JP5383076B2 - Ophthalmic equipment - Google Patents

Ophthalmic equipment Download PDF

Info

Publication number
JP5383076B2
JP5383076B2 JP2008102311A JP2008102311A JP5383076B2 JP 5383076 B2 JP5383076 B2 JP 5383076B2 JP 2008102311 A JP2008102311 A JP 2008102311A JP 2008102311 A JP2008102311 A JP 2008102311A JP 5383076 B2 JP5383076 B2 JP 5383076B2
Authority
JP
Japan
Prior art keywords
light
sensitivity
eye
index
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008102311A
Other languages
Japanese (ja)
Other versions
JP2009247772A (en
JP2009247772A5 (en
Inventor
重秋 小野
信也 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2008102311A priority Critical patent/JP5383076B2/en
Publication of JP2009247772A publication Critical patent/JP2009247772A/en
Publication of JP2009247772A5 publication Critical patent/JP2009247772A5/ja
Application granted granted Critical
Publication of JP5383076B2 publication Critical patent/JP5383076B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Eye Examination Apparatus (AREA)

Description

本発明は、被検眼の眼底を撮影する眼科装置に関するものである。 The present invention relates to ophthalmology device for photographing the fundus of the eye.

特許文献1に開示される散瞳・無散瞳共用眼底カメラでは、無散瞳モードと散瞳モードを切換えている。散瞳モードの場合には、観察用光源からの発光波長を赤外光に、照明光学系を無散瞳型照明光学系に、また位置合わせ用の指標光源の発光波長を赤外光にそれぞれ切換える。一方、散瞳モードの場合には、観察用光源からの発光波長を可視光に、照明光学系を散瞳型照明光学系に、また位置合わせ用の指標光源の発光波長を可視光にそれぞれ切換えている。 In the mydriatic / non-mydriatic fundus camera disclosed in Patent Document 1, the non-mydriatic mode and the mydriatic mode are switched. In non- mydriatic mode, the light emission wavelength from the observation light source is infrared light, the illumination optical system is non-mydriatic illumination optical system, and the light emission wavelength of the index light source for alignment is infrared light Switch each one. On the other hand, in the mydriatic mode, the emission wavelength from the observation light source is switched to visible light, the illumination optical system is switched to the mydriatic illumination optical system, and the emission wavelength of the alignment index light source is switched to visible light. ing.

また、特許文献2に開示される散瞳・無散瞳共用眼底カメラにおいては、無散瞳モードでの近赤外光による眼底観察用には専用のモノクロカメラとして用いている。また、散瞳・無散瞳両モードでの可視光による眼底撮影、及び散瞳モードでの可視光による眼底観察用には専用のカラーカメラを使用し、フォーカス指標、位置合わせ用指標はそれぞれ1つとしている。   Further, the mydriatic / non-mydriatic fundus camera disclosed in Patent Document 2 is used as a dedicated monochrome camera for fundus observation using near-infrared light in the non-mydriatic mode. A dedicated color camera is used for fundus photography with visible light in both mydriatic and non-mydriatic modes and for fundus observation with visible light in mydriatic mode, with a focus index and alignment index of 1 each. I am trying.

特開平10−314120号公報JP 10-314120 A 特開2003−305009号公報JP 2003-305209 A

上述の特許文献1のような眼底カメラでは、位置合わせ、フォーカス合わせ用の指標光源を可視、不可視の2種類をそれぞれ用意し、散瞳モード、無散瞳モードの切換えに伴って指標光源を切換えているため、機構が複雑になり高価になる欠点がある。   In the fundus camera as described in Patent Document 1 above, two types of indicator light sources for positioning and focusing are prepared, visible and invisible, respectively, and the indicator light source is switched according to switching between the mydriatic mode and the non-mydriatic mode. Therefore, the mechanism is complicated and expensive.

また、特許文献2のような眼底カメラでは、近赤外光による撮像は専用のモノクロカメラを用いていたため、指標像と眼底像の区別は輝度のみで行われており、判別し難いという欠点がある。   In addition, the fundus camera as in Patent Document 2 uses a dedicated monochrome camera for imaging with near-infrared light. Therefore, the distinction between the index image and the fundus image is performed only by luminance, and it is difficult to distinguish. is there.

本発明の目的は、上述の問題点を解消し、可視、不可視の2種類の指標光源を不要とし、指標視認性が高い眼科装置を提供することにある。 An object of the present invention is to solve the problems described above, visible, invisible two index light source is unnecessary to provide an ophthalmology device is high visibility of the target image.

上記目的を達成するための本発明に係る眼科装置は、
第1の波長帯域の指標光で被検眼を照明する第1の照明手段と、
前記第1の波長帯域の中心波長よりも長い中心波長である第2の波長帯域の観察光で前記被検眼を照明する第2の照明手段と、
前記第1の波長帯域に対する感度について、三色のうちいずれか一つの色の感度が他の色の感度よりも大きく、前記第2の波長帯域に対する感度について、該一つの色の感度と該他の色の感度との差が該第1の波長に対する感度の場合よりも小さい撮像手段と、
前記指標光により前記撮像手段から出力された前記一つの色の指標像を、前記観察光により前記撮像手段から出力された前記被検眼の白黒画像に重ねて表示手段に表示させる表示制御手段と、を有する。
Ophthalmology apparatus according to the present invention for achieving the above object,
First illumination means for illuminating the subject's eye with index light in the first wavelength band;
A second illuminating means for illuminating the eye to be examined with observation light in a second wavelength band that is a center wavelength longer than a center wavelength of the first wavelength band;
Regarding the sensitivity to the first wavelength band, the sensitivity of any one of the three colors is greater than the sensitivity of the other colors, and for the sensitivity to the second wavelength band, the sensitivity of the one color and the other Imaging means whose difference from the color sensitivity is smaller than in the case of the sensitivity to the first wavelength;
Display control means for displaying on the display means the index image of the one color output from the imaging means by the index light superimposed on the black and white image of the eye to be examined output from the imaging means by the observation light; Have

本発明に係る眼科装置によれば、散瞳・無散瞳モードを共用するカメラにおいて、可視光の光源のみにより指標を提示することができるので、構成が簡単で安価となる。また、無散瞳における近赤外光での眼底観察とカラー眼底撮影を1つの撮像素子で行い得ると共に、近赤外光で観察する眼底像は白黒画像として表示できるため、従来と同じ表示方法が可能になる。 According to ophthalmology apparatus according to the present invention, in a camera to share mydriatic-non-mydriatic mode, it is possible to provide an index only by the light source of visible light, a structure is simple inexpensive. In addition, the fundus observation with near-infrared light in non-mydriatic eyes and color fundus photographing can be performed with one image sensor, and the fundus image observed with near-infrared light can be displayed as a black and white image. Is possible.

本発明を図示の実施例に基づいて詳細に説明する。   The present invention will be described in detail based on the embodiments shown in the drawings.

図1は実施例1の眼底カメラの構成図を示している。観察用光源1から対物レンズ2に至る光軸O1上には、リング状の開口を有する絞り3、ミラー4、リレーレンズ5、フォーカス指標投影手段6、リレーレンズ7、孔あきミラー8が順次に配列されている。観察用光源1は不可視光である850nmに中心波長を持つ近赤外LEDで構成されており、ミラー4は赤外光を透過し、可視光を反射するダイクロイックミラーである。また、ミラー4の入射側にはリング状開口を有する絞り9、撮影用光源10が配列され、これらにより眼底照明光学系が構成されている。また、孔あきミラー8の中央の孔部には光ファイバ11を通じて位置合わせ用指標光源12の出射端が配置されている。   FIG. 1 is a configuration diagram of the fundus camera of the first embodiment. On the optical axis O1 from the observation light source 1 to the objective lens 2, an aperture 3, a mirror 4, a relay lens 5, a focus index projection means 6, a relay lens 7, and a perforated mirror 8 having a ring-shaped opening are sequentially formed. It is arranged. The observation light source 1 is composed of a near-infrared LED having a center wavelength at 850 nm, which is invisible light, and the mirror 4 is a dichroic mirror that transmits infrared light and reflects visible light. Further, a diaphragm 9 having a ring-shaped opening and a photographing light source 10 are arranged on the incident side of the mirror 4, and a fundus illumination optical system is configured by these. In addition, the exit end of the index light source 12 for alignment is disposed through the optical fiber 11 in the central hole of the perforated mirror 8.

フォーカス指標投影手段6は図2に示すように、プリズム部13a、13b、13cを有するフォーカススプリットプリズム14、矩形状の開口部を有するフォーカス指標15、フォーカス指標光源16を有している。   As shown in FIG. 2, the focus index projection unit 6 includes a focus split prism 14 having prism portions 13a, 13b, and 13c, a focus index 15 having a rectangular opening, and a focus index light source 16.

孔あきミラー8の後方の光路上には、合焦レンズ17、撮影レンズ18及び三色波長分解手段19、撮像素子20から成る撮像手段21が配列され、眼底撮影光学系が構成されている。フォーカス指標投影手段6と合焦レンズ17とは、フォーカスリンク機構22によって連動して図1に示す矢印Aの方向へ動き、フォーカス指標投影手段6のフォーカス指標15と、撮像手段21の撮像素子20とが光学的に共役関係になる。また、フォーカス指標投影手段6は静止画撮影時に図1に示す矢印Bの方向に動き、光軸O1上から退避するようになっている。   On the optical path behind the perforated mirror 8, an imaging means 21 including a focusing lens 17, a photographing lens 18, a three-color wavelength resolving means 19, and an imaging element 20 is arranged to constitute a fundus photographing optical system. The focus index projection unit 6 and the focusing lens 17 are moved in the direction of arrow A shown in FIG. 1 in conjunction with the focus link mechanism 22, and the focus index 15 of the focus index projection unit 6 and the image sensor 20 of the imaging unit 21. Are optically conjugate. Further, the focus index projection means 6 moves in the direction of the arrow B shown in FIG. 1 when taking a still image and retracts from the optical axis O1.

撮像手段21の出力は画像信号処理部31を経て演算部32に接続され、また画像信号処理部31の出力は画像を表示する表示器33に接続されている。演算部32の出力は駆動回路34を経て観察用光源1に、駆動回路35を経て撮影用光源10に、駆動回路36を経てフォーカス指標投影手段6に、駆動回路37を経て位置合わせ用指標光源12に接続されている。また演算部32には、撮影スイッチ等を有する入力部38、記録部39が接続されている。   The output of the imaging means 21 is connected to the calculation unit 32 via the image signal processing unit 31, and the output of the image signal processing unit 31 is connected to a display 33 that displays an image. The output of the calculation unit 32 is output to the observation light source 1 via the drive circuit 34, to the imaging light source 10 via the drive circuit 35, to the focus index projection means 6 via the drive circuit 36, and to the alignment index light source via the drive circuit 37. 12 is connected. The calculation unit 32 is connected to an input unit 38 having a photographing switch and the like, and a recording unit 39.

眼底観察において、演算部32は観察用光源1を点灯、調光するために駆動回路34を駆動する。観察用光源1を出射した光束は、絞り3を経て観察用光源1からの赤外光のみが波長選択されてミラー4を通過する。ミラー4を通過した赤外光は、リレーレンズ5、フォーカス指標投影手段6、リレーレンズ7を通り、孔あきミラー8の周辺で反射し、対物レンズ2、被検眼Eの角膜Ec、瞳Epを通り眼底Erを照明する。   In fundus observation, the calculation unit 32 drives the drive circuit 34 to turn on and dim the observation light source 1. The luminous flux emitted from the observation light source 1 passes through the diaphragm 4 through the stop 3 and only the infrared light from the observation light source 1 is wavelength-selected. The infrared light that has passed through the mirror 4 passes through the relay lens 5, the focus index projection means 6, and the relay lens 7, is reflected around the perforated mirror 8, and passes through the objective lens 2, the cornea Ec and the pupil Ep of the eye E to be examined. The fundus Er is illuminated.

演算部32はフォーカス指標投影手段6のフォーカス指標光源16を点灯するために駆動回路36を駆動する。図2において、フォーカス指標光源16からの光束はフォーカススプリットプリズム14のプリズム部13aにより光軸O1方向に偏向され、互いに対称な角度のプリズム面を有するプリズム部13b、13cに達する。プリズム部13b、13cにおける光束は、フォーカス指標15の矩形状の開口部15aを通過し、それぞれ光軸O1に対称な2つのフォーカス指標光Lb、Lcとなり、リレーレンズ7、孔あきミラー8、対物レンズ2を介して被検眼Eに達する。   The calculation unit 32 drives the drive circuit 36 to turn on the focus index light source 16 of the focus index projection means 6. In FIG. 2, the light beam from the focus index light source 16 is deflected in the direction of the optical axis O1 by the prism portion 13a of the focus split prism 14, and reaches the prism portions 13b and 13c having prism surfaces with symmetrical angles. The light beams in the prism portions 13b and 13c pass through the rectangular opening 15a of the focus index 15 to become two focus index lights Lb and Lc that are symmetrical with respect to the optical axis O1, respectively. It reaches the eye E through the lens 2.

図3(a)〜(c)はフォーカス指標光Lb、Lcが被検眼Eの眼底Erに達する様子と、フォーカス指標光Lb、Lcによる眼底Er上のフォーカス指標像Fb、Fcを示している。図3(a)は被検眼Eの眼底Erとフォーカス指標15が光学的に共役な位置関係にある場合である。眼底Erとフォーカス指標15が光学的に共役なので、2つに分離されたフォーカス指標光Lb、Lcは、眼底Er上でフォーカス指標15の矩形状の開口部15aによるフォーカス指標像Fb、Fcとなり一列に並ぶ。   FIGS. 3A to 3C show how the focus index lights Lb and Lc reach the fundus Er of the eye E and focus index images Fb and Fc on the fundus Er by the focus index lights Lb and Lc. FIG. 3A shows a case where the fundus Er of the eye E and the focus index 15 are in an optically conjugate positional relationship. Since the fundus oculi Er and the focus index 15 are optically conjugate, the focus index lights Lb and Lc separated into two become the focus index images Fb and Fc by the rectangular openings 15a of the focus index 15 on the fundus Er and form a line. Lined up.

図3(b)は被検眼Eが図3(a)よりも近視の場合を示している。眼底Erとフォーカス指標15が光学的に共役でないので、指標像Fbが上方に、指標像Fcが下方にずれる。図3(c)は被検眼Eが図3(a)よりも遠視の場合を示している。眼底Erとフォーカス指標15が光学的に共役でないので、指標像Fbが下方に、指標像Fcが上方にずれる。   FIG. 3B shows a case in which the eye E is more myopic than FIG. Since the fundus Er and the focus index 15 are not optically conjugate, the index image Fb is shifted upward and the index image Fc is shifted downward. FIG. 3C shows a case where the eye E is far-sighted than FIG. Since the fundus Er and the focus index 15 are not optically conjugate, the index image Fb is shifted downward and the index image Fc is shifted upward.

フォーカス指標光源16は不可視光である750nmに中心波長を持つ近赤外LEDで構成されている。照明された眼底像及び指標像は、被検眼Eの瞳Ep、角膜Ec、対物レンズ2、孔あきミラー8の孔部を通り、合焦レンズ17、撮影レンズ18を通過し、撮像手段21内の三色波長分解手段19を通り、撮像素子20に結像される。   The focus index light source 16 is composed of a near infrared LED having a center wavelength at 750 nm which is invisible light. The illuminated fundus image and index image pass through the pupil Ep of the eye E, the cornea Ec, the objective lens 2 and the hole of the perforated mirror 8, pass through the focusing lens 17 and the photographing lens 18, and are within the imaging unit 21. The three-color wavelength resolving means 19 is imaged on the image sensor 20.

演算部32は駆動回路37により、750nmに中心波長を持つ近赤外LEDから成る位置合わせ用指標光源12を点灯する。位置合わせ用指標光源12からの光束は光ファイバ11、対物レンズ2を介して被検眼Eの角膜Ecを照射し、その反射光は観察用光源1及びフォーカス指標光源16の眼底Erからの反射像と重畳して、撮像素子20に結像される。   The calculation unit 32 turns on the alignment index light source 12 including a near infrared LED having a center wavelength of 750 nm by the drive circuit 37. The light beam from the alignment index light source 12 irradiates the cornea Ec of the eye E through the optical fiber 11 and the objective lens 2, and the reflected light is a reflected image from the fundus Er of the observation light source 1 and the focus index light source 16. And is imaged on the image sensor 20.

撮像素子20では、結像した眼底像、フォーカス指標像、位置合わせ用指標像に対して光電変換が行われ、画像信号処理部31によって撮像素子20からのデータの読み出し増幅を行い、動画であるデジタル画像データが生成される。この画像データは図4(a)に示すように表示器33に表示され、観察用光源1、フォーカス指標光源16、位置合わせ用指標光源12の中心の波長領域は近赤外域であり、無散瞳モードとして動作している。   In the image sensor 20, photoelectric conversion is performed on the imaged fundus image, focus index image, and alignment index image, and the image signal processing unit 31 reads and amplifies data from the image sensor 20, and is a moving image. Digital image data is generated. The image data is displayed on the display unit 33 as shown in FIG. 4A, and the central wavelength region of the observation light source 1, the focus index light source 16, and the alignment index light source 12 is the near-infrared region, and is not diffused. It operates as a pupil mode.

操作者は表示器33に映出されたフォーカス指標15のフォーカス指標像Fb、Fcを観察し、図示しないフォーカスノブを操作する。この操作は図4(a)の状態から(b)に示すように指標像Fb、Fcを一列に並べることにより、眼底Erとフォーカス指標15とを光学的に共役とする。フォーカスリンク機構22によって、フォーカス指標投影手段6のフォーカス指標15と、撮像素子20が光学的に共役関係になっているので、眼底Erと撮像素子20は光学的に共役関係になり、眼底Erにピントを合わせることができる。   The operator observes the focus index images Fb and Fc of the focus index 15 displayed on the display device 33 and operates a focus knob (not shown). In this operation, the fundus Er and the focus index 15 are optically conjugate by arranging the index images Fb and Fc in a line as shown in FIG. 4B from the state of FIG. Since the focus index 15 of the focus index projection unit 6 and the image sensor 20 are optically conjugate by the focus link mechanism 22, the fundus Er and the image sensor 20 are optically conjugate, so that the fundus Er You can focus.

図5は三色波長分解手段19、撮像素子20を組み合わせた撮像手段21の分光感度特性を示している。フォーカス指標光源16及び位置合わせ用指標光源12の中心波長である750nmでは、図5に示す分光感度特性により、赤(R)の成分にしか感度がないので、フォーカス指標像Fb、Fc、位置合わせ指標像Pは、図4(a)の観察画面上で赤く観察される。   FIG. 5 shows the spectral sensitivity characteristics of the image pickup means 21 in which the three-color wavelength resolving means 19 and the image pickup device 20 are combined. At 750 nm, which is the center wavelength of the focus index light source 16 and the alignment index light source 12, only the red (R) component is sensitive due to the spectral sensitivity characteristics shown in FIG. The index image P is observed in red on the observation screen in FIG.

一方、観察用光源1の中心波長である850nmでは、図5に示す分光感度特性により、赤(R)、緑(G)、青(B)でほぼ同じ感度の波長帯を有するため、眼底像は白黒画像として観察される。つまり、フォーカス指標像Fb、Fc、位置合わせ用指標像Pは眼底像とは異なる色で観察され、操作者にとって視認し易くなっている。   On the other hand, at 850 nm, which is the central wavelength of the observation light source 1, due to the spectral sensitivity characteristics shown in FIG. 5, the red (R), green (G), and blue (B) have substantially the same sensitivity wavelength bands. Is observed as a black and white image. That is, the focus index images Fb and Fc and the alignment index image P are observed in a color different from the fundus image, and are easy for the operator to visually recognize.

操作者は表示器33に表示された図4に示す画像を見ながら位置合わせ、ピント合わせを行い、ピント位置が合ったことを確認し、入力部38の撮影スイッチを押す。演算部32はこれを検知し、駆動回路35を駆動して撮影用光源10を発光させる。また、駆動回路37を駆動して、位置合わせ用指標光源12を消灯すると共に、駆動回路36を駆動してフォーカス指標投影手段6をBの方向に駆動し光路外に退避させる。   The operator performs positioning and focusing while viewing the image shown in FIG. 4 displayed on the display device 33, confirms that the focusing position is correct, and presses the photographing switch of the input unit 38. The calculation unit 32 detects this and drives the drive circuit 35 to cause the photographing light source 10 to emit light. Further, the drive circuit 37 is driven to turn off the alignment index light source 12, and the drive circuit 36 is driven to drive the focus index projection means 6 in the direction B to retract out of the optical path.

ここで、ピント合わせ、位置合わせが完了した状態とは、図4(b)に示すように左右のフォーカス指標像Fb、Fcが一列に並び、位置合わせ用指標像Pが位置合わせ用指標サークルC内に位置する場合である。   Here, the state in which focusing and alignment are completed means that the left and right focus index images Fb and Fc are arranged in a line and the alignment index image P is the alignment index circle C as shown in FIG. It is a case where it is located inside.

撮影用光源10を出射した光束は、リング状の開口を有する絞り9を通過し、ミラー4で反射し、以下観察用光源1と同じ経路を経て被検眼Eの眼底Erを照明する。撮影用光源10は可視光であり、ミラー4は赤外光を透過し可視光を反射するダイクロイックミラーであるため、撮影用光源10を出射した可視光領域のみの光束がミラー4で反射される。   The light beam emitted from the imaging light source 10 passes through the aperture 9 having a ring-shaped opening, is reflected by the mirror 4, and illuminates the fundus Er of the eye E through the same path as the observation light source 1 below. Since the imaging light source 10 is visible light and the mirror 4 is a dichroic mirror that transmits infrared light and reflects visible light, only the visible light region emitted from the imaging light source 10 is reflected by the mirror 4. .

眼底Erの反射光である眼底像は撮像素子20に結像し、撮像素子20で光電変換が行われ、画像信号処理部31によって読み出されて、静止画であるデジタル眼底画像データが生成される。このとき、撮影用光源10は可視光全域の波長の光を出力するので、カラー眼底画像のデータが得られ、表示器33に表示されると同時に、演算部32を経由して記録部39に記録される。   A fundus image, which is reflected light from the fundus Er, is formed on the image sensor 20, photoelectrically converted by the image sensor 20, read out by the image signal processing unit 31, and digital fundus image data that is a still image is generated. The At this time, since the imaging light source 10 outputs light having a wavelength in the entire visible light range, color fundus image data is obtained and displayed on the display device 33, and at the same time via the calculation unit 32 to the recording unit 39. To be recorded.

なお本実施例では、フォーカス指標光源16及び位置合わせ用指標光源12の中心波長は750nmで近赤外光としたが、可視光域であって例えば450nmの青色としてもよい。   In the present embodiment, the center wavelength of the focus index light source 16 and the alignment index light source 12 is 750 nm, which is near infrared light.

図6は実施例2における三色波長分解手段19と撮像素子20とを組み合わせた撮像手段21の分光感度特性図である。実施例1の撮像手段21の図5に示す分光感度特性図との相異は、観察用光源1の中心波長である850nmにおいて、分光感度が赤(R)、緑(G)、青(B)で異なる点にある。撮像手段21の分光感度から、三色波長分解手段19のR、G、Bの各色の透過率が0ではないので、撮像素子20から出力される眼底像には色が付されて観察される。   FIG. 6 is a spectral sensitivity characteristic diagram of the image pickup means 21 combining the three-color wavelength resolving means 19 and the image pickup device 20 in the second embodiment. 5 differs from the spectral sensitivity characteristic diagram shown in FIG. 5 of the imaging means 21 of Example 1 in that the spectral sensitivity is red (R), green (G), blue (B) at the center wavelength of the observation light source 1 at 850 nm. ) Is in a different point. From the spectral sensitivity of the image pickup means 21, the transmittance of each color of R, G, B of the three-color wavelength separation means 19 is not 0, so that the fundus image output from the image pickup device 20 is colored and observed. .

図6から得られる波長850nmにおけるR、G、Bの分光感度の比率は、R:G:B=1.22:0.74:1である。画像信号処理部31においては、B成分を基準として、R成分/1.22、G成分/0.74のように分光感度の差が低減するような補正処理を行うことにより、実施例1と同様に白黒の眼底画像が生成され、表示器33に表示される。   The ratio of the spectral sensitivities of R, G, and B at a wavelength of 850 nm obtained from FIG. 6 is R: G: B = 1.22: 0.74: 1. The image signal processing unit 31 performs correction processing that reduces the difference in spectral sensitivity, such as R component / 1.22 and G component / 0.74, with reference to the B component. Similarly, a black and white fundus image is generated and displayed on the display device 33.

撮像手段21の分光感度特性は、図5に示すように波長850nmの近赤外光の感度に比べて可視域の感度の方が高く、観察用光源1と撮影用光源10の絶対光量を比較した場合に、撮影用光源10の方が大きい。表示器33で同じ明るさで眼底像を表示するようにするために、画像信号処理部31で撮影用光源10を用いて可視光撮影する際に比較して、観察用光源1を点灯して近赤外光で眼底観察を行う場合には、画像信号処理部31の増幅率を高くして画像を生成してもよい。   As shown in FIG. 5, the spectral sensitivity characteristic of the imaging means 21 has a higher sensitivity in the visible region than the sensitivity of near-infrared light having a wavelength of 850 nm, and the absolute light amount of the observation light source 1 and the photographing light source 10 are compared. In this case, the photographing light source 10 is larger. In order to display the fundus image with the same brightness on the display 33, the observation light source 1 is turned on as compared with the case where the image signal processing unit 31 uses the photographing light source 10 to capture visible light. When fundus observation is performed with near-infrared light, the image signal processing unit 31 may increase the amplification factor to generate an image.

位置合わせのための画像では、撮影画像に比べてS/Nは悪くともよいので、可視光撮影する際に比較して、近赤外光で眼底Erの観察を行う際に撮像素子20からの出力を高倍率で増幅する。これにより、一般的にその感度が可視領域よりも近赤外領域で悪いCCD、CMOSセンサから成る撮像素子20の近赤外域での感度不足を補うことが可能になる。   In the image for alignment, the S / N may be worse than that in the captured image. Therefore, when the fundus Er is observed with near-infrared light as compared with the case of photographing with visible light, the image from the image sensor 20 is detected. Amplify the output at high magnification. This makes it possible to compensate for the lack of sensitivity in the near-infrared region of the imaging device 20 composed of a CCD or CMOS sensor, which generally has a lower sensitivity in the near-infrared region than the visible region.

このように、眼底画像の解像力の低下は或る程度許容できるため、周辺の例えば4画素を加算して、低解像度の画像を生成してもよい。   In this way, since a reduction in the resolution of the fundus image can be tolerated to some extent, a low-resolution image may be generated by adding, for example, four peripheral pixels.

図7は実施例3における眼底カメラの構成図を示しており、図1から観察用光源1、絞り3、駆動回路34が削除されている。代りに、ハロゲンランプである第2の観察用光源41、可視カットフィルタ42、コンデンサレンズ43、赤外カットフィルタ44が光路上に追加されている。また、第2の観察用光源41を駆動する駆動回路45、フィルタ駆動回路46が追加されている。   FIG. 7 shows a configuration diagram of the fundus camera in the third embodiment, and the observation light source 1, the diaphragm 3, and the drive circuit 34 are omitted from FIG. Instead, a second observation light source 41, which is a halogen lamp, a visible cut filter 42, a condenser lens 43, and an infrared cut filter 44 are added on the optical path. Further, a drive circuit 45 and a filter drive circuit 46 for driving the second observation light source 41 are added.

入力部38の操作により、近赤外光での無散瞳モードが選択された場合には、演算部32はフィルタ駆動回路46を制御して可視カットフィルタ42を光路に挿入し、赤外カットフィルタ44を光路外に退避させる。これにより、実施例1と同様に近赤外光での眼底観察が可能になる。   When the non-mydriatic mode with near-infrared light is selected by the operation of the input unit 38, the calculation unit 32 controls the filter driving circuit 46 to insert the visible cut filter 42 into the optical path, and the infrared cut The filter 44 is retracted out of the optical path. This enables fundus observation with near-infrared light as in Example 1.

入力部38の撮影スイッチを押すと演算部32はこれを検知し、駆動回路37を駆動して、位置合わせ用指標光源12を消灯する。また、駆動回路36によりフォーカス指標投影手段6をBの方向に駆動し光路外に退避させ、フィルタ駆動回路46を制御して可視カットフィルタ42を光路外に退避させ、赤外カットフィルタ44を光路内に挿入する。   When the photographing switch of the input unit 38 is pressed, the calculation unit 32 detects this and drives the drive circuit 37 to turn off the alignment index light source 12. Also, the drive circuit 36 drives the focus index projection means 6 in the direction B to retract outside the optical path, controls the filter drive circuit 46 to retract the visible cut filter 42 out of the optical path, and moves the infrared cut filter 44 to the optical path. Insert inside.

更には、駆動回路35を駆動して撮影用光源10を発光させる。撮影用光源10を出射した光束は、リング状の開口を有する絞り9を通過し、ミラー4で反射し、以下に観察用光源41と同じ経路で被検眼Eの眼底Erを照明し、カラー眼底像を撮像素子20に導いて結像する。撮像素子20で光電変換が行われ、画像信号処理部31によって静止画であるデジタル眼底画像データが生成され、表示器33に表示されると同時に、記録部39に記録される。   Further, the driving circuit 35 is driven to cause the photographing light source 10 to emit light. The light beam emitted from the imaging light source 10 passes through the aperture 9 having a ring-shaped aperture, is reflected by the mirror 4, and illuminates the fundus Er of the eye E to be examined along the same path as the observation light source 41, so that the color fundus An image is guided to the image sensor 20 to form an image. The image sensor 20 performs photoelectric conversion, and the image signal processing unit 31 generates digital fundus image data as a still image, which is displayed on the display device 33 and simultaneously recorded on the recording unit 39.

入力部38の操作により、可視光での眼底観察、動画記録が可能な散瞳モードが選択された場合には、演算部32はフィルタ駆動回路46を制御して可視カットフィルタ42を光路外に退避させ、赤外カットフィルタ44を光路に挿入する。第2の観察用光源41を出射した可視光は、コンデンサレンズ43、絞り9、ミラー4を反射して、リレーレンズ5、リレーレンズ7を通り、孔あきミラー8の周辺で反射し、対物レンズ2、被検眼Eの角膜Ec、瞳Epを通り眼底Erを照明する。   When a mydriatic mode capable of observing the fundus with visible light and recording a moving image is selected by operating the input unit 38, the calculation unit 32 controls the filter driving circuit 46 to move the visible cut filter 42 out of the optical path. Retract and insert the infrared cut filter 44 into the optical path. The visible light emitted from the second observation light source 41 is reflected by the condenser lens 43, the diaphragm 9, and the mirror 4, passes through the relay lens 5 and the relay lens 7, and is reflected around the perforated mirror 8, and the objective lens. 2. The fundus Er is illuminated through the cornea Ec and the pupil Ep of the eye E.

照明された眼底像及び指標像は、被検眼Eの瞳Ep、角膜Ec、対物レンズ2、孔あきミラー8の孔を通り、合焦レンズ17、撮影レンズ18を通過し、撮像手段21内の三色波長分解手段19を通り、撮像素子20に結像される。   The illuminated fundus image and index image pass through the pupil Ep of the eye E, the cornea Ec, the objective lens 2 and the hole of the perforated mirror 8, pass through the focusing lens 17, and the photographing lens 18, and are within the imaging means 21. It passes through the three-color wavelength resolving means 19 and forms an image on the image sensor 20.

撮像素子20では光電変換が行われ、画像信号処理部31によって動画であるデジタル眼底画像データが生成され、表示器33に表示されると同時に、記録部39に記録される。   In the image sensor 20, photoelectric conversion is performed, and digital fundus image data that is a moving image is generated by the image signal processing unit 31, displayed on the display device 33, and simultaneously recorded on the recording unit 39.

この実施例3では、フォーカス指標光源16及び位置合わせ用指標光源12の中心波長は750nmで近赤外光としたが、可視光域の例えば450nmの青色としてもよい。   In the third embodiment, the center wavelength of the focus index light source 16 and the alignment index light source 12 is 750 nm, which is near infrared light, but may be blue, for example, 450 nm in the visible light range.

フォーカス指標光源16及び位置合わせ用指標光源12の中心波長を可視光領域とした場合に、近赤外光で眼底観察を行う無散瞳モードにおいては、フォーカス指標光源16及び位置合わせ用指標光源12からの光量が大きいと、被検眼Eの瞳孔は縮小する。被検眼Eの瞳孔の縮小を抑えるために、フォーカス指標光源16及び位置合わせ用指標光源12の光量を、可視光で眼底観察、動画記録する散瞳モードに比較して、低光量として連続照射するように演算部32は制御すればよい。   In the non-mydriatic mode in which fundus observation is performed with near-infrared light when the center wavelength of the focus index light source 16 and the alignment index light source 12 is in the visible light region, the focus index light source 16 and the alignment index light source 12 When the amount of light from the eye is large, the pupil of the eye E is reduced. In order to suppress the reduction of the pupil of the eye E, the light intensity of the focus index light source 16 and the alignment index light source 12 is continuously irradiated as low light intensity compared to the mydriatic mode in which fundus observation and moving image recording are performed with visible light. Thus, the calculation unit 32 may be controlled.

なお、無散瞳モードにおいては、画像信号処理部31は被検眼Eに投影されたフォーカス指標像Fb、Fcが撮像される撮像素子20の中央部の範囲を高感度として、フォーカス指標光源16の光量が低くなるよう制御してもよい。これにより、表示器33で観察されるフォーカス指標像は暗くならずに、被検眼Eの瞳孔の縮小を抑えることができる。   In the non-mydriatic mode, the image signal processing unit 31 sets the range of the central portion of the image sensor 20 where the focus index images Fb and Fc projected on the eye E to be imaged are set to high sensitivity, and the focus index light source 16 You may control so that light quantity may become low. Thereby, the focus index image observed on the display device 33 is not darkened, and the reduction of the pupil of the eye E can be suppressed.

実施例1の眼底カメラの構成図である。1 is a configuration diagram of a fundus camera of Example 1. FIG. フォーカス指標投影手段の側面図及び平面図である。It is the side view and top view of a focus parameter | index projection means. フォーカス指標光と、フォーカス指標像の説明図である。It is explanatory drawing of a focus parameter | index light and a focus parameter | index image. 表示器による表示画面の説明図である。It is explanatory drawing of the display screen by a display. 撮像手段の分光感度特性図である。It is a spectral sensitivity characteristic figure of an imaging means. 実施例2の撮像手段の分光感度特性図である。FIG. 6 is a spectral sensitivity characteristic diagram of an imaging unit of Example 2. 実施例3の眼底カメラの構成図である。6 is a configuration diagram of a fundus camera of Example 3. FIG.

符号の説明Explanation of symbols

1 観察用光源
2 対物レンズ
6 フォーカス指標投影手段
8 孔あきミラー
9 絞り
10 撮影用光源
11 光ファイバ
12 位置合わせ用指標光源
14 フォーカススプリットプリズム
16 フォーカス指標光源
19 三色波長分解手段
20 撮像素子
21 撮像手段
22 フォーカスリンク機構
31 画像信号処理部
32 演算部
33 表示器
38 入力部
39 記録部
41 第2の観察用光源
42 可視カットフィルタ
44 赤外カットフィルタ
Fb、Fc フォーカス指標像
Lb、Lc フォーカス指標光
P 位置合わせ用視標像
DESCRIPTION OF SYMBOLS 1 Observation light source 2 Objective lens 6 Focus index projection means 8 Perforated mirror 9 Aperture 10 Imaging light source 11 Optical fiber 12 Positioning index light source 14 Focus split prism 16 Focus index light source 19 Three-color wavelength resolving means 20 Imaging element 21 Imaging Means 22 Focus link mechanism 31 Image signal processing unit 32 Calculation unit 33 Display unit 38 Input unit 39 Recording unit 41 Second observation light source 42 Visible cut filter 44 Infrared cut filter Fb, Fc Focus index image Lb, Lc Focus index light P Target image for alignment

Claims (21)

第1の波長帯域指標被検眼照明する第1の照明手段と、
前記第1の波長帯域の中心波長よりも長い中心波長である第2の波長帯域観察前記被検眼照明する第2の照明手段と、
前記第1の波長帯域に対する感度について、三色のうちいずれか一つの色の感度が他の色の感度よりも大きく、前記第2の波長帯域に対する感度について、該一つの色の感度と該他の色の感度との差が該第1の波長帯域に対する感度の場合よりも小さい撮像手段と、
前記指標光により前記撮像手段から出力された前記一つの色の指標像を、前記観察光により前記撮像手段から出力された前記被検眼の白黒画像に重ねて表示手段に表示させる表示制御手段と、
を有することを特徴とする眼科装置。
First illumination means for illuminating the subject's eye with index light in the first wavelength band ;
A second illuminating means for illuminating the eye to be examined in the observation light of the second wavelength band which is longer center wavelength than the center wavelength of the first wavelength band,
Regarding the sensitivity to the first wavelength band , the sensitivity of any one of the three colors is greater than the sensitivity of the other colors, and for the sensitivity to the second wavelength band , the sensitivity of the one color and the other Imaging means whose difference from the color sensitivity is smaller than that of the sensitivity to the first wavelength band ;
Display control means for displaying on the display means the index image of the one color output from the imaging means by the index light superimposed on the black and white image of the eye to be examined output from the imaging means by the observation light;
An ophthalmologic apparatus comprising:
前記第1及び第2の波長帯域は、近赤外の波長帯域であり、
前記一つの色は、赤色であり、
前記指標像は、赤色であることを特徴とする請求項に記載の眼科装置。
The first and second wavelength bands are near-infrared wavelength bands;
The one color is red;
The ophthalmologic apparatus according to claim 1 , wherein the index image is red.
前記第1及び第2の波長帯域は、可視の波長帯域であり、The first and second wavelength bands are visible wavelength bands,
前記一つの色は、青色であり、The one color is blue;
前記指標像は、青色であることを特徴とする請求項1に記載の眼科装置。The ophthalmologic apparatus according to claim 1, wherein the index image is blue.
近赤外光により前記被検眼を観察する無散瞳モードと、可視光により前記被検眼を観察する散瞳モードとのうちいずれか一方を選択する選択手段を有し、
前記第2の照明手段は、前記選択手段の選択に応じて、近赤外光と可視光とのうちいずれか一方を前記観察光として選択的に前記被検眼に照明することを特徴とする請求項に記載の眼科装置。
A selection means for selecting any one of a non-mydriatic mode for observing the eye to be examined with near-infrared light and a mydriatic mode for observing the eye to be examined with visible light;
The second illuminating means selectively illuminates the eye to be examined with either one of near-infrared light and visible light as the observation light according to the selection by the selecting means. The ophthalmic apparatus according to Item 1 .
前記第1の波長帯域は、可視の波長帯域であり、
前記無散瞳モードの場合、前記指標光の光量を前記散瞳モードの場合よりも低くし、前記指標光により前記撮像手段から出力された前記一つの色の指標像を含む範囲の感度を他の範囲の感度よりも高くする制御手段を有することを特徴とする請求項に記載の眼科装置。
The first wavelength band is a visible wavelength band;
In the non-mydriatic mode, the amount of the index light is set lower than that in the mydriatic mode, and the sensitivity of the range including the index image of the one color output from the imaging unit by the index light is changed. The ophthalmologic apparatus according to claim 4 , further comprising a control unit that makes the sensitivity higher than the above range.
前記撮像手段は、動画の出力と静止画の出力が可能であり、
前記無散瞳モードの増幅率を前記散瞳モードの場合よりも高くし、前記無散瞳モードの解像度を前記散瞳モードの場合よりも低くする制御手段を有することを特徴とする請求項に記載の眼科装置。
The imaging means can output a moving image and a still image,
Claim 4, characterized in that it comprises a control means for the amplification factor of the non-mydriatic mode higher than in the mydriatic mode, lower than a resolution of the non-mydriasis mode of the mydriatic mode An ophthalmic device according to claim 1.
前記第2の波長帯域に対する感度について、前記一つの色の感度と前記他の色の感度との差を低減するように前記被検眼の画像を補正して前記白黒画像を生成する処理を行う処理手段を有することを特徴とする請求項1乃至のいずれか1項に記載の眼科装置。 Processing for correcting the image of the eye to be corrected and generating the black and white image so as to reduce the difference between the sensitivity of the one color and the sensitivity of the other color with respect to the sensitivity to the second wavelength band the ophthalmic apparatus according to any one of claims 1 to 6, characterized in that it comprises means. 前記撮像手段が、撮像素子を有し、該撮像素子が可視の波長帯域で前記三色の感度を持ち、且つ、前記第2の波長帯域に対する感度について、前記一つの色の感度と前記他の色の感度とが略等しくなるように、波長分解する波長分解手段を有することを特徴とする請求項1乃至3のいずれか1項に記載の眼科装置。 Said imaging means has an imaging device, Chi lifting the sensitivity of the three colors image pickup element is in the visible wavelength band, and, for sensitivity to the second wavelength band, said another color sensitivity of said one as the color sensitivity of substantially equal, ophthalmologic apparatus according to any one of claims 1 to 3, characterized in that a wavelength separating means for wavelength-resolved. 可視光を発光させる撮影用光源と、
前記撮影用光源を駆動する駆動手段と、
を有することを特徴とする請求項1乃至のいずれか1項に記載の眼科装置。
A light source for photographing that emits visible light;
Driving means for driving the light source for photographing;
The ophthalmic apparatus according to any one of claims 1 to 8, characterized in that it has a.
前記第1の照明手段が、前記指標光をフォーカス用の指標光として前記被検眼に投影するフォーカス指標投影手段であり、
前記駆動手段が、前記撮影用光源が発光した前記可視光により前記被検眼を静止画として撮影する場合、前記フォーカス指標投影手段を光路から退避させることを特徴とする請求項に記載の眼科装置。
Said first illuminating means is a focus index projection means for projecting the subject's eye the indicator light as an indicator light for focusing,
10. The ophthalmologic apparatus according to claim 9 , wherein the driving unit retracts the focus index projection unit from the optical path when the eye to be inspected is captured as a still image by the visible light emitted from the imaging light source. .
前記第1の照明手段が、前記指標光を位置合わせ用の指標光として前記被検眼に投影する位置合わせ指標投影手段であり、
前記駆動手段が、前記撮影用光源が発光した前記可視光により前記被検眼を静止画として撮影する場合、前記位置合わせ指標投影手段の光源を消灯させることを特徴とする請求項に記載の眼科装置。
It said first illuminating means is a positioning target projecting means for projecting the subject's eye the indicator light as an indicator light for alignment,
10. The ophthalmologic according to claim 9 , wherein the driving unit turns off the light source of the alignment index projection unit when the eye to be inspected is captured as a still image by the visible light emitted from the imaging light source. apparatus.
第1の波長帯域指標で被検眼を照明する工程と、
前記第1の波長帯域の中心波長よりも長い中心波長である第2の波長の観察で前記被検眼照明する工程と、
前記第1の波長帯域に対する感度について、三色のうちいずれか一つの色の感度が他の色の感度よりも大きく、前記第2の波長帯域に対する感度について、該一つの色の感度と該他の色の感度との差が該第1の波長帯域に対する感度の場合よりも小さい撮像手段により前記被検眼を撮像する工程と、
前記指標光により前記撮像手段から出力された前記一つの色の指標像を、前記観察光により前記撮像手段から出力された前記被検眼の白黒画像に重ねて表示手段に表示させる工程と、
を有することを特徴とする眼科装置の制御方法。
Illuminating the subject's eye with index light in the first wavelength band ;
Illuminating the eye to be examined with observation light having a second wavelength that is longer than the center wavelength of the first wavelength band ;
Regarding the sensitivity to the first wavelength band , the sensitivity of any one of the three colors is greater than the sensitivity of the other colors, and for the sensitivity to the second wavelength band , the sensitivity of the one color and the other Imaging the eye to be inspected by an imaging means whose difference from the sensitivity of the color is smaller than in the case of the sensitivity to the first wavelength band ;
Displaying the index image of the one color output from the imaging unit by the index light on a display unit so as to overlap the black and white image of the eye to be examined output from the imaging unit by the observation light;
A method for controlling an ophthalmic apparatus, comprising:
前記第1及び第2の波長帯域は、近赤外の波長帯域であり、The first and second wavelength bands are near-infrared wavelength bands;
前記一つの色は、赤色であり、The one color is red;
前記指標像は、赤色であることを特徴とする請求項12に記載の眼科装置の制御方法。13. The method for controlling an ophthalmologic apparatus according to claim 12, wherein the index image is red.
前記第1及び第2の波長帯域は、可視の波長帯域であり、The first and second wavelength bands are visible wavelength bands,
前記一つの色は、青色であり、The one color is blue;
前記指標像は、青色であることを特徴とする請求項12に記載の眼科装置の制御方法。13. The method for controlling an ophthalmologic apparatus according to claim 12, wherein the index image is blue.
近赤外光により前記被検眼を観察する無散瞳モードと、可視光により前記被検眼を観察する散瞳モードとのうちいずれか一方を選択する工程を有し、Selecting a non-mydriatic mode for observing the eye to be examined with near-infrared light and a mydriatic mode for observing the eye to be examined with visible light; and
前記観察光で前記被検眼を照明する工程において、前記選択する工程における選択に応じて、近赤外光と可視光とのうちいずれか一方を前記観察光として選択的に前記被検眼に照明することを特徴とする請求項12に記載の眼科装置の制御方法。In the step of illuminating the eye to be examined with the observation light, either the near infrared light or the visible light is selectively illuminated as the observation light according to the selection in the selection step. The method for controlling an ophthalmic apparatus according to claim 12.
前記第1の波長帯域は、可視の波長帯域であり、The first wavelength band is a visible wavelength band;
前記無散瞳モードの場合、前記指標光の光量を前記散瞳モードの場合よりも低くし、前記指標光により前記撮像手段から出力された前記一つの色の指標像を含む範囲の感度を他の範囲の感度よりも高くする工程を有することを特徴とする請求項15に記載の眼科装置の制御方法。In the non-mydriatic mode, the amount of the index light is set lower than that in the mydriatic mode, and the sensitivity of the range including the index image of the one color output from the imaging unit by the index light is changed. The method for controlling an ophthalmologic apparatus according to claim 15, further comprising a step of making the sensitivity higher than the range of sensitivity.
前記撮像手段は、動画の出力と静止画の出力が可能であり、The imaging means can output a moving image and a still image,
前記無散瞳モードの増幅率を前記散瞳モードの場合よりも高くし、前記無散瞳モードの解像度を前記散瞳モードの場合よりも低くする工程を有することを特徴とする請求項15に記載の眼科装置の制御方法。The step of making the amplification factor of the non-mydriatic mode higher than that in the case of the mydriatic mode and lowering the resolution of the non-mydriatic mode than in the case of the mydriatic mode. A method for controlling the ophthalmic apparatus described.
前記第2の波長帯域に対する感度について、前記一つの色の感度と前記他の色の感度との差を低減するように前記被検眼の画像を補正して前記白黒画像を生成する処理を行う工程を有することを特徴とする請求項12乃至17のいずれか1項に記載の眼科装置の制御方法。A step of correcting the image of the subject eye so as to reduce the difference between the sensitivity of the one color and the sensitivity of the other color with respect to the sensitivity with respect to the second wavelength band, and performing the process of generating the monochrome image The method for controlling an ophthalmologic apparatus according to claim 12, comprising: 前記指標光で前記被検眼を照明する工程において、前記指標光をフォーカス用の指標光として前記被検眼に投影し、In the step of illuminating the eye to be examined with the index light, the index light is projected onto the eye to be examined as a focus index light,
撮影用の可視光により前記被検眼を静止画として撮影する場合、前記指標光を前記被検眼に投影する手段を光路から退避させる工程を有することを特徴とする請求項12乃至18のいずれか1項に記載の眼科装置の制御方法。19. The method according to claim 12, further comprising a step of retracting means for projecting the index light on the eye to be examined from a light path when the eye to be examined is photographed as a still image with visible light for photographing. The method for controlling an ophthalmic apparatus according to Item.
前記指標光で前記被検眼を照明する工程において、前記指標光を位置合わせ用の指標光として前記被検眼に投影し、In the step of illuminating the eye to be examined with the index light, the index light is projected onto the eye to be examined as index light for alignment,
撮影用の可視光により前記被検眼を静止画として撮影する場合、前記指標光を発生させる光源を消灯させることを特徴とする請求項12乃至18のいずれか1項に記載の眼科装置の制御方法。The method for controlling an ophthalmologic apparatus according to any one of claims 12 to 18, wherein when the eye to be inspected is photographed as a still image with visible light for photographing, the light source that generates the index light is turned off. .
請求項12乃至20のいずれか1項に記載の眼科装置の制御方法の各工程をコンピュータに実行させることを特徴とするプログラム。 A program for causing a computer to execute each step of the method for controlling an ophthalmologic apparatus according to any one of claims 12 to 20 .
JP2008102311A 2008-04-10 2008-04-10 Ophthalmic equipment Expired - Fee Related JP5383076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008102311A JP5383076B2 (en) 2008-04-10 2008-04-10 Ophthalmic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008102311A JP5383076B2 (en) 2008-04-10 2008-04-10 Ophthalmic equipment

Publications (3)

Publication Number Publication Date
JP2009247772A JP2009247772A (en) 2009-10-29
JP2009247772A5 JP2009247772A5 (en) 2012-04-12
JP5383076B2 true JP5383076B2 (en) 2014-01-08

Family

ID=41308992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008102311A Expired - Fee Related JP5383076B2 (en) 2008-04-10 2008-04-10 Ophthalmic equipment

Country Status (1)

Country Link
JP (1) JP5383076B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5554610B2 (en) * 2010-03-31 2014-07-23 株式会社ニデック Fundus photographing device
JP5508140B2 (en) * 2010-05-26 2014-05-28 キヤノン株式会社 Fundus imaging apparatus and processing method thereof
JP5539103B2 (en) * 2010-08-19 2014-07-02 キヤノン株式会社 Fundus camera
JP5550495B2 (en) 2010-08-31 2014-07-16 キヤノン株式会社 Fundus photographing device
JP5886909B2 (en) * 2014-08-19 2016-03-16 キヤノン株式会社 Ophthalmic apparatus, control method therefor, and program

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6294134A (en) * 1985-10-18 1987-04-30 キヤノン株式会社 Non-mydriasis eyeground camera
JP3376040B2 (en) * 1993-09-10 2003-02-10 キヤノン株式会社 Eye photographing device
JPH08206082A (en) * 1995-02-01 1996-08-13 Canon Inc Fundus camera
JP3986350B2 (en) * 2002-04-16 2007-10-03 興和株式会社 Ophthalmic examination equipment
JP2004205562A (en) * 2002-12-20 2004-07-22 Fuji Xerox Co Ltd Toner, image reading apparatus, copying apparatus, image forming apparatus and recording medium

Also Published As

Publication number Publication date
JP2009247772A (en) 2009-10-29

Similar Documents

Publication Publication Date Title
US8356898B2 (en) Fundus camera and ophthalmologic image processing apparatus
US7926946B2 (en) Ophthalmologic imaging apparatus and ophthalmologic imaging method
JP4878277B2 (en) Ophthalmic photographing apparatus and focus unit used for the ophthalmic photographing apparatus
JP5317830B2 (en) Fundus observation device
JP5558688B2 (en) Ophthalmic apparatus and image generation method
US20130335702A1 (en) Ophthalmic image sensing apparatus
JP5117801B2 (en) Fundus photographing device
JP5383076B2 (en) Ophthalmic equipment
JP2016185192A (en) Ophthalmologic apparatus, and control method of ophthalmologic apparatus
JP5460152B2 (en) Ophthalmic equipment
JP2007151651A (en) Fundus camera
JP5048103B2 (en) Ophthalmic imaging equipment
JP4551727B2 (en) Ophthalmic imaging equipment
JP5335586B2 (en) Fundus camera
JP2006110113A (en) Ophthalmic imaging system
JP5701357B2 (en) Ophthalmic imaging apparatus and ophthalmic imaging method
JP5631450B2 (en) Ophthalmic apparatus and method for controlling ophthalmic apparatus
JP6025903B2 (en) Ophthalmic apparatus, image generation method, and program
JP4248270B2 (en) Fundus camera
JP4659263B2 (en) Ophthalmic equipment
JP5683653B2 (en) Ophthalmic apparatus and method for controlling ophthalmic apparatus
JP2020162928A (en) Fundus imaging apparatus
JP2005245894A (en) Ophthalmologic photographing apparatus
JP3073510B2 (en) Ophthalmic imaging equipment
JP2000271088A (en) Fundus photographic apparatus

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100218

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100630

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131001

R151 Written notification of patent or utility model registration

Ref document number: 5383076

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees