをN相に噛ませ、L1−N間電源接続(100V)か、一方のクリップ4aをL2相、他方のクリップ4aをN相に噛ませ、L2−N間電源接続(100V)か、一方のクリップ4aをL1相、他方のクリップ4aをL2相に噛ませ、L1−L2間電源接続(200V)かの何れかを任意に選択することができ、また、三相交流の電路であれば、一方のクリップ4aをU相、他方のクリップ4aをW相に噛ませ、U−W間電源接続(200V)を採らなければならない。   The cable line 4 has a clip 4a at the tip, and can clip the electric circuit to obtain electric power from the electric circuit. If it is a single-phase AC circuit, one clip 4a is engaged with the L1 phase and the other clip 4a is engaged with the N phase, and the L1-N power supply connection (100V) or one clip 4a is connected with the L2 phase and the other clip. 4a is engaged in the N phase and either the L2-N power supply connection (100V) or one clip 4a is engaged in the L1 phase, the other clip 4a is engaged in the L2 phase and either the L1 and L2 power connection (200V) If a three-phase AC circuit is used, one clip 4a is engaged with the U phase, the other clip 4a is engaged with the W phase, and the power connection between U and W (200V) is established. Must be taken.

電流出力線6は、例えば8芯のLANケーブルであり、電路の電圧位相から所定の位相角を持った試験電流(Ior、Ioc)が通電されるようになっている。クランプ式変流器8は、先端にクランプ部8aを有し、接地線に取り付けられる(クランプされる)。クランプ式変流器8は、一般的に市販されているタイプのものが用いられる。   The current output line 6 is, for example, an 8-core LAN cable, and a test current (Ior, Ioc) having a predetermined phase angle from the voltage phase of the electric circuit is energized. The clamp type current transformer 8 has a clamp portion 8a at the tip, and is attached (clamped) to the ground wire. The clamp type current transformer 8 is generally of a commercially available type.

DC電圧入力用のコネクタ10は、対象の絶縁監視装置に動作制限が設けてある等、動作確認が困難な場合に、絶縁監視装置の記録計用出力(DC電圧出力)を接続することにより、絶縁監視装置が検出した漏れ電流(IorやIo)の大きさに比例したDC電圧(直流電圧)を読み取るためのものである。通常は、テスターなどの別の測定器具を用いて測定することになるが、本実施形態に係る試験装置においては、上記の電圧検出機能及びその表示機能を組み込むことにより、テスターなどの別の測定器具を不要とする。   The DC voltage input connector 10 is connected to the recording monitor output (DC voltage output) of the insulation monitoring device when it is difficult to confirm the operation, for example, when the target insulation monitoring device is restricted in operation. This is for reading a DC voltage (DC voltage) proportional to the magnitude of the leakage current (Ior or Io) detected by the insulation monitoring device. Usually, the measurement is performed using another measuring instrument such as a tester. However, in the test apparatus according to the present embodiment, the above-described voltage detection function and the display function thereof are incorporated, whereby another measurement such as a tester is performed. Equipment is unnecessary.

LCDパネル11は、「測定画面」と「設定画面」の二つの表示を行うものであり、画面選択ボタン16を押釦する度に、「測定画面」と「設定画面」とが切り替わるようになっている。「測定画面」は、クランプ式変流器8を用いて検出された漏れ電流の情報(後述するベクトル演算により求められた有効漏れ電流(Ior)と無効漏れ電流(Ioc)と漏れ電流(Io)の各数値)を表示する画面である。一方、「設定画面」は、設定状態を表示する画面である。具体的には、上記した各種スイッチ12〜15の切替状態(即ち、選択した電気方式、選択した注入電流の種類(mA)及びその極性(+/-)、選択した電流レンジ(mA))と、上記のDC電圧(V)を確認することができる。   The LCD panel 11 displays two screens, a “measurement screen” and a “setting screen”. Each time the screen selection button 16 is pressed, the “measurement screen” and the “setting screen” are switched. Yes. “Measurement screen” shows information on leakage current detected using the clamp type current transformer 8 (effective leakage current (Ior), reactive leakage current (Ioc) and leakage current (Io) obtained by vector calculation described later) It is a screen that displays each numerical value). On the other hand, the “setting screen” is a screen for displaying a setting state. Specifically, the switching states of the various switches 12 to 15 (that is, the selected electrical system, the selected injection current type (mA) and its polarity (+/-), the selected current range (mA)) and the like. The above DC voltage (V) can be confirmed.

電気方式切替スイッチ12は、電路の電気方式を選択するためのもので、電路が単相交流であれば、「単相」を選択し、電路が三相交流であれば、「三相」を選択する。注入電流切替スイッチ13は、電流出力線6に通電させたい(注入したい)試験電流の種類を選択するためのもので、有効漏れ電流に対するものであれば、「Ior」を選択し、無効漏れ電流に対するものであれば、「Ioc」を選択する。電流レンジ切替スイッチ14は、注入する試験電流のレンジを選択するためのもので、0〜10mAであれば、「10mA」を選択し、0〜100mAであれば、「100mA」を選択する。極性切替スイッチ15は、注入する試験電流の極性を選択するためのもので、正(+)であれば、「正極」を選択し、負(-)であれば、「逆極」を選択する。電流調節ボリューム17は、選択した試験電流のレンジ内で試験電流の大きさを可変するためのものである。   The electric system changeover switch 12 is for selecting the electric system of the electric circuit. If the electric circuit is a single-phase AC, select “single-phase”, and if the electric circuit is a three-phase AC, select “three-phase”. select. The injection current change-over switch 13 is used to select the type of test current to be supplied to the current output line 6 (to be injected). If it is for effective leakage current, select “Ior” to select the invalid leakage current. Select "Ioc" if The current range changeover switch 14 is for selecting the range of the test current to be injected. If it is 0 to 10 mA, “10 mA” is selected, and if it is 0 to 100 mA, “100 mA” is selected. The polarity switch 15 is used to select the polarity of the test current to be injected. If it is positive (+), it selects “positive electrode”, and if it is negative (−), it selects “reverse electrode”. . The current adjustment volume 17 is for changing the magnitude of the test current within the range of the selected test current.

〔試験装置の内部構成〕
次に、本実施形態に係る試験装置の内部構成を図2に示す。図2においては、試験装置が符号Cで表されており、その内部に各種の要素を含む。以下、各要素について説明する。尚、図2において、符号Tは変圧器、Gは接地線、Iは絶縁監視装置、Iaはその変流器、をそれぞれ表す。
[Internal configuration of test equipment]
Next, FIG. 2 shows an internal configuration of the test apparatus according to the present embodiment. In FIG. 2, the test apparatus is represented by the symbol C and includes various elements therein. Hereinafter, each element will be described. In FIG. 2, symbol T represents a transformer, G represents a ground wire, I represents an insulation monitoring device, and Ia represents a current transformer.

「電源部」は、電路の電圧を電子回路用の電源に変換する。また、安全のため、一次側と二次側とは絶縁されている。「位相検出」は、電路の電圧位相を取り込み、電路の電圧(正弦波)をCPUからなる制御部Caが取り込める形(例えば、矩形波)に変換する。また、安全のため、一次側と二次側とは絶縁されている。   The “power supply unit” converts the voltage of the electric circuit into a power supply for an electronic circuit. Moreover, the primary side and the secondary side are insulated for safety. “Phase detection” captures the voltage phase of the electric circuit and converts the voltage (sine wave) of the electric circuit into a form (for example, a rectangular wave) that can be captured by the control unit Ca including the CPU. Moreover, the primary side and the secondary side are insulated for safety.

「位相補正値」は、予め求めた電圧位相のずれ分のことであり、変流器8や装置内の電子回路(特にフィルタ)で発生する位相の遅れや進み分を補正する。「sin/cosデータ」は、sin波(正弦波)、cos波(余弦波)のデジタルデータのことであり、有効漏れ電流及び無効漏れ電流のベクトル演算に使用し、また、試験電流の作成元となる。「同期処理」は、検出した電圧位相に位相補正値を加える(又は減算する)と共に、漏れ電流の演算タイミング、又は、試験電流の注入タイミングを決定する。   The “phase correction value” is a voltage phase shift obtained in advance, and corrects a phase delay or advance generated in the current transformer 8 or an electronic circuit (especially a filter) in the apparatus. “Sin / cos data” is digital data of sin wave (sine wave) and cos wave (cosine wave). It is used for vector calculation of effective leakage current and reactive leakage current. It becomes. The “synchronization process” adds (or subtracts) a phase correction value to the detected voltage phase, and determines the leakage current calculation timing or the test current injection timing.

「電流検出」は、変流器8を用いて検出した漏れ電流Ioを電圧に変換し、電圧が所定の大きさになるように増幅/減衰させる。「フィルタ」は、ノイズ成分を除去する。   In “current detection”, the leakage current Io detected using the current transformer 8 is converted into a voltage, and amplified / attenuated so that the voltage becomes a predetermined magnitude. The “filter” removes noise components.

「A/D変換」は、変流器8を用いて検出した漏れ電流(アナログデータ)をデジタルデータに変換する。「乗算」は、sin波(正弦波)又はcos波(余弦波)のデジタルデータとA/D変換で得られたデジタルデータとの乗算を行う。「1周期の平均」は、乗算で得られた結果の例えば1周期分の平均値を求める。「注入電流作成」は、sin/cosデータを元に、sin波(正弦波)又はcos波(余弦波)の試験電流を生成する。「電力増幅」は、注入する試験電流に必要な電流を供給する。   “A / D conversion” converts the leakage current (analog data) detected using the current transformer 8 into digital data. “Multiplication” performs multiplication of digital data of sin waves (sine waves) or cos waves (cosine waves) with digital data obtained by A / D conversion. “Average of one cycle” obtains, for example, an average value of one cycle of the results obtained by multiplication. “Injection current generation” generates a sin wave (sine wave) or cos wave (cosine wave) test current based on sin / cos data. “Power amplification” supplies the current required for the test current to be injected.

〔漏れ電流の演算処理〕
本実施形態に係る試験装置の構成説明は以上のとおりであり、次に、変流器8を用いて検出した漏れ電流Ioから有効漏れ電流Iorと無効漏れ電流Iocをベクトル演算する、その処理概要について説明する。
[Leakage current calculation]
The description of the configuration of the test apparatus according to the present embodiment is as described above. Next, the processing outline of the vector calculation of the effective leakage current Ior and the reactive leakage current Ioc from the leakage current Io detected using the current transformer 8 is performed. Will be described.

<単相交流の電路における有効漏れ電流Ior>
本実施形態に係る試験装置のケーブル線4,4の電路への接続がL1−N間電源接続であれば、L1−N間の電圧位相を検出し、また、電路への接続がL2−N間電源接続であれば、L2−N間の電圧位相を検出し、また、電路への接続がL1−L2間電源接続であれば、L1−L2間の電圧位相を検出し、この電圧位相と同期した正弦波のデジタルデータを生成し、該デジタルデータと漏れ電流Ioをサンプリングした信号とを乗算する。有効漏れ電流Iorは電路の電圧位相と同相(又は逆相)となるため(図3(b)参照)、演算結果は有効漏れ電流Iorの大きさに比例した交流分と直流分になって現れる。一方、無効漏れ電流Iocは電路の電圧位相から90°の進み位相となるので、演算結果は無効漏れ電流Iocの大きさに比例した交流分のみとなり、直流分は現れない。従って、電圧位相と同期した正弦波のデジタルデータと漏れ電流Ioをサンプリングした信号とを乗算した後、1周期分の平均をとれば、無効漏れ電流Iocは除去され、有効漏れ電流Iorのみを分離抽出することができる。
<Effective leakage current Ior in single-phase AC circuit>
If the connection to the electric circuit of the cable lines 4 and 4 of the test apparatus according to the present embodiment is a power connection between L1 and N, the voltage phase between L1 and N is detected, and the connection to the electric circuit is L2N. If the power supply connection is between L2 and L2, the voltage phase between L2 and N2 is detected. If the connection to the circuit is between L1 and L2, the voltage phase between L1 and L2 is detected. Synchronized sine wave digital data is generated, and the digital data is multiplied by a signal obtained by sampling the leakage current Io. Since the effective leakage current Ior is in phase (or opposite phase) to the voltage phase of the circuit (see FIG. 3B), the calculation result appears as an AC component and a DC component proportional to the magnitude of the effective leakage current Ior. . On the other hand, the reactive leakage current Ioc has a leading phase of 90 ° from the voltage phase of the electric circuit. Therefore, the calculation result is only an AC component proportional to the magnitude of the reactive leakage current Ioc, and no DC component appears. Therefore, after multiplying the digital data of the sine wave synchronized with the voltage phase and the signal obtained by sampling the leakage current Io, if the average for one period is taken, the invalid leakage current Ioc is removed and only the effective leakage current Ior is separated. Can be extracted.

<三相交流の電路における有効漏れ電流Ior>
有効漏れ連流Iorを分離抽出するための、電路の電圧位相の基準が単相交流の電路の場合と異なる。有効漏れ電流Ior(U)は電路のU−W間の電圧Vwuから120°の遅れ位相となる(図4(b)参照)。このため、電圧Vwuの電圧位相を検出し、該電圧位相と同期した余弦波のデジタルデータを生成する。その後、単相交流の電路の場合と同様に、該デジタルデータと漏れ電流Ioをサンプリングした信号とを乗算し、1周期分の平均をとれば、無効漏れ電流Iocが除去される。尚、ここで得られる有効漏れ電流Ior(U)'は、電路のU−W間の電圧位相から90°遅れた線上にあるので(図4(b)参照)、得られた有効漏れ電流Ior(U)'を1.15倍(1/cos30°倍)したものが有効漏れ電流Ior(U)の最終結果となる。
<Effective leakage current Ior in three-phase AC circuit>
The standard of the voltage phase of the electric circuit for separating and extracting the effective leakage communication flow Ior is different from that of the single-phase AC circuit. The effective leakage current Ior (U) has a delay phase of 120 ° from the voltage Vwu between U and W of the electric circuit (see FIG. 4B). For this reason, the voltage phase of the voltage Vwu is detected, and digital data of a cosine wave synchronized with the voltage phase is generated. After that, as in the case of the single-phase AC circuit, the digital data and the signal obtained by sampling the leakage current Io are multiplied and the average for one period is taken to remove the reactive leakage current Ioc. Since the effective leakage current Ior (U) ′ obtained here is on a line delayed by 90 ° from the voltage phase between U and W of the electric circuit (see FIG. 4B), the obtained effective leakage current Ior The final result of the effective leakage current Ior (U) is obtained by multiplying (U) ′ by 1.15 times (1 / cos30 ° times).

<単相交流の電路における無効漏れ電流Ioc>
無効漏れ電流Iocの検出には余弦波のデジタルデータを使用する。無効漏れ電流Iocは電路の電圧位相から90°の進み位相となるため(図5(b)参照)、余弦波のデジタルデータと漏れ電流Ioをサンプリングした信号とを乗算すれば、演算結果は無効漏れ電流Iocの大きさに比例した交流分のみとなり、直流分は現れない。従って、電圧位相と同期した余弦波のデジタルデータと漏れ電流Ioをサンプリングした信号とを乗算した後、1周期分の平均をとれば、有効漏れ電流Iorは除去され、無効漏れ電流Iocのみを分離抽出することができる。
<Reactive leakage current Ioc in single-phase AC circuit>
Digital data of a cosine wave is used to detect the reactive leakage current Ioc. Since the reactive leakage current Ioc has a lead phase of 90 ° from the voltage phase of the electric circuit (see FIG. 5B), if the cosine wave digital data is multiplied by the signal obtained by sampling the leakage current Io, the calculation result is invalid. Only the AC component is proportional to the magnitude of the leakage current Ioc, and the DC component does not appear. Therefore, after multiplying the digital data of cosine wave synchronized with the voltage phase and the signal sampled from the leakage current Io, the effective leakage current Ior is removed by taking the average for one period, and only the invalid leakage current Ioc is separated. Can be extracted.

<三相交流の電路における無効漏れ電流Ioc>
各電圧相の対地静電容量が等しく分布している場合、各電圧相の無効漏れ電流(Ioc(U)とIoc(W))のベクトル合成和電流Iocは、電路のU−W間の電圧Vwuと同相(又は逆相)になる(図6(b)参照)。無効漏れ電流Iocの抽出には、電圧Vwuの電圧位相と同期した正弦波のデジタルデータを使用し、その後は、単相交流の電路の場合と同様に、該デジタルデータと漏れ電流Ioをサンプリングした信号とを乗算し、1周期分の平均をとれば、有効漏れ電流Iorは除去され、無効漏れ電流Iocのみを分離抽出することができる。尚、ここで得られる無効漏れ電流Iocは、電路のU−W間の電圧位相と同じ線上にあるので(図6(b)参照)、有効漏れ電流Iorを抽出するときのように、得られた無効漏れ電流Iocを1.15倍(1/cos30°倍)する必要はない。
<Reactive leakage current Ioc in three-phase AC circuit>
When the ground capacitance of each voltage phase is equally distributed, the vector combined sum current Ioc of the reactive leakage current (Ioc (U) and Ioc (W)) of each voltage phase is the voltage between U and W of the circuit. It becomes the same phase (or reverse phase) as Vwu (see FIG. 6B). For extraction of the reactive leakage current Ioc, digital data of a sine wave synchronized with the voltage phase of the voltage Vwu was used, and thereafter, the digital data and the leakage current Io were sampled as in the case of a single-phase AC circuit. If the signal is multiplied and an average for one period is taken, the effective leakage current Ior is removed, and only the reactive leakage current Ioc can be separated and extracted. The reactive leakage current Ioc obtained here is on the same line as the voltage phase between U and W of the electric circuit (see FIG. 6B), so that it is obtained as when extracting the effective leakage current Ior. It is not necessary to increase the reactive leakage current Ioc by 1.15 times (1 / cos30 ° times).

<表示部での表示>
以上のようにして演算された有効漏れ電流Ior,Ior(U)及び無効漏れ電流Iocは、漏れ電流Ioとともに「測定画面」モードにおける表示部11に表示される。また、後述するが、電流調節ボリューム17を操作して試験電流値を変えることにより、Io値、Ior値、Ioc値も変わるが、これらは都度リアルタイムで演算処理が行われ、リアルタイムで表示される。
<Display on display>
The effective leakage currents Ior, Ior (U) and the reactive leakage current Ioc calculated as described above are displayed on the display unit 11 in the “measurement screen” mode together with the leakage current Io. In addition, as will be described later, by operating the current adjustment volume 17 to change the test current value, the Io value, the Ior value, and the Ioc value also change. However, these are processed in real time each time and displayed in real time. .

〔試験装置のセットアップ〕
次に、本実施形態に係る試験装置(以下、単に「本装置」という場合がある)のセットアップについて図1及び図2を参酌しつつ説明する。セットアップとは、本装置を用いて絶縁監視装置を試験するに当たり、必要な事前準備作業をいう。尚、図2は、単相交流の電路であるが、三相交流の電路も同様である。
[Test equipment setup]
Next, the setup of a test apparatus according to the present embodiment (hereinafter sometimes simply referred to as “this apparatus”) will be described with reference to FIGS. 1 and 2. Setup refers to preparatory work necessary for testing an insulation monitoring device using this device. FIG. 2 shows a single-phase AC circuit, but a three-phase AC circuit is the same.

まず、変流器8及びケーブル線4,4を本装置Cに接続する。また、電流出力線6を絶縁監視装置Iの変流器Iaと本装置Cの変流器8とに同じ向きとなるように挿通させた後、該電流出力線6を本装置Cに接続する。次に、ケーブル線4,4の各クリップ4aを電路の該当相にクリップさせ、ケーブル線4,4を電路に接続する。この状態で、電源スイッチ3をONにし、また、変流器8(のクランプ部8a)を接地線Gにクランプする。しかる後、電気方式切替スイッチ12で電路の電気方式(単相/三相)を選択し、電流調節ボリューム17を最小にしておく。   First, the current transformer 8 and the cable wires 4 and 4 are connected to the apparatus C. Further, after the current output line 6 is inserted into the current transformer Ia of the insulation monitoring apparatus I and the current transformer 8 of the apparatus C so as to be in the same direction, the current output line 6 is connected to the apparatus C. . Next, each clip 4a of the cable lines 4 and 4 is clipped to the corresponding phase of the electric circuit, and the cable lines 4 and 4 are connected to the electric circuit. In this state, the power switch 3 is turned on, and the current transformer 8 (the clamp portion 8a thereof) is clamped to the ground line G. Thereafter, the electrical system selector switch 12 is used to select the electrical system (single phase / three phase) of the electric circuit, and the current adjustment volume 17 is minimized.

次に、注入電流切替スイッチ13で試験電流の種類(Ior/Ioc)を選択する。すると、電流出力線6には、有効漏れ電流Iorに関して言えば、単相交流の電路の場合、電路の電圧位相に対して、0°又は180°、三相交流の電路の場合、電路の電圧位相に対して、−90°又は90°、の試験電流Iorpが生成され、無効漏れ電流Iocに関して言えば、単相交流の電路の場合、電路の電圧位相に対して、90°又は−90°、三相交流の電路の場合、電路の電圧位相に対して、0°又は180°、の試験電流Iocpが生成される。   Next, the type (Ior / Ioc) of the test current is selected by the injection current changeover switch 13. Then, in terms of the effective leakage current Ior, the current output line 6 is 0 ° or 180 ° with respect to the voltage phase of the electric circuit in the case of a single-phase AC electric circuit, and the voltage of the electric circuit in the case of a three-phase AC electric circuit. A test current Iorp of −90 ° or 90 ° with respect to the phase is generated, and in terms of reactive leakage current Ioc, in the case of a single-phase AC circuit, 90 ° or −90 ° with respect to the voltage phase of the circuit. In the case of a three-phase AC circuit, a test current Iocp of 0 ° or 180 ° is generated with respect to the voltage phase of the circuit.

この状態で、試験電流の種類を「Ior」に選択しているならば、表示部11に表示されるIor値を読み取る。あるいは、試験電流の種類を「Ioc」に選択しているならば、表示部11に表示されるIoc値を読み取る。そして、この値を参考にして、電流レンジ切替スイッチ14で出力する最大電流値(10mA/100mA)を選択する。これにてセットアップは完了である。   In this state, if the type of the test current is selected as “Ior”, the Ior value displayed on the display unit 11 is read. Alternatively, if the type of the test current is selected as “Ioc”, the Ioc value displayed on the display unit 11 is read. Then, referring to this value, the maximum current value (10 mA / 100 mA) output by the current range changeover switch 14 is selected. This completes the setup.

〔絶縁監視装置の動作確認試験(単相交流の電路の場合)〕
動作確認とは、有効漏れ電流Iorに対する試験電流Iorpを電流出力線6に注入することにより、絶縁監視装置Iの変流器Iaが接地線Gを流れる漏れ電流Ioと電流出力線6を流れる試験電流Iorpとを合わせて検出するようにし、その上で、これら漏れ電流Ioと試験電流Iorpとを合わせたものが絶縁監視装置Iの警報動作電流に到達するように試験電流Iorpを変化させ、その際、絶縁監視装置Iが警報動作することを確認するという絶縁監視装置Iの試験である。
[Insulation monitoring device operation check test (in the case of single-phase AC circuit)]
The operation check is a test in which the current transformer Ia of the insulation monitoring device I flows through the ground line G and the current flowing through the current output line 6 by injecting the test current Iorp corresponding to the effective leakage current Ior into the current output line 6. The current Iorp is detected together, and then the test current Iorp is changed so that the sum of the leakage current Io and the test current Iorp reaches the alarm operating current of the insulation monitoring device I. At this time, it is a test of the insulation monitoring device I that confirms that the insulation monitoring device I performs an alarm operation.

まず、単相交流の電路における絶縁監視装置Iの動作確認を行う場合、本装置Cのセットアップにおいて、電気方式切替スイッチ12を「単相」に選択し、注入電流切替スイッチ13を「Ior」に選択しておく。   First, when confirming the operation of the insulation monitoring device I in a single-phase alternating current circuit, in the setup of the device C, the electrical system selector switch 12 is selected as “single phase” and the injection current selector switch 13 is set as “Ior”. Select it.

次に、電流調節ボリューム17を右側へ少し回し、表示部11上のIor値が増加することを確認する。Ior値が増加する場合は、試験電流Iorpの極性は正常であるが、Ior値が減少する場合は、試験電流Iorpの極性が反対であるため、極性切替スイッチ15が「正極」ならば、「逆極」に切り替え、一方、極性切替スイッチ15が「逆極」ならば、「正極」に切り替えた後、電流調節ボリューム17を再び右側へ少し回し、Ior値が増加することを確認する。   Next, the current adjustment volume 17 is turned slightly to the right to confirm that the Ior value on the display unit 11 increases. When the Ior value increases, the polarity of the test current Iorp is normal. However, when the Ior value decreases, the polarity of the test current Iorp is opposite. On the other hand, if the polarity changeover switch 15 is “reverse polarity”, after switching to “positive polarity”, the current adjustment volume 17 is slightly turned to the right again to confirm that the Ior value increases.

かかる状態から、電流調節ボリューム17をさらに右側へ回し、絶縁監視装置Iが警報動作するまで電流調節ボリューム17を回す。これにより、図3に示す如く、電流出力線6には、電路の電圧位相と同相(又は逆相)の試験電流Iorpが通電され、接地線Gに対して見かけ上、試験電流Iorpが注入されることとなる。   From this state, the current adjustment volume 17 is further rotated to the right, and the current adjustment volume 17 is rotated until the insulation monitoring device I performs an alarm operation. As a result, as shown in FIG. 3, the current output line 6 is supplied with a test current Iorp having the same phase (or opposite phase) as the voltage phase of the circuit, and apparently the test current Iorp is injected into the ground line G. The Rukoto.

例えば、絶縁監視装置Iの警報動作電流を50mA、電路における既存の有効漏れ電流Iorが10mA流れているとすれば(図3(b)参照)、絶縁監視装置Iの警報動作電流には電流40mAが足りないため、絶縁監視装置Iを警報動作させるためには、不足分の電流40mAを注入する必要がある。この場合、電流調節ボリューム17を回し、電路の電圧位相と同相(又は逆相)の試験電流Iorpを40mA注入することにより、Ior値の合計値(実際の有効漏れ電流Iorと試験電流Iorpとを合わせて、以下、「仮想有効漏れ電流Ior」という)は、50mA、即ち、絶縁監視装置Iの警報動作電流となる(同図(c)参照)。   For example, if the insulation monitoring device I has an alarm operating current of 50 mA and the existing effective leakage current Ior in the circuit is 10 mA (see FIG. 3B), the insulation monitoring device I has an alarm operating current of 40 mA. Therefore, in order to cause the insulation monitoring apparatus I to perform an alarm operation, it is necessary to inject a shortage current of 40 mA. In this case, the current adjustment volume 17 is turned and 40 mA of test current Iorp having the same phase (or reverse phase) as the voltage phase of the circuit is injected, whereby the total value of Ior values (actual effective leakage current Ior and test current Iorp is obtained. In addition, hereinafter, the “virtual effective leakage current Ior” is 50 mA, that is, the alarm operating current of the insulation monitoring device I (see FIG. 4C).

従って、その状態で絶縁監視装置Iは警報動作すべきであり、実際そうであれば、動作確認の試験結果はOK、警報動作しなければ、動作確認の試験結果はNG、ということになる。言い換えれば、注入する試験電流Iorpを徐々に増加し、絶縁監視装置Iが警報動作した際の表示部11におけるIor値を読み取り、その値が絶縁監視装置Iの警報動作電流に対して所定範囲内(例えば50mA±10%)に入っていれば、絶縁監視装置Iは合格、外れていれば、絶縁監視装置Iは不合格、ということになる。   Therefore, the insulation monitoring device I should perform an alarm operation in that state. If actually, the test result of the operation confirmation is OK, and if the alarm operation is not performed, the test result of the operation confirmation is NG. In other words, the test current Iorp to be injected is gradually increased, the Ior value in the display unit 11 when the insulation monitoring device I performs an alarm operation is read, and the value is within a predetermined range with respect to the alarm operation current of the insulation monitoring device I If it is within (for example, 50 mA ± 10%), the insulation monitoring device I is acceptable, and if it is off, the insulation monitoring device I is unacceptable.

〔絶縁監視装置の動作確認試験(三相交流の電路の場合)〕
まず、三相交流の電路における絶縁監視装置Iの動作確認を行う場合、本装置Cのセットアップにおいて、電気方式切替スイッチ12を「三相」に選択し、注入電流切替スイッチ13を「Ior」に選択しておく。
[Insulation monitoring device operation check test (in the case of a three-phase AC circuit)]
First, when confirming the operation of the insulation monitoring device I in the three-phase AC circuit, in the setup of the device C, the electrical system selector switch 12 is selected as “three-phase” and the injection current selector switch 13 is set as “Ior”. Select it.

次に、電流調節ボリューム17を右側へ少し回し、表示部11上のIor値が増加することを確認する。Ior値が増加する場合は、試験電流Iorpの極性は正常であるが、Ior値が減少する場合は、試験電流Iorpの極性が反対であるため、極性切替スイッチ15が「正極」ならば、「逆極」に切り替え、一方、極性切替スイッチ15が「逆極」ならば、「正極」に切り替えた後、電流調節ボリューム17を再び右側へ少し回し、Ior値が増加することを確認する。   Next, the current adjustment volume 17 is turned slightly to the right to confirm that the Ior value on the display unit 11 increases. When the Ior value increases, the polarity of the test current Iorp is normal. However, when the Ior value decreases, the polarity of the test current Iorp is opposite. On the other hand, if the polarity changeover switch 15 is “reverse polarity”, after switching to “positive polarity”, the current adjustment volume 17 is slightly turned to the right again to confirm that the Ior value increases.

かかる状態から、電流調節ボリューム17をさらに右側へ回し、絶縁監視装置Iが警報動作するまで電流調節ボリューム17を回す。これにより、図4に示す如く、電流出力線6には、電路の電圧位相に対して位相が90°異なる試験電流Iorpが通電され、接地線Gに対して見かけ上、試験電流Iorpが注入されることとなる。   From this state, the current adjustment volume 17 is further rotated to the right, and the current adjustment volume 17 is rotated until the insulation monitoring device I performs an alarm operation. As a result, as shown in FIG. 4, the current output line 6 is supplied with a test current Iorp whose phase is 90 ° different from the voltage phase of the electric circuit, and apparently the test current Iorp is injected into the ground line G. The Rukoto.

例えば、絶縁監視装置Iの警報動作電流を50mA、電路における既存の有効漏れ電流Ior(U)が10mA流れているとすれば(図4(b)参照)、絶縁監視装置Iの警報動作電流には電流40mAが足りないため、絶縁監視装置Iを警報動作させるためには、不足分の電流40mAを注入する必要がある。この場合、電流調節ボリューム17を回し、電路の電圧位相に対して位相が90°異なる試験電流Iorpを34.6mA(40mA×cos30°)注入することにより、Ior値の合計値(実際の有効漏れ電流Ior(U)、それと、試験電流Iorpを1.15倍(1/cos30°倍)したものとを合わせて、以下、「仮想有効漏れ電流Ior」という)は、50mA、即ち、絶縁監視装置Iの警報動作電流となる(同図(c)参照)。   For example, assuming that the alarm operating current of the insulation monitoring device I is 50 mA and the existing effective leakage current Ior (U) in the electric circuit is 10 mA (see FIG. 4B), the alarm operating current of the insulation monitoring device I is Since the current of 40 mA is insufficient, in order for the insulation monitoring apparatus I to perform an alarm operation, it is necessary to inject the insufficient current of 40 mA. In this case, by turning the current adjustment volume 17 and injecting 34.6 mA (40 mA × cos 30 °) of the test current Iorp whose phase is 90 ° different from the voltage phase of the electric circuit, the total value of Ior values (actual effective leakage current) Ior (U) and the test current Iorp multiplied by 1.15 times (1 / cos30 ° times), hereinafter referred to as “virtual effective leakage current Ior”) is 50 mA, that is, the alarm of the insulation monitoring device I It becomes an operating current (see FIG. 4C).

従って、その状態で絶縁監視装置Iは警報動作すべきであり、実際そうであれば、動作確認の試験結果はOK、警報動作しなければ、動作確認の試験結果はNG、ということになる。言い換えれば、注入する試験電流Iorpを徐々に増加し、絶縁監視装置Iが警報動作した際の表示部11におけるIor値を読み取り、その値が絶縁監視装置Iの警報動作電流に対して所定範囲内(例えば50mA±10%)に入っていれば、絶縁監視装置Iは合格、外れていれば、絶縁監視装置Iは不合格、ということになる。   Therefore, the insulation monitoring device I should perform an alarm operation in that state. If actually, the test result of the operation confirmation is OK, and if the alarm operation is not performed, the test result of the operation confirmation is NG. In other words, the test current Iorp to be injected is gradually increased, the Ior value in the display unit 11 when the insulation monitoring device I performs an alarm operation is read, and the value is within a predetermined range with respect to the alarm operation current of the insulation monitoring device I If it is within (for example, 50 mA ± 10%), the insulation monitoring device I is acceptable, and if it is off, the insulation monitoring device I is unacceptable.

〔絶縁監視装置の不動作確認試験(単相交流の電路の場合)〕
不動作確認とは、無効漏れ電流Iocに対する試験電流Iocpを電流出力線6に注入することにより、絶縁監視装置Iの変流器Iaが接地線Gを流れる漏れ電流Ioと電流出力線6を流れる試験電流Iocpとを合わせて検出するようにし、その上で、これら漏れ電流Ioと試験電流Iocpとを合わせたものが絶縁監視装置Iの警報不動作電流に到達するように試験電流Iocpを変化させ、その際、絶縁監視装置Iが警報動作しないことを確認する、という絶縁監視装置Iの試験である。有効漏れ電流Iorのみならず、無効漏れ電流Iocも確認することで、絶縁監視装置Iをより綿密に試験することを目的とする。
[Insulation monitoring device malfunction check test (in the case of single-phase AC circuit)]
The non-operation confirmation means that a current transformer Ia of the insulation monitoring device I flows through the ground line G and the current leakage line Io and the current output line 6 by injecting the test current Iocp corresponding to the reactive leakage current Ioc into the current output line 6. The test current Iocp is detected together, and then the test current Iocp is changed so that the sum of the leakage current Io and the test current Iocp reaches the alarm non-operation current of the insulation monitoring device I. In this case, the insulation monitoring device I is tested to confirm that the insulation monitoring device I does not perform an alarm operation. The purpose is to more closely test the insulation monitoring device I by checking not only the effective leakage current Ior but also the reactive leakage current Ioc.

まず、単相交流の電路における絶縁監視装置Iの不動作確認を行う場合、本装置Cのセットアップにおいて、電気方式切替スイッチ12を「単相」に選択し、注入電流切替スイッチ13を「Ioc」に選択しておく。   First, when confirming the non-operation of the insulation monitoring device I in the single-phase AC circuit, in the setup of the device C, the electrical system selector switch 12 is selected as “single phase” and the injection current selector switch 13 is set to “Ioc”. Select it.

次に、電流調節ボリューム17を右側へ少し回し、表示部11上のIoc値が増加することを確認する。Ioc値が増加する場合は、試験電流Iocpの極性は正常であるが、Ioc値が減少する場合は、試験電流Iocpの極性が反対であるため、極性切替スイッチ15が「正極」ならば、「逆極」に切り替え、一方、極性切替スイッチ15が「逆極」ならば、「正極」に切り替えた後、電流調節ボリューム17を再び右側へ少し回し、Ioc値が増加することを確認する。   Next, the current adjustment volume 17 is turned slightly to the right to confirm that the Ioc value on the display unit 11 increases. When the Ioc value increases, the polarity of the test current Iocp is normal. However, when the Ioc value decreases, the polarity of the test current Iocp is opposite. On the other hand, if the polarity changeover switch 15 is “reverse polarity”, after switching to “positive polarity”, the current adjustment volume 17 is turned slightly to the right again to confirm that the Ioc value increases.

かかる状態から、電流調節ボリューム17をさらに右側へ回し、これにより、図5に示す如く、電流出力線6には、電路の電圧位相に対して位相が90°異なる試験電流Iocpが通電され、接地線Gに対して見かけ上、試験電流Iocpが注入されることとなる。   From this state, the current adjustment volume 17 is further rotated to the right side. As a result, as shown in FIG. 5, the current output line 6 is energized with a test current Iocp whose phase is 90 ° different from the voltage phase of the electric circuit. Apparently, the test current Iocp is injected into the line G.

例えば、絶縁監視装置Iの警報不動作電流を50mA、電路における既存の無効漏れ電流Iocが10mA流れているとすれば(図5(b)参照)、絶縁監視装置Iの警報不動作電流には電流40mAが足りないため、絶縁監視装置Iが警報不動作電流にて警報動作しないことを確認するためには、不足分の電流40mAを注入する必要がある。この場合、電流調節ボリューム17を回し、電路の電圧位相に対して位相が90°異なる試験電流Iocpを40mA注入することにより、Ioc値の合計値(実際の無効漏れ電流Iocと試験電流Iocpとを合わせて、以下、「仮想無効漏れ電流Ioc」という)は、50mA、即ち、絶縁監視装置Iの警報不動作電流となる(同図(c)参照)。   For example, if the insulation monitoring device I has an alarm non-operation current of 50 mA and the existing invalid leakage current Ioc in the electric circuit is 10 mA (see FIG. 5B), Since the current 40 mA is insufficient, it is necessary to inject the insufficient current 40 mA in order to confirm that the insulation monitoring device I does not perform the alarm operation with the alarm non-operation current. In this case, by turning the current adjustment volume 17 and injecting 40 mA of the test current Iocp having a phase difference of 90 ° with respect to the voltage phase of the circuit, the total value of the Ioc values (the actual reactive leakage current Ioc and the test current Iocp In addition, hereinafter, “virtual invalid leakage current Ioc”) is 50 mA, that is, the alarm non-operation current of the insulation monitoring device I (see FIG. 5C).

従って、その状態で絶縁監視装置Iは警報動作すべきでなく、実際そうであれば、不動作確認の試験結果はOK、警報動作すれば、不動作確認の試験結果はNG、ということになる。言い換えれば、注入する試験電流Iocpを徐々に増加し、表示部11におけるIoc値を読み取り、その値が絶縁監視装置Iの警報不動作電流(例えば50mA)を超えるまでに絶縁監視装置Iが警報動作すれば、絶縁監視装置Iは不合格、警報動作しなければ、絶縁監視装置Iは合格、ということになる。   Accordingly, the insulation monitoring apparatus I should not perform an alarm operation in that state, and if so, the non-operation confirmation test result is OK, and if the alarm operation is performed, the non-operation confirmation test result is NG. . In other words, the test current Iocp to be injected is gradually increased, the Ioc value on the display unit 11 is read, and the insulation monitoring device I is in alarm operation until the value exceeds the alarm non-operation current (for example, 50 mA) of the insulation monitoring device I. Then, the insulation monitoring device I is rejected, and if the alarm is not activated, the insulation monitoring device I is passed.

〔絶縁監視装置の不動作確認試験(三相交流の電路の場合)〕
まず、三相交流の電路における絶縁監視装置Iの不動作確認を行う場合、本装置Cのセットアップにおいて、電気方式切替スイッチ12を「三相」に選択し、注入電流切替スイッチ13を「Ioc」に選択しておく。
[Insulation monitoring device malfunction check test (in the case of a three-phase AC circuit)]
First, when confirming the non-operation of the insulation monitoring device I in the three-phase AC circuit, in the setup of the device C, the electrical system selector switch 12 is selected to be “three-phase” and the injection current selector switch 13 is “Ioc”. Select it.

次に、電流調節ボリューム17を右側へ少し回し、表示部11上のIoc値が増加することを確認する。Ioc値が増加する場合は、試験電流Iocpの極性は正常であるが、Ioc値が減少する場合は、試験電流Iocpの極性が反対であるため、極性切替スイッチ15が「正極」ならば、「逆極」に切り替え、一方、極性切替スイッチ15が「逆極」ならば、「正極」に切り替えた後、電流調節ボリューム17を再び右側へ少し回し、Ioc値が増加することを確認する。   Next, the current adjustment volume 17 is turned slightly to the right to confirm that the Ioc value on the display unit 11 increases. When the Ioc value increases, the polarity of the test current Iocp is normal. However, when the Ioc value decreases, the polarity of the test current Iocp is opposite. On the other hand, if the polarity changeover switch 15 is “reverse polarity”, after switching to “positive polarity”, the current adjustment volume 17 is turned slightly to the right again to confirm that the Ioc value increases.

かかる状態から、電流調節ボリューム17をさらに右側へ回し、これにより、図6に示す如く、電流出力線6には、電路の電圧位相と同相(又は逆相)の試験電流Iocpが通電され、接地線Gに対して見かけ上、試験電流Iocpが注入されることとなる。   From this state, the current adjustment volume 17 is further rotated to the right side. As a result, the current output line 6 is supplied with the test current Iocp having the same phase (or opposite phase) as the voltage phase of the electric circuit as shown in FIG. Apparently, the test current Iocp is injected into the line G.

例えば、絶縁監視装置Iの警報不動作電流を50mA、電路における既存の無効漏れ電流Iocが10mA流れているとすれば(図6(b)参照)、絶縁監視装置Iの警報不動作電流には電流40mAが足りないため、絶縁監視装置Iを警報不動作電流にて警報動作しないことを確認するためには、不足分の電流40mAを注入する必要がある。この場合、電流調節ボリューム17を回し、電路の電圧位相と同相(又は逆相)の試験電流Iocpを40mA注入することにより、Ioc値の合計値(実際の無効漏れ電流Iocと試験電流Iocpとを合わせて、以下、「仮想無効漏れ電流Ioc」という)は、50mA、即ち、絶縁監視装置Iの警報不動作電流となる(同図(c)参照)。   For example, assuming that the alarm inactive current of the insulation monitoring device I is 50 mA and the existing reactive leakage current Ioc in the electric circuit is 10 mA (see FIG. 6B), the alarm inactive current of the insulation monitoring device I is Since the current 40 mA is insufficient, it is necessary to inject the insufficient current 40 mA in order to confirm that the insulation monitoring device I does not perform the alarm operation with the alarm non-operation current. In this case, the current adjustment volume 17 is turned and 40 mA of test current Iocp having the same phase (or reverse phase) as the voltage phase of the electric circuit is injected, so that the total Ioc value (actual reactive leakage current Ioc and test current Iocp is calculated). In addition, hereinafter, “virtual invalid leakage current Ioc”) is 50 mA, that is, the alarm non-operation current of the insulation monitoring device I (see FIG. 5C).

従って、その状態で絶縁監視装置Iは警報動作すべきでなく、実際そうであれば、不動作確認の試験結果はOK、警報動作すれば、不動作確認の試験結果はNG、ということになる。言い換えれば、注入する試験電流Iocpを徐々に増加し、表示部11におけるIoc値を読み取り、その値が絶縁監視装置Iの警報不動作電流(例えば50mA)を超えるまでに絶縁監視装置Iが警報動作すれば、絶縁監視装置Iは不合格、警報動作しなければ、絶縁監視装置Iは合格、ということになる。   Accordingly, the insulation monitoring apparatus I should not perform an alarm operation in that state, and if so, the non-operation confirmation test result is OK, and if the alarm operation is performed, the non-operation confirmation test result is NG. . In other words, the test current Iocp to be injected is gradually increased, the Ioc value on the display unit 11 is read, and the insulation monitoring device I is in alarm operation until the value exceeds the alarm non-operation current (for example, 50 mA) of the insulation monitoring device I. Then, the insulation monitoring device I is rejected, and if the alarm is not activated, the insulation monitoring device I is passed.

〔絶縁監視装置が警報動作してからの動作確認試験〕
絶縁監視装置Iが警報動作した状態において、有効漏れ電流Iorを打ち消す(減少させる)ように試験電流Iorpを注入して(単相交流の電路である場合の図7(a)、三相交流の電路である場合の同図(c)参照)、仮想有効漏れ電流Iorが小さくなる(表示部11に表示されるIor値が小さくなる)ようにする。この操作によって警報動作が解除されると、絶縁監視装置Iの警報動作電流に到達していた有効漏れ電流Iorが引き下げられたとして、絶縁監視装置Iの警報動作は正しかった(即ち、絶縁監視装置Iが正しく警報動作した)ということを確認することができる。
[Operation Confirmation Test after Insulation Monitoring Device Activates Alarm]
In the state in which the insulation monitoring device I is in an alarm operation, the test current Iorp is injected so as to cancel (reduce) the effective leakage current Ior (FIG. 7A in the case of a single-phase AC circuit) In the case of the electric circuit (see FIG. 5C), the virtual effective leakage current Ior is made small (Ior value displayed on the display unit 11 is made small). When the alarm operation is canceled by this operation, the alarm operation of the insulation monitoring device I is correct (that is, the insulation monitoring device is correct), assuming that the effective leakage current Ior that has reached the alarm operation current of the insulation monitoring device I is reduced. It is possible to confirm that I has alarmed correctly.

また、絶縁監視装置Iが警報動作した状態において、無効漏れ電流Iocを打ち消す(減少させる)ように試験電流Iocpを注入して(単相交流の電路である場合の図7(b)、三相交流の電路である場合の同図(d)参照)、仮想無効漏れ電流Iocが小さくなる(表示部11に表示されるIoc値が小さくなる)ようにする。この操作によっても警報動作が解除されないと、有効漏れ電流Iorが絶縁監視装置Iの警報動作電流に到達した状態のままであるとして、絶縁監視装置Iの警報動作は正しい(即ち、絶縁監視装置Iが正しく警報動作している)ということを確認することができる。   Further, in the state where the insulation monitoring device I is in an alarm operation, the test current Iocp is injected so as to cancel (decrease) the invalid leakage current Ioc (FIG. 7 (b) in the case of a single-phase AC circuit, three-phase In the case of an alternating current circuit (see FIG. 4D), the virtual invalid leakage current Ioc is reduced (the Ioc value displayed on the display unit 11 is reduced). If the alarm operation is not canceled by this operation, the alarm operation of the insulation monitoring device I is correct (that is, the insulation monitoring device I), assuming that the effective leakage current Ior has reached the alarm operation current of the insulation monitoring device I. Can be confirmed that the alarm is operating correctly.

〔自己診断〕
試験装置のセットアップにおいて、電流注入機能、電流検出機能が正しく機能しているか否かを、自身の変流器8を自身の電流出力線6に取り付けた上で電流出力線6に試験電流を注入することにより、自己診断することができる。即ち、試験電流Iorを電流出力線6に注入したときに、表示部11のIoc値が増加/減少する等、変化が見られず、あるいは、試験電流Iocを電流出力線6に注入したときに、表示部11のIor値が増加/減少する等、変化が見られないならば、試験装置は正常であるが、いずれかにおいて変化が見られると、試験装置に何らかの不具合があるということである。
〔self-diagnosis〕
In setting up the test apparatus, whether or not the current injection function and the current detection function are functioning correctly is checked by injecting a test current into the current output line 6 after attaching the current transformer 8 to the current output line 6. By doing so, self-diagnosis can be performed. That is, when the test current Ior is injected into the current output line 6, there is no change such as an increase or decrease in the Ioc value of the display unit 11, or when the test current Ioc is injected into the current output line 6. If no change is observed, such as an increase or decrease in the Ior value of the display unit 11, the test apparatus is normal, but if any change is observed, the test apparatus has some problem. .

以上、本実施形態に係る試験装置によれば、絶縁監視装置の試験を種々の観点から行うことができるようになる。しかも、本実施形態に係る試験装置は、絶縁監視装置と物理的・電気的に切り離すことで、試験対象である絶縁監視装置の影響を受けることがなく、それにより、絶縁監視装置の試験を適正に行うことができる。   As described above, according to the test apparatus according to the present embodiment, the insulation monitoring apparatus can be tested from various viewpoints. In addition, the test device according to the present embodiment is physically and electrically separated from the insulation monitoring device, so that it is not affected by the insulation monitoring device that is the test target, thereby appropriately testing the insulation monitoring device. Can be done.

尚、本発明は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更が可能である。   In addition, this invention is not limited to the said embodiment, A various change is possible in the range which does not deviate from the summary of this invention.

例えば、上記実施形態においては、Ior方式の絶縁監視装置に対してIor方式の試験装置を適用する例について説明したが、Io方式の絶縁監視装置に対してIo方式の試験装置を適用する場合も本発明が意図する範囲である。この場合、漏れ電流Ioと同相(又は逆相)の試験電流Ioが電流出力線6に注入される。   For example, in the above embodiment, an example in which an Ior test apparatus is applied to an Ior insulation monitor has been described. However, an Io test apparatus may be applied to an Io insulation monitor. This is the scope of the present invention. In this case, a test current Io having the same phase (or opposite phase) as the leakage current Io is injected into the current output line 6.

また、上記実施形態においては、注入電流切替スイッチ13で試験電流の種類(Ior/Ioc)を選択することで、有効漏れ電流Iorに対する試験電流Iorpを生成するか、無効漏れ電流Iocに対する試験電流Iocpを生成するかを選択するようにしているが、出力部を2系統に分けて設け、一方の電流出力線には、試験電流Iorpを、他方の電流出力線には、試験電流Iocpを、それぞれ独立して注入するようにしてもよい。特に、Io方式の絶縁監視装置では、試験電流Iorpだけ、試験電流Iocpだけを注入するだけでなく、両方の成分を注入して確認することが有効な場合(例えば、漏れ電流Ioが非常に大きく、どちらか片方の電流だけでは打ち消すことができない場合など)がある。   In the above embodiment, the test current Iorp for the effective leakage current Ior is generated by selecting the type (Ior / Ioc) of the test current with the injection current changeover switch 13 or the test current Iocp for the reactive leakage current Ioc. The output unit is divided into two systems, and the test current Iorp is provided on one current output line, and the test current Iocp is provided on the other current output line. You may make it inject | pour independently. In particular, in the Io-type insulation monitoring device, it is effective not only to inject only the test current Iorp and the test current Iocp but also to inject and check both components (for example, the leakage current Io is very large). , There is a case where it is not possible to cancel with only one of the currents).

また、上記実施形態においては、本発明に係る電流検出手段として、変流器を用いるようにしているが、例えば、電磁形変成器、容量形変成器、増幅形変成器といった変成器を用いるようにしてもよい。   In the above embodiment, a current transformer is used as the current detection means according to the present invention. For example, a transformer such as an electromagnetic transformer, a capacitive transformer, and an amplifying transformer is used. It may be.

1…筐体、2…正面パネル、3…電源スイッチ、4…ケーブル線、4a…クリップ、5…コネクタ、6…電流出力線、7…コネクタ、8…クランプ式変流器、8a…クランプ部、9…コネクタ、10…コネクタ、11…表示部、12…電気方式切替スイッチ、13…注入電流切替スイッチ、14…電流レンジ切替スイッチ、15…極性切替スイッチ、16…画面選択ボタン、17…電流調節ボリューム、C…試験装置、Ca…制御部、T…変圧器、G…接地線、I…絶縁監視装置、Ia…絶縁監視装置の変流器   DESCRIPTION OF SYMBOLS 1 ... Housing, 2 ... Front panel, 3 ... Power switch, 4 ... Cable line, 4a ... Clip, 5 ... Connector, 6 ... Current output line, 7 ... Connector, 8 ... Clamp type current transformer, 8a ... Clamp part , 9 ... Connector, 10 ... Connector, 11 ... Display, 12 ... Electric system changeover switch, 13 ... Injection current changeover switch, 14 ... Current range changeover switch, 15 ... Polarity changeover switch, 16 ... Screen selection button, 17 ... Current Adjustment volume, C ... Test device, Ca ... Control unit, T ... Transformer, G ... Grounding line, I ... Insulation monitoring device, Ia ... Current transformer of insulation monitoring device

Claims (5)

単相交流又は3相交流の電路の接地線に取り付けられた変流器を用いて該接地線を流れる漏れ電流を検出し、該漏れ電流の検出状況に基づいて電路の絶縁状態を監視する絶縁監視装置の試験装置であって、
絶縁監視装置の前記変流器に挿通される電流出力線を含み、漏れ電流に含まれる無効漏れ電流を増加又は減少させる位相の試験電流を生成すると共に、該試験電流を前記電流出力線に注入する電流注入手段と、
前記電流出力線が挿通されるようにして接地線に取り付けられる変流器を含み、該変流器を用いて接地線を流れる漏れ電流と前記電流出力線を流れる試験電流とを合わせて検出する電流検出手段と、
を備えることを特徴とする絶縁監視装置の試験装置。
Insulation that detects a leakage current flowing through the grounding wire using a current transformer attached to the grounding wire of a single-phase AC or three-phase AC circuit, and monitors the insulation state of the circuit based on the detection status of the leakage current A monitoring device testing device,
A current output line inserted into the current transformer of the insulation monitoring device is generated to generate a test current having a phase that increases or decreases the reactive leakage current included in the leakage current, and the test current is injected into the current output line. Current injection means for
A current transformer that is attached to the ground line so that the current output line is inserted, and using the current transformer, a leakage current that flows through the ground line and a test current that flows through the current output line are detected together Current detection means;
A test apparatus for an insulation monitoring apparatus, comprising:
前記電流注入手段は、漏れ電流に含まれる有効漏れ電流を増加又は減少させる位相の試験電流を生成すると共に、該試験電流を電流出力線に注入する状態と、漏れ電流に含まれる無効漏れ電流を増加又は減少させる位相の試験電流を生成すると共に、該試験電流を電流出力線に注入する状態の何れに切替可能である請求項1に記載の絶縁監視装置の試験装置。   The current injection means generates a test current having a phase that increases or decreases the effective leakage current included in the leakage current, and injects the test current into the current output line, and the reactive leakage current included in the leakage current. The test apparatus for an insulation monitoring apparatus according to claim 1, wherein a test current having a phase to be increased or decreased can be generated and switched to a state in which the test current is injected into a current output line. 前記電流注入手段は、漏れ電流に含まれる有効漏れ電流を増加又は減少させる位相の試験電流を生成すると共に、該試験電流を第1の電流出力線に注入する第1の電流注入手段と、漏れ電流に含まれる無効漏れ電流を増加又は減少させる位相の試験電流を生成すると共に、該試験電流を第2の電流出力線に注入する第2の電流注入手段とからなる請求項1に記載の絶縁監視装置の試験装置。   The current injection means generates a test current having a phase that increases or decreases the effective leakage current included in the leakage current, and injects the test current into the first current output line; 2. The insulation according to claim 1, further comprising: a second current injection means for generating a test current having a phase for increasing or decreasing a reactive leakage current included in the current and injecting the test current into the second current output line. Monitoring device test equipment. 請求項1〜3の何れか1項に記載された絶縁監視装置の試験装置を用いた絶縁監視装置の試験方法であって、
無効漏れ電流が増加するように試験電流を注入し、所定の電流値に到達させて、絶縁監視装置が警報動作しないことを確認することを特徴とする絶縁監視装置の試験方法。
An insulation monitoring apparatus test method using the insulation monitoring apparatus test apparatus according to any one of claims 1 to 3,
A test method for an insulation monitoring device, wherein a test current is injected so as to increase a reactive leakage current, and a predetermined current value is reached to confirm that the insulation monitoring device does not perform an alarm operation.
請求項1〜3の何れか1項に記載された絶縁監視装置の試験装置を用いた絶縁監視装置の試験方法であって、
絶縁監視装置が警報動作している状態で、無効漏れ電流が減少するように試験電流を注入し、絶縁監視装置の警報動作が解除されないことを確認することを特徴とする絶縁監視装置の試験方法。
An insulation monitoring apparatus test method using the insulation monitoring apparatus test apparatus according to any one of claims 1 to 3,
A test method for an insulation monitoring device characterized by injecting a test current so as to reduce an invalid leakage current in a state in which the insulation monitoring device is in an alarm operation and confirming that the alarm operation of the insulation monitoring device is not released .
JP2009124542A 2009-05-22 2009-05-22 Insulation monitoring device testing apparatus and insulation monitoring device testing method Active JP5386231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009124542A JP5386231B2 (en) 2009-05-22 2009-05-22 Insulation monitoring device testing apparatus and insulation monitoring device testing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009124542A JP5386231B2 (en) 2009-05-22 2009-05-22 Insulation monitoring device testing apparatus and insulation monitoring device testing method

Publications (2)

Publication Number Publication Date
JP2010271245A JP2010271245A (en) 2010-12-02
JP5386231B2 true JP5386231B2 (en) 2014-01-15

Family

ID=43419373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009124542A Active JP5386231B2 (en) 2009-05-22 2009-05-22 Insulation monitoring device testing apparatus and insulation monitoring device testing method

Country Status (1)

Country Link
JP (1) JP5386231B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6128921B2 (en) * 2013-04-09 2017-05-17 三菱電機ビルテクノサービス株式会社 Non-interruptible insulation diagnosis device and non-interruptible insulation diagnosis method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3602904B2 (en) * 1996-02-28 2004-12-15 ミドリ安全株式会社 Alarm detection test equipment for insulation monitoring equipment
JP4796429B2 (en) * 2006-04-14 2011-10-19 財団法人 関西電気保安協会 Test device for test current generator and insulation monitoring device
JP4993727B2 (en) * 2007-08-31 2012-08-08 日置電機株式会社 Leakage current measuring instrument

Also Published As

Publication number Publication date
JP2010271245A (en) 2010-12-02

Similar Documents

Publication Publication Date Title
US11368384B2 (en) Detecting and locating process control communication line faults from a handheld maintenance tool
EP2453246B1 (en) Leak current detector and method
US20090287430A1 (en) System and Method for Detecting Leak Current
KR100876651B1 (en) Method of leakage current break and measurement leakage current use phase calculation
JP5216958B2 (en) Leakage current detection device and leakage current detection method
KR101300789B1 (en) Instrument and method to obtain ratio error of current transformer for watt-hour-meter
JP5577190B2 (en) Insulation monitoring device
JP2010524418A (en) Method and apparatus for monitoring electrical loads
JP2007047181A (en) Leak current detection device and method
WO2008072287A1 (en) Leakage current determining apparatus and leakage current determining method
JP4599120B2 (en) Electrical installation insulation monitoring device and method
JP5439033B2 (en) Insulation monitoring equipment test equipment
JP5386231B2 (en) Insulation monitoring device testing apparatus and insulation monitoring device testing method
EP2778694B1 (en) Apparatus and method for insulation testing of an electrical supply network
JP2009081929A (en) Cable connection checker
JP4835286B2 (en) Insulation monitoring system and method for low voltage electrical equipment
JP2011252780A (en) Detection method of partial discharge of electrical device using magnetic field probe
JP2009047663A (en) Partial discharge detecting technique for electric equipment and device thereof
JP2006349589A (en) Method for detecting phase of distribution line
JP6608234B2 (en) Contact determination device and measurement device
JP2009079959A (en) Checker for socket polarity connection
JP2002247748A (en) Short-circuit detector
KR20100103186A (en) Inspection device of wire connection part
JP3640474B2 (en) Uninterruptible insulation resistance measuring device
JP2010048577A (en) System discrimination device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120411

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131007

R150 Certificate of patent or registration of utility model

Ref document number: 5386231

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250