JP5335586B2 - Fundus camera - Google Patents

Fundus camera Download PDF

Info

Publication number
JP5335586B2
JP5335586B2 JP2009163897A JP2009163897A JP5335586B2 JP 5335586 B2 JP5335586 B2 JP 5335586B2 JP 2009163897 A JP2009163897 A JP 2009163897A JP 2009163897 A JP2009163897 A JP 2009163897A JP 5335586 B2 JP5335586 B2 JP 5335586B2
Authority
JP
Japan
Prior art keywords
index
fundus
optical system
light
observation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009163897A
Other languages
Japanese (ja)
Other versions
JP2011015898A (en
Inventor
俊文 正木
英之 大番
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2009163897A priority Critical patent/JP5335586B2/en
Publication of JP2011015898A publication Critical patent/JP2011015898A/en
Application granted granted Critical
Publication of JP5335586B2 publication Critical patent/JP5335586B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Eye Examination Apparatus (AREA)

Description

本発明は、被検眼の眼底の観察を可視観察、近赤外観察の両方が可能な散瞳・無散瞳共用の眼底カメラに関するものである。   The present invention relates to a fundus camera for both mydriatic and non-mydriatic which is capable of both visual observation and near-infrared observation of the fundus of a subject's eye.

従来の散瞳・無散瞳共用の眼底カメラは、ピント合わせ用指標をプリズムにより2方向に分離させて被検眼の眼底に投影し、分離された指標像が被検眼の眼底上で一直線に合致した場合に、被検眼の眼底と撮像面が共役になるような構成にされている。   The conventional fundus camera for both mydriatic and non-mydriatic projections separates the index for focusing in two directions with a prism and projects it onto the fundus of the eye to be examined, and the separated index image is aligned on the fundus of the eye to be examined. In this case, the fundus of the eye to be examined and the imaging surface are configured to be conjugate.

しかし、観察時に散瞳で用いる可視光と無散瞳で用いる赤外光では、光学系の屈折率の差によりピント合わせ用指標の指標が合致する位置が異なってしまう。そのため、可視光と赤外光のピントずれの差を補正するために、ピント合わせ指標投影光学系に光路長を補正する光学部材の挿脱を行っている。   However, the position where the index of the index for focusing is different between the visible light used for the mydriatic at the time of observation and the infrared light used for the non-mydriatic due to the difference in the refractive index of the optical system. Therefore, in order to correct the difference in focus between visible light and infrared light, an optical member that corrects the optical path length is inserted into and removed from the focusing index projection optical system.

特開昭60−207636号公報JP-A-60-207636

しかしながら、従来の散瞳・無散瞳共用眼底カメラでは、可視光と赤外光のピント合わせ指標の波長による眼底上でのずれを補正するための光学部材や、この光学部材を挿脱するためのアクチュエータが必要となる。従って、複雑で高価な装置になってしまうという問題がある。   However, in the conventional mydriatic / non-mydriatic retinal camera, an optical member for correcting the deviation on the fundus due to the wavelength of the focusing index of visible light and infrared light, and for inserting and removing this optical member Actuator is required. Therefore, there is a problem that the device becomes complicated and expensive.

図7は従来の合焦用指標投影光学系から被検眼Eまでの光路図である。従来の合焦用指標投影光学系のマスク1は、図8に示すようにマスク1上に反対向きに配置された1対のスプリットプリズム2が貼り付けられている。合焦用指標光源である2色発光LED3からの可視光を発光させた場合に、紙面手前のプリズムを通過した光束は光軸に対して下方に曲げられ、紙面奥のプリズムを通過した光束は光軸に対しては上方に曲げられる。   FIG. 7 is an optical path diagram from the conventional index projection optical system for focusing to the eye E to be examined. As shown in FIG. 8, the conventional mask 1 for focusing index projection optical system has a pair of split prisms 2 disposed on the mask 1 in opposite directions. When visible light is emitted from the two-color light emitting LED 3 that is an index light source for focusing, the light beam that has passed through the prism in front of the paper surface is bent downward with respect to the optical axis, and the light beam that has passed through the prism at the back of the paper surface is It is bent upward with respect to the optical axis.

スプリットプリズム2により上下2方向に分離された光束は、レンズ4、2穴絞り5を通過しミラー6で反射され、リレーレンズ7を介して孔あきミラー8で反射され、対物レンズ9、被検眼Eの角膜Ecを通過し、被検眼Eの眼底Erに投影される。このときの経路を実線で示し、また2方向に分かれた光束が眼底Er上で合致したときに、眼底Erと撮像手段とのピントが合うように調整されている。このとき、眼底像Erには図9(a)のように合焦用指標像Pは一直線に投影される。   The light beam separated in the upper and lower two directions by the split prism 2 passes through the lens 4 and the two-hole aperture 5, is reflected by the mirror 6, is reflected by the perforated mirror 8 through the relay lens 7, and is reflected by the objective lens 9 and the eye to be examined. It passes through the cornea Ec of E and is projected onto the fundus Er of the eye E to be examined. The path at this time is indicated by a solid line, and when the luminous flux divided in two directions matches on the fundus Er, the fundus Er is adjusted to be in focus with the imaging means. At this time, the focusing index image P is projected onto the fundus image Er in a straight line as shown in FIG.

被検眼Eの眼底Erの光学的位置が図7のErfのように近い場合には、合焦用指標像Pは図10(a)のように右側が下、左側が上にずれる。また、眼底Erの光学的位置がErbのように遠い場合には、合焦用指標像Pは図11(a)のように右側が上に、左側が下にずれる。合焦用指標投影光学系は合焦レンズと連動しており、検者は合焦用指標投影光学系を移動させ、合焦用指標像Pを一直線にすることにより、撮像手段と眼底Erのピントを合わせることができる。   When the optical position of the fundus Er of the eye E is close as shown by Erf in FIG. 7, the right index image P is shifted downward and the left side is shifted upward as shown in FIG. Further, when the optical position of the fundus Er is far as shown by Erb, the focusing index image P is shifted up on the right side and down on the left side as shown in FIG. The focusing index projection optical system is interlocked with the focusing lens, and the examiner moves the focusing index projection optical system to align the focusing index image P so that the imaging means and the fundus Er are aligned. You can focus.

しかし、2色発光LED3からの赤外光が発光された場合に、赤外光は可視光よりも屈折率が小さいため、スプリットプリズム2により上下2方向に分離された光束は点線の光路を通り、眼底Erに投影される。従って、2方向に分かれた光束は可視光よりも遠い位置に結像する。   However, when infrared light from the two-color light emitting LED 3 is emitted, the infrared light has a refractive index smaller than that of visible light. Therefore, the light beam separated in the upper and lower directions by the split prism 2 passes through the dotted optical path. And projected onto the fundus Er. Therefore, the light beam divided in two directions forms an image at a position farther than visible light.

この場合には、可視光のときと同様に眼底がEr0の位置、Erfの位置、Erbの位置のときの眼底Er上における合焦用指標像は、それぞれ図9(b)、図10(b)、図11(b)に示すようになる。可視光でピントが合う位置Erでは合焦用指標像はずれていて、Erbの位置で一直線になる。従って、赤外光で合焦用指標像が一直線となる位置で可視光で撮影を行った場合に、ピントぼけの眼底像しか得ることができなくなる。   In this case, as in the case of visible light, the focusing index images on the fundus Er when the fundus is at the Er0 position, Erf position, and Erb position are shown in FIGS. 9B and 10B, respectively. ), As shown in FIG. At the position Er that is in focus with visible light, the index image for focusing is out of alignment, and becomes a straight line at the position of Erb. Accordingly, when photographing with visible light at a position where the focusing index image is in a straight line with infrared light, it is possible to obtain only a defocused fundus image.

本発明の目的は、上述の問題点を解消し、可視観察時と赤外観察時で合焦用基準の表示位置を変更することにより、可視光及び赤外光によっても合焦が可能で低コストな眼底カメラを提供することにある。   The object of the present invention is to solve the above-mentioned problems, and by changing the display position of the focus reference during visible observation and infrared observation, focusing is possible even with visible light and infrared light. The object is to provide an inexpensive fundus camera.

上記目的を達成するための本発明に係る眼底カメラは、被検眼に対向する対物レンズと、被検眼の眼底を観察する観察光学系と、眼底を照明する照明光学系と、前記観察光学系に設け眼底に合焦するための合焦手段と、前記観察光学系の合焦状態を表示する合焦状態表示手段とを有し、前記照明光学系は眼底を可視光を含む光で照明する可視照明光源と近赤外光を含む光で照明する近赤外照明光源とを有する眼底カメラにおいて、前記合焦状態表示手段は、可視光を含む光を発する可視指標光源と近赤外光を含む光束を発する近赤外指標光源とにより合焦用指標を照明して得られた指標像を前記対物レンズの光軸の斜め方向から眼底に投影する指標投影光学系と、前記観察光学系の眼底と共役に設けた合焦基準指標とを有し、該合焦基準指標と前記投影された指標像との位置を基に合焦状態を表示し、可視観察時と近赤外観察時の切換えに連動して、前記可視照明光源と前記近赤外照明光源との切換えと、前記可視指標光源と前記近赤外指標光源の切換えと、前記合焦基準指標の位置の切換えとを行うことを特徴とする。   To achieve the above object, a fundus camera according to the present invention includes an objective lens facing the eye to be examined, an observation optical system for observing the fundus of the eye to be examined, an illumination optical system for illuminating the fundus, and the observation optical system. A focusing unit for focusing on the fundus and a focusing state display unit for displaying a focusing state of the observation optical system, wherein the illumination optical system illuminates the fundus with light including visible light. In a fundus camera having an illumination light source and a near-infrared illumination light source that illuminates with light including near infrared light, the in-focus state display means includes a visible indicator light source that emits light including visible light and near-infrared light. An index projection optical system for projecting an index image obtained by illuminating a focus index with a near-infrared index light source that emits a light beam from an oblique direction of the optical axis of the objective lens, and a fundus of the observation optical system And a focusing reference index provided in a conjugate manner, and the focusing reference index Displaying the in-focus state based on the position of the projected index image, in conjunction with switching between visible observation and near infrared observation, switching between the visible illumination light source and the near infrared illumination light source; The switching between the visible index light source and the near-infrared index light source and the position switching of the focusing reference index are performed.

本発明に係る眼底カメラによれば、可視観察時と近赤外観察時の切換えにおいて、可視照明光源と近赤外照明光源との切換えと、合焦基準指標像の表示位置の切換えとを連動させる連動機構を設けることにより低コストな装置となる。   According to the fundus camera of the present invention, the switching between the visible illumination light source and the near infrared illumination light source and the switching of the display position of the focus reference index image are linked in the switching between the visible observation and the near infrared observation. By providing the interlocking mechanism to be used, a low-cost device is obtained.

実施例の眼底カメラの構成図である。It is a block diagram of the fundus camera of the embodiment. 実施例の合焦用指標投影光学系の光路図である。It is an optical path figure of the index projection optical system for focusing of an Example. 実施例の被検眼眼底上での合焦用指標像の説明図である。It is explanatory drawing of the index image for a focus on the to-be-tested eye fundus of an Example. 実施例の合焦用指標投影光学系によるピントが合った状態での被検眼眼底上での合焦指標像と表示部に表示した合焦基準指標像の説明図である。It is explanatory drawing of the focus reference | standard index image displayed on the focus index image on the to-be-tested eye fundus in the state focused by the focus index projection optical system of an Example, and a display part. 実施例の可視光観察時の表示部の表示、ファインダ光学系の接眼レンズから見たときの説明図である。It is explanatory drawing when it sees from the display of the display part at the time of visible light observation of an Example, and the eyepiece lens of a finder optical system. 実施例における可視光観察時、赤外観察時の表示部の説明図である。It is explanatory drawing of the display part at the time of visible light observation and infrared observation in an Example. 従来の合焦用指標投影光学系の光路図である。It is an optical path diagram of a conventional index projection optical system for focusing. 従来の合焦用指標投影光学系の投影マスクの正面図である。It is a front view of the projection mask of the conventional index projection optical system for focusing. 従来の合焦用指標投影光学系による眼底上での合焦用指標像の説明図である。It is explanatory drawing of the index image for a focus on the fundus by the conventional index projection optical system for a focus. 従来の合焦用指標像が眼底よりも近い位置に結像した場合の合焦用指標像の説明図である。It is explanatory drawing of the index image for a focus when the conventional index image for a focus is imaged in the position close | similar to a fundus. 従来の合焦用指標像が眼底よりも遠い位置に結像した場合の合焦用指標像の説明図である。It is explanatory drawing of the index image for a focus when the conventional index image for a focus is imaged in the position far from the fundus.

本発明を図示の実施例に基づいて詳細に説明する。   The present invention will be described in detail based on the embodiments shown in the drawings.

図1は実施例における眼底カメラの構成図である。赤外光観察光源11から被検眼Eと対向する対物レンズ12に至る眼底照明光学系の光路O1上には、リング状の開口を有する絞り13、赤外光を透過し可視光を反射するダイクロイックミラー14が配置されている。ダイクロイックミラー14の透過方向には、リレーレンズ15、ミラー16、リレーレンズ17、孔あきミラー18が順次に配列されている。ダイクロイックミラー14の入射方向には、ハロゲンランプから成る可視光観察光源19、可視光を発光するキセノン管から成る撮影光源20、リング状開口を有する絞り21が配列されている。なお、赤外光観察光源11は、赤外LEDから成り近赤外光を含む近赤外照明光源であり、観察光源19、撮影光源20は共に可視光を発する可視照明光源である。   FIG. 1 is a configuration diagram of a fundus camera in the embodiment. On the optical path O1 of the fundus illumination optical system from the infrared light observation light source 11 to the objective lens 12 facing the eye E, a diaphragm 13 having a ring-shaped opening, a dichroic that transmits infrared light and reflects visible light. A mirror 14 is arranged. In the transmission direction of the dichroic mirror 14, a relay lens 15, a mirror 16, a relay lens 17, and a perforated mirror 18 are sequentially arranged. In the incident direction of the dichroic mirror 14, a visible light observation light source 19 composed of a halogen lamp, a photographing light source 20 composed of a xenon tube that emits visible light, and a diaphragm 21 having a ring-shaped opening are arranged. The infrared light observation light source 11 is a near-infrared illumination light source that includes infrared LEDs and includes near-infrared light, and both the observation light source 19 and the imaging light source 20 are visible illumination light sources that emit visible light.

ミラー16の入射方向の合焦用指標投影光学系の光路O2には、絞り22、レンズ23、眼底Erと共役に配置された合焦用指標24、可視光と赤外光の発光が可能な2色発光赤外LEDから成る合焦用指標光源25が設けられている。合焦用指標光源25はレンズ23の光軸に対し斜め方向から光束を入射するようにされている。この合焦用指標光源25は可視光観察時には可視光を発光し、赤外光観察時には赤外光を発光するようになっている。   In the optical path O2 of the focusing index projection optical system in the incident direction of the mirror 16, a diaphragm 22, a lens 23, a focusing index 24 arranged conjugate with the fundus Er, visible light and infrared light can be emitted. A focusing index light source 25 comprising a two-color light emitting infrared LED is provided. The focusing index light source 25 is configured to make a light beam incident from an oblique direction with respect to the optical axis of the lens 23. The focusing index light source 25 emits visible light when observing visible light, and emits infrared light when observing infrared light.

孔あきミラー18の背後の眼底撮影及び観察光学系の光路O3上には、合焦レンズ26、撮影レンズ27、クイックリターンミラー28、撮像手段29が配列され、クイックリターンミラー28は図示しない駆動系により光路O3からの退避が可能とされている。   On the fundus photographing and observation optical system optical path O3 behind the perforated mirror 18, a focusing lens 26, a photographing lens 27, a quick return mirror 28, and an imaging means 29 are arranged, and the quick return mirror 28 is not shown. Thus, it is possible to retract from the optical path O3.

孔あきミラー18の孔部には、光ファイバ30の出射端が配置され、入射端には2色発光LEDから成り作動距離用の位置合わせ用指標光源31が配置され、この位置合わせ用指標光源31は可視光観察時は可視光を発光し、赤外光観察時は赤外光を発光する。   An exit end of the optical fiber 30 is disposed in the hole portion of the perforated mirror 18, and an alignment index light source 31 for working distance, which is composed of a two-color LED, is disposed at the incident end. 31 emits visible light when observing visible light, and emits infrared light when observing infrared light.

クイックリターンミラー28の反射側のファインダ光学系の光路O4には、ミラー32、フィールドレンズ33、接眼レンズ34が配列されている。   A mirror 32, a field lens 33, and an eyepiece 34 are arranged in the optical path O4 of the finder optical system on the reflection side of the quick return mirror 28.

また合焦用指標光源25等から成る合焦用指標投影光学系は、合焦レンズ26と連動してA方向に移動可能とされ、静止画撮影時には図示しない駆動系によりB方向に動き、ミラー16は眼底照明光学系の光路O1上から退避される。   Further, the focusing index projection optical system including the focusing index light source 25 and the like is movable in the A direction in conjunction with the focusing lens 26, and is moved in the B direction by a drive system (not shown) when taking a still image. 16 is retracted from the optical path O1 of the fundus illumination optical system.

撮像手段29の出力は画像信号処理部41を介して、演算部42、表示部43に接続されている。演算部42の出力は、駆動回路44、駆動回路45、駆動回路46、駆動回路47、駆動回路48をそれぞれ介して、赤外光観察光源11、可視光観察光源19、撮影光源20、合焦用指標光源25、位置合わせ用指標光源31に接続されている。更に、演算部42には入力部49、記録部50が接続されている。   The output of the imaging means 29 is connected to the calculation unit 42 and the display unit 43 via the image signal processing unit 41. The output of the calculation unit 42 is transmitted through the drive circuit 44, the drive circuit 45, the drive circuit 46, the drive circuit 47, and the drive circuit 48, respectively, to the infrared light observation light source 11, the visible light observation light source 19, the imaging light source 20, and the focus. The index light source 25 and the alignment index light source 31 are connected. Further, an input unit 49 and a recording unit 50 are connected to the calculation unit 42.

また、撮像手段29の各画素上には、R(赤)、G(緑)、B(青)の3色のフィルタがモザイク状に配置された三色分解フィルタが設けられている。各画素のフィルタはそれぞれR、G、Bの光に感度を有し、Rフィルタは赤〜赤外光を透過可能であり、更にRの画素は赤外光にも感度を有している。   Further, a three-color separation filter in which three color filters of R (red), G (green), and B (blue) are arranged in a mosaic pattern is provided on each pixel of the imaging unit 29. The filter of each pixel has sensitivity to R, G, and B light, the R filter can transmit red to infrared light, and the R pixel has sensitivity to infrared light.

近赤外観察時には、画像信号処理部41はRフィルタを経た画素の出力を用いて、モノクロの動画データを生成する赤外モノクロ動画モードが用いられる。可視観察時、静止画撮影時には、画像信号処理部41は同様にR、G、Bフィルタの各画素の出力を用いてカラー出力用の動画データを生成するカラー動画モード、静止画データを生成するカラー静止画モードの切換えが可能とされている。また、画像信号処理部41は演算部42からのキャラクタデータにより生成した画像に画像を合成することができる。   At the time of near-infrared observation, the image signal processing unit 41 uses an infrared monochrome moving image mode in which monochrome moving image data is generated using the output of the pixel that has passed through the R filter. At the time of visual observation and still image shooting, the image signal processing unit 41 similarly generates color moving image mode and still image data for generating moving image data for color output using the output of each pixel of the R, G, and B filters. The color still image mode can be switched. Further, the image signal processing unit 41 can synthesize an image with the image generated by the character data from the calculation unit 42.

図2は実施例の合焦用指標投影光学系の光路図である。合焦用指標光源25を発光させた場合に、横長の開口を持つ合焦用指標24により光束は光軸に対して斜め方向に向かう。投影光はレンズ23、絞り22を通過しミラー16で反射され、リレーレンズ17を通過し孔あきミラー18で反射され、対物レンズ12を斜め方向に通過し、被検眼Eの角膜Ecを経て眼底Erに投影される。   FIG. 2 is an optical path diagram of the focusing index projection optical system of the embodiment. When the focusing index light source 25 emits light, the light beam is directed obliquely with respect to the optical axis by the focusing index 24 having a horizontally long opening. The projection light passes through the lens 23 and the diaphragm 22, is reflected by the mirror 16, passes through the relay lens 17, is reflected by the perforated mirror 18, passes through the objective lens 12 in an oblique direction, passes through the cornea Ec of the eye E to be examined, and reaches the fundus oculi. Projected to Er.

合焦用指標光源25が可視指標光源として機能する場合の光路を実線で示し、近赤外光を含む近赤外指標光源として機能する場合の光路を点線で示す。眼底Erの位置がErb、Er0、Erfの場合に、図3は眼底Er上に投影された合焦用指標像Pと眼底像Er’を示し、(a)は可視光の場合、(b)は赤外光の場合であり、赤外光の場合に合焦用指標像Pは可視光の場合に対して下方にずれることになる。   An optical path when the focusing index light source 25 functions as a visible index light source is indicated by a solid line, and an optical path when it functions as a near-infrared index light source including near-infrared light is indicated by a dotted line. When the position of the fundus oculi Er is Erb, Er0, Erf, FIG. 3 shows the focusing index image P and the fundus oculi image Er ′ projected onto the fundus oculi Er, and (a) is the visible light (b) Is in the case of infrared light, and in the case of infrared light, the focusing index image P is shifted downward relative to the case of visible light.

本実施例では、合焦用指標像Pは従来例のように指標が2つに分離するスプリットプリズムを用いていないので、合焦基準が分かり難い。従って、表示部43上に可視光の場合は図4(a)に示すように眼底Erの位置がEr0のときの位置、つまり眼底Erと撮像手段29のピントが合ったときの位置と同じ高さに、可視光用の合焦基準指標Mvを表示し、合焦状態表示を行う。この合焦基準指標Mbは可視光観察に連動して画像信号処理部41によりキャラクタ画像として電気的に発生する。同様に、赤外光の場合は図4(b)に示すように、眼底Erの位置がErfのときの合焦用指標像Pの位置に、近赤外光用の合焦基準指標Mirを合焦基準指標Mvよりも下方に位置するように電気的に発生させる。   In this embodiment, the focusing index image P does not use a split prism that separates the index into two as in the conventional example, so that the focusing reference is difficult to understand. Therefore, in the case of visible light on the display unit 43, as shown in FIG. 4A, the position is the same as the position when the position of the fundus Er is Er0, that is, the position when the fundus Er and the imaging means 29 are in focus. In addition, the focus reference index Mv for visible light is displayed and the focus state is displayed. The focus reference index Mb is electrically generated as a character image by the image signal processing unit 41 in conjunction with visible light observation. Similarly, in the case of infrared light, as shown in FIG. 4B, the focus reference index Mir for near infrared light is set at the position of the focus index image P when the position of the fundus Er is Erf. It is electrically generated so as to be positioned below the focusing reference index Mv.

可視光を用いて、眼底Erを表示部43で動画による可視観察時には、入力部49に配置された観察モードスイッチを可視光モニタ観察モードに切換えると、画像信号処理部41は演算部42によりカラー動画モードに変更される。モードスイッチが切換えられると、演算部42は可視光観察光源19を点灯、調光するために駆動回路44を駆動し、駆動回路46により赤外光観察光源11を消灯する。また、合焦用指標光源25と位置合わせ用指標光源31から可視光を発光し赤外光が消灯するように、LED駆動回路47、48の駆動を行う。更に、クイックリターンミラー28を撮影光学系の光路O3から退避させる。   At the time of visual observation of the fundus oculi Er with a moving image on the display unit 43 using visible light, the image signal processing unit 41 is changed by the calculation unit 42 when the observation mode switch arranged in the input unit 49 is switched to the visible light monitor observation mode. Change to video mode. When the mode switch is switched, the calculation unit 42 drives the drive circuit 44 to turn on and dim the visible light observation light source 19, and turns off the infrared light observation light source 11 by the drive circuit 46. Further, the LED driving circuits 47 and 48 are driven so that visible light is emitted from the focusing index light source 25 and the alignment index light source 31 and infrared light is turned off. Further, the quick return mirror 28 is retracted from the optical path O3 of the photographing optical system.

可視光観察光源19からの可視光は、撮影光源20、絞り21を透過し、ダイクロイックミラー14、リレーレンズ15、ミラー16、リレーレンズ17を介して、孔あきミラー18で反射され、対物レンズ12、角膜Ecを通過し眼底Erに照射される。   Visible light from the visible light observation light source 19 passes through the photographing light source 20 and the diaphragm 21, and is reflected by the perforated mirror 18 through the dichroic mirror 14, the relay lens 15, the mirror 16, and the relay lens 17, and the objective lens 12. , It passes through the cornea Ec and is irradiated to the fundus Er.

合焦用指標光源25からの可視光は、図2の実線で示すように合焦用指標24、レンズ23、絞り22を通過しミラー16で反射され、リレーレンズ17を通過し、孔あきミラー18で反射される。更に、対物レンズ12の側方を経て、角膜Ecを介して眼底Er上に合焦用指標像Pが投影される。また、位置合わせ用指標光源31からの可視光は、光ファイバ30、対物レンズ12を通過して角膜Ecに照射される。   Visible light from the focusing index light source 25 passes through the focusing index 24, the lens 23, and the aperture 22, and is reflected by the mirror 16, as shown by the solid line in FIG. 2, passes through the relay lens 17, and is a perforated mirror. 18 is reflected. Further, the focus index image P is projected onto the fundus Er via the cornea Ec through the side of the objective lens 12. The visible light from the alignment index light source 31 passes through the optical fiber 30 and the objective lens 12 and is irradiated to the cornea Ec.

眼底像Er’及び眼底Erに投影された合焦用指標像Pは、角膜Ecを通過し更に角膜Ecにより反射された位置合わせ用指標像Aと共に、対物レンズ12、孔あきミラー18の孔を通り、合焦レンズ26、撮影レンズ27を通過し、撮像手段29に結像される。撮像手段29の出力は画像信号処理部41によりカラー動画が生成され、図5(a)に示すように表示部43に眼底像Er’として表示され、更に表示部43上には、演算部42からのキャラクタデータにより合焦用指標像Pと合焦基準指標Mvとが合成される。合焦基準指標Mvと合焦用指標像Pを一列に合わせることで、眼底Erと撮像手段29のピントが合い、ピントがずれると合焦用指標像Pは合焦基準指標Mvに対して上下方向に移動する。   The fundus image Er ′ and the focusing index image P projected onto the fundus Er, together with the alignment index image A that passes through the cornea Ec and is reflected by the cornea Ec, pass through the holes of the objective lens 12 and the perforated mirror 18. Then, the light passes through the focusing lens 26 and the photographing lens 27 and is imaged on the imaging means 29. As the output of the imaging means 29, a color moving image is generated by the image signal processing unit 41 and displayed as a fundus oculi image Er ′ on the display unit 43 as shown in FIG. The focus index image P and the focus reference index Mv are synthesized by the character data from. By aligning the focus reference index Mv and the focus index image P in a line, the fundus Er and the imaging means 29 are in focus, and when the focus is shifted, the focus index image P is moved vertically relative to the focus reference index Mv. Move in the direction.

図5(a)は被検眼Eの眼底Erのピント及び位置が合ったときの表示部43の様子を示す。操作者はこの画像中の合焦基準指標Mbに対する合焦用指標像P、位置合わせ基準指標AMに対する位置合わせ指標像Aを調整しながら、眼底Erのピント合わせ及び位置合わせを行う。   FIG. 5A shows the state of the display unit 43 when the fundus Er of the eye E is in focus and position. The operator focuses and aligns the fundus Er while adjusting the focusing index image P with respect to the focusing reference index Mb and the positioning index image A with respect to the positioning reference index AM in the image.

図5(b)は眼底Erのピント及び位置が合ったときのファインダ光学系の接眼レンズ34から眼底像Er’を見た様子を示している。つまり、ファインダ光学系により可視光で観察する場合には、入力部49の観察モードスイッチを可視光ファインダ観察モードに切換える。観察モードスイッチが切換えられると、演算部42はクイックリターンミラー28を下降しファインダ光学系の光路O4に切換える。ファインダ光学系の内部のフィールドレンズ33には、合焦基準指標Mfと位置合わせ基準指標Afが形成されている。合焦基準指標Mfに対し合焦用指標像Pを一列に合わせ、位置合わせ基準指標Afに対し位置合わせ指標像Aを合わせることで、眼底Erと撮像手段29のピントが合い、位置合わせがなされるように調整されている。   FIG. 5B shows a state in which the fundus oculi image Er ′ is viewed from the eyepiece 34 of the finder optical system when the fundus Er is in focus and position. That is, when observing with visible light by the finder optical system, the observation mode switch of the input unit 49 is switched to the visible light finder observation mode. When the observation mode switch is switched, the calculation unit 42 lowers the quick return mirror 28 and switches to the optical path O4 of the finder optical system. A focusing reference index Mf and an alignment reference index Af are formed on the field lens 33 inside the finder optical system. By aligning the in-focus index image P with the in-focus reference index Mf and aligning the alignment index image A with the alignment reference index Af, the fundus Er and the imaging means 29 are brought into focus and aligned. It has been adjusted so that.

一方、赤外光を用いて眼底Erを表示部43による近赤外観察時には、入力部49の観察モードスイッチを赤外光モニタ観察モードに切換え、画像信号処理部41は演算部42により赤外モノクロ動画モードに変更する。観察モードスイッチが切換えられると、演算部42は駆動回路44により可視光観察光源19を消灯し、駆動回路46により赤外光観察光源11を点灯し調光する。   On the other hand, at the time of near-infrared observation of the fundus Er with the display unit 43 using infrared light, the observation mode switch of the input unit 49 is switched to the infrared light monitor observation mode, and the image signal processing unit 41 is infrared by the calculation unit 42. Change to monochrome video mode. When the observation mode switch is switched, the calculation unit 42 turns off the visible light observation light source 19 by the drive circuit 44 and turns on the infrared light observation light source 11 by the drive circuit 46 for dimming.

また、LED駆動回路47、48の駆動を切換えて、合焦用指標光源25と位置合わせ用指標光源31から赤外光を発光し、可視光を消灯する。更に、クイックリターンミラー28を撮影光学系の光路O3から退避させる。   Further, by switching the driving of the LED drive circuits 47 and 48, infrared light is emitted from the focusing index light source 25 and the alignment index light source 31, and the visible light is turned off. Further, the quick return mirror 28 is retracted from the optical path O3 of the photographing optical system.

赤外光観察光源11からの赤外光は、絞り13、ダイクロイックミラー14、リレーレンズ15、ミラー16、リレーレンズ17を透過し、孔あきミラー18で反射され、対物レンズ12、角膜Ecを通過し眼底Erに照射される。また、合焦用指標光源25からの赤外光は、合焦用指標24、レンズ23、絞り22を通過し、ミラー16で反射され、リレーレンズ17を通過し孔あきミラー18で反射され、対物レンズ12、角膜Ecを通過し、眼底Er上に合焦用指標像が投影される。   Infrared light from the infrared light observation light source 11 passes through the aperture 13, the dichroic mirror 14, the relay lens 15, the mirror 16, and the relay lens 17, is reflected by the perforated mirror 18, and passes through the objective lens 12 and the cornea Ec. The eye fundus Er is irradiated. Infrared light from the focusing index light source 25 passes through the focusing index 24, the lens 23, and the aperture 22, is reflected by the mirror 16, passes through the relay lens 17, and is reflected by the perforated mirror 18, A focusing index image is projected on the fundus Er through the objective lens 12 and the cornea Ec.

赤外光は可視光に対して屈折力が弱いため、合焦用指標の光束は図2の点線の経路を通る。そのため、眼底Erに投影される赤外光の合焦用指標Pの位置は、可視光に対して下の位置になる。また、位置合わせ用指標光源31からの赤外光は、光ファイバ30、対物レンズ12を通過して角膜Ecに照射される。   Since infrared light has a weak refractive power with respect to visible light, the luminous flux of the focusing index passes through the dotted line path in FIG. Therefore, the position of the focus index P for infrared light projected onto the fundus Er is a position below the visible light. The infrared light from the alignment index light source 31 passes through the optical fiber 30 and the objective lens 12 and is irradiated to the cornea Ec.

照明された被検眼Eの眼底像Er’及び投影された合焦用指標像Pは、角膜Ecにより反射された位置合わせ用指標像Aと共に、対物レンズ12、孔あきミラー18の孔の中を通り、合焦レンズ26、撮影レンズ27を介して撮像手段29に結像される。これらの眼底像Er’は赤外モノクロ画像として合焦用指標像Pは画像信号処理部41により共に表示部43に表示される。   The illuminated fundus image Er ′ of the eye E to be examined and the projected index image P for focusing together with the alignment index image A reflected by the cornea Ec pass through the holes of the objective lens 12 and the perforated mirror 18. As shown, the image is formed on the imaging means 29 through the focusing lens 26 and the photographing lens 27. These fundus images Er ′ are infrared monochrome images, and the focusing index image P is displayed on the display unit 43 by the image signal processing unit 41.

図6(a)は眼底Erの位置及び撮像手段29とのピントが合ったときの表示部43の様子を示している。前述したように、近赤外光の合焦用指標像Pは可視光に対して眼底Er上で下方位置に投影されるため、可視観察用の合焦基準指標Mvに対して赤外光の合焦用指標像Pは下方に位置している。   FIG. 6A shows the state of the display unit 43 when the position of the fundus oculi Er and the imaging means 29 are in focus. As described above, since the focus index image P for near-infrared light is projected to a lower position on the fundus Er with respect to visible light, the infrared light is focused on the focus reference index Mv for visible observation. The focusing index image P is positioned below.

仮に、可視観察用の合焦基準指標Mvの位置に、近赤外光による合焦用指標像Pを合わせると、眼底Erに対する撮像手段29のピントがずれてしまうことになる。そのため、表示部43上に図6(b)のようにピントが合った場合の赤外光の合焦用指標像Pの位置に、赤外観察用の合焦基準指標Mirをキャラクタで合成することによりピントずれを補正し観察を行う。これにより、その後に可視光による静止画撮影を行う場合に、そのまま静止画撮影に移行できる。   If the focus index image P by near-infrared light is aligned with the focus reference index Mv for visible observation, the focus of the imaging unit 29 with respect to the fundus Er will be shifted. For this reason, the focus reference index Mir for infrared observation is synthesized with the character at the position of the focus index image P for infrared light when the display unit 43 is in focus as shown in FIG. 6B. As a result, the focus deviation is corrected and observation is performed. Thereby, when still image photography by visible light is performed after that, it can shift to still image photography as it is.

カラー静止画を撮像するには、このようにしてピント及び位置が合ったところで、入力部49の撮影スイッチを押す。演算部42はこれを検知し、画像信号処理部41は演算部42によりカラー静止画撮影モードに変更し、赤外光観察光源11、可視光観察光源19、合焦用指標光源25、位置合わせ用指標光源31の発光を停止する。そして、合焦用指標投影光学系をB方向に駆動して退避させ、クイックリターンミラー28を光路O3から退避させる。   In order to capture a color still image, the photographing switch of the input unit 49 is pressed when the focus and position are adjusted in this way. The calculation unit 42 detects this, and the image signal processing unit 41 changes to the color still image shooting mode by the calculation unit 42, and the infrared light observation light source 11, the visible light observation light source 19, the focusing index light source 25, and the alignment. The indicator light source 31 is turned off. Then, the index projection optical system for focusing is driven in the B direction and retracted, and the quick return mirror 28 is retracted from the optical path O3.

次いで、演算部42が駆動回路46により撮影光源20を発光させると、出射した可視光は絞り21を通過しダイクロイックミラー14で反射し、観察光源19と同じ経路で眼底Erを照明し、その反射光である眼底像Er’を撮像手段29に導き結像する。ここで、撮影光源20は可視光であるが赤外光成分も含んでいる。しかし、ダイクロイックミラー14は赤外光を透過し、可視光を反射するようにしているため、撮影光源20を出射した可視光領域のみの光束がダイクロイックミラー14で反射する。そのため、撮像手段29が赤外光に感度を有していても赤外成分は到達せず、色かぶりの心配はない
撮像手段29では光電変換が行われ、画像信号処理部41によって読み出され、各画素の出力によりカラー静止画データの生成が行われ、演算部42を経由して記録部50に記録する。また、カラー静止画を表示部43に表示させてもよい。
Next, when the arithmetic unit 42 causes the driving circuit 46 to emit the photographing light source 20, the emitted visible light passes through the aperture 21, is reflected by the dichroic mirror 14, and illuminates the fundus Er through the same path as the observation light source 19. The fundus image Er ′, which is light, is guided to the imaging means 29 and imaged. Here, the imaging light source 20 is visible light, but also includes an infrared light component. However, since the dichroic mirror 14 transmits infrared light and reflects visible light, the dichroic mirror 14 reflects only the light beam emitted from the imaging light source 20. Therefore, even if the imaging unit 29 has sensitivity to infrared light, the infrared component does not reach and there is no worry about color cast. The imaging unit 29 performs photoelectric conversion and is read out by the image signal processing unit 41. Color still image data is generated by the output of each pixel, and is recorded in the recording unit 50 via the calculation unit 42. In addition, a color still image may be displayed on the display unit 43.

11 赤外光観察光源
12 対物レンズ
19 可視光観察光源
20 撮影光源
24 合焦用指標
25 合焦用指標光源
29 撮像手段
30 光ファイバ
41 画像信号処理部
42 演算部
43 表示部
49 入力部
50 記録部
DESCRIPTION OF SYMBOLS 11 Infrared light observation light source 12 Objective lens 19 Visible light observation light source 20 Imaging light source 24 Focusing index 25 Focusing index light source 29 Imaging means 30 Optical fiber 41 Image signal processing part 42 Calculation part 43 Display part 49 Input part 50 Recording Part

Claims (3)

被検眼に対向する対物レンズと、被検眼の眼底を観察する観察光学系と、眼底を照明する照明光学系と、前記観察光学系に設け眼底に合焦するための合焦手段と、前記観察光学系の合焦状態を表示する合焦状態表示手段とを有し、前記照明光学系は眼底を可視光を含む光で照明する可視照明光源と近赤外光を含む光で照明する近赤外照明光源とを有する眼底カメラにおいて、前記合焦状態表示手段は、可視光を含む光を発する可視指標光源と近赤外光を含む光束を発する近赤外指標光源とにより合焦用指標を照明して得られた指標像を前記対物レンズの光軸の斜め方向から眼底に投影する指標投影光学系と、前記観察光学系の眼底と共役に設けた合焦基準指標とを有し、該合焦基準指標と前記投影された指標像との位置を基に合焦状態を表示し、可視観察時と近赤外観察時の切換えに連動して、前記可視照明光源と前記近赤外照明光源との切換えと、前記可視指標光源と前記近赤外指標光源の切換えと、前記合焦基準指標の位置の切換えとを行うことを特徴とする眼底カメラ。   An objective lens facing the eye to be examined, an observation optical system for observing the fundus of the eye to be examined, an illumination optical system for illuminating the fundus, a focusing means provided in the observation optical system for focusing on the fundus, and the observation A focus state display means for displaying a focus state of the optical system, and the illumination optical system illuminates the fundus with light including visible light and near red for illuminating with light including near infrared light. In a fundus camera having an external illumination light source, the in-focus state display means is configured to display an in-focus index by a visible index light source that emits light including visible light and a near-infrared index light source that emits a light beam including near-infrared light. An index projection optical system for projecting an index image obtained by illumination onto the fundus from an oblique direction of the optical axis of the objective lens, and a focus reference index provided conjugate with the fundus of the observation optical system, Displays the in-focus state based on the position of the focus reference index and the projected index image In conjunction with switching between visible observation and near-infrared observation, switching between the visible illumination light source and the near-infrared illumination light source, switching between the visible index light source and the near-infrared index light source, A fundus camera characterized by switching the position of a focus reference index. 前記観察光学系は眼底を撮像する撮像手段と、該撮像手段からの画像を出力する表示部と、前記合焦基準指標を前記表示部に電気的に発生させる発生手段とを有することを特徴とする請求項1に記載の眼底カメラ。   The observation optical system includes an imaging unit that images the fundus, a display unit that outputs an image from the imaging unit, and a generation unit that electrically generates the focusing reference index on the display unit. The fundus camera according to claim 1. 前記観察光学系は可視観察のためのファインダ光学系を有し、前記合焦基準指標は前記ファインダ光学系の内部に形成したことを特徴とする請求項1に記載の眼底カメラ。   The fundus camera according to claim 1, wherein the observation optical system includes a finder optical system for visible observation, and the focus reference index is formed inside the finder optical system.
JP2009163897A 2009-07-10 2009-07-10 Fundus camera Expired - Fee Related JP5335586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009163897A JP5335586B2 (en) 2009-07-10 2009-07-10 Fundus camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009163897A JP5335586B2 (en) 2009-07-10 2009-07-10 Fundus camera

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013159172A Division JP5683653B2 (en) 2013-07-31 2013-07-31 Ophthalmic apparatus and method for controlling ophthalmic apparatus

Publications (2)

Publication Number Publication Date
JP2011015898A JP2011015898A (en) 2011-01-27
JP5335586B2 true JP5335586B2 (en) 2013-11-06

Family

ID=43594156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009163897A Expired - Fee Related JP5335586B2 (en) 2009-07-10 2009-07-10 Fundus camera

Country Status (1)

Country Link
JP (1) JP5335586B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013215625A (en) * 2013-07-31 2013-10-24 Canon Inc Fundus camera

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5748268B2 (en) * 2011-04-25 2015-07-15 株式会社トプコン Meibomian gland observation device
JP5807701B2 (en) * 2014-05-28 2015-11-10 株式会社ニデック Fundus photographing device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60207636A (en) * 1984-03-30 1985-10-19 キヤノン株式会社 Eyeground camera
JPH02268733A (en) * 1989-04-10 1990-11-02 Canon Inc Fundus camera having automatic focus matching function
JPH08206082A (en) * 1995-02-01 1996-08-13 Canon Inc Fundus camera

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013215625A (en) * 2013-07-31 2013-10-24 Canon Inc Fundus camera

Also Published As

Publication number Publication date
JP2011015898A (en) 2011-01-27

Similar Documents

Publication Publication Date Title
JP4878277B2 (en) Ophthalmic photographing apparatus and focus unit used for the ophthalmic photographing apparatus
JP4231146B2 (en) Fundus camera
JP5317830B2 (en) Fundus observation device
JP5341386B2 (en) Ophthalmic imaging equipment
JP4138533B2 (en) Fundus camera
JP2016185192A (en) Ophthalmologic apparatus, and control method of ophthalmologic apparatus
JP5435698B2 (en) Fundus camera
JP5335586B2 (en) Fundus camera
JP2007151651A (en) Fundus camera
US20090180072A1 (en) Ophthalmic photography apparatus
JP5460152B2 (en) Ophthalmic equipment
JP5383076B2 (en) Ophthalmic equipment
JP4774305B2 (en) Fundus camera
JP5745864B2 (en) Fundus photographing device
JP4620995B2 (en) Focus unit and ophthalmic photographing apparatus provided with the focus unit
JP4551727B2 (en) Ophthalmic imaging equipment
JP5683653B2 (en) Ophthalmic apparatus and method for controlling ophthalmic apparatus
JP5631450B2 (en) Ophthalmic apparatus and method for controlling ophthalmic apparatus
JP4774317B2 (en) Fundus camera
JP4659173B2 (en) Fundus camera
JPH08150121A (en) Eyeground camera
JP4520244B2 (en) Fundus camera
JPH09131316A (en) Ophthalmologic device
JP2005287705A (en) Fundus camera
JP2004147826A (en) Ophthalmic photographing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130731

LAPS Cancellation because of no payment of annual fees