JP5380226B2 - 空調給湯システム及びヒートポンプユニット - Google Patents

空調給湯システム及びヒートポンプユニット Download PDF

Info

Publication number
JP5380226B2
JP5380226B2 JP2009219895A JP2009219895A JP5380226B2 JP 5380226 B2 JP5380226 B2 JP 5380226B2 JP 2009219895 A JP2009219895 A JP 2009219895A JP 2009219895 A JP2009219895 A JP 2009219895A JP 5380226 B2 JP5380226 B2 JP 5380226B2
Authority
JP
Japan
Prior art keywords
hot water
water supply
refrigerant circuit
heat
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009219895A
Other languages
English (en)
Other versions
JP2011069528A (ja
Inventor
和広 遠藤
達郎 藤居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2009219895A priority Critical patent/JP5380226B2/ja
Priority to CN201080034407.6A priority patent/CN102472535B/zh
Priority to PCT/JP2010/052985 priority patent/WO2011036905A1/ja
Priority to EP10818582.8A priority patent/EP2482005A4/en
Priority to US13/389,024 priority patent/US9003817B2/en
Priority to KR1020127003063A priority patent/KR101343711B1/ko
Publication of JP2011069528A publication Critical patent/JP2011069528A/ja
Application granted granted Critical
Publication of JP5380226B2 publication Critical patent/JP5380226B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/02Central heating systems using heat accumulated in storage masses using heat pumps
    • F24D11/0214Central heating systems using heat accumulated in storage masses using heat pumps water heating system
    • F24D11/0221Central heating systems using heat accumulated in storage masses using heat pumps water heating system combined with solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/0015Domestic hot-water supply systems using solar energy
    • F24D17/0021Domestic hot-water supply systems using solar energy with accumulation of the heated water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • F24D2200/123Compression type heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/14Solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は、空調給湯システムに係り、特に、冷房と暖房とを切替えて行う低温側冷媒回路と、貯湯を行う高温側冷媒回路とが中間熱交換器を介して接続されて二元冷凍サイクルを備える空調給湯システムに好適なものである。
この種の空調給湯システムとしては、特許文献1に示されたものがある。
特許文献1には、高温凝縮器,高温蒸発器,高温用圧縮機,高温用膨張弁を環状に接続して高温サイクルを構成し、低段圧縮機,第一制御弁,四方弁,中間凝縮器兼蒸発器,第一膨張弁,熱源側熱交換器を環状に接続して第一中温サイクルを構成し、前記低段圧縮機の吐出側と前記第一制御弁との間から分岐し、第二制御弁を介し高温側蒸発器と熱交換可能な中間凝縮器,熱源側熱交換器を経て四方弁を介し低段圧縮機の吸入側に接続して第二中温サイクルを構成したヒートポンプシステムが示されている。高温出力と低温出力の同時運転時、中間凝縮器兼蒸発器からの吸熱を高温サイクルの熱源として用いることができるため省エネルギな運転が可能である。さらに、第二制御弁を全開とし、低段圧縮機の吐出圧力が設定値となるように第1制御弁開度を制御することにより、高温出力負荷と低温出力負荷がバランスしていなくても安定な運転が可能である。
特開平4−32669号公報
特許文献1に記載の空調給湯システムでは、給湯(高温出力)と冷房(低温出力)の同時運転時、低段圧縮機の吐出圧力が設定値となるように制御する方法が示されているが、その設定値の与え方については開示されていない。
本発明の目的は、冷媒回路の排温冷熱を有効利用し、高いエネルギ効率を得ることにある。特に、給湯運転と空気冷却運転の同時運転時に適切な運転制御を行うことにより、高いエネルギ効率を得ることにある。
上記目的を達成する本発明は、圧縮機と利用側熱交換器とを有する空気温度調節用冷媒回路と、圧縮機と利用側熱交換器とを有する給湯用冷媒回路とを備え、前記空気温度調節用冷媒回路を循環する冷媒と、前記給湯用冷媒回路を循環する冷媒との間で熱交換を行う中間熱交換器を有し、前記中間熱交換器を前記空気温度調節用冷媒回路の凝縮器として機能させるとともに、前記給湯用冷媒回路の蒸発器として機能させ、前記空気温度調節用冷媒回路による空気冷却運転及び前記給湯用冷媒回路による給湯運転を行う際に、空気温度調節用冷媒回路の空気冷却能力および蒸発温度と、給湯用冷媒回路の給湯能力および凝縮温度とに基づいて設定される給湯用冷媒回路の蒸発温度目標値又は空気温度調節用冷媒回路の凝縮温度目標値となるように、前記空気温度調節用冷媒回路及び給湯用冷媒回路を制御し、空気冷却能力に対する給湯能力の比率が大きいほど、給湯用冷媒回路の蒸発温度目標値又は空気温度調節用冷媒回路の凝縮温度目標値を高く設定することを特徴とする。
本発明によれば、冷媒回路の排温冷熱を有効利用することにより、高いエネルギ効率を得ることができる。特に、給湯運転と空気冷却運転の同時運転時に適切な運転制御を行うことにより、高いエネルギ効率を得ることができる。
本発明の第1の実施例に係る空調給湯システムの系統図である。 本発明の第1の実施例に係る運転モードの状態表である。 本発明の第1の実施例に係る図2の運転モードNo.1−0の冷媒,水及び熱媒体の流れを示す系統図である。 本発明の第1の実施例に係る図2の運転モードNo.1−1の冷媒,水及び熱媒体の流れを示す系統図である。 本発明の第1の実施例に係る図2の運転モードNo.2−0aの冷媒,水及び熱媒体の流れを示す系統図である。 本発明の第1の実施例に係る図2の運転モードNo.2−0bの冷媒,水及び熱媒体の流れを示す系統図である。 本発明の第1の実施例に係る図2の運転モードNo.2−1の冷媒,水及び熱媒体の流れを示す系統図である。 本発明の第1の実施例に係る図2の運転モードNo.2−2の冷媒,水及び熱媒体の流れを示す系統図である。 本発明の第1の実施例に係る図2の運転モードNo.3−0の冷媒及び水の流れを示す系統図である。 本発明の第1の実施例に係る図2の運転モードNo.3−1の冷媒,水及び熱媒体の流れを示す系統図である。 本発明の第1の実施例に係る図2の運転モードNo.4−0の冷媒及び熱媒体の流れを示す系統図である。 本発明の第1の実施例に係る図2の運転モードNo.4−1の冷媒及び熱媒体の流れを示す系統図である。 本発明の第1の実施例に係る図2の運転モードNo.5−0の冷媒及び熱媒体の流れを示す系統図である。 本発明の第1の実施例に係る図2の運転モードNo.5−1の冷媒及び熱媒体の流れを示す系統図である。 本発明の第1の実施例に係る給湯用冷媒回路の蒸発温度目標値設定のフローチャート図である。 本発明の第1の実施例に係る一次式の傾きAと切片Bを設定する表である。 本発明の第1の実施例に係る(貯湯能力/(冷房能力+貯湯能力))と給湯用冷媒回路の蒸発温度目標値との関係を示す図である。 本発明の第1の実施例に係る給湯用冷媒回路の蒸発温度とCOPとの関係を示す図である。
以下、本発明の実施形態について説明する。
以下、本発明に係る空調給湯システム及びヒートポンプユニットの一実施例を、図1から図14を用いて説明する。
本実施例に係る空調給湯システム100は、図1に示すように、空気温度調節用冷媒回路5と、給湯用冷媒回路6と、空気温度調節用冷媒回路5及び給湯用冷媒回路6を循環する冷媒と熱交換を行って温熱又は冷熱を蓄熱する熱媒体を循環させる熱媒体回路7とを備え、前記空気温度調節用冷媒回路5を循環する冷媒と、給湯用冷媒回路6を循環する冷媒と、熱媒体回路7を循環する熱媒体との間で熱交換を行う中間熱交換器23を有する。
以下、具体的に説明する。図1は空調給湯システム100の系統図である。空調給湯システム100は室外に配置されるヒートポンプユニット1と、室内に配置される室内ユニット2と、室外に配置される給湯・蓄熱タンクユニット3と、室外に配置される太陽熱集熱器4とを備える。また、空調給湯システム100は冷房と暖房を切替えて行う空気温度調節用冷媒回路5と、給湯のための運転を行う給湯用冷媒回路6と、温冷熱源を用いて放熱又は採熱を行う熱媒体回路7と、空気温度調節用熱媒体回路8a,8bと、給湯回路9と、太陽集熱用熱媒体回路10,出湯経路11とを備える。前記熱媒体回路7を循環する熱媒体は、太陽熱集熱器4において得られる熱によって加熱される。
なお、空気温度調節用冷媒回路5と給湯用冷媒回路6とは、冷凍サイクルの熱の温度レベルを考慮して、低温側冷媒回路及び高温側冷媒回路と称することができる。
前記ヒートポンプユニット1は、圧縮機21と利用側熱交換器28とを有する空気温度調節用冷媒回路5と、圧縮機41と利用側熱交換器42とを有する給湯用冷媒回路6とを備え、空気温度調節用冷媒回路5と給湯用冷媒回路6との間には中間熱交換器23が配置され、前記中間熱交換器23には、空気温度調節用冷媒回路5及び給湯用冷媒回路6を循環する冷媒と熱交換する熱媒体が導入され、前記中間熱交換器23において、前記空気温度調節用冷媒回路5を循環する冷媒と、給湯用冷媒回路6を循環する冷媒と、前記熱媒体との間で熱交換を行うものである。
空気温度調節用冷媒回路5は、空気温度調節用冷媒を圧縮して高温の冷媒とする圧縮機21と、冷房運転と暖房運転とで空気温度調節用冷媒の流れ方向を切替える四方弁22と、給湯用冷媒回路6の給湯用冷媒及び熱媒体回路7の熱媒体との熱交換を行う中間熱交換器23の空気温度調節用冷媒伝熱管23aと、中間熱交換器23と直列に配置された空気温度調節用冷媒を減圧する減圧装置としての膨張弁24と、中間熱交換器23と並列に配置され、ファン26により送られてくる室外空気との熱交換を行う空気熱交換器25と、空気熱交換器25と直列に配置された空気温度調節用冷媒を減圧する減圧装置としての膨張弁27と、空気温度調節用熱媒体回路8aの熱媒体との熱交換を行う利用側熱交換器28の空気温度調節用冷媒伝熱管28aとを環状に空気温度調節用冷媒管路で接続して構成されている。
空気温度調節用冷媒回路5の冷媒としては、例えば、地球温暖化係数が小さい自然冷媒であるR290(プロパン)が用いられるが、これに限定されるものではない。
圧縮機21は、容量制御が可能な可変容量型圧縮機である。このような圧縮機としては、ピストン式,ロータリー式,スクロール式,スクリュー式,遠心式のものを採用可能である。具体的には、圧縮機21は、スクロール式の圧縮機であり、インバータ制御により容量制御が可能で、低速から高速まで回転速度が可変である。
中間熱交換器23は、空気温度調節用冷媒伝熱管23aと、給湯用冷媒伝熱管23bと、熱媒体伝熱管23cとがお互いに接触するように一体に構成されている三流体熱交換器である。また、利用側熱交換器28は、空気温度調節用冷媒伝熱管28aと、空気温度調節用熱媒体伝熱管28bとが接触するように構成されている。膨張弁24,27は、中間熱交換器23と空気熱交換器25との冷媒流量比率の調整を行う。
なお、膨張弁24,27は、中間熱交換器23及び空気熱交換器25が設けられる配管における冷媒の流量比率を変更するために用いられるものであるが、配管が中間熱交換器23及び空気熱交換器25が設けられる配管に分岐する分岐部分に三方弁を設けるものであってもよい。
空気温度調節用熱媒体回路8aは、空気温度調節用冷媒回路5の利用側熱交換器28の空気温度調節用熱媒体伝熱管28bと、空気温度調節用冷媒回路側の往き配管29と、空気温度調節用往き配管30と、室内空気との熱交換を行う室内ユニット2内に設置された室内熱交換器31と、空気温度調節用熱媒体循環ポンプ33,空気温度調節用熱媒体流量センサ36を含む空気温度調節用戻り配管32と、開閉弁35aを含む空気温度調節用冷媒回路側の戻り配管34とを環状に接続して構成されている。
循環ポンプ33は空気温度調節用熱媒体回路8a内に熱媒体を循環させるポンプであり、流量センサ36は熱媒体の流量を検知するセンサである。開閉弁35aは、後述の開閉弁35bと共に、空気温度調節用熱媒体回路8aと、後述の空気温度調節用熱媒体回路8bとの切替えを行う。
ここで、空気温度調節用熱媒体回路8bは、蓄熱タンク60内の水の温度が、室内熱交換器31で暖房を行うのに十分高い場合、利用される。このとき、空気温度調節用冷媒回路5を動作させないので、エネルギ効率を高く維持することができる。
なお、開閉弁35a及び開閉弁35bをそれぞれ設ける代わりに、空気温度調節用戻り配管32と第2戻り配管72bと配管34との接続部分に三方弁を設けるものであってもよい。
給湯用冷媒回路6は、給湯用冷媒を圧縮して高温の冷媒とする圧縮機41と、高温となった給湯用冷媒と給湯回路9の水との熱交換を行う利用側熱交換器42の給湯用冷媒伝熱管42aと、給湯用冷媒を減圧する減圧装置としての膨張弁43と、空気温度調節用冷媒回路5の空気温度調節用冷媒及び熱媒体回路7の熱媒体との熱交換を行い、低温低圧の給湯用冷媒を蒸発させる中間熱交換器23の給湯用冷媒伝熱管23bと、膨張弁43と並列に配置された給湯用冷媒を減圧する減圧装置としての膨張弁44と、膨張弁44と直列に配置され、ファン46により送られてくる室外空気との熱交換を行い、低温低圧の冷媒を蒸発させる空気熱交換器45とを環状に給湯用冷媒管路で接続して構成される。
給湯用冷媒回路6の冷媒としては、例えば、地球温暖化係数が小さいHFO1234yfが用いられるが、これに限定されるものではない。冷媒としてHFO1234yfは低圧冷媒であるため、これを用いた場合、配管の肉厚を薄くできるという利点がある。
圧縮機41は、圧縮機21と同様にインバータ制御により容量制御が可能で、低速から高速まで回転速度が可変である。利用側熱交換器42は、給湯用冷媒伝熱管42aと、給湯用水伝熱管42bとが接触するように構成されている。膨張弁43,44は、中間熱交換器23と空気熱交換器45との冷媒流量比率の調整を行う。
なお、膨張弁43,44は、中間熱交換器23及び空気熱交換器45が設けられる配管における冷媒の流量比率を変更するために用いられるものであるが、配管が中間熱交換器23及び空気熱交換器45が設けられる配管に分岐する分岐部分に三方弁を設けるものであってもよい。
給湯回路9は、給湯タンク50の下部と、給湯用水循環ポンプ52,給湯用水流量センサ54を含む給湯用往き配管51と、給湯用冷媒回路6の利用側熱交換器42の給湯用水伝熱管42bと、給湯用戻り配管53とを環状に接続して構成される。循環ポンプ52は給湯回路9内に水を循環させるポンプ,流量センサ54は水の流量を検知するセンサである。そして、給湯タンク50には、温水が貯湯される。
太陽集熱用熱媒体回路10は、蓄熱タンク60内の水への放熱を行うタンク内第1熱交換器61と、太陽熱集熱用熱媒体循環ポンプ63を含む太陽熱集熱用往き配管62と、太陽熱集熱器4と、太陽熱集熱用戻り配管64とを環状に接続して構成されている。
太陽熱集熱器4は、太陽熱により熱媒体を加熱する。循環ポンプ63は太陽集熱用熱媒体回路10内に熱媒体を循環させるポンプである。
熱媒体回路7は、蓄熱タンク60内の水からの採熱又は水への放熱を行うタンク内第2熱交換器70と、第1往き配管71aと、空気温度調節用冷媒回路5の空気温度調節用冷媒及び給湯用冷媒回路6の給湯用冷媒との熱交換を行う中間熱交換器23の熱媒体伝熱管23cと、循環ポンプ73を含む第1戻り配管72aとを環状に接続して構成されている。また、第1往き配管71aと戻り配管72aとの間を接続する、バイパス弁75を含むバイパス配管74を備える。
バイパス弁75は、戻り配管72a内の中間熱交換器23で温度変化した熱媒体の一部をバイパス配管74にバイパスして、タンク内第2熱交換器70において蓄熱タンク60内の水からの採熱又は水への放熱を行った熱媒体に混合し、所望の温度の熱媒体を中間熱交換器23へ供給する。
なお、熱媒体を適温に調整して利用する方法としては、バイパスを設けるものに限定されるものではない。例えば、ポンプ73として流量可変のものを利用し、該ポンプの流速を調整することにより、吸熱量・放熱量を変化させるものであってもよい。
空気温度調節用熱媒体回路8aとの切替えを行う空気温度調節用熱媒体回路8bは、蓄熱タンク60内の水からの採熱又は水への放熱を行うタンク内第2熱交換器70と、第2往き配管71bと、空気温度調節用往き配管30,室内空気との熱交換を行う室内ユニット2内に設置された室内熱交換器31と、空気温度調節用熱媒体循環ポンプ33,流量センサ36を含む空気温度調節用戻り配管32と、開閉弁35bを含む第2戻り配管72bとを環状に接続して構成されている。また、第2往き配管71bと戻り配管72bとの間を接続する、バイパス弁81を含むバイパス配管80を備える。
バイパス弁81は、バイパス弁75と同様に、戻り配管72b内の室内熱交換器31で温度変化した熱媒体の一部をバイパス配管80にバイパスして、タンク内第2熱交換器70において蓄熱タンク60内の水からの採熱又は水への放熱を行った熱媒体に混合し、所望の温度の熱媒体を室内熱交換器31へ供給する。
出湯経路11は、給湯タンク50と、蓄熱タンク60と、給湯・蓄熱タンクユニット3の外部の上水道と接続される給水金具90と、この給水金具90と給湯タンク50下部とを接続する給水管91と、この給水管91と蓄熱タンク60下部とを接続する第1の給水分岐管92と、第1給湯混合弁95及び第2給湯混合弁97を含む給湯管93と、この給湯管93と接続され外部の給湯端末と接続される給湯金具98と、蓄熱タンク60上部と給湯混合弁95とを接続する出湯管94と、給水管91と第2給湯混合弁97とを接続する第2の給水分岐管96とを備える。なお、蓄熱タンクは、蓄熱という機能から見た場合、出湯経路11と接続されず、独立して設けられるものであってもよい。
給湯混合弁95は、給湯タンク50内の湯と蓄熱タンク70内の湯とを混合し、給湯混合弁97は、給湯混合弁95で混合された湯と第2の給水分岐管96からの水とを混合し、所望の温度の水を給湯金具98から供給する。
空調給湯システム100は複数の温度センサを備えている。例えば、空気温度調節用熱媒体回路8aは、空気温度調節用冷媒回路5の利用側熱交換器28の空気温度調節用熱媒体伝熱管28bの入口と出口の温度を検知する温度センサ37,38を備える。また、利用側熱交換器28の空気温度調節用冷媒伝熱管28aに冷媒温度を検知する温度センサ39を備える。さらに、給湯回路9には、給湯用冷媒回路6の利用側熱交換器42の給湯用水伝熱管42bの入口と出口の温度を検知する温度センサ55,56を備える。さらにまた、給湯用冷媒回路6の利用側熱交換器42の給湯用冷媒伝熱管42aに冷媒温度を検知する温度センサ57を備え、中間熱交換器23の給湯用冷媒伝熱管23bに冷媒温度を検知する温度センサ58を備える。
熱媒体回路7には、タンク内第2熱交換器70からの熱媒体の温度を検知する温度センサ76と、中間熱交換器23への熱媒体往き温度を検知する温度センサ77と、中間熱交換器23からの熱媒体戻り温度を検知する温度センサ78とを備える。
前記中間熱交換器23は、空気温度調節用冷媒回路5の管路の一部と、給湯用冷媒回路6の管路の一部と、熱媒体回路7の管路の一部とを互いに隣り合わせ一体に構成したものであり、三流体熱交換器とも称することができる。
制御装置20は、図示しないリモコンと、各温度センサの信号とを入力し、これらの信号に基づいて、圧縮機21,41と、四方弁22と、膨張弁24,27,43,44と、循環ポンプ33,52,63,73などの制御を行う。
以上のように構成する空調給湯システム100の給湯運転,暖房運転及び冷房運転の動作について、以下に説明する。図2に各運転モードの状態表、図3〜図14に各運転モードの冷媒,水及び熱媒体の流れを示す系統図を示す。
まず、図3の<1>運転モードNo.1−0の給湯・暖房運転について説明する。このモードは、給湯及び暖房の熱源として空気熱を用いる。図3に冷媒,水及び熱媒体の流れを示す。このとき、空気温度調節用冷媒回路5の膨張弁24,給湯用冷媒回路6の膨張弁43は全閉で冷媒は流れない。また、空気温度調節用熱媒体回路8aの開閉弁35aは開で熱媒体を流し、空気温度調節用熱媒体回路8bの開閉弁35bは閉で熱媒体を流さない。熱媒体回路7は動作しない。
空気温度調節用冷媒回路5では、圧縮機21で圧縮され高温高圧となったガス冷媒は、四方弁22を通って、利用側熱交換器28の空気温度調節用冷媒伝熱管28aに流入する。空気温度調節用冷媒伝熱管28a内を流れる高温高圧のガス冷媒は、空気温度調節用熱媒体伝熱管28b内を流れる熱媒体により冷却される(冷媒の種類によっては、凝縮し、液化する)。この高圧の冷媒は膨張弁27で減圧され、低温低圧の冷媒(冷媒の種類によっては、気液二相冷媒)となり、空気熱交換器25において、ファン26により送られてくる室外空気により加熱され(冷媒の種類によっては、蒸発し)、低圧のガス冷媒となる。この低圧のガス冷媒は、四方弁22を通って、再び圧縮機21に戻る。
空気温度調節用熱媒体回路8aでは、循環ポンプ33の運転によって吐出された熱媒体は、配管34を通って、利用側熱交換器28の空気温度調節用熱媒体伝熱管28bに流入する。空気温度調節用熱媒体伝熱管28b内を流れる熱媒体は、空気温度調節用冷媒伝熱管28a内を流れる高温の冷媒により加熱され昇温する。温度の上昇した熱媒体は、往き配管29,30を通って、室内熱交換器31において、室内空気により冷却され、温度低下する。このとき、室内空気を加熱することにより暖房を行う。温度の低下した熱媒体は、戻り配管32を通って、再び循環ポンプ33に戻る。
給湯用冷媒回路6では、圧縮機41で圧縮され高温高圧となったガス冷媒は、利用側熱交換器42の給湯用冷媒伝熱管42aに流入する。給湯用冷媒伝熱管42a内を流れる高温高圧のガス冷媒は、給湯用水伝熱管42b内を流れる水により冷却される(冷媒の種類によっては、凝縮し、液化する)。この高圧の冷媒は膨張弁44で減圧され、低温低圧の冷媒(冷媒の種類によっては、気液二相冷媒)となり、空気熱交換器45において、ファン46により送られてくる室外空気により加熱され(冷媒の種類によっては、蒸発し)、低圧のガス冷媒となり、再び圧縮機41に戻る。
給湯回路9では、循環ポンプ52の運転により給湯タンク50の下部から流出した水は、往き配管51を通り、利用側熱交換器42の給湯用水伝熱管42bに流入する。給湯用水伝熱管42b内を流れる水は、給湯用冷媒伝熱管42a内を流れる高温の冷媒により加熱され昇温し、戻り配管53を通って、給湯タンク50の上部に戻され、高温の湯が貯湯される。
次に、図4の<2>運転モードNo.1−1の給湯・暖房運転ついて説明する。このモードは、前記中間熱交換器23を前記空気温度調節用冷媒回路5の蒸発器として機能させるとともに、前記給湯用冷媒回路6の蒸発器として機能させ、前記中間熱交換器23において前記空気温度調節用冷媒回路5及び給湯用冷媒回路6を循環する冷媒に対して前記熱媒体回路7を循環する熱媒体の温熱を与えることにより、前記空気温度調節用冷媒回路5による空気加熱運転(即ち、冷房運転)及び前記給湯用冷媒回路6による給湯運転を行うものである。
具体的には、給湯及び暖房の熱源として蓄熱タンク60内の温水を用いる。なお、蓄熱タンク60内の温水は、太陽集熱用熱媒体回路10により太陽熱により加熱されたものである。図4に冷媒,水及び熱媒体の流れを示す。このとき、空気温度調節用冷媒回路5の膨張弁27,給湯用冷媒回路6の膨張弁44は全閉で冷媒は流れない。また、空気温度調節用熱媒体回路8aの開閉弁35aは開で熱媒体を流し、空気温度調節用熱媒体回路8bの開閉弁35bは閉で熱媒体を流さない。
空気温度調節用熱媒体回路8aでの動作は、前述の<1>運転モードNo.1−0の場合と同じである。
給湯用冷媒回路6では、圧縮機41で圧縮され高温高圧となったガス冷媒は、利用側熱交換器42の給湯用冷媒伝熱管42aに流入する。給湯用冷媒伝熱管42a内を流れる高温高圧のガス冷媒は、給湯用水伝熱管42b内を流れる水により冷却される(冷媒の種類によっては、凝縮し、液化する)。この高圧の冷媒は膨張弁43で減圧され、低温低圧の冷媒(冷媒の種類によっては、気液二相冷媒)となり、中間熱交換器23の給湯用冷媒伝熱管23bにおいて、熱媒体伝熱管23c内を流れる熱媒体により加熱され(冷媒の種類によっては、蒸発し)、低圧のガス冷媒となり、再び圧縮機41に戻る。
給湯回路9での動作は、前述の<1>運転モードNo.1−0の場合と同じである。
熱媒体回路7では、蓄熱タンク60内の第2熱交換器70において加熱された熱媒体は、循環ポンプ73の運転により、往き配管71aを通り、中間熱交換器23の熱媒体伝熱管23cに流入する。熱媒体伝熱管23c内を流れる熱媒体は、空気温度調節用冷媒伝熱管23a内及び給湯用冷媒伝熱管23b内を流れる低温の冷媒により冷却され温度低下し、戻り配管72aを通って、再び蓄熱タンク60内の第2熱交換器70に戻る。
次に、給湯・冷房運転のモードについて説明する。このモードは、前記中間熱交換器23を前記空気温度調節用冷媒回路5の凝縮器として機能させるとともに、前記給湯用冷媒回路6の蒸発器として機能させ、前記中間熱交換器23において給湯用冷媒回路6を循環する冷媒に対して前記空気温度調節用冷媒回路5を循環する冷媒の温熱を与えることにより、前記空気温度調節用冷媒回路5による空気冷却運転(即ち、冷房運転)及び前記給湯用冷媒回路6による給湯運転を行うものである。
具体的には、前記空気温度調節用冷媒回路5において前記中間熱交換器23と並列に配置される空気熱交換器25と、前記給湯用冷媒回路6において前記中間熱交換器23と並列に配置される空気熱交換器45とを用い、給湯用冷媒回路6を循環する冷媒の前記中間熱交換器23における必要熱量と前記空気温度調節用冷媒回路5を循環する冷媒の前記中間熱交換器23における放熱量とが吊り合わない場合、不足する熱を前記空気熱交換器25又は空気熱交換器45における熱交換により補うものが考えられる。
図5の<3>運転モードNo.2−0aは、給湯のための熱源(吸熱)が冷房の放熱より大きい場合であり、給湯の熱源として冷房の放熱及び空気熱を用いる。図5に冷媒,水及び熱媒体の流れを示す。このモードは、給湯の吸熱量が冷房の放熱量より大きくなる給湯・冷房運転にも対応可能である点で優れている。
このとき、空気温度調節用冷媒回路5の膨張弁27は全閉で冷媒は流れない。また、空気温度調節用熱媒体回路8aの開閉弁35aは開で熱媒体を流し、空気温度調節用熱媒体回路8bの開閉弁35bは閉で熱媒体を流さない。熱媒体回路7は動作しない。
空気温度調節用冷媒回路5では、圧縮機21で圧縮され高温高圧となったガス冷媒は、四方弁22を通って、中間熱交換器23の空気温度調節用冷媒伝熱管23aに流入する。空気温度調節用冷媒伝熱管23a内を流れる高温高圧のガス冷媒は、給湯用伝熱管23b内を流れる温度の低い冷媒により冷却される(冷媒の種類によっては、凝縮し、液化する)。この高圧の冷媒は膨張弁24で減圧され、低温低圧の冷媒(冷媒の種類によっては、気液二相冷媒)となり、利用側熱交換器28の空気温度調節用冷媒伝熱管28aに流入する。空気温度調節用冷媒伝熱管28a内を流れる気液二相冷媒は、空気温度調節用熱媒体伝熱管28b内を流れる温度の高い熱媒体により加熱され(冷媒の種類によっては、蒸発し)、低圧のガス冷媒となる。この低圧のガス冷媒は、四方弁22を通って、再び圧縮機21に戻る。
空気温度調節用熱媒体回路8aでは、循環ポンプ33の運転によって吐出された熱媒体は、配管34を通って、利用側熱交換器28の空気温度調節用熱媒体伝熱管28bに流入する。空気温度調節用熱媒体伝熱管28b内を流れる熱媒体は、空気温度調節用冷媒伝熱管28a内を流れる低温の冷媒により冷却され温度低下する。温度の低下した熱媒体は、往き配管29,30を通って、室内熱交換器31において、室内空気により加熱され、温度上昇する。このとき、室内空気を冷却することにより冷房を行う。温度の上昇した熱媒体は、戻り配管32を通って、再び循環ポンプ33に戻る。
給湯用冷媒回路6では、圧縮機41で圧縮され高温高圧となったガス冷媒は、利用側熱交換器42の給湯用冷媒伝熱管42aに流入する。給湯用冷媒伝熱管42a内を流れる高温高圧のガス冷媒は、給湯用水伝熱管42b内を流れる水により冷却される(冷媒の種類によっては、凝縮し、液化する)。この高圧の冷媒は膨張弁43及び44で減圧される。このとき、膨張弁43,44は、中間熱交換器23を流れる冷媒と空気熱交換器45を流れる冷媒との流量比率の調整を行う。膨張弁43で減圧され、低温低圧となった冷媒(冷媒の種類によっては、気液二相冷媒)は、中間熱交換器23の給湯用冷媒伝熱管23bにおいて、空気温度調節用冷媒伝熱管23a内を流れる温度の高い冷媒により加熱され蒸発し、低圧のガス冷媒となる。一方、膨張弁44で減圧され、低温低圧となった冷媒は、空気熱交換器45において、ファン46により送られてくる室外空気により加熱され(冷媒の種類によっては、蒸発し)、低圧のガス冷媒となる。中間熱交換器23及び空気熱交換器を出たガス冷媒は再び圧縮機41に戻る。このとき、給湯の熱源として冷房の排熱及び空気熱が使用される。
給湯回路9での動作は、前述の<1>運転モードNo.1−0の場合と同じである。
図6の<4>運転モードNo.2−0bは、給湯に必要な熱源(吸熱)が冷房の放熱より小さい場合であり、余分な冷房の放熱を空気に吸熱させる。図6に冷媒,水及び熱媒体の流れを示す。このとき、給湯用冷媒回路6の膨張弁44は全閉で冷媒は流れない。また、空気温度調節用熱媒体回路8aの開閉弁35aは開で熱媒体を流し、空気温度調節用熱媒体回路8bの開閉弁35bは閉で熱媒体を流さない。熱媒体回路7は動作しない。
空気温度調節用冷媒回路5では、圧縮機21で圧縮され高温高圧となったガス冷媒は、四方弁22を通って、中間熱交換器23の空気温度調節用冷媒伝熱管23a及び空気熱交換器25に流入する。空気温度調節用冷媒伝熱管23aに流入した高温高圧のガス冷媒は、給湯用伝熱管23b内を流れる温度の低い冷媒により冷却される(冷媒の種類によっては、凝縮し、液化する)。一方、空気熱交換器25に流入した高温高圧のガス冷媒は、ファン26により送られてくる室外空気により冷却され凝縮し、液化する。中間熱交換器23及び空気熱交換器25を出た高圧の冷媒はそれぞれ、膨張弁24及び27で減圧され、低温低圧の冷媒(冷媒の種類によっては、気液二相冷媒)となる。このとき、膨張弁24,27は中間熱交換器23を流れる冷媒と空気熱交換器25を流れる冷媒との流量比率の調整を行う。低温低圧の冷媒は、利用側熱交換器28の空気温度調節用冷媒伝熱管28aに流入し、空気温度調節用熱媒体伝熱管28b内を流れる温度の高い熱媒体により加熱され(冷媒の種類によっては、蒸発し)、低圧のガス冷媒となる。この低圧のガス冷媒は、四方弁22を通って、再び圧縮機21に戻る。このとき、給湯の熱源として利用されない余分な冷房の放熱を空気に吸熱させている。
空気温度調節用熱媒体回路8aの動作は、前述の<3>運転モードNo.2−0aの場合と同じである。
給湯用冷媒回路6では、圧縮機41で圧縮され高温高圧となったガス冷媒は、利用側熱交換器42の給湯用冷媒伝熱管42aに流入する。給湯用冷媒伝熱管42a内を流れる高温高圧のガス冷媒は、給湯用水伝熱管42b内を流れる水により冷却される(冷媒の種類によっては、凝縮し、液化する)。この高圧の冷媒は膨張弁43で減圧され、低温低圧となった冷媒(冷媒の種類によっては、気液二相冷媒)は、中間熱交換器23の給湯用冷媒伝熱管23bにおいて、空気温度調節用冷媒伝熱管23a内を流れる温度の高い冷媒により加熱され(冷媒の種類によっては、蒸発し)、低圧のガス冷媒となり、再び圧縮機41に戻る。このとき、給湯の熱源として冷房の排熱が使用される。
給湯回路9での動作は、前述の<1>運転モードNo.1−0の場合と同じである。
また、給湯・冷房運転のモードとしては、上記以外にも、給湯用冷媒回路6を循環する冷媒の前記中間熱交換器23における必要熱量と前記空気温度調節用冷媒回路5を循環する冷媒の前記中間熱交換器23における放熱量とが吊り合わない場合、不足する熱を前記熱媒体回路7を循環する熱媒体との熱交換により補うものが考えられる。
図7の<5>運転モードNo.2−1は、給湯のための熱源(吸熱)が冷房の放熱より大きい場合であり、給湯の熱源として冷房の放熱及び蓄熱タンク60内の温水を用いる。このモードは、給湯の吸熱量が冷房の放熱量より大きくなる給湯・冷房運転にも対応可能である点で優れている。
また、このモードは、<3>運転モードNo.2−0aの空気熱の代わりに温水を用いたものである。蓄熱タンク60内の温水は、太陽集熱用熱媒体回路10により太陽熱により加熱されたものである。図7に冷媒,水及び熱媒体の流れを示す。このとき、空気温度調節用冷媒回路5の膨張弁27及び給湯用冷媒回路6の膨張弁43は全閉で冷媒は流れない。また、空気温度調節用熱媒体回路8aの開閉弁35aは開で熱媒体を流し、空気温度調節用熱媒体回路8bの開閉弁35bは閉で熱媒体を流さない。
空気温度調節用冷媒回路5及び空気温度調節用熱媒体回路8aの動作は、前述の<3>運転モードNo.2−0aの場合と同じである。
給湯用冷媒回路6では、圧縮機41で圧縮され高温高圧となったガス冷媒は、利用側熱交換器42の給湯用冷媒伝熱管42aに流入する。給湯用冷媒伝熱管42a内を流れる高温高圧のガス冷媒は、給湯用水伝熱管42b内を流れる水により冷却される(冷媒の種類によっては、凝縮し、液化する)。この高圧の冷媒は膨張弁43で減圧され、低温低圧となった冷媒(冷媒の種類によっては、気液二相冷媒)は、中間熱交換器23の給湯用冷媒伝熱管23bにおいて、空気温度調節用冷媒伝熱管23a内を流れる温度の高い冷媒、及び熱媒体伝熱管23c内を流れる温度の高い熱媒体により加熱され(冷媒の種類によっては、蒸発し)、低圧のガス冷媒となり、再び圧縮機41に戻る。このとき、給湯の熱源として冷房の排熱及び温水が使用される。
給湯回路9での動作は、前述の<1>運転モードNo.1−0の場合と同じである。
熱媒体回路7では、蓄熱タンク60内の第2熱交換器70において加熱された熱媒体は、循環ポンプ73の運転により、往き配管71aを通り、中間熱交換器23の熱媒体伝熱管23cに流入する。熱媒体伝熱管23c内を流れる熱媒体は、給湯用冷媒伝熱管23b内を流れる低温の冷媒により冷却され温度低下し、戻り配管72aを通って、再び蓄熱タンク60内の第2熱交換器70に戻る。
なお、この<5>運転モードNo.2−1は、給湯用冷媒回路6の低圧側冷媒が吸熱するモードであるため、蓄熱タンク60内の水の温度が低圧側冷媒の温度(即ち、蒸発温度)より高い必要がある。
図8の<6>運転モードNo.2−2は、給湯に必要な熱源(吸熱)が冷房の放熱より小さい場合であり、余分な冷房の放熱を蓄熱タンク60内の冷水に吸熱させる。このモードは、<4>運転モードNo.2−0bの空気に吸熱させる代わりに冷水に吸熱させたものである。
ここで、蓄熱タンク60内の冷水は、後述の<8>運転モードNo.3−1の給湯運転で冷却されたものである。例えば、夜に<8>運転モードNo.3−1を行って、給湯運転するとともに冷水を生成し、昼に<6>運転モードNo.2−2の給湯・冷房運転を行う際にこの冷熱を利用することが好ましい。
図8に冷媒,水及び熱媒体の流れを示す。このとき、空気温度調節用冷媒回路5の膨張弁27及び給湯用冷媒回路6の膨張弁43は全閉で冷媒は流れない。また、空気温度調節用熱媒体回路8aの開閉弁35aは開で熱媒体を流し、空気温度調節用熱媒体回路8bの開閉弁35bは閉で熱媒体を流さない。
なお、この<6>運転モードNo.2−2では、空気温度調節用冷媒回路5の給湯用冷媒が放熱するため、蓄熱タンク60内の水の温度が給湯用冷媒の温度(凝縮温度)より低い必要がある。
空気温度調節用冷媒回路5では、圧縮機21で圧縮され高温高圧となったガス冷媒は、四方弁22を通って、中間熱交換器23の空気温度調節用冷媒伝熱管23aに流入する。空気温度調節用冷媒伝熱管23a内を流れる高温高圧のガス冷媒は、給湯用伝熱管23b内を流れる温度の低い冷媒、及び熱媒体伝熱管23c内を流れる温度の低い熱媒体によりにより冷却される(冷媒の種類によっては、凝縮し、液化する)。この高圧の冷媒は膨張弁24で減圧され、低温低圧の冷媒(冷媒の種類によっては、気液二相冷媒)となり、利用側熱交換器28の空気温度調節用冷媒伝熱管28aに流入する。空気温度調節用冷媒伝熱管28a内を流れる冷媒は、空気温度調節用熱媒体伝熱管28b内を流れる温度の高い熱媒体により加熱され(冷媒の種類によっては、蒸発し)、低圧のガス冷媒となる。この低圧のガス冷媒は、四方弁22を通って、再び圧縮機21に戻る。このとき、給湯の熱源として利用されない余分な冷房の放熱を冷水に吸熱させている。
空気温度調節用熱媒体回路8aでの動作は、前述の<1>運転モードNo.1−0の場合と同じである。
また、給湯用冷媒回路6及び給湯回路9の動作は、前述の<4>運転モードNo.2−0bの場合と同じである。
熱媒体回路7では、蓄熱タンク60内の第2熱交換器70において冷却された熱媒体は、循環ポンプ73の運転により、往き配管71aを通り、中間熱交換器23の熱媒体伝熱管23cに流入する。熱媒体伝熱管23c内を流れる熱媒体は、空気温度調節用冷媒伝熱管23a内を流れる高温の冷媒により加熱され温度上昇し、戻り配管72aを通って、再び蓄熱タンク60内の第2熱交換器70に戻る。
次に、図9の<7>運転モードNo.3−0の給湯運転について説明する。このモードは、給湯の熱源として空気熱を用いる。図9に冷媒及び水の流れを示す。このとき、給湯用冷媒回路6の膨張弁43は全閉で冷媒は流れない。空気温度調節用冷媒回路5,空気温度調節用熱媒体回路8a,8b,熱媒体回路7は動作しない。
給湯用冷媒回路6及び給湯回路9での動作は、前述の<1>運転モードNo.1−0の場合と同じである。
次に、図10の<8>運転モードNo.3−1の給湯運転について説明する。このモードは、前記中間熱交換器23を前記給湯用冷媒回路6の蒸発器として機能させ、前記中間熱交換器23において前記給湯用冷媒回路6を循環する冷媒に対して前記熱媒体回路7を循環する熱媒体の温熱を与えることにより、給湯運転を行うものである。
具体的には、給湯運転の熱源として蓄熱タンク60内の温水を用いる。図10に冷媒,水及び熱媒体の流れを示す。このとき、給湯用冷媒回路6の膨張弁44は全閉で冷媒は流れない。空気温度調節用冷媒回路5,空気温度調節用熱媒体回路8a,8bは動作しない。
給湯用冷媒回路6及び給湯回路9での動作は、前述の<2>運転モードNo.1−1の場合と同じである。
なお、<8>運転モードNo.3−1の給湯運転は、エネルギ効率を考慮すると、給湯タンク50内の沸上温度>蓄熱タンク60内の水温>外気温度という関係が成立する場合に利用されるのが好ましい。
熱媒体回路7では、蓄熱タンク60内の第2熱交換器70において加熱された熱媒体は、循環ポンプ73の運転により、往き配管71aを通り、中間熱交換器23の熱媒体伝熱管23cに流入する。熱媒体伝熱管23c内を流れる熱媒体は、給湯用冷媒伝熱管23b内を流れる低温の冷媒により冷却され温度低下し、戻り配管72aを通って、再び蓄熱タンク60内の第2熱交換器70に戻る。このモードにより、蓄熱タンク60内の水は冷却され、冷水となる。
次に、図11の<9>運転モードNo.4−0の暖房運転について説明する。このモードは、暖房の熱源として空気熱を用いる。図11に冷媒及び熱媒体の流れを示す。このとき、空気温度調節用冷媒回路5の膨張弁24は全閉で冷媒は流れない。また、空気温度調節用熱媒体回路8aの開閉弁35aは開で熱媒体を流し、空気温度調節用熱媒体回路8bの開閉弁35bは閉で熱媒体を流さない。給湯用冷媒回路6,給湯回路9,熱媒体回路7は動作しない。
空気温度調節用冷媒回路5及び空気温度調節用熱媒体回路8aでの動作は、前述の<1>運転モードNo.1−0の場合と同じである。
次に、図12の<10>運転モードNo.4−1の暖房運転について説明する。このモードは、前記中間熱交換器23を前記空気温度調節用冷媒回路5の蒸発器として機能させ、前記中間熱交換器23において前記空気温度調節用冷媒回路5を循環する冷媒に対して前記熱媒体回路7を循環する熱媒体の温熱を与えることにより、前記空気温度調節用冷媒回路による空気加熱運転(即ち、暖房運転)を行うものである。
具体的には、暖房の熱源として蓄熱タンク60内の温水を用いる。図12に冷媒及び熱媒体の流れを示す。このとき、空気温度調節用冷媒回路5の膨張弁27は全閉で冷媒は流れない。また、空気温度調節用熱媒体回路8aの開閉弁35aは開で熱媒体を流し、空気温度調節用熱媒体回路8bの開閉弁35bは閉で熱媒体を流さない。給湯用冷媒回路6,給湯回路9は動作しない。
空気温度調節用冷媒回路5及び空気温度調節用熱媒体回路8aでの動作は、前述の<2>運転モードNo.1−1の場合と同じである。
熱媒体回路7では、蓄熱タンク60内の第2熱交換器70において加熱された熱媒体は、循環ポンプ73の運転により、往き配管71aを通り、中間熱交換器23の熱媒体伝熱管23cに流入する。熱媒体伝熱管23c内を流れる熱媒体は、空気温度調節用冷媒伝熱管23a内を流れる低温の冷媒により冷却され温度低下し、戻り配管72aを通って、再び蓄熱タンク60内の第2熱交換器70に戻る。
次に、図13の<11>運転モードNo.5−0の冷房運転について説明する。このモードは、冷房の放熱を空気に吸熱させる。図13に冷媒及び熱媒体の流れを示す。このとき、空気温度調節用冷媒回路5の膨張弁24は全閉で冷媒は流れない。また、空気温度調節用熱媒体回路8aの開閉弁35aは開で熱媒体を流し、空気温度調節用熱媒体回路8bの開閉弁35bは閉で熱媒体を流さない。給湯用冷媒回路6,給湯回路9,熱媒体回路7は動作しない。
空気温度調節用冷媒回路5では、圧縮機21で圧縮され高温高圧となったガス冷媒は、四方弁22を通って、空気熱交換器25に流入する。空気熱交換器25に流入した高温高圧のガス冷媒は、ファン26により送られてくる室外空気により冷却される(冷媒の種類によっては、凝縮し、液化する)。この高圧の冷媒は膨張弁27で減圧され、低温低圧となった冷媒(冷媒の種類によっては、気液二相冷媒)は、利用側熱交換器28の空気温度調節用冷媒伝熱管28aに流入し、空気温度調節用熱媒体伝熱管28b内を流れる温度の高い熱媒体により加熱され(冷媒の種類によっては、蒸発し)、低圧のガス冷媒となる。この低圧のガス冷媒は、四方弁22を通って、再び圧縮機21に戻る。
空気温度調節用熱媒体回路8aの動作は、前述の<3>運転モードNo.2−0aの場合と同じである。
次に、図14の<12>運転モードNo.5−1の冷房運転について説明する。このモードは、前記中間熱交換器23を前記空気温度調節用冷媒回路5の凝縮器として機能させ、前記中間熱交換器23において空気温度調節用冷媒回路5を循環する冷媒に対して前記熱媒体回路7を循環する熱媒体の冷熱を与えることにより、前記空気温度調節用冷媒回路5による空気冷却運転(即ち、冷房運転)を行うものである。
具体的には、冷房の放熱を蓄熱タンク60内の冷水に吸熱させる。ここで、蓄熱タンク60内の冷水は、前述の<8>運転モードNo.3−1の給湯運転で、冷却されたものである。給湯運転で生成した冷熱を、時間をシフトして冷房運転時の冷熱源として使用するものである。即ち、例えば、夜に<8>運転モードNo.3−1を行って、給湯するとともに冷水を生成し、昼に<12>運転モードNo.5−1の冷房運転を行う際にこの冷熱を利用することが好ましい。
図14に冷媒及び熱媒体の流れを示す。このとき、空気温度調節用冷媒回路5の膨張弁27は全閉で冷媒は流れない。給湯用冷媒回路6,給湯回路9は動作しない。
空気温度調節用冷媒回路5では、圧縮機21で圧縮され高温高圧となったガス冷媒は、四方弁22を通って、中間熱交換器23の空気温度調節用冷媒伝熱管23aに流入する。空気温度調節用冷媒伝熱管23a内を流れる高温高圧のガス冷媒は、熱媒体伝熱管23c内を流れる温度の低い熱媒体により冷却される(冷媒の種類によっては、凝縮し、液化する)。この高圧の冷媒は膨張弁24で減圧され、低温低圧となった冷媒(冷媒の種類によっては、気液二相冷媒)は、利用側熱交換器28の空気温度調節用冷媒伝熱管28aに流入し、空気温度調節用熱媒体伝熱管28b内を流れる温度の高い熱媒体により加熱され(冷媒の種類によっては、蒸発し)、低圧のガス冷媒となる。この低圧のガス冷媒は、四方弁22を通って、再び圧縮機21に戻る。
空気温度調節用熱媒体回路8aの動作は、前述の<3>運転モードNo.2−0aの場合と同じである。
熱媒体回路7では、蓄熱タンク60内の第2熱交換器70において冷却された熱媒体は、循環ポンプ73の運転により、往き配管71aを通り、中間熱交換器23の熱媒体伝熱管23cに流入する。熱媒体伝熱管23c内を流れる熱媒体は、空気温度調節用冷媒伝熱管23a内を流れる高温の冷媒により加熱され温度上昇し、戻り配管72aを通って、再び蓄熱タンク60内の第2熱交換器70に戻る。
以上、説明したように、上記構成によれば、熱媒体回路が空気温度調節用冷媒回路及び給湯用冷媒回路を循環する冷媒の熱(温熱又は冷熱)を蓄熱することができるため、各回路を同時に運転する場合だけでなく、異なる時間に運転する場合においても空気温度調節用冷媒回路及び給湯用冷媒回路の排熱を有効に利用することができるため、高いエネルギ効率を得ることができる。
また、給湯及び空調の熱源として、太陽熱集熱器で得られた温熱を利用することができるため、高いエネルギ効率を得ることが可能である。計算で見積もると、年間で消費電力量を約4割削減できる。
また、給湯だけ運転する場合、空気温度調節用冷媒回路は運転せず、給湯用冷媒回路だけ運転すればよいので、無駄なエネルギ消費を削減することができる。
また、給湯・冷房運転時、給湯の吸熱量が冷房の放熱量より大きい場合も、給湯用冷媒回路の空気熱交換器で空気熱を利用できるため、給湯の吸熱と冷房の放熱量の大小に関わらず運転が可能である。
また、中間熱交換器は、空気温度調節用冷媒伝熱管と、給湯用冷媒伝熱管と、熱媒体伝熱管とがお互いに接触するように一体に構成されている三流体熱交換器であるため、給湯用冷媒伝熱管と給湯用冷媒伝熱管との二流体熱交換器と、給湯用冷媒伝熱管と熱媒体伝熱管との二流体熱交換器と、空気温度調節用冷媒伝熱管と熱媒体伝熱管との二流体熱交換器とを備えた場合より、熱交換器の数が少なくでき、コスト及び機器容積を小さくできる。
また、冷媒回路の排温冷熱及び太陽熱等の温冷熱源を有効に利用できる運転モードを複数備えることにより、高いエネルギ効率を得ることができる。
次に、前記給湯・冷房運転のモードにおける制御について説明する。このモードにおいては、前記空気温度調節用冷媒回路5による空気冷却運転及び前記給湯用冷媒回路6による給湯運転を行う際に、空気温度調節用冷媒回路5の空気冷却能力及び蒸発温度と、給湯用冷媒回路6の給湯能力及び凝縮温度とに基づいて設定される給湯用冷媒回路6の蒸発温度目標値又は空気温度調節用冷媒回路5の凝縮温度目標値となるように、前記空気温度調節用冷媒回路及び給湯用冷媒回路を制御する。
このとき、給湯用冷媒回路6の蒸発温度目標値又は空気温度調節用冷媒回路5の凝縮温度目標値を、前記空気温度調節用冷媒回路5による空気冷却運転及び前記給湯用冷媒回路6による給湯運転の効率が最高となるように設定する。
また、このモードでは、空気冷却能力に対する給湯能力の比率が大きいほど、給湯用冷媒回路6の蒸発温度目標値又は空気温度調節用冷媒回路5の凝縮温度目標値を高く設定する。
この具体例としては、熱媒体を利用する<5>運転モードNo.2−1及び<6>運転モードNo.2−2がある。
具体的には、このモードでは、前記空気温度調節用冷媒回路5による空気冷却運転及び前記給湯用冷媒回路6による給湯運転を行う際に、空気温度調節用冷媒回路5の空気冷却能力及び蒸発温度と、給湯用冷媒回路6の給湯能力及び凝縮温度とに基づいて設定される給湯用冷媒回路6の蒸発温度目標値又は空気温度調節用冷媒回路5の凝縮温度目標値となるように、前記空気温度調節用冷媒回路5,給湯用冷媒回路6及び熱媒体回路7を制御する。
以下、詳細に説明する。図7の<5>運転モードNo.2−1の貯湯・冷房運転時の給湯用冷媒回路6の蒸発温度制御について図7,図15〜図18を用いて説明する。この運転モードは、貯湯のための熱源(吸熱)が冷房の放熱より大きい場合で、貯湯の熱源として冷房の放熱及び蓄熱タンク60内の温水を用いる。
制御装置20は、空気温度調節用冷媒回路5の利用側熱交換器28の熱媒体出口の温度センサ38の温度が所定の目標値となるように圧縮機21の回転速度制御を行う。この熱媒体出口温度の目標値は、空調を行う室内の冷房負荷を基に設定される。この時、熱媒体出口の温度センサ38の温度が目標値より高い場合は能力が足りていないため圧縮機回転速度を増加させ、目標値より低い場合は能力が過剰であるため圧縮機回転速度を減少させ、目標値と同じ場合はその圧縮機回転速度を維持する。また、制御装置20は、給湯用冷媒回路6の利用側熱交換器42の水出口の温度センサ56温度が所定の目標値となるように圧縮機41の回転速度制御を行う。この水出口温度の目標値は、一日の給湯負荷を基に設定される。この時、水出口の温度センサ56の温度が目標値より低い場合は能力が足りていないため圧縮機回転速度が増加し、目標値より高い場合は能力が過剰であるため圧縮機回転速度が減少し、目標値と同じ場合はその圧縮機回転速度を維持する。
次に、給湯用冷媒回路6の中間熱交換器23の給湯用冷媒伝熱管23bを流れる冷媒の蒸発温度の目標値Th−e0の設定について、図15に示すフローチャートで説明する。制御装置20は、まず、ステップS11において、空気温度調節用冷媒回路5の利用側熱交換器28の冷媒伝熱管28aに配置されている温度センサ39で、空気温度調節用冷媒回路5の蒸発温度Tl−eを検知し、給湯用冷媒回路6の利用側熱交換器42の冷媒伝熱管42aに配置されている温度センサ57で、給湯用冷媒回路6の凝縮温度Th−cを検知する。次に、ステップS12において、空気温度調節用冷媒回路5の利用側熱交換器28の空調用熱媒体伝熱管28bの熱媒体入口側に配置された温度センサ37で、熱媒体入口温度を検知し、熱媒体出口側に配置された温度センサ38で、熱媒体出口温度を検知し、戻り配管32に配置された流量センサ36で、熱媒体流量を検知する。また、ステップS13において、給湯用冷媒回路6の利用側熱交換器42の貯湯用水伝熱管42bの水入口側に配置された温度センサ55で、水入口温度を検知し、水出口側に配置された温度センサ56で、水出口温度を検知し、往き配管51に配置された流量センサ54で、水流量を検知する。
ステップS12,ステップS13で検知した温度,流量から、ステップS14において、冷房能力Qlと貯湯能力Qhを算出する。冷房能力Qlは、予め記憶されている熱媒体比熱と熱媒体密度と、検知された熱媒体流量と熱媒体の入口出口温度の差との積で算出される。また、貯湯能力Qhは、予め記憶されている水比熱と水密度と、検知された水流量と水の入口出口温度の差との積で算出される。
次に、ステップS15において、ステップS11で検知した空気温度調節用冷媒回路5の蒸発温度Tl−e,給湯用冷媒回路6の凝縮温度Th−cと、ステップS14で算出した冷房能力Ql,貯湯能力Qhに基づいて、給湯用冷媒回路6の中間熱交換器23の給湯用冷媒伝熱管23bを流れる冷媒の蒸発温度の目標値Th−e0を設定する。図15中のS15のfは関数を表す。図16,図17を用いて具体的な関数fの働きを説明する。制御装置20は、まず、図16に示される予め設定された表を用いて、空気温度調節用冷媒回路5の蒸発温度Tl−eと給湯用冷媒回路6の凝縮温度Th−cに対応して、給湯用冷媒回路6の蒸発温度目標値Th−e0を表す、(貯湯能力Qh/(冷房能力Ql+貯湯能力Qh))に関する一次式の傾きAと切片Bを選択する。その一次式は以下で表される。
Th−e0=A×Qh/(Ql+Qh)+B …(数1)
図16の表は、空気温度調節用冷媒回路蒸発温度Tl−eと給湯用冷媒回路凝縮温度Th−cの各範囲ごとに、傾きAと切片Bを与える。例えば、空気温度調節用冷媒回路5の蒸発温度Tl−eが9℃で給湯用冷媒回路6の凝縮温度Th−cが64℃の時、傾きAはa、切片Bはbとなる。この時の(貯湯能力Qh/(冷房能力Ql+貯湯能力Qh))と給湯用冷媒回路の蒸発温度目標値Th−e0との関係は、図17のようになる。なお、(貯湯能力Qh/(冷房能力Ql+貯湯能力Qh))と給湯用冷媒回路の蒸発温度目標値Th−e0との関係は、空気温度調節用冷媒回路蒸発温度Tl−eと給湯用冷媒回路凝縮温度Th−cに関わらず、(冷房能力Ql+貯湯能力Qh)に対する貯湯能力Qhの比率が大きいほど、給湯用冷媒回路6の蒸発温度目標値Th−e0は高くなるように設定される。
ここで、(冷房能力Ql+貯湯能力Qh)に対する貯湯能力Qhの比率が大きいほど、給湯用冷媒回路6の蒸発温度目標値Th−e0が高くなるように設定される理由を以下に説明する。
図18は、空気温度調節用冷媒回路5の蒸発温度Tl−eが9℃で給湯用冷媒回路6の凝縮温度Th−cが64℃の時、冷房能力Qlが4kW、貯湯能力Qhが5.5kWと、冷房能力Qlが同じ4kW、貯湯能力Qhが6kWの運転条件について、給湯用冷媒回路6の蒸発温度と空調給湯システム100のエネルギ効率を示すCOP((冷房能力+貯湯能力)/消費電力)との関係を計算により示したものである。図から、各運転条件においてCOPが最高となる給湯用冷媒回路6の蒸発温度が存在することがわかる。また、そのCOPが最高となる蒸発温度は、貯湯能力Qhが5.5kWより大きい6kWの方が、高くなる。したがって、運転条件に対応して、給湯用冷媒回路6の蒸発温度の目標値をCOPが最高となる蒸発温度に設定し、蒸発温度を制御することにより、空調給湯システム100のエネルギ効率を高く維持することができる。
次に、(冷房能力Ql+貯湯能力Qh)に対する貯湯能力Qhの比率が大きいほど、COPが最高となる給湯用冷媒回路6の蒸発温度が高くなる理由について説明する。
<5>運転モードNo.2−1の貯湯・冷房運転時、中間熱交換器23において、空気温度調節用冷媒回路5の冷媒伝熱管23a内の凝縮過程の冷媒と熱媒体伝熱管23c内の熱媒体とが、給湯用冷媒回路6の冷媒伝熱管23b内の蒸発過程の冷媒と熱交換を行っている。その際、給湯用冷媒回路6の蒸発温度が上がれば、空気温度調節用冷媒回路5の凝縮温度も上昇し、給湯用冷媒回路6の蒸発温度が下がれば、空気温度調節用冷媒回路5の凝縮温度も低下し、給湯用冷媒回路6の蒸発温度と空気温度調節用冷媒回路5の凝縮温度は一緒に変化する。給湯用冷媒回路6の蒸発温度が上がれば、給湯用冷媒回路6の蒸発と凝縮の温度差が小さくなり、冷凍サイクルの特性から圧縮機41の消費電力が小さくなる。一方、この時、空気温度調節用冷媒回路5の凝縮温度も上がるので、空気温度調節用冷媒回路5の蒸発と凝縮の温度差が大きくなり、冷凍サイクルの特性から圧縮機21の消費電力が大きくなる。また、給湯用冷媒回路6の蒸発温度が下がる時は、前記の逆の動作となる。
ところで、空調給湯システム100の合計の消費電力は、空気温度調節用冷媒回路5の圧縮機21と給湯用冷媒回路6の圧縮機41の消費電力が大きな部分を占める。したがって、空調給湯システム100のCOPを高く維持するには、これら圧縮機21,41の消費電力を小さくすることが必要である。(冷房能力Ql+貯湯能力Qh)に対する貯湯能力Qhの比率が大きいということは、合計の消費電力のうち給湯用冷媒回路6の圧縮機41の消費電力の比率が大きいということである。したがって、(冷房能力Ql+貯湯能力Qh)に対する貯湯能力Qhの比率が大きいほど、給湯用冷媒回路6の圧縮機41の消費電力が小さくなるように、給湯用冷媒回路6の蒸発温度を上げることにより、COPを高く維持できるわけである。
ここで、給湯用冷媒回路6の蒸発温度を上げることは、空気温度調節用冷媒回路5の凝縮温度を上げることを意味する。また、このとき、給湯用冷媒回路6の蒸発温度が上がるため、圧縮機41の消費電力は小さくなり、空気温度調節用冷媒回路5の凝縮温度が上がるため圧縮機21の消費電力は大きくなる。
また、圧縮機41の消費電力は、相対的に圧縮機21の消費電力より大きいため、圧縮機21の消費電力を増やしても圧縮機41の消費電力を減らした方が、トータルとしての消費電力は低減できる。従って、上記では、給湯用冷媒回路6の蒸発温度を上げることとしている。
以上の説明により、ステップS15において、空気温度調節用冷媒回路5の蒸発温度Tl−eと、給湯用冷媒回路6の凝縮温度Th−cと、冷房能力Qlと、貯湯能力Qhとから、給湯用冷媒回路6の蒸発温度の目標値Th−e0が設定されるのがわかる。また、この目標値は、COPが最高となるように設定されている。
ステップS15の後、一定時間経過(ステップS16)後、また、ステップS11に戻り、これらを繰り返す。
給湯用冷媒回路6の蒸発温度は、中間熱交換器23の熱媒体伝熱管23cへ往く熱媒体の温度を調整することにより制御を行う。中間熱交換器23において、給湯用冷媒回路6の冷媒伝熱管23b内を流れる蒸発過程の冷媒は、空気温度調節用冷媒回路5の冷媒伝熱管23a内を流れる凝縮過程の冷媒から吸熱する他に、熱媒体伝熱管23内を流れる熱媒体から吸熱する。
給湯用冷媒回路6の蒸発温度が目標値Th−e0より高い場合は、熱媒体回路7の熱媒体往き温度の温度センサ77の温度目標値を下げて、往き温度の温度センサ77の温度が目標値となるように、タンク内熱交換器70からの熱媒体の温度を検知する温度センサ76の値と、中間熱交換器23からの温度の低下した熱媒体の戻り温度を検知する温度センサ78の値を基に、バイパス弁75を開く方向に制御する。これにより、温度の低下した戻り熱媒体の混合量を増加させることにより、往き熱媒体の温度を低下させる。一方、給湯用冷媒回路6の蒸発温度が目標値Th−e0より低い場合は、熱媒体往き温度の温度センサ77の温度目標値を上げて、往き温度の温度センサ77の温度が目標値となるように、バイパス弁75を閉じる方向に制御する。これにより、温度の低下した戻り熱媒体の混合量を減少させることにより、往き熱媒体の温度を上昇させる。
往き熱媒体の温度変化に伴い、中間熱交換器23での熱収支のバランスを取るように、給湯用冷媒回路6の蒸発温度,空気温度調節用冷媒回路5の凝縮温度が変化し、給湯用冷媒回路6の蒸発温度は目標値Th−e0となる。
以上の制御により、貯湯・冷房運転時、給湯用冷媒回路6の蒸発温度をエネルギ効率が最高となるようにしたので、空調給湯システム100のエネルギ効率を高く維持することができる。
なお、実施例では、給湯用冷媒回路6の蒸発温度を制御目標値としたが、空気温度調節用冷媒回路5の凝縮温度を制御目標値としても同じ効果が得られる。
また、図8の<6>運転モードNo.2−2の貯湯・冷房運転の場合、すなわち、貯湯のための熱源(吸熱)が冷房の放熱より小さく、余分な冷房の放熱を蓄熱タンク60内の冷水に吸熱させる場合も同様に制御することができる。すなわち、エネルギ効率が最高となるように予め設定されている給湯用冷媒回路6の蒸発温度又は空気温度調節用冷媒回路5の凝縮温度の目標値となるように中間熱交換器23への往き熱媒体の温度を調整制御することにより、空調給湯システム100のエネルギ効率を高く維持することができる。
また、給湯・冷房運転のモードにおける制御の具体例としては、空気熱を利用する<3>運転モードNo.2−0a及び<4>運転モードNo.2−0bがある。
具体的には、このモードでは、空気温度調節用冷媒回路5の空気冷却能力及び蒸発温度と、給湯用冷媒回路6の給湯能力及び凝縮温度とに基づいて設定される給湯用冷媒回路6の蒸発温度目標値又は空気温度調節用冷媒回路5の凝縮温度目標値となるように、前記空気熱交換器25のファン26及び空気熱交換器45のファン46の回転速度を制御する。
以下、詳細に説明する。図5の<3>運転モードNo.2−0aの貯湯・冷房の場合、すなわち、貯湯のための熱源(吸熱)が冷房の放熱より大きい場合で、貯湯の熱源として冷房の放熱及び空気熱を用いる場合について説明する。この時、既に説明した<5>運転モードNo.2−1の場合において、図15に示した給湯用冷媒回路6の中間熱交換器23の給湯用冷媒回路23bを流れる冷媒の蒸発温度の目標値設定方法までは同じであり、その蒸発温度の制御方法が異なる。
図5に示したように、中間熱交換器23において、給湯用冷媒回路6の冷媒伝熱管23b内を流れる蒸発過程の冷媒は、空気温度調節用冷媒回路5の冷媒伝熱管23a内を流れる凝縮過程の冷媒から吸熱する他に、中間熱交換器23と並列に配置された空気熱交換器45を流れる蒸発過程の冷媒は、ファン46により送られてくる室外空気から吸熱する。
この時、ファン46の回転速度を減少させると、空気熱交換器45において空気側の熱伝達率が低下し、空気温度と冷媒温度との温度差が大きくなるため、空気熱交換器45を流れる冷媒の蒸発温度は低下し、空気熱交換器45と並列に流れる中間熱交換器23の冷媒伝熱管23b内を流れる冷媒の蒸発温度も低下する。一方、ファン46の回転速度を増加させると、空気熱交換器45において空気側の熱伝達率が向上し、空気温度と冷媒温度との温度差が小さくなるため、空気熱交換器45を流れる冷媒の蒸発温度は上昇し、空気熱交換器45と並列に流れる中間熱交換器23の冷媒伝熱管23b内を流れる冷媒の蒸発温度も上昇する。この関係を利用して、給湯用冷媒回路6の蒸発温度が目標値Th−e0より高い場合は、ファン46の回転速度を減少させ、給湯用冷媒回路6の蒸発温度が目標値Th−e0より低い場合は、ファン46の回転速度を増加させる。これにより、給湯用冷媒回路6の蒸発温度は目標値Th−e0となる。
以上の制御により、貯湯・冷房運転時、給湯用冷媒回路6の蒸発温度をエネルギ効率が最高となるようにしたので、空調給湯システム100のエネルギ効率を高く維持することができる。
なお、実施例では、給湯用冷媒回路6の蒸発温度を制御目標値としたが、空気温度調節用冷媒回路5の凝縮温度を制御目標値としても同じ効果が得られる。
また、図6の<4>運転モードNo.2−0bの貯湯・冷房運転の場合、すなわち、貯湯のための熱源(吸熱)が冷房の放熱より小さく、余分な冷房の放熱を空気に吸熱させる場合も同様に制御することができる。
図6に示したように、中間熱交換器23において、空気温度調節用冷媒回路5の冷媒伝熱管23a内を流れる凝縮過程の冷媒は、給湯用冷媒回路6の冷媒伝熱管23b内を流れる蒸発過程の冷媒へ放熱する他に、中間熱交換器23と並列に配置された空気熱交換器25を流れる凝縮過程の冷媒は、ファン46により送られてくる室外空気へ放熱する。
この時、ファン26の回転速度を減少させると、空気熱交換器25において空気側の熱伝達率が低下し、空気温度と冷媒温度との温度差が大きくなるため、空気熱交換器45を流れる冷媒の凝縮温度は上昇し、空気熱交換器25と並列に流れる中間熱交換器23の冷媒伝熱管23a内を流れる冷媒の凝縮温度も上昇する。一方、ファン26の回転速度を増加させると、空気熱交換器25において空気側の熱伝達率が向上し、空気温度と冷媒温度との温度差が小さくなるため、空気熱交換器25を流れる冷媒の凝縮温度は低下し、空気熱交換器25と並列に流れる中間熱交換器23の冷媒伝熱管23a内を流れる冷媒の凝縮温度も低下する。この関係を利用することにより、空気温度調節用冷媒回路5の凝縮温度と関連する給湯用冷媒回路6の蒸発温度が目標値Th−e0となるように制御することができる。
以上説明したように、貯湯・冷房運転時、給湯用冷媒回路6の蒸発温度をエネルギ効率が最高となるようにしたので、空調給湯システム100のエネルギ効率を高く維持することができる。
なお、本発明に係る空調給湯システム及びヒートポンプユニットは、上記実施形態の構成に限定されるものではなく、発明の趣旨を逸脱しない範囲内で種々の変更が可能である。
例えば、上記実施例では、冷房能力と貯湯能力の算出に流量センサが検知した流量を用いたが、例えば、ポンプ流量の回転速度から流量を推定して算出してもよい。この場合、流量センサが不要となるため、コストを低減できる。
また、上記実施例では、熱媒体回路を太陽熱集熱器と接続された蓄熱タンクと接続したが、例えば、温冷熱源となる地中や地下水と接続しても良い。
また、上記実施例では、熱媒体回路7は、蓄熱タンク60内の水からの採熱又は水への放熱を行うタンク内第2熱交換器70を備え、蓄熱タンク60内の水に温熱及び冷熱の蓄熱を行うものとして説明したが、これに限定されるものではなく、蓄熱タンクに熱媒体を貯留するものであってもよい。太陽熱集熱用熱媒体回路に関しても、蓄熱タンクの水に温熱の蓄熱を行うものに限定されるものではなく、蓄熱タンクに熱媒体を貯留するものであってもよい。
また、上記実施例では、蓄熱タンクが一つ設けられ、温熱及び冷熱のいずれか一方を蓄熱できる構成となっているが、これに限定されるものではなく、温熱を蓄熱するもの及び冷熱を蓄熱するものとして、複数の蓄熱タンクが設けられるものであってもよい。
また、熱媒体回路と太陽熱集熱用熱媒体回路とを接続して循環経路が構成されるものであってもよい。これは、温熱の蓄熱を行うものである場合に、特に好適である。
また、空気温度調節用冷媒回路は、空気の温度を調節するものであれば、冷房や暖房といった空調用のものに限定されない。例えば、空気冷却運転としては、冷蔵庫や冷凍庫の庫内空間を冷却する運転が考えられ、空気加熱運転としては、浴室乾燥等の運転が考えられる。
また、上記実施例では、空気温度調節用熱媒体回路を用いて空気温度調節用冷媒回路で得られた熱を間接的に伝達することにより、空気温度調節を行うものであったが、これに限定されるものではなく、空気温度調節用冷媒回路の利用側熱交換器を用いて直接的に空気温度調節を行うものであっても良い。
また、上記実施例では、給湯用冷媒回路6は、給湯に用いられる温水を生成するものであれば、水を直接的に加熱するものであってもよく、別の熱媒体を用いて水を間接的に加熱するものであってもよい。
また、本発明に係る空調給湯システム及びヒートポンプユニットは、図2に示される全ての運転モードを備えるものでなくても良い。
また、上記実施例では、<3>運転モードNo.2−0aや<5>運転モードNo.2−1では、給湯のための熱が冷房時の放熱で不足する熱を空気熱や熱媒体等の外部の熱によって補うものであるが、これに限定されるものではなく、冷房時の放熱量に合せて給湯用冷媒回路の冷媒循環量を調節し、冷房時の放熱のみで給湯を行うものであっても良い。
また、上記実施例では、<4>運転モードNo.2−0bや<6>運転モードNo.2−2では、冷房の放熱のうち給湯に必要な熱を超えた分を空気熱として外部に捨てたり熱媒体に吸熱させるものであるが、これに限定されるものではなく、冷房時の放熱量に合せて給湯用冷媒回路の冷媒循環量を調節し、冷房時の放熱を全て給湯に用いるものであっても良い。
また、上記実施例では、給湯回路9は、給湯用冷媒回路6によって給湯運転を行い、水を加熱して温水とするものであったが、これに限定されるものではなく、給湯のための熱媒体を加熱するものであってもよい。この場合には、例えば、給湯タンクには加熱された高温の熱媒体が貯留され、この高温の熱媒体を用いて水を間接的に加熱することにより、出湯を行う構造が考えられる。
1 ヒートポンプユニット
2 室内ユニット
3 給湯・蓄熱タンクユニット
4 太陽熱集熱器
5 空気温度調節用冷媒回路
6 給湯用冷媒回路
7 熱媒体回路
8a,8b 空気温度調節用熱媒体回路
9 給湯回路
10 太陽集熱用熱媒体回路
11 出湯経路
21,41 圧縮機
23 中間熱交換器
25,45 空気熱交換器
28,42 利用側熱交換器
50 給湯タンク
60 蓄熱タンク
100 空調給湯システム

Claims (6)

  1. 圧縮機と利用側熱交換器とを有する空気温度調節用冷媒回路と、圧縮機と利用側熱交換器とを有する給湯用冷媒回路とを備え、
    前記空気温度調節用冷媒回路を循環する冷媒と、前記給湯用冷媒回路を循環する冷媒との間で熱交換を行う中間熱交換器を有し、
    前記中間熱交換器を前記空気温度調節用冷媒回路の凝縮器として機能させるとともに、前記給湯用冷媒回路の蒸発器として機能させ、
    前記空気温度調節用冷媒回路による空気冷却運転及び前記給湯用冷媒回路による給湯運転を行う際に、空気温度調節用冷媒回路の空気冷却能力および蒸発温度と、給湯用冷媒回路の給湯能力および凝縮温度とに基づいて設定される給湯用冷媒回路の蒸発温度目標値又は空気温度調節用冷媒回路の凝縮温度目標値となるように、前記空気温度調節用冷媒回路及び給湯用冷媒回路を制御し、
    空気冷却能力に対する給湯能力の比率が大きいほど、給湯用冷媒回路の蒸発温度目標値又は空気温度調節用冷媒回路の凝縮温度目標値を高く設定することを特徴とする空調給湯システム。
  2. 請求項1において、給湯用冷媒回路の蒸発温度目標値又は空気温度調節用冷媒回路の凝縮温度目標値を、前記空気温度調節用冷媒回路による空気冷却運転及び前記給湯用冷媒回路による給湯運転の効率が最高となるように設定することを特徴とする空調給湯システム。
  3. 請求項1において、
    前記空気温度調節用冷媒回路には、前記中間熱交換器と並列に配置され、ファンを有する空気温度調節用空気熱交換器が備えられるとともに、
    前記給湯用冷媒回路には、前記中間熱交換器と並列に配置され、ファンを有する給湯用空気熱交換器が備えられ、
    空気温度調節用冷媒回路の空気冷却能力および蒸発温度と、給湯用冷媒回路の給湯能力および凝縮温度とに基づいて設定される給湯用冷媒回路の蒸発温度目標値又は空気温度調節用冷媒回路の凝縮温度目標値となるように、前記空気温度調節用空気熱交換器のファンおよび給湯用空気熱交換器のファンの回転速度を制御することを特徴とする空調給湯システム。
  4. 圧縮機と利用側熱交換器とを有する空気温度調節用冷媒回路と、圧縮機と利用側熱交換器とを有する給湯用冷媒回路と、空気温度調節用冷媒回路及び給湯用冷媒回路を循環する冷媒と熱交換を行って蓄熱する熱媒体を循環させる熱媒体回路とを備え、
    前記空気温度調節用冷媒回路を循環する冷媒と、前記給湯用冷媒回路を循環する冷媒と、前記熱媒体回路を循環する熱媒体との間で熱交換を行う中間熱交換器を有し、
    前記中間熱交換器を前記空気温度調節用冷媒回路の凝縮器として機能させるとともに、前記給湯用冷媒回路の蒸発器として機能させ、
    前記空気温度調節用冷媒回路による空気冷却運転及び前記給湯用冷媒回路による給湯運転を行う際に、空気温度調節用冷媒回路の空気冷却能力および蒸発温度と、給湯用冷媒回路の給湯能力および凝縮温度とに基づいて設定される給湯用冷媒回路の蒸発温度目標値又は空気温度調節用冷媒回路の凝縮温度目標値となるように、前記空気温度調節用冷媒回路,給湯用冷媒回路及び熱媒体回路を制御し、
    空気冷却能力に対する給湯能力の比率が大きいほど、給湯用冷媒回路の蒸発温度目標値又は空気温度調節用冷媒回路の凝縮温度目標値を高く設定することを特徴とする空調給湯システム。
  5. 請求項4において、
    前記給湯用冷媒回路の蒸発温度目標値又は空気温度調節用冷媒回路の凝縮温度目標値に基づいて、前記熱媒体回路の熱媒体温度を制御することを特徴とする空調給湯システム。
  6. 圧縮機と利用側熱交換器とを有する空気温度調節用冷媒回路と、圧縮機と利用側熱交換器とを有する給湯用冷媒回路とを備え、
    空気温度調節用冷媒回路と給湯用冷媒回路との間には中間熱交換器が配置され、
    前記中間熱交換器を前記空気温度調節用冷媒回路の凝縮器として機能させるとともに、前記給湯用冷媒回路の蒸発器として機能させ、
    前記空気温度調節用冷媒回路による空気冷却運転及び前記給湯用冷媒回路による給湯運転を行う際に、空気温度調節用冷媒回路の空気冷却能力および蒸発温度と、給湯用冷媒回路の給湯能力および凝縮温度とに基づいて設定される給湯用冷媒回路の蒸発温度目標値又は空気温度調節用冷媒回路の凝縮温度目標値となるように、前記空気温度調節用冷媒回路及び給湯用冷媒回路を制御し、
    空気冷却能力に対する給湯能力の比率が大きいほど、給湯用冷媒回路の蒸発温度目標値又は空気温度調節用冷媒回路の凝縮温度目標値を高く設定することを特徴とするヒートポンプユニット。
JP2009219895A 2009-09-25 2009-09-25 空調給湯システム及びヒートポンプユニット Expired - Fee Related JP5380226B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2009219895A JP5380226B2 (ja) 2009-09-25 2009-09-25 空調給湯システム及びヒートポンプユニット
CN201080034407.6A CN102472535B (zh) 2009-09-25 2010-02-25 空调供热水***以及热泵单元
PCT/JP2010/052985 WO2011036905A1 (ja) 2009-09-25 2010-02-25 空調給湯システム及びヒートポンプユニット
EP10818582.8A EP2482005A4 (en) 2009-09-25 2010-02-25 AIR CONDITIONING AND HOT WATER SUPPLY SYSTEM AND HEAT PUMP UNIT
US13/389,024 US9003817B2 (en) 2009-09-25 2010-02-25 Air-conditioning hot-water supply system, and heat pump unit
KR1020127003063A KR101343711B1 (ko) 2009-09-25 2010-02-25 공조 급탕 시스템 및 히트 펌프 유닛

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009219895A JP5380226B2 (ja) 2009-09-25 2009-09-25 空調給湯システム及びヒートポンプユニット

Publications (2)

Publication Number Publication Date
JP2011069528A JP2011069528A (ja) 2011-04-07
JP5380226B2 true JP5380226B2 (ja) 2014-01-08

Family

ID=43795672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009219895A Expired - Fee Related JP5380226B2 (ja) 2009-09-25 2009-09-25 空調給湯システム及びヒートポンプユニット

Country Status (6)

Country Link
US (1) US9003817B2 (ja)
EP (1) EP2482005A4 (ja)
JP (1) JP5380226B2 (ja)
KR (1) KR101343711B1 (ja)
CN (1) CN102472535B (ja)
WO (1) WO2011036905A1 (ja)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010196953A (ja) * 2009-02-24 2010-09-09 Daikin Ind Ltd ヒートポンプシステム
SE535370C2 (sv) 2009-08-03 2012-07-10 Skanska Sverige Ab Anordning och metod för lagring av termisk energi
EP2613098B1 (en) * 2010-12-08 2018-03-28 Daikin Europe N.V. Heating
KR101454756B1 (ko) * 2011-05-09 2014-10-27 한국전력공사 이원냉동사이클을 갖는 축열장치 및 그 운전방법
ITMI20111933A1 (it) * 2011-10-25 2013-04-26 Climaveneta S P A Unita' termo frigorifera e metodo per il suo controllo
EP2890940B1 (en) * 2012-08-31 2018-01-10 Danfoss A/S A method for controlling a chiller system
WO2014057550A1 (ja) * 2012-10-10 2014-04-17 三菱電機株式会社 空気調和装置
US20150276255A1 (en) * 2012-10-18 2015-10-01 Daikin Industries, Ltd. Air conditioning apparatus
ES2654642T3 (es) * 2012-10-18 2018-02-14 Daikin Industries, Ltd. Aire acondicionado
SE536723C2 (sv) 2012-11-01 2014-06-24 Skanska Sverige Ab Termiskt energilager innefattande ett expansionsutrymme
SE537267C2 (sv) 2012-11-01 2015-03-17 Skanska Sverige Ab Förfarande för drift av en anordning för lagring av termiskenergi
US9995509B2 (en) * 2013-03-15 2018-06-12 Trane International Inc. Cascading heat recovery using a cooling unit as a source
CN104976774B (zh) * 2014-04-11 2018-04-20 珠海格力电器股份有限公司 一种热泵热水器的控制方法及控制***
WO2016059536A1 (en) * 2014-10-13 2016-04-21 Giamblanco Vincenzo A heat pump apparatus with energy recovery
DE102016108829A1 (de) * 2016-05-12 2017-11-16 Laurens G. J. Wolters Wärmespeicheranordnung
EP3299738A1 (en) * 2016-09-23 2018-03-28 Daikin Industries, Limited System for air-conditioning and hot-water supply
DK179237B1 (en) * 2016-10-31 2018-02-26 Danfoss Vaermepumpar Ab A method for controlling a compressor of a heat pump
EP3330260A1 (en) 2016-12-01 2018-06-06 Enantia, S.L. Process for the preparation of an intermediate for the synthesis of i.a. carfilzomib
CN208832798U (zh) * 2017-03-15 2019-05-07 三菱电机株式会社 热泵装置
JP7214227B2 (ja) * 2018-11-07 2023-01-30 伸和コントロールズ株式会社 温調システム
CN109579337B (zh) * 2018-11-26 2021-02-12 江苏天舒电器有限公司 一种复叠式热风控制***与方法
CN111023408B (zh) * 2019-11-25 2021-06-15 顿汉布什(中国)工业有限公司 一种空调机组设计计算及其配套软件编写方法
WO2021262865A1 (en) * 2020-06-23 2021-12-30 Hill Phoenix, Inc. Cooling system with a distribution system and a cooling unit

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0390927A (ja) * 1989-08-31 1991-04-16 Mitsubishi Electric Corp 電子機器の接続装置
JP2553738B2 (ja) * 1990-05-25 1996-11-13 松下電器産業株式会社 ヒートポンプシステムとその制御方法
JP3100074B2 (ja) * 1991-06-26 2000-10-16 ダイキン工業株式会社 冷却装置
JP2000249418A (ja) * 1999-02-26 2000-09-14 Matsushita Electric Ind Co Ltd 複数の室内熱交換器を具備した空気調和機
DE10029934A1 (de) * 2000-06-17 2002-01-03 Behr Gmbh & Co Klimaanlage mit Klimatisierungs- und Wärmepumpenmodus
JP2003065602A (ja) * 2001-08-27 2003-03-05 Hitachi Ltd ヒートポンプ風呂給湯機
JP3742356B2 (ja) * 2002-03-20 2006-02-01 株式会社日立製作所 ヒートポンプ給湯機
JP2004218943A (ja) * 2003-01-15 2004-08-05 Matsushita Electric Ind Co Ltd 冷暖房給湯装置
JP4599910B2 (ja) * 2004-07-01 2010-12-15 ダイキン工業株式会社 給湯装置
JP2007071519A (ja) * 2005-09-09 2007-03-22 Sanden Corp 冷却システム
JP5040104B2 (ja) * 2005-11-30 2012-10-03 ダイキン工業株式会社 冷凍装置
JP2007232282A (ja) * 2006-03-01 2007-09-13 Sharp Corp ヒートポンプ式給湯機
CN101688695B (zh) * 2007-04-23 2014-07-23 开利公司 带增强器回路的co2制冷剂***
JP5042058B2 (ja) * 2008-02-07 2012-10-03 三菱電機株式会社 ヒートポンプ式給湯用室外機及びヒートポンプ式給湯装置

Also Published As

Publication number Publication date
CN102472535A (zh) 2012-05-23
KR20120042922A (ko) 2012-05-03
KR101343711B1 (ko) 2013-12-20
CN102472535B (zh) 2014-06-25
JP2011069528A (ja) 2011-04-07
WO2011036905A1 (ja) 2011-03-31
EP2482005A4 (en) 2016-12-21
US9003817B2 (en) 2015-04-14
US20120180508A1 (en) 2012-07-19
EP2482005A1 (en) 2012-08-01

Similar Documents

Publication Publication Date Title
JP5380226B2 (ja) 空調給湯システム及びヒートポンプユニット
JP5455521B2 (ja) 空調給湯システム
JP5615381B2 (ja) 給湯空調複合装置
JP5373964B2 (ja) 空調給湯システム
JP5327308B2 (ja) 給湯空調システム
JP5121922B2 (ja) 空調給湯複合システム
JP5084903B2 (ja) 空調給湯複合システム
CA2745109C (en) Heat pump/air conditioning apparatus with sequential operation
JP5518101B2 (ja) 空調給湯複合システム
JP5297968B2 (ja) 空気調和装置
JP5166385B2 (ja) 空調給湯システム
JP5474483B2 (ja) 中間熱交換器及びそれを用いた空調給湯システム
JP5523470B2 (ja) 空気調和装置
JP6528078B2 (ja) 空気調和機
KR101454756B1 (ko) 이원냉동사이클을 갖는 축열장치 및 그 운전방법
JP2013083439A (ja) 給湯空調システム
JP2013083439A5 (ja)
JP5333557B2 (ja) 給湯空調システム
CN102753896A (zh) 空气调节装置
JP3896705B2 (ja) 冷凍サイクルおよび冷凍サイクルの制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130930

R151 Written notification of patent or utility model registration

Ref document number: 5380226

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees