JP5379743B2 - Laminate and manufacturing method thereof - Google Patents

Laminate and manufacturing method thereof Download PDF

Info

Publication number
JP5379743B2
JP5379743B2 JP2010115165A JP2010115165A JP5379743B2 JP 5379743 B2 JP5379743 B2 JP 5379743B2 JP 2010115165 A JP2010115165 A JP 2010115165A JP 2010115165 A JP2010115165 A JP 2010115165A JP 5379743 B2 JP5379743 B2 JP 5379743B2
Authority
JP
Japan
Prior art keywords
metal alloy
resin
laminate
thin plate
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010115165A
Other languages
Japanese (ja)
Other versions
JP2011240620A (en
Inventor
正徳 成富
直樹 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Purasu Co Ltd
Original Assignee
Taisei Purasu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Purasu Co Ltd filed Critical Taisei Purasu Co Ltd
Priority to JP2010115165A priority Critical patent/JP5379743B2/en
Publication of JP2011240620A publication Critical patent/JP2011240620A/en
Application granted granted Critical
Publication of JP5379743B2 publication Critical patent/JP5379743B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an easily processable laminated sheet wherein a metal alloy layer and a resin layer firmly join together. <P>SOLUTION: An SUS304 stainless steel sheet and an AZ31B magnesium sheet are subjected to surface treatment to meet three conditions of a new NMT. When PA6 films are surface bonded onto the both sides of the AZ31B magnesium sheet with thickness of 2 mm and SUS304 stainless steel thin sheets with thickness of 0.15 mm are surface bonded onto the outside faces of the PA6 films, an alternating laminated sheet (SUS304/PA6/AZ31B/PA6/SUS304) with thickness of 2.3 mm and specific gravity of 2.5 or less is formed. Though the laminated sheet is ultra-lightweight, it has excellent corrosion resistance, a metallic appearance (stainless steel itself), and a high bending elastic modulus since its outermost layer is stainless steel. <P>COPYRIGHT: (C)2012,JPO&amp;INPIT

Description

本発明は、輸送機器、電気機器、医療機器、及び一般機械等の製造分野において使用できる積層板とその製造方法に関する。本発明は、金属合金薄板間に熱可塑性樹脂を主成分とする樹脂層を設けた積層板に関するものであり、金属合金薄板間に繊維強化熱可塑性プラスチック(以下「FRTP(Fiber Reinforced Thermo-Plasticsの略)」という)からなる層を設けた積層板を含む。   The present invention relates to a laminated plate that can be used in the field of manufacturing transport equipment, electrical equipment, medical equipment, general machinery, and the like, and a method for manufacturing the same. The present invention relates to a laminated plate in which a resin layer mainly composed of a thermoplastic resin is provided between metal alloy thin plates, and a fiber reinforced thermoplastic plastic (hereinafter referred to as “FRTP” (Fiber Reinforced Thermo-Plastics). And a laminated board provided with a layer of “).

本発明者らは図1に示すCFRPとアルミニウム合金薄板を交互に積層した大型の交互積層板を開発した(非特許文献1)。この交互積層板は、特許文献1に示すNAT(Nano Adhesion Technologyの略)という金属合金に関する高度な接着剤接合技術を利用して作成したものであり、CFRPとアルミニウム合金薄板とがエポキシ接着剤を介して面接着した物である。500mm×50mmのA5052アルミニウム合金薄板5枚とCFRP4枚を交互に積層して得られた約3mm厚の交互積層板である。このようなアルミニウム合金薄板とCFRPからなる大型の交互積層板は、従来技術では得られなかった複合材料であり、超軽量であると共に鋼材に近い強固な物性を示し、金属外観を有し、実用的な耐熱性を有し、且つ、ボルト止めやネジ止めも可能になる板状材である。   The present inventors have developed a large-sized alternating laminate plate in which CFRP and aluminum alloy thin plates shown in FIG. 1 are alternately laminated (Non-Patent Document 1). This alternate laminated plate is made by using an advanced adhesive bonding technique relating to a metal alloy called NAT (abbreviation of Nano Adhesion Technology) shown in Patent Document 1, and CFRP and an aluminum alloy thin plate are made of epoxy adhesive. It is the thing which carried out surface adhesion via. This is an alternately laminated plate having a thickness of about 3 mm obtained by alternately laminating 5 sheets of 500 mm × 50 mm A5052 aluminum alloy sheets and 4 sheets of CFRP. Such a large alternating laminate of aluminum alloy sheets and CFRP is a composite material that could not be obtained by the prior art. It is ultralight, has strong physical properties close to steel, has a metallic appearance, and is practical. It is a plate-like material that has a typical heat resistance and that can also be bolted or screwed.

WO2008/114669 A1(AlのNAT)WO2008 / 114669 A1 (Al NAT) 特開2007−050630(Al,Mg)JP2007-050630 (Al, Mg) WO2008/069252A1(Mg)WO2008 / 069252A1 (Mg) WO2008/047811A1(Cu)WO2008 / 047811A1 (Cu) WO2008/078714A1(Ti)WO2008 / 078714A1 (Ti) WO2008/081933A1(SUS)WO2008 / 081933A1 (SUS) WO2009/011398A1(Fe)WO2009 / 011398A1 (Fe) WO2009/031632(逆新NMT)WO2009 / 031632 (Reverse New NMT) 特開2009−101563JP 2009-101563 A

「機械要素技術展」アルミとCFRPを積層した高比強度の複合材,大成プラスと東レが共同開発中、Internet URL http://techon.nikkeibp.co.jp/article/NEWS/20090624/172218/?ST"Machine Element Technology Exhibition" High specific strength composite material laminated with aluminum and CFRP, jointly developed by Taisei Plus and Toray, Internet URL http://techon.nikkeibp.co.jp/article/NEWS/20090624/172218/ ? ST 「炭素繊維/PEEK複合材料の破壊靭性と熱膨張係数」1993年、名古屋工業大学博士論文、学位記番号第101号、ユン・ホギュ"Fracture toughness and thermal expansion coefficient of carbon fiber / PEEK composites" 1993, Nagoya Institute of Technology Doctoral Dissertation, Degree No. 101, Yoon Ho Kyu

このような軽量且つ高剛性の積層板は、輸送機器のボディやモバイル用電子機器の筐体等に好適に使用されるが、その際、板材としての加工性が重要視される。しかしながら、このような交互積層板ではアルミニウム合金薄板とCFRPがエポキシ樹脂の硬化物を介して接合されている。従って、エポキシ樹脂硬化後の曲面加工が出来ず、鋼板等に較べ後加工性で劣るという問題がある。本発明はこのような技術背景のもとになされたものであり、その目的は金属合金層と樹脂層が強固に接合しており、且つ加工性の良い積層板を提供することにある。   Such a lightweight and highly rigid laminated plate is suitably used for a body of a transport device, a casing of a mobile electronic device, and the like, but at that time, workability as a plate material is regarded as important. However, in such an alternately laminated plate, the aluminum alloy thin plate and the CFRP are joined via a cured epoxy resin. Therefore, there is a problem that the curved surface processing after curing the epoxy resin cannot be performed and the post-processability is inferior to that of a steel plate or the like. The present invention has been made based on such a technical background, and an object of the present invention is to provide a laminate having a metal alloy layer and a resin layer that are firmly joined and having good workability.

[樹脂層]
本発明では、前述した後加工性の問題を解消すべく、エポキシ接着剤に代えて熱可塑性樹脂を使用し、マトリックス樹脂として通常エポキシ樹脂が使用されているCFRPに代えてFRTPを使用した。このように、樹脂層を熱硬化性樹脂ではなく熱可塑性樹脂で構成した積層板を作成することが可能であれば、一旦、金属合金薄板と樹脂を積層して積層板を得た後に、その積層板を熱プレス機の使用で曲面化することができる。これにより、後加工性が劇的に改善され、その用途は大幅に広がる。
[Resin layer]
In the present invention, a thermoplastic resin is used in place of the epoxy adhesive, and FRTP is used in place of the CFRP in which an epoxy resin is usually used as a matrix resin, in order to solve the above-described post-workability problem. Thus, if it is possible to create a laminated plate in which the resin layer is composed of a thermoplastic resin instead of a thermosetting resin, once the laminated plate is obtained by laminating the metal alloy thin plate and the resin, The laminate can be curved using a hot press. This dramatically improves post-workability and greatly expands its application.

本発明では、FRPに使われるマトリックス樹脂を熱可塑性樹脂に転換した物、即ちFRTPを使用する。即ち、CFRPではマトリックス樹脂にエポキシ樹脂が使われ、ガラス繊維強化プラスチック(以下「GFRP(Glass-Fiber Reinforced Plasticsの略)」という)では通常不飽和ポリエステル樹脂が使われるが、これらの樹脂を熱可塑性樹脂に転換したFRTPを本発明における樹脂層とすることができる。   In the present invention, a matrix resin used for FRP is converted into a thermoplastic resin, that is, FRTP is used. That is, epoxy resin is used for matrix resin in CFRP, and unsaturated polyester resin is usually used in glass fiber reinforced plastic (hereinafter referred to as “GFRP”). FRTP converted to resin can be used as the resin layer in the present invention.

FRTPのうち、ガラス繊維強化熱可塑性プラスチック(以下「GFRTP(Glass-Fiber Reinforced Thermo-Plasticsの略)」という)は既に知られた技術であり、作成可能で市販品が存在する。一方、炭素繊維強化熱可塑性プラスチック(以下「CFRTP(Carbon-Fiber Reinforced Thermo-Plasticsの略)」という)は未だ市販品がない。CFRTPは現在、炭素繊維メーカー各社が開発中の物であり市中に量産品が供給されていない。   Among the FRTPs, glass fiber reinforced thermoplastics (hereinafter referred to as “GFRTP” (abbreviation of “Glass-Fiber Reinforced Thermo-Plastics”)) are already known technologies, and there are commercially available products that can be produced. On the other hand, carbon fiber reinforced thermoplastics (hereinafter referred to as “CFRTP” (abbreviation of Carbon-Fiber Reinforced Thermo-Plastics)) are not yet commercially available. CFRTP is currently under development by carbon fiber manufacturers, and mass-produced products are not being supplied to the city.

ガラス繊維に関しては、繊維と熱可塑性樹脂の間の接着性を向上させる為に各種のシランカップリング剤が既に多数開発され、熱可塑性樹脂強化用にガラス繊維を使用する場合にはガラス繊維にシランカップリング剤を前もって塗布する。要するに、ガラス繊維の熱可塑性樹脂用表面処理技術は既に確立されている。これに対し炭素繊維は、エポキシ樹脂をマトリックス樹脂とするCFRP用として業界成長を続けて来た面が強く、現行の表面処理法はエポキシ樹脂向けである。炭素繊維各社は各種熱可塑性樹脂との接着性を最適化する表面処理法を開発中であるが未だ製品(CFRTP材又はCFRTPプリプレグ)を市中に出すところまで進んでおらず、その意味で熱可塑性樹脂用表面処理法が確立されたとは言い難い。   As for glass fibers, many silane coupling agents have already been developed to improve the adhesion between the fibers and the thermoplastic resin. When glass fibers are used to reinforce the thermoplastic resin, silane is used as the glass fiber. Coupling agent is applied in advance. In short, glass fiber surface treatment technology for thermoplastic resins has already been established. On the other hand, carbon fiber has been strong in the industry for CFRP using epoxy resin as a matrix resin, and the current surface treatment method is for epoxy resin. Carbon fiber companies are developing surface treatment methods that optimize adhesion to various thermoplastic resins, but have not yet advanced to the point where products (CFRTP materials or CFRTP prepregs) are put on the market. It is hard to say that the surface treatment method for plastic resins has been established.

本発明では、樹脂層を構成する樹脂として、ポリアミド樹脂、液晶ポリマー、ポリブチレンテレフタレート樹脂(以下「PBT」という)、ポリフェニレンサルファイド樹脂(以下「PPS」という)、ポリエーテルエーテルケトン樹脂(以下「PEEK」という)等の硬質で結晶性の熱可塑性樹脂を使用する。これら熱可塑性樹脂各々に対応した炭素繊維の表面処理法が確立され各種CFRTPが供給されるようになれば、本発明の樹脂層として使用できる。   In the present invention, as the resin constituting the resin layer, polyamide resin, liquid crystal polymer, polybutylene terephthalate resin (hereinafter referred to as “PBT”), polyphenylene sulfide resin (hereinafter referred to as “PPS”), polyether ether ketone resin (hereinafter referred to as “PEEK”). ") And a hard crystalline thermoplastic resin. If the carbon fiber surface treatment method corresponding to each of these thermoplastic resins is established and various CFRTPs are supplied, it can be used as the resin layer of the present invention.

[金属合金層と樹脂層の接合方法]
前述した「NAT」では、エポキシ接着剤によって金属合金薄板同士を接合している。本発明らは「NAT」以前に、結晶性熱可塑性樹脂、例えばPPSやPBT等の高強度エンジニアリングプラスチックを、所定の表面構造を有する金属合金に射出し、射出成形品と当該金属合金表面を強固に接合する方法を開発している。本発明者らはこのような接合を「射出接合」と称し、この接合技術を「新NMT(New Nano Molding Technology)」と称している。以下、「新NMT」の概略を説明する。
[Method of joining metal alloy layer and resin layer]
In the above-mentioned “NAT”, metal alloy thin plates are bonded together by an epoxy adhesive. Prior to “NAT”, the present inventors injected a high-strength engineering plastic such as PPS or PBT into a metal alloy having a predetermined surface structure before the “NAT”, thereby firmly fixing the injection molded product and the surface of the metal alloy. We are developing a method of joining to The present inventors refer to such joining as “injection joining” and this joining technology as “New NMT (New Nano Molding Technology)”. The outline of “new NMT” will be described below.

(新NMT)
「新NMT」では金属合金に関して3条件があり、射出接合に使用する熱可塑性樹脂に関して1条件がある。金属合金側に必要な3条件を以下に示す。
(1)第1条件は、最新型のダイナミックモード型の走査型プローブ顕微鏡で金属合金表面を走査したときに、RSmが0.8〜10μmであり、Rzが0.2〜5μmである粗度面となっていることである。ここでRSmは、日本工業規格(JIS B 0601:2001, ISO 4287:1997)に規定される輪郭曲線要素の平均長さであり、Rzは、日本工業規格(JIS B 0601:2001, ISO 4287:1997)に規定される最大高さである。本発明者等は、この粗度面を「ミクロンオーダーの粗度を有する表面」と称す。
(2)第2条件は、上記ミクロンオーダーの粗度を有する金属合金表面に、さらに5nm周期以上の超微細凹凸が形成されていることである。当該条件を具備するために、上記金属合金表面に微細エッチングを行い、前述のミクロンオーダーの粗度をなす凹部内壁面に5〜500nm、好ましくは10〜300nm、より好ましくは30〜100nm(最適値は50〜70nm)周期の超微細凹凸を形成する。
(3)第3条件は、上記金属合金の表層がセラミック質であることである。具体的には、元来耐食性のある金属合金種に関しては、その表層が自然酸化層レベルかそれ以上の厚さの金属酸化物層であることを要し、耐食性が比較的低い金属合金種(例えばマグネシウム合金や一般鋼材等)では、その表層が化成処理等によって生成した金属酸化物又は金属リン酸化物の薄層であることである。
(New NMT)
In “New NMT”, there are three conditions for the metal alloy and one condition for the thermoplastic resin used for injection joining. Three conditions necessary for the metal alloy side are shown below.
(1) The first condition is that when the metal alloy surface is scanned with the latest dynamic mode scanning probe microscope, the roughness is RSm of 0.8 to 10 μm and Rz is 0.2 to 5 μm. It is a surface. Here, RSm is the average length of contour curve elements defined in Japanese Industrial Standard (JIS B 0601: 2001, ISO 4287: 1997), and Rz is Japanese Industrial Standard (JIS B 0601: 2001, ISO 4287: 1997). The inventors refer to this roughness surface as “a surface having a roughness on the order of microns”.
(2) The second condition is that ultrafine irregularities having a period of 5 nm or more are further formed on the surface of the metal alloy having a roughness on the order of microns. In order to satisfy the conditions, fine etching is performed on the surface of the metal alloy, and the inner wall surface of the concave portion having a roughness on the order of micron is 5 to 500 nm, preferably 10 to 300 nm, more preferably 30 to 100 nm (optimum value). Form ultra-fine irregularities with a period of 50 to 70 nm.
(3) The third condition is that the surface layer of the metal alloy is ceramic. Specifically, with respect to the metal alloy type that originally has corrosion resistance, the surface layer needs to be a metal oxide layer having a thickness equal to or greater than that of the natural oxide layer, and the metal alloy type having relatively low corrosion resistance ( For example, in a magnesium alloy or a general steel material, the surface layer is a thin layer of metal oxide or metal phosphorous oxide generated by chemical conversion treatment or the like.

一方、樹脂側の条件は、
(4)硬質の結晶性樹脂であって、且つ急冷時の結晶化速度を異種の高分子配合によって遅くした樹脂組成物を使用することである。特許文献2の例では、PPSにポリオレフィン系樹脂を配合している。
On the other hand, the conditions on the resin side are:
(4) The use of a resin composition that is a hard crystalline resin and has a crystallization rate during quenching slowed by blending different types of polymers. In the example of Patent Document 2, a polyolefin-based resin is blended with PPS.

図2を使用して新NMTによる射出接合の原理を説明する。金属合金40の表面にはミクロンオーダーの粗度を成している凹部(C)が形成され、さらにその凹部内壁には超微細凹凸(A)が形成され、表層はセラミック質層41となっており、この超微細凹凸に樹脂組成物42の一部が浸入している。このようにした金属合金表面に液状の樹脂組成物が侵入し、侵入後に硬化すると、金属合金と硬化した樹脂組成物は非常に強固に接合するという簡潔な考え方である。   The principle of injection joining by the new NMT will be described using FIG. Concave portions (C) having a roughness on the order of microns are formed on the surface of the metal alloy 40, and ultra fine irregularities (A) are formed on the inner walls of the concave portions, and the surface layer is a ceramic layer 41. A part of the resin composition 42 has infiltrated into the ultra-fine irregularities. When the liquid resin composition penetrates into the surface of the metal alloy thus formed and is cured after the penetration, the metal alloy and the cured resin composition are joined together very firmly.

条件(1)〜(3)を有する金属合金材を射出成形金型にインサートし、条件(4)を満たす樹脂組成物を溶融状態で射出する。樹脂融点より150℃程度低温にした金型内に溶融樹脂が侵入して冷やされるが、融点以下になったとしても即時に結晶化は開始せず、一旦過冷却状態(融点以下ながら液体である状態)になり、その後に流路衝撃等を受けてごく小さい結晶の種を生成する。しかしながら、樹脂組成物は前記条件(4)により異種高分子配合によって過冷却状態が長く維持されるので結晶の種(数十nm径レベルの微結晶)が出来るのも遅くなり、それ故に粘度上昇が遅く、ミクロンオーダーの凹部(条件(1)の粗度面を形成する凹部)の奥底まで侵入する。   A metal alloy material having conditions (1) to (3) is inserted into an injection mold, and a resin composition satisfying condition (4) is injected in a molten state. The molten resin penetrates into the mold that is about 150 ° C. lower than the melting point of the resin and is cooled, but even if the melting point becomes lower than the melting point, crystallization does not start immediately, and once it is in a supercooled state (below the melting point, it is liquid After that, a very small crystal seed is generated by receiving a channel impact or the like. However, since the resin composition is kept in a supercooled state for a long time by blending different polymers under the above condition (4), the crystal seeds (microcrystals with a diameter of several tens of nanometers) can be formed slowly, and therefore the viscosity increases. However, it penetrates to the bottom of the concave part of micron order (the concave part forming the roughness surface of the condition (1)).

ミクロンオーダーの凹部に侵入した樹脂組成物は、条件(2)に示した超微細凹凸の凹部に対しても侵入する。超微細凹凸の奥底まで樹脂組成物が侵入せずとも、一部が侵入する(所謂「頭を突っ込む」)ことで、樹脂成形品と金属合金の接合力向上に寄与する。超微細凹凸への侵入後に結晶成長が更に進み、結晶化できなかった部分も高分子の熱振動が収まって樹脂相全体が固化する。樹脂が固化した状況で金属相と樹脂相間に剥がし力がかかった場合、ミクロンオーダーの凹部に侵入して結晶化固化した樹脂部は、超微細凹凸によってグリップされる。この超微細凹凸はセラミック質になっているので、樹脂部はスパイクされ容易に滑ることがない。   The resin composition that has entered the micron-order recesses also enters the ultra-fine recesses shown in the condition (2). Even if the resin composition does not penetrate into the depths of the ultra-fine irregularities, part of the resin composition penetrates (so-called “push the head”), which contributes to improving the bonding strength between the resin molded product and the metal alloy. Crystal growth further progresses after entering the ultra-fine irregularities, and the thermal vibration of the polymer is also settled at the part that could not be crystallized, and the entire resin phase is solidified. When a peeling force is applied between the metal phase and the resin phase in a state where the resin is solidified, the resin portion that has entered the micron-order concave portion and crystallized and solidified is gripped by the ultra fine unevenness. Since the ultra-fine irregularities are made of ceramic, the resin portion is spiked and does not slide easily.

また結晶化した樹脂部は硬く丈夫なので、樹脂部はミクロンオーダーの凹部から引き抜かれることはなく、極めて大きな剥がし力がかかった場合には樹脂部がミクロンオーダー凹部の上部で破断することになる。要するに、破断は常に材料破壊によって起こることになり最大の接合力を示すようになる。これらの技術が「新NMT」であり、特許文献2〜7に開示されている。   Further, since the crystallized resin portion is hard and strong, the resin portion is not pulled out from the micron-order concave portion, and when an extremely large peeling force is applied, the resin portion is broken at the upper part of the micron-order concave portion. In short, the break always occurs due to material breakage and exhibits the maximum bonding force. These techniques are “new NMT” and disclosed in Patent Documents 2-7.

(逆NMT)
本発明においては、上記「新NMT」を応用した「逆新NMT」によって、金属合金薄板と樹脂層を強固に接合する。「逆新NMT」は「新NMT」の応用技術であり、樹脂組成物が超微細凹凸に侵入して固化することで強固な接合を達成するという原理は同じである。即ち、金属合金に関する条件(1)〜(3)は同じである。但し、「新NMT」と異なり、樹脂組成物は射出成形の際に超微細凹凸に侵入するものではない。また、樹脂組成物に関しては、前記の条件(4)で示したものに限らず、単に硬質の結晶性熱可塑性樹脂であればよく、必ずしも「急冷時の結晶化速度を異種の高分子配合によって遅くする」ことを要しない。これは「新NMT」と異なる「逆新NMT」の特徴である。
(Reverse NMT)
In the present invention, the metal alloy thin plate and the resin layer are firmly joined by the “reverse new NMT” to which the “new NMT” is applied. “Reverse New NMT” is an applied technology of “New NMT”, and the principle that the resin composition penetrates into the ultra-fine irregularities and solidifies to achieve strong bonding is the same. That is, the conditions (1) to (3) regarding the metal alloy are the same. However, unlike “New NMT”, the resin composition does not penetrate into the ultra-fine irregularities during injection molding. In addition, the resin composition is not limited to that shown in the above condition (4), but may be a hard crystalline thermoplastic resin. It doesn't need to be 'slow'. This is a feature of “reverse new NMT” different from “new NMT”.

「逆新NMT」では、硬質で結晶性の高い熱可塑性樹脂を使用する。具体的にはポリアミド樹脂、液晶ポリマー、PBT、PPS、PEEK等を主成分とする樹脂組成物である。これらをGFRTPのマトリックス樹脂として使用する場合、前述したように使用する熱可塑性樹脂種に対応するシランカップリング剤を選択し、これによってガラス繊維を表面処理することで繊維と熱可塑性樹脂間の接合力を高めることができる。それ故、上記の樹脂組成物をマトリックス樹脂として使用する場合、GFRTPやGFRTPプリプレグの作成は困難でない。   In “Reverse New NMT”, a hard and highly crystalline thermoplastic resin is used. Specifically, it is a resin composition mainly composed of polyamide resin, liquid crystal polymer, PBT, PPS, PEEK and the like. When these are used as a matrix resin for GFRTP, the silane coupling agent corresponding to the type of thermoplastic resin used is selected as described above, and the glass fiber is surface-treated thereby to bond the fiber and the thermoplastic resin. You can increase your power. Therefore, when the above resin composition is used as a matrix resin, it is not difficult to prepare GFRTP or GFRTP prepreg.

「逆新NMT」は、溶融状態の樹脂を金属合金薄板の超微細凹凸に侵入させ、固化した樹脂と金属合金薄板を強固に接合させる技術であるが、「新NMT」のような射出接合技術ではない。逆新NMTは後加工に適した接合技術であり、特に熱プレスに適している。逆新NMTを適用した金属合金薄板と樹脂成形品の接合方法を以下に示す。   “Reverse New NMT” is a technology that allows molten resin to penetrate into the ultra-fine irregularities of the metal alloy thin plate and firmly bonds the solidified resin and the metal alloy thin plate, but injection joining technology like “New NMT” is not. Inverse NMT is a joining technique suitable for post-processing, and is particularly suitable for hot pressing. A method for joining a metal alloy thin plate to which a reverse new NMT is applied and a resin molded product is shown below.

まず、硬質の結晶性熱可塑性樹脂の成形品を用意しておく。一方、条件(1)〜(3)の条件を満たすように表面処理した金属合金薄板を、熱した金属板上に置いて高温にする。このとき金属合金薄板の温度が、上記樹脂の融点よりも高くなるようにする。この金属合金薄板に上記成形品を押し付けると、成形品の接触部は溶融し、金属合金薄板の粗面に染み込む。この状態で放置して全体が冷却されると、溶融部分が再度固化した成形品と金属合金薄板が接合する。この圧融着作業を減圧下又は真空下で行い、成形品の接触部が溶融した後に常圧に戻し、そのまま放冷して常温近くまで全体が冷えるまで待つことで、「新NMT」と同等の強い接合力が得られる。これは、減圧下又は真空下で溶融して金属合金薄板に押さえ付けられている樹脂が、常圧に戻したときに超微細凹凸部に侵入するためである。単純に成形品を押付けるより減圧操作を加えた方が強く接合する。   First, a molded product of a hard crystalline thermoplastic resin is prepared. On the other hand, the metal alloy thin plate that has been surface-treated so as to satisfy the conditions (1) to (3) is placed on a heated metal plate to increase the temperature. At this time, the temperature of the metal alloy thin plate is set to be higher than the melting point of the resin. When the molded product is pressed against the metal alloy thin plate, the contact portion of the molded product melts and penetrates into the rough surface of the metal alloy thin plate. When the whole is cooled in this state, the molded product whose molten portion is solidified again and the metal alloy thin plate are joined. This pressure fusion work is performed under reduced pressure or under vacuum, and after returning to the normal pressure after the contact part of the molded product has melted, it is allowed to cool as it is and waits until the whole cools to near room temperature, equivalent to “New NMT” Strong joint strength can be obtained. This is because the resin that has been melted under reduced pressure or under vacuum and pressed against the metal alloy thin plate enters the ultra-fine irregularities when the pressure is returned to normal pressure. Bonding is stronger when the pressure reducing operation is applied than simply pressing the molded product.

[広面積積層板]
逆新NMTに関しては特許文献8に記載されている。但し、特許文献8において金属合金薄板と接合する対象は樹脂成形品である。これに対して、本発明では、樹脂層を接合対象とする。この樹脂層は、ポリアミド樹脂、液晶ポリマー、PBT、PPS、PEEK等の樹脂フィルム、同樹脂をマトリックス樹脂にしたFRTPシートやFRTPプリプレグシート、同樹脂の粉体等によって構成される。このような樹脂層と金属合金薄層との交互積層材は、従来より不可能とされていたものである。特に金属合金薄板と樹脂層を交互に積層した積層板であって、100cm以上の広面積のものは実現不可能とされてきた。以下、その理由を記載する。
[Large area laminate]
The reverse new NMT is described in Patent Document 8. However, in Patent Document 8, the object to be joined to the metal alloy thin plate is a resin molded product. On the other hand, in the present invention, the resin layer is a bonding target. This resin layer is composed of a resin film such as polyamide resin, liquid crystal polymer, PBT, PPS, PEEK, FRTP sheet or FRTP prepreg sheet using the resin as a matrix resin, powder of the resin, and the like. Such an alternate laminated material of resin layers and metal alloy thin layers has been conventionally impossible. In particular, it has been considered impossible to realize a laminated plate in which metal alloy thin plates and resin layers are alternately laminated and have a large area of 100 cm 2 or more. The reason is described below.

(複合材の物性)
金属合金薄板と樹脂層からなる交互積層板の用途は、基本的に構造用部材であり、積層する材料自体は十分高い剛性を有している。一方で、積層する異種材料は当然異なる線膨張率を有している。それ故、2枚の異種金属合金薄板を間に熱可塑性樹脂層を挟んで面接着した場合、通常は双方の接着面にせん断力がかかる。仮に、積層板製造の過程でせん断力が殆どゼロの温度があったとしても、その温度より環境温度が上昇した場合、線膨張率の大きい方の材料は押さえ込まれる力が働いて本来の長さより縮められ、線膨張率の小さい方の材料は伸ばされる力が働いて本来の長さより伸ばされる。温度が下降した場合、この逆になる。双方の材料にかかるせん断力は反対方向だがその大きさは同じであり、且つ、せん断力の大きさは、理論的には各々材料の剛性、即ちヤング率と板厚の積に比例すると考えられる。
(Physical properties of composite materials)
The use of the alternately laminated plate composed of the metal alloy thin plate and the resin layer is basically a structural member, and the laminated material itself has sufficiently high rigidity. On the other hand, different materials to be laminated naturally have different linear expansion coefficients. Therefore, when two dissimilar metal alloy thin plates are bonded to each other with a thermoplastic resin layer interposed therebetween, a shearing force is usually applied to both bonded surfaces. Even if there is a temperature at which the shear force is almost zero in the process of manufacturing the laminated plate, if the environmental temperature rises above that temperature, the material with the higher linear expansion coefficient will be pushed down and the force will be pushed down. The material that is shrunk and has a smaller linear expansion coefficient is stretched from its original length by the stretching force. The reverse is true when the temperature drops. The shear force applied to both materials is in the opposite direction but the magnitude is the same, and the magnitude of the shear force is theoretically proportional to the rigidity of each material, that is, the product of Young's modulus and plate thickness. .

この様な簡単な理論であっても、大型の交互積層板において成立するか否かは明確ではなかった。しかし前述したアルミニウム合金薄板とCFRPの交互積層板(図1)の線膨張率を実測した結果、上記理論に基づく計算値と実測値が一致した。このように板材同士を面接着して、接着面内での線膨張率を論じる場合、前記理論を適用できることが当然とも考えられる。しかしながら、種々の複合材について、その線膨張率を基材の線膨張率等から算出できる理論と式が上記のみとは言い切れない。複合材の線膨張率算出は単純ではない。非特許文献2によれば、複合材の線膨張率の計算法として等価介在物法(前述した計算方法)が存在しており、これが基本となるが、他にも一方が繊維形状物である場合に使用することがある修正計算法、等価介在物法を積層理論から修正した計算法等があり、当然だがその計算結果は異なる。   Even with such a simple theory, it was not clear whether it would hold true for large alternating laminates. However, as a result of actually measuring the linear expansion coefficient of the above-described alternately laminated aluminum alloy plate and CFRP (FIG. 1), the calculated value and the actually measured value coincided with each other. When the plate materials are bonded to each other in this way and the linear expansion coefficient in the bonding surface is discussed, it is naturally considered that the above theory can be applied. However, the theory and formula for calculating the linear expansion coefficient of various composite materials from the linear expansion coefficient of the base material are not limited to the above. Calculation of the linear expansion coefficient of a composite material is not simple. According to Non-Patent Document 2, there is an equivalent inclusion method (the above-described calculation method) as a method for calculating the linear expansion coefficient of a composite material. This is the basic method, but one of them is a fiber-shaped object. There are a modified calculation method that may be used in some cases, a calculation method in which the equivalent inclusion method is corrected from the lamination theory, and the calculation results are naturally different.

単純な計算法を採用した場合に、計算値と実測値が合致しない例を示す。炭素繊維とエポキシ樹脂硬化物からなるCFRP材に関して説明する。炭素繊維の線膨張率は0〜−0.05×10−5−1とごく低く、昇温して若干縮む性質がある。これに対してエポキシ樹脂硬化物の線膨張率は4〜6×10−5−1とかなり高い。樹脂類の線膨張率は4〜10×10−5−1程度であるため、樹脂の中では比較的低いことになる。これらの複合材であるCFRP材になると、繊維方向の線膨張率は0.05〜0.1×10−5−1となり、炭素繊維に近い。この結果から、エポキシ樹脂硬化物は外部応力を炭素繊維に伝達する役割を果たすことが把握される。このCFRP材の構造について分かり易く言えば、剛直な糸を平行に数百本〜数千本通して一体化した豆腐のようなもので、複合材の線膨張率は糸の線膨張率やヤング率に大きく引きずられる。 In the case where a simple calculation method is employed, an example in which the calculated value and the actually measured value do not match is shown. A CFRP material made of carbon fiber and a cured epoxy resin will be described. The linear expansion coefficient of the carbon fiber is as low as 0 to −0.05 × 10 −5 ° C. −1 and has a property of shrinking slightly as the temperature rises. On the other hand, the linear expansion coefficient of the cured epoxy resin is as high as 4 to 6 × 10 −5 ° C.− 1 . Since the linear expansion coefficient of the resin is about 4 to 10 × 10 −5 ° C.− 1 , it is relatively low in the resin. When CFRP material which is these composite materials is used, the linear expansion coefficient in the fiber direction is 0.05 to 0.1 × 10 −5 ° C.− 1 , which is close to that of carbon fiber. From this result, it is understood that the cured epoxy resin plays a role of transmitting external stress to the carbon fiber. To make it easier to understand the structure of this CFRP material, it is like tofu with hundreds or thousands of rigid yarns passed in parallel, and the linear expansion coefficient of the composite material is the linear expansion coefficient of the yarn or Young's Greatly dragged by the rate.

このように複合材の線膨張率を測ると、実測値が元材料の線膨張率の平均値となるような場合(単純な計算方法による計算値と合致する場合)と、実測値がいずれか一方の材料の値に近くなる場合の2種が少なくともある。何れにせよ、複合材の線膨張率を実測して、2種のいずれに該当するかを把握することは重要である。複合材の線膨張率計算法が分かれば接合面にかかるせん断力が計算でき、せん断力が計算できれば接着力や接合力にこれらを押さえ込む十分な余力があるか否かが判断できるためである。これが安定な積層板が作成可能か否かの最初の判断材料になる。しかしながら、この判断材料のみでは十分ではない。積層板の面積が大きければ、他の要素を考慮しなければならない。   When the linear expansion coefficient of the composite material is measured in this way, either the actual measurement value is the average value of the linear expansion coefficient of the original material (when it matches the calculation value by a simple calculation method) or the actual measurement value is either There are at least two cases where the value of one material is close. In any case, it is important to measure the linear expansion coefficient of the composite material and grasp which of the two types is applicable. This is because if the calculation method of the linear expansion coefficient of the composite material is known, the shearing force applied to the joint surface can be calculated, and if the shearing force can be calculated, it can be determined whether or not there is sufficient remaining force to hold down these in the adhesive force and the joint force. This is the first judgment material on whether or not a stable laminate can be produced. However, this judgment material alone is not sufficient. If the area of the laminate is large, other factors must be considered.

(破壊理論)
接着物の破壊理論として以下の常識がある。被着材と接着剤硬化物の間に強い剥がし方向やズレ方向の外力がかかった場合に、ある部分が破壊に至る強度を接着力と解釈して、接着力を個々の微視的箇所について見る考え方である。微視的箇所1個1個の接着力には必ずバラツキがあり、その全体に均一な外力がかかった場合、当然だがバラツキの中の最も接合力の弱い微視的箇所が先ず壊れる。この局所破壊が生じるとその周辺で負荷が増加し周辺部も破壊し易くなる。もしここで次の破壊が生じればその周囲は更に負荷荷重が増えて破壊し易くなり、結局、連鎖破断して全破壊全破断に至る。要するに、最も弱い部分の部分接着力がどの程度かということが全体の破壊強度に大きく影響する。
(Destruction theory)
There is the following common sense as a fracture theory of adhesives. When an external force in the direction of peeling or displacement is applied between the adherend and the cured adhesive, the strength at which a part breaks is interpreted as the adhesive force, and the adhesive force is determined for each microscopic location. It is a way of thinking. There is always a variation in the adhesive force of each microscopic part, and when a uniform external force is applied to the whole, the microscopic part having the weakest bonding force is naturally broken first. When this local destruction occurs, the load increases in the vicinity, and the peripheral portion is easily destroyed. If the next breakage occurs, the load around the area further increases and breaks easily, and eventually, the chain breaks, resulting in a total breakage and a total breakage. In short, the degree of the partial adhesive strength of the weakest part greatly affects the overall breaking strength.

例えば接着面を10μmの面積毎に仕切り、各仕切り毎の接着力を計測し得たと仮定し、その接着力の大きさを横軸にとりその接着力を示した仕切り箇所数を縦軸にとった接着力分布のグラフを描いたとする。本発明者らは、NATや新NMTによる接合では、富士山型のグラフではなく山型食パンに近いグラフ(分布が狭く、裾野部分が無いグラフ)になると推定している。何れにしても全破壊に至る破壊強度値は前記説明で分かるように全体の平均接着力、即ち、山頂を示す辺りの接着力より必ず低い。富士山型では左山麓の3〜4合目当たり、山型食パンの型でも山型を作る肩(左肩)の低い辺りと考えられる。実際にはこのようなグラフを作ることは不可能であるが、このような微視的考察は、連鎖的な破壊を考えるときに接着剤や被着材をどのように加工すれば最終的な接合力を高められるかを考察する上で非常に役に立つ。 For example, it is assumed that the adhesive surface is divided into areas of 10 μm 2 and the adhesive strength of each partition can be measured, and the horizontal axis is the magnitude of the adhesive strength, and the number of partition points indicating the adhesive strength is the vertical axis. Suppose that a graph of the adhesive force distribution is drawn. The present inventors presume that the joining by NAT or the new NMT is not a Mt. Fuji type graph but a graph close to a mountain type bread (a graph with a narrow distribution and no bottom portion). In any case, as can be seen from the above description, the fracture strength value that leads to total fracture is always lower than the overall average adhesive strength, that is, the adhesive strength around the peak. In the case of Mt. Fuji, it is considered that the left shoulder is the lower part of the shoulder (left shoulder) that makes the mountain shape, even in the case of the mountain type bread, per the 3rd to 4th joint of the left foot. Actually, it is impossible to make such a graph, but such a microscopic consideration is the final result of how adhesives and adherends are processed when considering chain fracture. It is very useful in considering whether the bonding force can be increased.

前記した破壊理論が1cmの面積を有する積層板について正しいと仮定し、その積層板が破壊に至る外力を30MPaと仮定する。そして実際に31MPaの外力を与えたとした場合、100%の確率で全破断に至り、30MPaだと50%の確率で全破断に至り、29MPaでは10%の確率で全破断したと仮定する。上記積層板の面積を100倍(100cm)とした場合、外力が31MPaであっても30MPaであっても100%の確率で全破壊し、更に、29MPaの外力でもほぼ100%の確率で破壊し、剥がれ不良の生じることは明かである。何故なら、統計論的に破壊せぬ確率は0.9100であり殆どゼロだからである。 It is assumed that the fracture theory described above is correct for a laminate having an area of 1 cm 2 and the external force that causes the laminate to break is assumed to be 30 MPa. When an external force of 31 MPa is actually applied, it is assumed that the entire fracture occurs with a probability of 100%, the fracture with a probability of 50% occurs at 30 MPa, and the entire fracture occurs with a probability of 10% at 29 MPa. When the area of the laminated plate is 100 times (100 cm 2 ), it will be fully destroyed with a probability of 100% regardless of whether the external force is 31 MPa or 30 MPa, and it will be destroyed with a probability of almost 100% even with an external force of 29 MPa. However, it is clear that a peeling failure occurs. This is because the probability of not destroying statistically is 0.9 100, which is almost zero.

上記の考察では、1cmの面積を有する領域100個について、全て全く同じ物性と仮定しているが、実際の大面積の積層板では接着力の大きなバラツキがある。例えば接合面の端部と中央部では接着力に差がある可能性が高く、どのようなバラツキがあっても、領域100個の中の最も接着力の弱い箇所が全破壊や剥がれに影響する。従って、面積を大きくすることは外力が全面に均一だったとしても不利になることが多い。実際には外力がかかるのは殆どの場合局所的になり応力集中を生じるから、応力集中箇所と接合力の弱い局所が偶然一致すればより弱い力で剥がれを生じ、この破壊が切欠で全破壊が生じると推定される。大面積の積層板や交互積層板を作成して試験を行うことで明らかになる。 In the above consideration, 100 regions having an area of 1 cm 2 are all assumed to have the same physical properties, but an actual large-area laminate has a large variation in adhesive strength. For example, there is a high possibility that there is a difference in the adhesive strength between the end and the center of the joint surface, and the portion with the weakest adhesive strength in the 100 regions affects the total destruction and peeling regardless of any variation. . Therefore, increasing the area is often disadvantageous even if the external force is uniform over the entire surface. Actually, the external force is applied locally in most cases, resulting in stress concentration, so if the stress concentration point coincides with a weak joint strength, it will peel off with a weaker force, and this failure will be a notch. Is estimated to occur. It becomes clear when a large-area laminated board and alternate laminated boards are made and tested.

(大面積の積層板)
前述した事情が存在するため、金属合金薄板と樹脂の積層板であって、大面積のものを実現することは極めて困難である。それ故、本発明者らがCFRPとアルミニウム合金薄板とをエポキシ接着して大面積の交互積層板を作成し、これを機械要素技術展で公開したところ、大きな反響を得た(非特許文献1)。これは金属合金薄板とエポキシ接着剤硬化物の間の接着力を「NAT」により劇的に高めることができたこと、その接着剤の接着力が常温下からエポキシ樹脂の硬化温度(150〜170℃)に至る温度域で安定して高いこと(耐熱性ある接着剤であったこと)、被着材であるアルミニウム合金薄板の全面が均一的に接着に適した表面になっていたこと(条件(1)〜(3)を満たす金属合金表面を形成するための処理が浸漬処理であったこと)等の理由によるものである。前述した接着力分布グラフでみると、グラフは富士山型でなく山型食パンの形をしており、且つ、接着力の分布自体が常温から高温寄りにずれていると推定される。
(Large area laminate)
Because of the circumstances described above, it is extremely difficult to realize a large-area metal alloy thin plate and resin laminate. Therefore, when the present inventors created a large-area alternating laminate by epoxy bonding CFRP and an aluminum alloy thin plate, and exhibited it at the machine element technology exhibition, a great response was obtained (Non-patent Document 1). ). This is because the adhesive force between the metal alloy thin plate and the cured epoxy adhesive can be dramatically increased by “NAT”, and the adhesive strength of the adhesive increases from the normal temperature to the curing temperature of the epoxy resin (150 to 170). ℃) in a stable temperature range (that was a heat-resistant adhesive), and the entire surface of the aluminum alloy thin plate as the adherend was a surface suitable for bonding (conditions) This is because the treatment for forming the metal alloy surface satisfying (1) to (3) was an immersion treatment). Looking at the above-mentioned adhesive force distribution graph, it is presumed that the graph is shaped like a mountain bread instead of Mt. Fuji, and the adhesive force distribution itself is deviated from normal temperature toward high temperature.

さらに重要な点がある。CFRP材そのものが十分一体化していたこと、即ち、CFRPを成す炭素繊維とマトリックス樹脂間の接着力が十分強かったことも交互積層板を実現できた要因である。CFRP材では、線膨張率の小さな炭素繊維と線膨張率の大きなエポキシ樹脂製マトリックス樹脂の間には常に大きなせん断力がかかっている。CFRPとアルミニウム合金薄板で交互積層板を作成しその後に環境温度が上った場合、アルミニウム合金も炭素繊維を伸ばす力に加担するからマトリックス樹脂と炭素繊維界面にかかるせん断力は増加する。しかしながら実際に交互積層板を作ってみると全く問題が生じない。これは、マトリックス樹脂と炭素繊維間の接着力が十分強かったことが理由と考えられる。   There is a further important point. The fact that the CFRP material itself was sufficiently integrated, that is, the adhesive strength between the carbon fiber forming the CFRP and the matrix resin was sufficiently strong, was another factor that could realize the alternating laminate. In the CFRP material, a large shearing force is always applied between a carbon fiber having a small linear expansion coefficient and an epoxy resin matrix resin having a large linear expansion coefficient. When an alternating laminated plate is made of CFRP and an aluminum alloy thin plate and the environmental temperature thereafter increases, the shear force applied to the interface between the matrix resin and the carbon fiber increases because the aluminum alloy also contributes to the force to stretch the carbon fiber. However, no problem arises when an alternating laminate is actually made. This is presumably because the adhesive force between the matrix resin and the carbon fiber was sufficiently strong.

(強化繊維とマトリックス樹脂間の接着力)
本発明者らは、過去の実験で「NAT」を適用してCFRPとアルミニウム合金片をエポキシ接着剤で接着した。得られた複合体のせん断破断力は60MPa以上であった。マトリックス樹脂と炭素繊維間の接着力が十分に高いために、複合体は極めて高いせん断破断力を示し、その結果、非特許文献1に示す交互積層板が可能となった。この交互積層板の、CFRP材を熱可塑性樹脂の樹脂層に代え、接着方式を「NAT」から「逆新NMT」に代えた場合、金属合金薄板と熱可塑性樹脂の樹脂層で構成される交互積層板が可能となる。ここで問題となるのは、熱可塑性樹脂と金属合金薄板の接着力であり、エポキシ接着剤と同等の接着力は期待できない。また、仮に小型積層板の作成が可能であったとしても、100cm以上の大型の積層板も直ちに可能であるとは、前述した理由より保証されない。
(Adhesive strength between reinforcing fiber and matrix resin)
In the past experiment, the present inventors applied “NAT” to bond the CFRP and the aluminum alloy piece with an epoxy adhesive. The obtained composite had a shear breaking strength of 60 MPa or more. Since the adhesive force between the matrix resin and the carbon fiber was sufficiently high, the composite exhibited an extremely high shear fracture strength, and as a result, the alternating laminate shown in Non-Patent Document 1 became possible. When this CFRP material is replaced with a thermoplastic resin layer and the adhesive method is changed from “NAT” to “Reverse NMT”, the alternating laminated plate is composed of metal alloy thin plates and thermoplastic resin layers. Laminates are possible. The problem here is the adhesive force between the thermoplastic resin and the metal alloy thin plate, and an adhesive force equivalent to that of the epoxy adhesive cannot be expected. Moreover, even if it is possible to produce a small laminate, it is not guaranteed for the reason described above that a large laminate of 100 cm 2 or more is immediately possible.

しかしながら、「逆新NMT」における金属合金と熱可塑性樹脂間の接着力が、エポキシ接着剤を使用した「NAT」の半分、30MPa程度としても十分に高い接着力であり、積層板の作成が可能となりうる。「逆新NMT」における金属合金の表面処理は、「NAT」と同じであり、被着材性能に微視的バラツキは少なく、エポキシ接着剤代わりの結晶性ポリマーも量産品であるから物性の均一性は高い。従って、熱可塑性樹脂フィルムと金属合金薄板の積層板であって、大型のものは実現可能と考えられる。一方、実現性の問題が生じるのは、FRTPと金属合金薄板の積層板である。この場合、FRTP内の強化繊維と熱可塑性樹脂間の接着力の強さが問題となるからである。そして、この接着力が、大型積層板を作成する上で十分に高いものであるか否か不明だからである。   However, the adhesive strength between the metal alloy and the thermoplastic resin in “Reverse New NMT” is half that of “NAT” using an epoxy adhesive, about 30 MPa, which is sufficiently high, and it is possible to create a laminate. It can be. The surface treatment of the metal alloy in “Reverse New NMT” is the same as “NAT”, there is little microscopic variation in the performance of the adherend, and the crystalline polymer instead of the epoxy adhesive is mass-produced, so the physical properties are uniform. The nature is high. Therefore, it is considered that a large laminate of a thermoplastic resin film and a metal alloy thin plate can be realized. On the other hand, the problem of feasibility arises in the laminate of FRTP and metal alloy sheet. This is because the strength of the adhesive force between the reinforcing fiber in the FRTP and the thermoplastic resin becomes a problem. And it is because it is unclear whether this adhesive force is high enough when producing a large-sized laminated board.

本発明者らは、後述する実験例でFRTPとして6ナイロン(以下「PA6」という)使用のGFRTPを使用した。PA6の線膨張率は8×10−5−1程度と高く、ヤング率は1〜2GPaと低い。一方、ガラス繊維の線膨張率はEガラスで0.6×10−5−1程度、Tガラスの場合0.3×10−5−1程度であり、ヤング率はEガラス73GPa、Tガラス84GPa程度である。引っ張り破断伸びは双方のガラス共約5%である。ガラス繊維を炭素繊維と比較した場合、炭素繊維は線膨張率が殆ど0であるか若干のマイナス、ヤング率230〜290GPa、引っ張り破断伸び1〜2%であり、ガラス繊維は炭素繊維に比較してかなり柔らかい。 The present inventors used GFRTP using 6 nylon (hereinafter referred to as “PA6”) as FRTP in the experimental examples described below. The linear expansion coefficient of PA6 is as high as about 8 × 10 −5 ° C.− 1 , and the Young's modulus is as low as 1 to 2 GPa. On the other hand, the linear expansion coefficient of glass fiber is about 0.6 × 10 −5 ° C. −1 for E glass, and about 0.3 × 10 −5 ° C. −1 for T glass, and the Young's modulus is E glass 73 GPa, T The glass is about 84 GPa. The tensile elongation at break is about 5% for both glasses. When glass fiber is compared with carbon fiber, carbon fiber has a linear expansion coefficient of almost zero or slightly negative, Young's modulus is 230 to 290 GPa, tensile elongation at break is 1 to 2%, and glass fiber is compared with carbon fiber. And pretty soft.

本発明者らは、PA6とTガラス型ガラス繊維平織品からGFRTPを自作した。その作成工程にトラブルは無かった。完成したGFRTPシートと0.3mm厚のA5052アルミニウム合金薄板とを交互に積層して、130mm×100mmの大きさの全9層からなる交互積層板を作成した。この交互積層板に−30℃と+70℃間の温度衝撃を数百回加えても何ら支障はなかった。この温度衝撃試験において、PA6線膨張率の大きさが高温下にあるGFRTPの維持に問題を生じさせる可能性があったが、結果として問題は生じなかった。PA6のヤング率の低さ(柔らかさ)によってガラス繊維との接着が保たれた可能性がある。しかし、この結果だけでは、PPS、PEEKを使用したGFRTPについても同様のものを作成可能と判断することはできない。PPSのヤング率5〜10GPa、PEEKのヤング率は3GPaと何れもPA6より大きく、特にPPSは大きかったからである。しかしながら、これらをマトリックス樹脂としたGFRTPについても、高温下で使用可能なものを作成することができた。   The inventors made GFRTP from PA6 and a T-glass type glass fiber plain weave. There was no trouble in the production process. The completed GFRTP sheets and 0.3 mm thick A5052 aluminum alloy thin plates were alternately laminated to produce an alternating laminated plate consisting of a total of 9 layers having a size of 130 mm × 100 mm. There was no problem even if a temperature shock between −30 ° C. and + 70 ° C. was applied several hundred times to this alternate laminate. In this thermal shock test, the magnitude of the PA6 linear expansion coefficient may cause a problem in maintaining GFRTP at a high temperature, but no problem occurred as a result. There is a possibility that the adhesion to the glass fiber is maintained due to the low Young's modulus (softness) of PA6. However, it cannot be determined from this result alone that the same GFRTP using PPS and PEEK can be created. This is because the Young's modulus of PPS is 5 to 10 GPa and the Young's modulus of PEEK is 3 GPa, both higher than PA6, and particularly PPS is large. However, GFRTP using these as matrix resins could be used at high temperatures.

今後は、CFRTPと金属合金薄板からなる大型交互積層板の実現が期待される。未だCFRTP材が市販されていないが、今後、炭素繊維メーカーがCFRTP材を市販開始した場合、本発明の積層板において樹脂層として使用できる。なお学術論文(非特許文献2)によれば、炭素繊維とPEEK繊維の混紡物等から熱プレスでCFRTPを作成し、種々の物性を測定している。PEEK製CFRTPに関しては、PEEKに適した炭素繊維表面処理方法が重要事項と分かり、国内炭素繊維メーカーにより再検討されている模様だが、未だ十分な接着力を示す処理法は得られていない。   In the future, it is expected to realize large alternating laminates made of CFRTP and metal alloy thin plates. Although the CFRTP material is not yet commercially available, it can be used as a resin layer in the laminate of the present invention when a carbon fiber manufacturer starts to market the CFRTP material in the future. According to an academic paper (Non-Patent Document 2), CFRTP is prepared by hot pressing from a blend of carbon fiber and PEEK fiber, and various physical properties are measured. Regarding PEFR CFRTP, a carbon fiber surface treatment method suitable for PEEK is known to be an important matter, and it seems that it is being reconsidered by domestic carbon fiber manufacturers, but a treatment method that exhibits sufficient adhesion has not yet been obtained.

(積層板の例)
本発明に係る積層板の例を示す。2mm厚のAZ31Bマグネシウム合金板の両面にPA6フィルムを面接着させ、さらにPA6フィルムの外面(AZ31Bマグネシウム板と反対側の面)に0.15mm厚SUS304ステンレス鋼薄板を面接着した交互積層板(SUS304/PA6/AZ31B/PA6/SUS304)は厚さ2.3mm、比重2.5以下であり、超軽量ながらも最外層がステンレスであるため耐食性に優れ、外観は金属質(ステンレスそのもの)であり、曲げ弾性率も高かった。厚さ1.6mmのSPCC(冷間圧延鋼材)板の両面にPA6フィルムを面接着させ、さらにPA6フィルムの外面に0.1mm厚の純チタン製薄板を面接着した交互積層板(純チタン/PA6/SPCC/PA6/純チタン)は、耐食性が純チタンと同等になる。
(Example of laminated board)
The example of the laminated board which concerns on this invention is shown. An alternating laminate (SUS304) in which a PA6 film is bonded to both sides of a 2 mm thick AZ31B magnesium alloy plate, and a 0.15 mm thick SUS304 stainless steel sheet is bonded to the outer surface of the PA6 film (the surface opposite to the AZ31B magnesium plate). / PA6 / AZ31B / PA6 / SUS304) has a thickness of 2.3 mm and a specific gravity of 2.5 or less. Although it is ultralight, it has excellent corrosion resistance because the outermost layer is stainless steel, and the appearance is metallic (stainless steel itself). The flexural modulus was also high. PA6 film is bonded to both sides of a 1.6 mm thick SPCC (cold rolled steel) plate, and 0.1 mm thick pure titanium thin plate is bonded to the outer surface of the PA6 film. PA6 / SPCC / PA6 / pure titanium) has the same corrosion resistance as pure titanium.

PA6をマトリックス樹脂とした厚さ1mm厚のGFRTP板状物の両面に0.3mm厚のA2024アルミニウム合金薄板を面接着した交互積層板(A2024/GFRTP/A2024)は軽量であり、曲げ弾性率も高い。また、0.3mm厚A5052アルミニウム合金薄板5枚と0.25mm厚のPA6をマトリックス樹脂としたGFRTPシート4層を交互に積層した全9層からなる交互積層板は厚さ2.4mm、比重は2.2と超軽量ながらその曲げ弾性率は非常に高い。これらの積層板や交互積層板は適切な温度条件を選べば熱プレス機によって曲面加工が可能である。さらに、樹脂層には実施例に示したポリアミド樹脂、PPS、PEEKに限らず、硬質の結晶性熱可塑性樹脂であれば全て使用できるため、常用時の温度範囲(実用温度域)に応じて樹脂種を選択できる。   An alternating laminated plate (A2024 / GFRTP / A2024) in which a 0.3 mm thick A2024 aluminum alloy thin plate is surface-bonded on both sides of a 1 mm thick GFRTP plate material using PA6 as a matrix resin is lightweight and has a flexural modulus. high. Moreover, the alternate laminate plate consisting of nine layers in which 5 layers of 0.3 mm thick A5052 aluminum alloy thin plates and 4 layers of GFRTP sheets each having 0.25 mm thick PA6 as a matrix resin are alternately laminated is 2.4 mm in thickness and specific gravity is The bending elastic modulus is very high though it is ultra-lightweight with 2.2. These laminated plates and alternate laminated plates can be curved with a hot press machine if an appropriate temperature condition is selected. Furthermore, since the resin layer is not limited to the polyamide resin, PPS, and PEEK shown in the examples, any resin can be used as long as it is a hard crystalline thermoplastic resin. You can choose the species.

従来のCFRPと金属合金薄板からなる交互積層板(図1)は、樹脂層が熱硬化性樹脂(エポキシ樹脂)で構成されているため、一旦積層板や交互積層板を製造すると、その後に曲面化加工ができなかった。本発明では、樹脂層を熱可塑性樹脂とすることで、後加工性の良い積層板とした。一旦平板状の積層板や交互積層板を得た後に、熱プレス等の工程によって曲面加工することが可能である。金属合金薄板同士を熱可塑性樹脂を介して積層した積層板、金属合金薄板とFRTPシートを交互に積層して接着一体化した交互積層板のいずれであっても、樹脂層が熱可塑性樹脂によって構成されているため、一旦積層板を完成させた後に熱プレス機を使用して曲面加工できる。   In the conventional laminated plate made of CFRP and metal alloy thin plate (FIG. 1), the resin layer is composed of a thermosetting resin (epoxy resin). Could not be processed. In this invention, it was set as the laminated board with favorable post-processability by making a resin layer into a thermoplastic resin. Once a flat laminate or alternating laminate is obtained, it is possible to process the curved surface by a process such as hot pressing. The resin layer is composed of a thermoplastic resin, whether it is a laminated plate in which metal alloy thin plates are laminated via a thermoplastic resin, or an alternately laminated plate in which metal alloy thin plates and FRTP sheets are alternately laminated and integrated. Therefore, once the laminated plate is completed, it can be curved using a hot press.

金属合金薄板とFRTPからなる積層板や交互積層板は、金属合金とFRTPの双方の利点を有している。さらに金属合金薄板としてアルミニウム合金やチタン合金を使用すると、積層板の軽量化が可能であるため、多くの用途に適した構造用新素材を提供することが出来る。   Laminates and alternating laminates made of metal alloy thin plates and FRTP have the advantages of both metal alloys and FRTP. Furthermore, when an aluminum alloy or a titanium alloy is used as the metal alloy thin plate, the weight of the laminated plate can be reduced, so that a new structural material suitable for many applications can be provided.

図1は、CFRPとA5052アルミニウム合金薄板を交互に重ねた交互多層板の写真である。FIG. 1 is a photograph of an alternating multilayer plate in which CFRP and A5052 aluminum alloy thin plates are alternately stacked. 図2は、金属合金と樹脂組成物が接合したときの表面構造を示す断面模式図である。FIG. 2 is a schematic cross-sectional view showing a surface structure when a metal alloy and a resin composition are joined. 図3は、A5052アルミニウム合金を苛性ソーダ水溶液で化学エッチングし、水和ヒドラジン水溶液で微細エッチングした表面の電子顕微鏡写真(上:1万倍,下:10万倍)である。FIG. 3 is an electron micrograph (upper 10,000 times, lower: 100,000 times) of a surface obtained by chemically etching an A5052 aluminum alloy with a caustic soda aqueous solution and finely etching with a hydrated hydrazine aqueous solution. 図4は、SUS304ステンレス鋼を硫酸水溶液で化学エッチングした表面の電子顕微鏡写真(上:1万倍,下:10万倍)である。FIG. 4 is an electron micrograph (upper 10,000 times, lower: 100,000 times) of a surface obtained by chemically etching SUS304 stainless steel with a sulfuric acid aqueous solution. 図5は、AZ31Bマグネシウム合金をクエン酸水溶液で化学エッチングし、過マンガン酸カリ水溶液で化成処理した表面の10万倍電子顕微鏡写真である。FIG. 5 is a 100,000 times electron micrograph of a surface obtained by chemically etching an AZ31B magnesium alloy with a citric acid aqueous solution and chemical conversion treatment with a potassium permanganate aqueous solution. 図6は、AZ31Bマグネシウム合金をクエン酸水溶液で化学エッチングし、過マンガン酸カリ水溶液で化成処理した表面の10万倍電子顕微鏡写真である。FIG. 6 is a 100,000 times electron micrograph of a surface obtained by chemically etching an AZ31B magnesium alloy with a citric acid aqueous solution and chemical conversion treatment with a potassium permanganate aqueous solution. 図7は、β型チタン合金「KS15−3−3−3(株式会社 神戸製鋼所製)」を弗素イオンを含む硫酸水溶液で化学エッチングし、過マンガン酸カリ水溶液で表面硬化処理した表面の10万倍電子顕微鏡写真である。FIG. 7 shows the surface of a surface obtained by chemically etching a β-type titanium alloy “KS15-3-3-3 (manufactured by Kobe Steel, Ltd.)” with a sulfuric acid aqueous solution containing fluorine ions and surface-hardening it with a potassium permanganate aqueous solution. It is a 10,000 times electron micrograph.

[1.金属合金薄板]
本発明の積層板を構成する金属合金薄板は、「逆新NMT」の要件を備えたものである。「逆新NMT」において、金属合金薄板に要求される条件は、前述した「新NMT」と同様であるため、以下「新NMT」における金属合金表面の処理について説明する。「新NMT」に使用する金属合金種として理論上特に制限はない。しかし実際に「新NMT」を適用できるのは硬質で実用的な金属合金である。本発明者等は、アルミニウム、マグネシウム、銅、チタン、及び鉄を主成分とする金属合金種に関して「新NMT」が適用可能であることを確認した。特許文献1にアルミニウム合金に関する記載をした。特許文献3にマグネシウム合金に関する記載をした。特許文献4に銅合金に関する記載をした。特許文献5にチタン合金に関する記載をした。特許文献6にステンレス鋼に関する記載をした。特許文献7に一般鋼材に関する記載をした。しかし、「新NMT」ではアンカー効果という物理的効果により接着力を確保しているので、少なくともこれらの金属合金種に限定されるものではない。以下、金属合金表面を前記した「新NMT」の3条件に適合する表面構造とするための表面処理工程について概要を述べる。なお、各種金属合金の具体的な表面処理方法については、上記各特許文献に詳細に記載しており、その他の特許文献、刊行物にも開示している。
[1. Metal alloy sheet]
The metal alloy thin plate constituting the laminated plate of the present invention has the requirement of “reverse new NMT”. Since the conditions required for the metal alloy thin plate in the “reverse new NMT” are the same as those of the “new NMT” described above, the processing of the metal alloy surface in the “new NMT” will be described below. There is no theoretical limit in particular as a metal alloy type used for “new NMT”. However, “new NMT” can be applied to hard and practical metal alloys. The present inventors have confirmed that “new NMT” can be applied to metal alloy types mainly composed of aluminum, magnesium, copper, titanium, and iron. Patent Document 1 describes an aluminum alloy. Patent Document 3 describes a magnesium alloy. Patent Document 4 describes a copper alloy. Patent Document 5 describes a titanium alloy. Patent Document 6 describes stainless steel. Patent Document 7 describes general steel materials. However, since “new NMT” secures adhesive force by a physical effect called an anchor effect, it is not limited to at least these metal alloy types. The outline of the surface treatment process for making the surface of the metal alloy into a surface structure that meets the above three conditions of “new NMT” will be described below. In addition, the specific surface treatment method of various metal alloys is described in detail in each of the above patent documents, and is also disclosed in other patent documents and publications.

(化学エッチング)
この表面処理工程における化学エッチングは、金属合金表面にミクロンオーダーの粗度を生じさせることを目的とする。腐食には全面腐食、孔食、疲労腐食など種類があるが、その金属合金に対して全面腐食を生じる薬品種を選んで試行錯誤し、適当なエッチング剤を選ぶことができる。文献記録(例えば「化学工学便覧(化学工学協会編集)」)によれば、アルミニウム合金は塩基性水溶液、マグネシウム合金は酸性水溶液、ステンレス鋼や一般鋼材全般は、塩酸等ハロゲン化水素酸、亜硫酸、硫酸、これらの塩、等の水溶液で全面腐食するとの記録がある。
(Chemical etching)
The chemical etching in this surface treatment process is intended to produce a roughness on the order of microns on the surface of the metal alloy. There are various types of corrosion, such as general corrosion, pitting corrosion, and fatigue corrosion, but it is possible to select an appropriate etching agent by selecting a chemical species that causes general corrosion for the metal alloy and performing trial and error. According to literature records (for example, "Chemical Engineering Handbook (edited by Chemical Engineering Association)"), aluminum alloys are basic aqueous solutions, magnesium alloys are acidic aqueous solutions, stainless steel and general steel materials in general are hydrohalic acid such as hydrochloric acid, sulfurous acid, There is a record that the entire surface is corroded by an aqueous solution of sulfuric acid or a salt thereof.

又、耐食性の強い銅合金は、高濃度の硝酸水溶液や強酸性とした過酸化水素などの酸化性酸や酸化剤配合液によって全面腐食させられるし、チタン合金は蓚酸や弗化水素酸系の特殊な酸で全面腐食させられることが専門書や特許文献から散見される。実際に市場で販売されている金属合金類は、純銅系銅合金や純チタン系チタン合金のように純度が99.9%以上で合金とは言い難い物もあるが、これらも本発明の金属合金に含まれる。実際に使用されている金属合金の殆どは、特徴的な物性を求めて多種多用な元素が混合されて純金属系の物は少なく、実質的にも合金である。   In addition, copper alloys with strong corrosion resistance can be corroded entirely by highly concentrated nitric acid aqueous solution or strongly acidic oxidizing acid such as hydrogen peroxide or oxidizer compound liquid, and titanium alloys are oxalic acid or hydrofluoric acid based It can be seen from technical books and patent literature that it can be totally corroded with a special acid. The metal alloys that are actually sold in the market, such as pure copper-based copper alloys and pure titanium-based titanium alloys, have a purity of 99.9% or more and are hardly called alloys. Included in the alloy. Most of the metal alloys that are actually used are mixed with a wide variety of elements in order to obtain characteristic physical properties, and there are few pure metal materials, and they are substantially alloys.

即ち、金属合金の多くは、元々の金属物性を低下させることなく耐食性を向上させることを目的として純金属から合金化されたものである。それ故、金属合金によっては、前記酸・塩基類や特定の化学物質を使っても、目標とする化学エッチングができない場合もよくある。実際には使用する酸・塩基水溶液の濃度、液温度、浸漬時間、場合によっては添加物を工夫しつつ試行錯誤して適正な化学エッチングを行うことになる。   That is, many of the metal alloys are alloyed from pure metals for the purpose of improving the corrosion resistance without deteriorating the original metal properties. Therefore, depending on the metal alloy, even if the acid / base or a specific chemical substance is used, the target chemical etching is often not possible. In practice, appropriate chemical etching is performed by trial and error while devising the concentration of the acid / base aqueous solution to be used, the liquid temperature, the immersion time, and, in some cases, the additive.

実際に行う作業として全般的に共通する点を説明する。金属合金を所定の形状に形状化した後、当該金属合金用の脱脂剤を溶かした水溶液に浸漬して脱脂し、水洗する。この工程は、金属合金を形状化する工程で付着した機械油や指脂の大部分を除くための処理であり、常に行うことが好ましい。次いで、薄く希釈した酸・塩基水溶液に浸漬して水洗するのが好ましい。これは本発明者等が予備酸洗浄や予備塩基洗浄と称している工程である。一般鋼材のように酸で腐食するような金属合金では、塩基性水溶液に浸漬し水洗する。また、アルミニウム合金のように塩基性水溶液で特に腐食が早い金属合金では、希薄酸水溶液に浸漬し水洗する。これらは、化学エッチングに使用する水溶液と逆性のものを前もって金属合金に付着(吸着)させる工程であり、その後の化学エッチングが誘導期間なしに始まることになって処理の再現性が著しく向上する。それ故にこの予備酸洗浄、予備塩基洗浄工程は本質的なものではないが、実務上、採用することが好ましい。これらの工程の後に化学エッチング工程を行う。   The points that are generally common in the work actually performed will be described. After shaping the metal alloy into a predetermined shape, the metal alloy is degreased by immersing it in an aqueous solution in which a degreasing agent for the metal alloy is dissolved and washed with water. This process is a process for removing most of the machine oil and finger grease adhering in the process of shaping the metal alloy, and it is preferably always performed. Then, it is preferably immersed in a thinly diluted acid / base aqueous solution and washed with water. This is a process that the present inventors have referred to as preliminary acid cleaning and preliminary base cleaning. In the case of a metal alloy that corrodes with an acid such as a general steel material, it is immersed in a basic aqueous solution and washed with water. Further, in the case of a metal alloy that is particularly rapidly corroded with a basic aqueous solution such as an aluminum alloy, it is immersed in a dilute acid aqueous solution and washed with water. These are processes in which a solution opposite to the aqueous solution used for chemical etching is attached (adsorbed) to the metal alloy in advance, and the subsequent chemical etching starts without an induction period, so that the reproducibility of the process is remarkably improved. . Therefore, the preliminary acid cleaning and preliminary base cleaning steps are not essential, but are preferably employed in practice. After these steps, a chemical etching step is performed.

(微細エッチング・表面硬化処理)
また上記表面処理工程における微細エッチングは、金属合金表面に超微細凹凸を形成することを目的とする。また本発明における表面硬化処理は、金属合金の表層を金属酸化物又は金属リン酸化物の薄層とすることを目的とする。金属合金種によっては前記化学エッチングを行っただけで同時にナノオーダーの微細エッチングもなされ、超微細凹凸が形成される場合がある。さらに、金属合金種によっては表面の自然酸化層が元よりも厚くなって表面硬化処理も完了している場合もある。例えば、純チタン系のチタン合金は化学エッチングだけを行うことで、表面がミクロンオーダーの粗度を有し、且つ超微細凹凸も形成される。即ち、化学エッチングと併せて微細エッチングもなされる。しかし、多くは化学エッチングによりミクロンオーダーの大きな凹凸面を作った後で微細エッチングや表面硬化処理を行う必要がある。
(Fine etching and surface hardening treatment)
The purpose of the fine etching in the surface treatment step is to form ultra-fine irregularities on the surface of the metal alloy. Moreover, the surface hardening process in this invention aims at making the surface layer of a metal alloy into a thin layer of a metal oxide or a metal phosphate. Depending on the type of metal alloy, nano-order fine etching may be performed at the same time by performing the chemical etching, and ultra-fine irregularities may be formed. Furthermore, depending on the type of metal alloy, the natural oxide layer on the surface may be thicker than the original and the surface hardening process may be completed. For example, a pure titanium-based titanium alloy is only subjected to chemical etching, so that the surface has a roughness on the order of microns and ultra-fine irregularities are also formed. That is, fine etching is performed together with chemical etching. However, in many cases, it is necessary to perform fine etching or surface hardening treatment after forming a large uneven surface on the order of microns by chemical etching.

この時でも予測できない化学現象に見舞われることが多い。即ち、表面硬化処理や表面安定化処理を目的に化学エッチング後の金属合金に酸化剤等を反応させたり化成処理をしたとき、得られる表面に偶然ながら超微細凹凸が形成される場合がある。マグネシウム合金を過マンガン酸カリ系水溶液で化成処理した場合に生じた酸化マンガンとみられる表面層は10万倍電子顕微鏡でようやく判別つく5〜10nm直径の棒状結晶が錯綜したものである。この試料をXRD(X線回折計)で分析したが、酸化マンガン類由来の回折線は検出できなかったが、表面が酸化マンガンで覆われていることはXPS分析で明らかである。XRDで検出できなかった理由は、結晶が検出限界を超えた薄い層であったからである。要するに、マグネシウム合金では表面硬化処理としての化成処理を施したことで、微細エッチングも併せて完了していたことになった。   Even at this time, we are often hit by unpredictable chemical phenomena. That is, when a metal alloy after chemical etching is reacted with an oxidizing agent or chemical conversion treatment for the purpose of surface hardening treatment or surface stabilization treatment, ultra fine irregularities may be formed on the resulting surface by chance. The surface layer that appears to be manganese oxide formed when a magnesium alloy is subjected to chemical conversion treatment with a potassium permanganate aqueous solution is a complex of rod-like crystals having a diameter of 5 to 10 nm that can be finally identified with a 100,000-fold electron microscope. Although this sample was analyzed by XRD (X-ray diffractometer), diffraction lines derived from manganese oxides could not be detected, but it is clear by XPS analysis that the surface was covered with manganese oxide. The reason why XRD could not be detected is that the crystal was a thin layer exceeding the detection limit. In short, the magnesium alloy was subjected to a chemical conversion treatment as a surface hardening treatment, so that fine etching was also completed.

銅合金でも同様で、塩基性下の酸化で表面を酸化第2銅に変化させる表面硬化処理を行ったところ、純銅系銅合金では、その表面は楕円形の穴開口部で覆われた特有の超微細凹凸面になる。一方、純銅系でない銅合金では凹部型でなく10〜150nm径の粒径物又は不定多角形状物が連なり、一部融け合って積み重なった形の超微細凹凸面になる。この場合でも表面の殆どは酸化第2銅で覆われており、表面の硬化と超微細凹凸の形成が同時に起こる。   The same applies to copper alloys. When surface hardening treatment was performed to change the surface to cupric oxide by oxidation under basic conditions, the surface of pure copper-based copper alloys was covered with an elliptical hole opening. It becomes an ultra fine uneven surface. On the other hand, in the case of a copper alloy that is not pure copper-based, not a concave shape but a particle size or an indefinite polygonal shape having a diameter of 10 to 150 nm is continuous, and an ultrafine uneven surface in a form of being partially melted and stacked. Even in this case, most of the surface is covered with cupric oxide, and the hardening of the surface and the formation of ultrafine irregularities occur simultaneously.

一般鋼材に関しては、更なる検証が必要ではあるものの、ミクロンオーダーの粗度を形成するための化学エッチングだけで超微細凹凸も併せて形成されていることが多く、元来表層(自然酸化層)が硬いこともあって、表面硬化処理や微細エッチング処理を改めて行わずとも、「新NMT」の条件を備える場合があった。その際の問題は、自然酸化層の耐食性が十分でないために接着工程までに腐食が開始してしまうこと、また、接着後の環境如何では短時間で接着力が低下することであった。これらは化成処理によって防ぐことができる。   For general steel materials, although further verification is required, ultra-fine irregularities are often formed only by chemical etching to form micron-order roughness, and originally the surface layer (natural oxide layer) In some cases, the condition of “new NMT” is provided without performing the surface hardening process or the fine etching process again. The problem at that time is that the corrosion resistance of the natural oxide layer is not sufficient, so that corrosion starts before the bonding step, and the adhesive strength is reduced in a short time depending on the environment after bonding. These can be prevented by chemical conversion treatment.

また、本発明者らは、一般に、化成処理によって金属合金表面に形成された被膜(化成被膜)の膜厚が厚いと、接着力が低下することが多いことを確認している。前記のマグネシウム合金に付着した酸化マンガン薄層のように、XRDで回折線が検出されないような薄層である方が、強い接着力が得られる。化成被膜が厚い金属合金同士をエポキシ接着剤で接着し、破壊試験した場合、破壊面は殆どが化成皮膜と金属合金層との間となる。本発明者らが行った実験では、厚い化成皮膜とエポキシ接着剤硬化物との接合力は、その化成皮膜と金属合金との接合力より常に強かった。即ち、一般鋼材でも、化成処理時間を更に長くして化成処理層を厚くすれば、接着力は長期間低下しないと考えられる。しかしながら化成皮膜を厚くすれば、接着力自体が低下する。従って、どの程度でバランスを取るかは、使用目的、用途等にもよる。   In addition, the present inventors have generally confirmed that when the thickness of a film (chemical conversion film) formed on the surface of a metal alloy by chemical conversion treatment is thick, the adhesive force often decreases. A strong adhesive force can be obtained when the thin layer is such that the diffraction line is not detected by XRD, such as the thin layer of manganese oxide adhered to the magnesium alloy. When metal alloys having a thick chemical conversion film are bonded to each other with an epoxy adhesive and subjected to a destructive test, most of the fracture surface is between the chemical conversion film and the metal alloy layer. In experiments conducted by the present inventors, the bonding force between the thick chemical conversion film and the cured epoxy adhesive was always stronger than the bonding force between the chemical conversion film and the metal alloy. That is, even with a general steel material, it is considered that the adhesive strength does not decrease for a long period of time if the chemical conversion treatment time is further increased to increase the thickness of the chemical conversion treatment layer. However, if the chemical conversion film is thickened, the adhesive strength itself is lowered. Therefore, the degree of balance depends on the purpose of use and application.

(表面処理の具体例(アルミニウム合金の場合))
アルミニウム合金の表面処理に際して、まず脱脂処理を行う。本発明に特有な脱脂処理は必要なく、市販のアルミニウム合金用脱脂材の水溶液を使用する。即ち、アルミニウム合金で常用されている脱脂処理で良い。脱脂材によって異なるが、一般的な市販品では、濃度5〜10%として液温を50〜80℃とし、これにアルミニウム合金を5〜10分間浸漬する。
(Specific examples of surface treatment (for aluminum alloys))
In the surface treatment of the aluminum alloy, first, degreasing treatment is performed. The degreasing treatment unique to the present invention is not necessary, and a commercially available aqueous solution of a degreasing material for aluminum alloy is used. That is, the degreasing treatment commonly used for aluminum alloys may be used. Although it differs depending on the degreasing material, in a general commercial product, the concentration is 5 to 10%, the liquid temperature is 50 to 80 ° C., and the aluminum alloy is immersed in this for 5 to 10 minutes.

これ以降の工程は、アルミニウム合金に珪素が比較的多く含まれる合金と、これらの成分が少ない合金とでは処理方法が異なる。ここでは珪素分が少ないアルミニウム合金の処理方法に関して説明する。即ち、A1050、A1100、A2014、A2024、A3003、A5052、A7075等の展伸用アルミニウム合金では、以下のような処理方法が好ましい。即ち、アルミニウム合金を、酸性水溶液に短時間浸漬して水洗し、アルミニウム合金の表層に酸成分を吸着させるのが、次の化学エッチングを再現性良く進める上で好ましい。この処理を予備酸洗工程といい、使用液は、硝酸、塩酸、硫酸等、安価な鉱酸の1%〜数%濃度の希薄水溶液が使用できる。次いで、強塩基性水溶液に浸漬する化学エッチングを行った後、水洗する。この化学エッチングでは、1%〜数%濃度の苛性ソーダ水溶液を30〜40℃にして、これにアルミニウム合金を数分浸漬するのが好ましい。   In the subsequent steps, the treatment method is different between an alloy containing a relatively large amount of silicon in an aluminum alloy and an alloy containing few components. Here, a method for treating an aluminum alloy having a low silicon content will be described. That is, the following treatment methods are preferred for aluminum alloys for drawing such as A1050, A1100, A2014, A2024, A3003, A5052, and A7075. That is, it is preferable that the aluminum alloy is immersed in an acidic aqueous solution for a short time and washed with water, and the acid component is adsorbed on the surface layer of the aluminum alloy in order to proceed the next chemical etching with good reproducibility. This treatment is referred to as a preliminary pickling step, and a dilute aqueous solution having a concentration of 1% to several percent of an inexpensive mineral acid such as nitric acid, hydrochloric acid, sulfuric acid or the like can be used. Subsequently, after performing chemical etching immersed in a strongly basic aqueous solution, it is washed with water. In this chemical etching, a 1% to several percent concentration of caustic soda aqueous solution is preferably set to 30 to 40 ° C., and the aluminum alloy is preferably immersed in this for several minutes.

この化学エッチングにより、アルミニウム合金表面に残っていた油脂や汚れがアルミニウム合金表層と共に剥がされる。この剥がれと同時に、この表面にはミクロンオーダーの粗度を有するようになる。即ち、RSmが0.8〜10μm、Rzが0.2〜5.0μmの凹凸面となる。次に、再度酸性水溶液に浸漬し、水洗することでナトリウムイオンを除くのが好ましい。本発明者等はこれを中和工程と呼んでいる。この酸性水溶液として数%濃度の硝酸水溶液が特に好ましい。   By this chemical etching, oils and dirt remaining on the surface of the aluminum alloy are peeled off together with the surface layer of the aluminum alloy. Simultaneously with this peeling, the surface has a roughness on the order of microns. That is, the uneven surface has an RSm of 0.8 to 10 μm and an Rz of 0.2 to 5.0 μm. Next, it is preferable to remove sodium ions by immersing again in an acidic aqueous solution and washing with water. The inventors refer to this as a neutralization step. As this acidic aqueous solution, a nitric acid aqueous solution having a concentration of several percent is particularly preferable.

中和工程を経たアルミニウム合金に最終処理である微細エッチングを行う。微細エッチングでは、アルミニウム合金を、水和ヒドラジン、アンモニア、及び水溶性アミン化合物のいずれか1つ以上を含む水溶液に浸漬する。その後水洗し、70℃以下で乾燥するのが好ましい。これは、中和工程で行う脱ナトリウムイオン処理によって表面がやや変化し、粗度は保たれるがその表面がやや円滑になったことに対する粗面の復活策でもある。水和ヒドラジン水溶液等の弱塩基性水溶液に、短時間浸漬して微細エッチングする。ミクロンオーダーの粗度に係る凹部内壁面に、50〜100nm周期の超微細凹凸を多数形成させることが特に好ましい。   Fine etching, which is the final treatment, is performed on the aluminum alloy that has undergone the neutralization step. In the fine etching, the aluminum alloy is immersed in an aqueous solution containing one or more of hydrated hydrazine, ammonia, and a water-soluble amine compound. Thereafter, it is preferably washed with water and dried at 70 ° C. or lower. This is also a measure for reviving the rough surface with respect to the fact that the surface is slightly changed by the sodium removal ion treatment performed in the neutralization step and the roughness is maintained, but the surface becomes slightly smooth. Fine etching is performed by dipping in a weakly basic aqueous solution such as a hydrated hydrazine aqueous solution for a short time. It is particularly preferable to form a large number of ultrafine irregularities with a period of 50 to 100 nm on the inner wall surface of the recesses having a roughness on the order of microns.

ここで、水洗後の乾燥温度を例えば100℃以上の高温にすると、仮に乾燥機内が密閉的であると、沸騰水とアルミニウム間で水酸化反応が生じ、表面が変化して一種の水酸化アルミニウムであるベーマイトの層が形成される。これは丈夫な表層と言えず好ましくない。表面のベーマイト化を防ぐには、90℃以下、好ましくは70℃以下で温風乾燥するのが好ましい。70℃以下で乾燥した場合にはベーマイトは生成し難いが大型品であると乾燥にやや時間がかかる。NAT処理し乾燥を70℃以下で十数分以内に抑えて得たアルミニウム合金材をXPS分析すると、そのアルミニウム元素のピークからアルミニウム(3価)しか検出できず、市販のA5052、A7075アルミニウム合金板等のXPS分析で必ず検出できるアルミニウム(0価)は消える。XPS分析は、金属表面から1〜2nm深さまでに存在する元素が検出できるので、この結果から、水和ヒドラジンやアミン系化合物の水溶液に浸漬し、その後水洗して温風乾燥することで、アルミニウム合金が持っていた本来の自然酸化層(1nm厚さ程度の酸化アルミニウム薄層)がより厚くなったと確認できた。詳細に言えば小さな数字だが、自然酸化層と異なって2nm以上の厚さになった。この厚さは最近の分析結果で5〜7nm程度であることが明らかになった。   Here, when the drying temperature after washing with water is set to a high temperature of, for example, 100 ° C. or higher, if the inside of the dryer is hermetically sealed, a hydroxylation reaction occurs between boiling water and aluminum, and the surface changes to form a kind of aluminum hydroxide. A boehmite layer is formed. This is not preferable because it cannot be said to be a strong surface layer. In order to prevent boehmite formation on the surface, it is preferable to dry with hot air at 90 ° C. or lower, preferably 70 ° C. or lower. When dried at 70 ° C. or lower, boehmite is difficult to produce, but a large product takes some time to dry. When XPS analysis is performed on an aluminum alloy material obtained by NAT treatment and drying at 70 ° C. or less within 10 minutes or less, only aluminum (trivalent) can be detected from the peak of the aluminum element, and a commercially available A5052, A7075 aluminum alloy plate The aluminum (zero valence) that can be detected by XPS analysis such as is disappeared. The XPS analysis can detect elements present at a depth of 1 to 2 nm from the metal surface. From this result, it is immersed in an aqueous solution of hydrated hydrazine or an amine compound, and then washed with water and dried with warm air to obtain aluminum. It was confirmed that the original natural oxide layer (a thin aluminum oxide layer having a thickness of about 1 nm) that the alloy had became thicker. Although it is a small number in detail, the thickness is 2 nm or more unlike the natural oxide layer. This thickness was found to be about 5 to 7 nm in recent analysis results.

[2.結晶性熱可塑性樹脂]
前述したように樹脂層を構成する樹脂は、「硬質の結晶性熱可塑性樹脂」である。これには、当然「新NMT」で使用される「急冷時の結晶化速度を抑制させた硬質の結晶性熱可塑性樹脂系樹脂組成物」も含まれる。具体的には、前者に対応するのが、ポリアミド樹脂類、液晶ポリマー類、PBT、PPS、PEEK等であり(特許文献8)、後者に対応するのがポリアミド樹脂組成物同士の混合樹脂、PBTに少量のPETを混ぜた樹脂組成物、PPSにポリオレフィン系樹脂を少量コンパウンドした樹脂組成物等である(特許文献1〜7)。
[2. Crystalline thermoplastic resin]
As described above, the resin constituting the resin layer is a “hard crystalline thermoplastic resin”. This also includes “a hard crystalline thermoplastic resin composition with a suppressed crystallization rate during rapid cooling” used in “New NMT”. Specifically, the former corresponds to polyamide resins, liquid crystal polymers, PBT, PPS, PEEK, etc. (Patent Document 8), and the latter corresponds to a mixed resin of polyamide resin compositions, PBT. A resin composition in which a small amount of PET is mixed with PPS, and a resin composition in which a small amount of polyolefin resin is compounded with PPS (Patent Documents 1 to 7).

(粉体)
本発明において、樹脂層を樹脂粉体によって構成することも可能である。主に2種の粉体付着法があり、一方は静電粉体塗装法、もう一方は流動浸漬法である。何れも金属合金薄板に粉体を付着させた後で昇温して樹脂粉体を溶融する。本発明は何れの方法も使用できる。又、粉体塗装法とは異なるが、樹脂粉体を溶射して金属合金薄板に粉体を付着させる溶射法も使用できる。但し、溶射法では金属合金薄板上に付着した樹脂分は完全に溶融付着しているわけではないので、前記の粉体塗装法と同じ様に溶射工程後に全体を加熱して樹脂層を完全に溶融した方がよい。
(powder)
In the present invention, the resin layer can be composed of resin powder. There are mainly two types of powder adhesion methods, one is an electrostatic powder coating method and the other is a fluidized immersion method. In any case, after the powder is adhered to the metal alloy thin plate, the temperature is raised to melt the resin powder. Any method can be used in the present invention. Further, although different from the powder coating method, a thermal spraying method in which a resin powder is sprayed to adhere the powder to the metal alloy thin plate can also be used. However, in the thermal spraying method, the resin component adhering on the metal alloy thin plate is not completely melted and adhered, so that the resin layer is completely heated by heating the whole after the thermal spraying process in the same manner as the powder coating method. It is better to melt.

(フィルム又はシート)
樹脂層を構成する樹脂の形態は特に限定されないが、樹脂組成物をフィルムやシート状物にした物が好ましく使用できる。この場合、「新NMT」で要求される樹脂コンパウンドをシートやフィルム状に加工したものも使用できるが、これに限らず使用できる。PA6、PA66、PBT、PPS、PEEKの単層フィルムやシートは市販されており、これらによって樹脂層を構成することができる。これら市販フィルムは厚さ50〜200μmの範囲の物が標準的に供給されている。
(Film or sheet)
Although the form of resin which comprises a resin layer is not specifically limited, The thing which made the resin composition into the film or the sheet-like material can be used preferably. In this case, a resin compound required for “new NMT” processed into a sheet or film can be used, but the present invention is not limited to this. Single-layer films and sheets of PA6, PA66, PBT, PPS, and PEEK are commercially available, and the resin layer can be constituted by these. These commercially available films are normally supplied in a thickness range of 50 to 200 μm.

(FRTPテープ、FRTPシート)
<I:繊維ロービングから作成するシート状物>
Owens Corning社(米国)は、ガラス繊維ロービングから繊維を引き出して、溶融ポリプロピレン樹脂(以下「PP」という)を入れた容器内を通過させて繊維周囲にPPを付着させた後に巻き取って再びロービングにした「Twintex」、及びこれを平織りした「Twintex Cross」を製造販売している。この様な熱可塑性樹脂で包んだガラス繊維を織ったクロスでも、積層し、熱プレスしつつ樹脂融点付近まで加熱し放冷すると、GFRTP材やGFRTPプレプリグ(最終製品前の中間材)が得られる。
(FRTP tape, FRTP sheet)
<I: Sheet-like material created from fiber roving>
Owens Corning (USA) draws fiber from glass fiber roving, passes it through a container containing molten polypropylene resin (hereinafter referred to as “PP”), attaches PP around the fiber, and then winds and roving again. The company manufactures and sells “Twintex” and “Twintex Cross” plain weave. Even a cloth woven with glass fibers wrapped with such a thermoplastic resin can be laminated, heated to near the melting point of the resin while being hot pressed, and allowed to cool to obtain a GFRTP material or a GFRTP prepreg (an intermediate material before the final product). .

但し、本発明者らはPPを硬質で結晶性の熱可塑性樹脂という範疇に含めていない。これは本発明者らがPPを硬質でないと判断している上に、実際上「新NMT」「逆新NMT」においてPPの接合力は高くなかった。それ故「Twintex Cross」は本発明に使用出来ないが、同じ方法でポリアミド樹脂、PBT、PPS、液晶ポリマー、PEEK等の結晶性熱可塑性樹脂を含みこんだロービングを作り、これから織物を作ればFRTPプリプレグシートにできることは明白であり、少なくとも同法でGFRTPプリプレグシートが作成できる。   However, the present inventors do not include PP in the category of hard and crystalline thermoplastic resins. This is because the present inventors have determined that PP is not hard, and in fact, the bonding strength of PP was not high in “new NMT” and “reverse new NMT”. Therefore, “Twintex Cross” cannot be used in the present invention, but the same method is used to make a roving containing a crystalline thermoplastic resin such as polyamide resin, PBT, PPS, liquid crystal polymer, PEEK, etc. It is obvious that a prepreg sheet can be formed, and a GFRTP prepreg sheet can be prepared by at least the same method.

<II:繊維ロービングから作成するテープ状物>
数十〜百のロービングを用意して、これらから同時に繊維を引き出し、ロール等を介して数センチ幅にまとめて並べ、その状態のまま溶融熱可塑性樹脂の容器内を通過させて放冷し、中に強化繊維の束を含みこんだテープ状物を得る方法がある。テープ状物となった熱可塑性樹脂が含み込むのは繊維束であり、平織や綾織状の織物型にするのは難しいが最も安価にFRTP、FRTPプリプレグを作る方法である。少なくともGFRTPテープ、CFRTPテープの製造方法としては安価で優れた方法である。
<II: Tape-like material made from fiber roving>
Prepare dozens to hundreds of rovings, pull out the fibers simultaneously from these, arrange them together several centimeters wide via rolls, etc., let them pass through the container of molten thermoplastic resin as it is, and cool it, There is a method for obtaining a tape-like material including a bundle of reinforcing fibers therein. The thermoplastic resin in the form of a tape contains fiber bundles, and it is difficult to make a plain-woven or twill-woven fabric type, but it is the most inexpensive method for producing FRTP and FRTP prepregs. It is an inexpensive and excellent method for producing at least a GFRTP tape and a CFRTP tape.

<III:繊維ロービングから作成するテープ状物>
繊維を溶融樹脂に通過させない作成方法もある。数十〜百のガラス繊維ロービングを用意して、これらから同時に繊維を引き出し、ロール等を介して数センチ幅にまとめて並べ、更に別のロールを介して並べた繊維束を上面と下面から樹脂テープで挟み込み、これを加熱して樹脂テープを軟化しつつ、2本のゴムロールで上面と下面から挟み込んで潰して一体化テープとし、巻き取る方法がある。樹脂分は完全溶融していないのでこの状態のままでは樹脂とガラス繊維の間の接着力は不十分であるし、ボイドも含まれる。しかし本発明に使用するFRTPプリプレグとしては、真空熱プレス機を使用することで使用可能である。
<III: Tape-like material made from fiber roving>
There is also a production method in which the fiber is not passed through the molten resin. Prepare dozens to hundreds of glass fiber rovings, pull out the fibers simultaneously from these, arrange them together several centimeters wide through a roll, etc., and then resin the fiber bundles arranged through another roll from the top and bottom surfaces There is a method of sandwiching with a tape and heating it to soften the resin tape while sandwiching it with two rubber rolls from the upper surface and the lower surface to form an integrated tape and winding it. Since the resin component is not completely melted, the adhesive force between the resin and the glass fiber is insufficient in this state, and voids are included. However, the FRTP prepreg used in the present invention can be used by using a vacuum hot press.

<IV:樹脂フィルムと繊維クロスから作成するFRTPシート状物>
熱プレスや真空熱プレス機を使用して2枚の樹脂フィルムの間に繊維クロスを挟み、昇温して樹脂を溶融含浸させた後に冷却してプレス型から剥がし取ればFRTPシートを作成できる。この方法では繊維織物が使える。しかしながら真空プレス機を使用しない場合は作成物に必ずボイドが含まれるので、高信頼性の最高強度のFRTP材を作るには真空プレスの使用が好ましい。
<IV: FRTP sheet formed from resin film and fiber cloth>
An FRTP sheet can be prepared by sandwiching a fiber cloth between two resin films using a hot press or a vacuum hot press machine, raising the temperature to melt and impregnate the resin, cooling and peeling off from the press die. This method can use fiber fabrics. However, when a vacuum press is not used, voids are always included in the product. Therefore, it is preferable to use a vacuum press to produce a highly reliable FRTP material having the highest strength.

<V:繊維ロービングから作成するシート状物>
非特許文献2に示された方法である。非特許文献2には、炭素繊維とPEEK繊維を混合紡糸した混合糸を作り、この混合糸とPEEK繊維で平織物を作成し、熱プレス機で溶融プレスしてCFRTPのシート状物や板状物を作成している。熱可塑性樹脂を繊維化して混合紡糸することで炭素繊維との溶融接触性が改良されるようである。要するに、樹脂側も繊維化して強化繊維との混合クロスとし、これをCFRTPプリプレグとする方法である。なお、この文献ではこのCFRTPプリプレグからCFRTP材を熱プレス成形するにあたって真空熱プレス機を使用していない。
<V: Sheet-like material created from fiber roving>
This is the method shown in Non-Patent Document 2. In Non-Patent Document 2, a mixed yarn in which carbon fiber and PEEK fiber are mixed and spun is made, a plain woven fabric is made from this mixed yarn and PEEK fiber, and melt-pressed by a hot press machine to form a CFRTP sheet or plate. Creating things. It seems that melt contact with carbon fiber is improved by fiberizing a thermoplastic resin and mixing spinning. In short, this is a method in which the resin side is also fiberized to form a mixed cloth with reinforcing fibers, which is used as a CFRTP prepreg. In this document, a vacuum hot press machine is not used for hot press molding a CFRTP material from this CFRTP prepreg.

(本発明におけるGFRTPシート状物の作成方法)
本発明者らは樹脂としてPA6、PPS、PEEKを使用してGFRTPシート状物を作成した。GFRTPシート状物を作成するために上記IVの方法を使用した。更に言えば、IVの方法で一旦GFRTPシートを得るのではなく、このシート作成工程とその後に行う積層硬化工程を一挙に行う方法を採った。新NMT処理(条件(1)〜(3)を満たすようにするための表面処理)をした金属合金薄板を、平型のプレス型(下型)の上に置き、その上にプラスチックフィルムを敷き、その上にガラス繊維クロスを敷き、その上にプラスチックフィルムを敷き、その上に新NMT処理をした金属合金薄板を置き、更にその上に平型のプレス型(上型)を置いた。積層物(金属合金薄板/プラスチックフィルム/ガラス繊維クロス/プラスチックフィルム/金属合金薄板)全体が真空プレス機の中にある。この積層物を軽くプレスした状態で真空化し、昇温して樹脂の融点温度より若干高い温度にしてしばらく置く。樹脂が溶融すると積層物全体の厚さが縮む。これを確認した後に真空から常圧に戻し、更に圧力を加えて押え付け、金型の水冷を開始する。50℃程度まで温度が下がった後にプレス圧を除き内容物を取り出す方法である。要するに、GFRTPシートの作成と積層板、交互積層板の接合硬化工程を一挙に実施する。中間材であるGFRTPシートを一旦作成した後に積層する方法ではなく、GFRTPシートとして一旦確保する工程を介在させない。実質的にはIVの方法と同様であり、IVの方法を合理化した方法である。
(Method for producing GFRTP sheet material in the present invention)
The present inventors made a GFRTP sheet using PA6, PPS, and PEEK as resins. The above method IV was used to make a GFRTP sheet. Furthermore, instead of once obtaining a GFRTP sheet by the method IV, a method was adopted in which this sheet preparation step and the subsequent lamination curing step were performed all at once. A metal alloy thin plate that has been subjected to the new NMT treatment (surface treatment to satisfy the conditions (1) to (3)) is placed on a flat press die (lower die), and a plastic film is laid on it. Then, a glass fiber cloth was laid thereon, a plastic film was laid thereon, a metal alloy thin plate treated with a new NMT was placed thereon, and a flat press die (upper die) was further placed thereon. The entire laminate (metal alloy sheet / plastic film / glass fiber cloth / plastic film / metal alloy sheet) is in a vacuum press. The laminate is evacuated in a lightly pressed state, heated to a temperature slightly higher than the melting point of the resin, and left for a while. When the resin melts, the thickness of the entire laminate shrinks. After confirming this, the pressure is returned to normal pressure from the vacuum, and further pressure is applied to hold down the mold, and water cooling of the mold is started. This is a method of removing the press pressure and removing the contents after the temperature has dropped to about 50 ° C. In short, the preparation of the GFRTP sheet and the bonding and hardening process of the laminated plate and the alternating laminated plate are carried out all at once. It is not a method of laminating a GFRTP sheet that is an intermediate material once, but a step of securing it as a GFRTP sheet is not involved. The method is substantially the same as the method of IV, and is a method that rationalizes the method of IV.

(I)〜(V)に示した方法によって、FRTPテープ又はFRTPシートを作成し、金属合金薄板に積層して樹脂層を構成する。積層後、熱プレス機や真空熱プレス機で溶融し、積層板又は交互積層板を完成させる。この際に、使用する熱可塑性樹脂の量が重要である。即ち、「逆新NMT」で前記のFRTPシート状物と金属合金薄板を溶融接合させようとした場合、樹脂量が少なすぎると接合力が十分に得られない。   By the method shown in (I) to (V), an FRTP tape or an FRTP sheet is prepared and laminated on a metal alloy thin plate to constitute a resin layer. After lamination, it is melted by a heat press or a vacuum heat press to complete a laminate or an alternating laminate. At this time, the amount of the thermoplastic resin to be used is important. That is, when the FRTP sheet and the metal alloy thin plate are to be melt-bonded by “Reverse NMT”, if the amount of resin is too small, sufficient bonding strength cannot be obtained.

仮にGFRTPシートとして、ガラス繊維容積率が40%の物があったとする。繊維が40容積%近くあると、高い容積率とみなされる。即ち、GFRTPシート内に十分な量の繊維が詰め込まれ、詰め込まれた繊維の隙間を熱可塑性樹脂が埋めているということになる。このようなGFRTPシートを熱プレス機で加熱溶融させ、且つ、プレス圧をかけた場合、全体の樹脂量が少ないために繊維クロスから染み出す樹脂量が少ない。それ故に、金属合金薄板の超微細凹凸面の凹部に染み込ませるための樹脂圧を確保することが困難になる。樹脂分が側面から溢れる程度の十分な量存在していることが好ましく、必要となる樹脂量の計算値に、さらに数十μm程度の厚さに相当する樹脂量を加えておくことが好ましい。このような十分な樹脂量を確保した上で熱プレスを実施することが好ましい。GFRTPシートの樹脂量が少ない場合には、単層型フィルムを積層して調整することができる。   Assume that there is a GFRTP sheet having a glass fiber volume ratio of 40%. A high volume fraction is considered when the fibers are close to 40% by volume. That is, a sufficient amount of fibers are packed in the GFRTP sheet, and the gap between the packed fibers is filled with the thermoplastic resin. When such a GFRTP sheet is heated and melted with a hot press machine and a pressing pressure is applied, the amount of resin that oozes out from the fiber cloth is small because the total amount of resin is small. Therefore, it is difficult to secure a resin pressure for allowing the metal alloy thin plate to penetrate into the concave portion of the ultra fine uneven surface. It is preferable that a sufficient amount of the resin component overflows from the side surface, and it is preferable to add a resin amount corresponding to a thickness of about several tens of μm to the calculated value of the required resin amount. It is preferable to carry out hot pressing after securing such a sufficient amount of resin. When the resin amount of the GFRTP sheet is small, it can be adjusted by laminating a single layer type film.

[3.硬化工程]
新NMT処理をした金属合金薄板上に樹脂フィルムを密着させ、そのまま昇温して樹脂分の融点以上にして溶融した場合、溶融後にプレス圧を上げたとしても、金属合金薄板上の超微細凹凸の凹部に溶融樹脂が十分侵入するとは限らない。樹脂の超微細凹凸への侵入度を安定的に高くする最もよい方法は、積層物を樹脂の溶融前から減圧環境下に置いておくことである。但し、実際に積層板、交互積層板を作成したところ、必ずしも真空熱プレスを使用せずとも使用可能なものを得ることができた。但し、熱プレス機使用の場合でも、樹脂量を増やし(フィルム厚を厚くし)、加熱温度を高めにして樹脂溶融粘度を下げるのが有効であった。
[3. Curing process]
When a resin film is closely adhered to a new NMT-treated metal alloy sheet, and the temperature is raised as it is and the melting point is equal to or higher than the melting point of the resin, even if the press pressure is increased after melting, the ultra fine irregularities on the metal alloy sheet The molten resin does not always sufficiently enter the recesses. The best way to stably increase the degree of penetration of the resin into the ultra-fine irregularities is to place the laminate in a reduced pressure environment before the resin melts. However, when laminates and alternating laminates were actually produced, it was possible to obtain one that could be used without necessarily using a vacuum hot press. However, even when using a hot press machine, it was effective to increase the resin amount (thicken the film thickness) and raise the heating temperature to lower the resin melt viscosity.

(真空熱プレス機又は熱プレス機の使用)
樹脂フィルムを使用した時の積層物の熱プレス方法について説明する。プレス型は平型でよい。熱プレス機を使用するときは、昇温する温度がPA6(融点225℃)の場合275℃程度、PPS(融点280℃)の場合330℃程度、PEEK(融点345℃)の場合395℃程度と、融点より50℃程度高くすることが好ましい。一方、真空熱プレス機を使用するときは、前記各温度より15〜20℃低くしても支障ない。ただし、ここに示した温度は、通常の熱プレス機、真空熱プレス機では熱伝対が金型でなくその上下にあるプレス熱板に差し込まれており、熱板温度と積層板実温とに差異があることを考慮した数値である。真空熱プレス機を使用するときは、樹脂の酸化を考慮する必要はないため温度が上がり過ぎても支障はなく、この点が実際の作業上では大きいメリットとなる。最終製品に要求される信頼性を考慮して、真空熱プレス機、熱プレス機のいずれを使用するか判断することになる。
(Use of vacuum heat press or heat press)
A method of hot pressing the laminate when using a resin film will be described. The press mold may be a flat mold. When using a hot press, the temperature to be raised is about 275 ° C. for PA6 (melting point 225 ° C.), about 330 ° C. for PPS (melting point 280 ° C.), and about 395 ° C. for PEEK (melting point 345 ° C.). The melting point is preferably about 50 ° C. higher than the melting point. On the other hand, when using a vacuum hot press, there is no problem even if the temperature is lower by 15 to 20 ° C. than the above temperatures. However, the temperature shown here is that the thermocouple is inserted into the press hot plate above and below the die in the normal heat press machine and vacuum heat press machine, It is a numerical value considering that there is a difference. When using a vacuum hot press, there is no need to consider the oxidation of the resin, so there is no problem if the temperature rises too much. This is a great merit in actual work. Considering the reliability required for the final product, it is determined whether to use a vacuum hot press or a hot press.

何れのプレス機であれ、具体的手順としては、下型の上に積層物を置き、積層物の上に上型を置いて僅かにプレスする。プレス圧は1MPa(約10Kgf/cm)程度と低くてよい。真空プレス機を使用するときは真空にして昇温も開始する。温度が樹脂融点から想定して決めた上記設定温度に達したら、20〜40分その温度に保つのがよい。温度が熱板から積層物に伝わり、全樹脂が溶融するのに一定時間を要するからである。圧一定型のプレス機を使用している場合、樹脂が溶融することで金型間の距離が縮まる。プレス型間の距離が一定に保たれる方式のプレス機を使用している場合には、樹脂の溶融によって圧が下がるため、上型を押し込んで元のプレス圧(1MPa)に戻す。樹脂の溶融による積層物の厚さの変化が完了したら、プレス圧を3〜5MPaに上げる。真空熱プレス機を使用する場合は、真空ポンプを止め空気を入れて常圧に戻すのが好ましい。そしてプレス圧を保ったまま熱板や金型に冷却水を通し冷却する。本発明者らは安全のため、PA6、PPS、PEEKの全てにおいて熱板温度が50℃まで下がるのを待ってプレス圧を開放した。そして金型から一体化した積層板又は交互積層板を取り出した。 In any pressing machine, the specific procedure is to place the laminate on the lower mold and place the upper mold on the laminate and press slightly. The press pressure may be as low as about 1 MPa (about 10 kgf / cm 2 ). When using a vacuum press, the temperature is also increased by applying a vacuum. When the temperature reaches the above set temperature that is determined based on the melting point of the resin, the temperature should be kept for 20 to 40 minutes. This is because the temperature is transferred from the hot plate to the laminate, and it takes a certain time for the entire resin to melt. When using a constant pressure type press, the distance between the dies is reduced by melting the resin. In the case of using a press machine in which the distance between the press dies is kept constant, the pressure is lowered by melting of the resin, so that the upper die is pushed back to the original press pressure (1 MPa). When the change in the thickness of the laminate due to the melting of the resin is completed, the press pressure is increased to 3 to 5 MPa. When using a vacuum hot press, it is preferable to stop the vacuum pump and return to normal pressure by introducing air. Then, cooling water is passed through a hot plate or a mold while maintaining the press pressure. For safety, the inventors released the press pressure after waiting for the hot plate temperature to drop to 50 ° C. in all of PA6, PPS, and PEEK. And the laminated board or alternating laminated board which was integrated from the metal mold | die was taken out.

(粉体塗装法)
真空熱プレス機に関しては、大型のマシンが流通していない。用途がないことが理由の1つにあるが、大型機の作成が困難なことも理由である。真空プレス機では真空維持のための分割可能な真空容器があるのが通常であるが、その容器の肉厚が大きくなるという問題がある。また、真空容器内の真空維持にはOリングが使われるが、円筒形容器であればOリング封止は優しい。しかし、大型積層板製造用の真空プレス機の真空容器は円筒形にならないと考えられる。例えば、2m×1mの大きさの所謂「メートル板」タイプの平板型積層板を作成するため真空熱プレス機では真空容器は方形になると考えられる。大型で方形の真空容器をOリング封止して真空度を保つには、超高精度の精密機械工作が必要となると同時に、真空圧で歪まない数cm厚の鋼製容器にしなければならない。この作成に多大なコストを要する。
(Powder coating method)
Regarding vacuum heat press machines, there are no large machines in circulation. One of the reasons is that it has no application, but it is also difficult to make a large machine. In a vacuum press machine, there is usually a separable vacuum container for maintaining a vacuum, but there is a problem that the thickness of the container increases. In addition, an O-ring is used to maintain the vacuum inside the vacuum vessel, but the O-ring sealing is gentle if it is a cylindrical vessel. However, it is considered that the vacuum container of the vacuum press machine for manufacturing a large laminate is not cylindrical. For example, in order to produce a so-called “meter plate” type flat laminate having a size of 2 m × 1 m, it is considered that the vacuum container is rectangular in a vacuum hot press. To maintain the degree of vacuum by sealing a large, square vacuum vessel with an O-ring, ultra-high precision precision machining is required, and at the same time, a steel vessel with a thickness of several centimeters that is not distorted by vacuum pressure must be formed. This requires a lot of cost.

上記の事情から、真空熱プレス機を使用せずに、金属合金薄板に強固に樹脂組成物を融着させる方法がないか検討した。最も単純な方法は、大気圧下で熱板上に金属合金薄板を乗せ、更にその上に樹脂フィルムを乗せて、熱板を融点以上まで昇温してフィルムを溶融し、熱板温度を融点より50℃程度高い温度まで上げる方法である。このような実験を行った結果、溶融樹脂に気泡が生じた。樹脂と金属合金薄板に挟まれて逃げ場のなくなっていた空気が気泡となったのか又は樹脂の熱分解によるものかは不明であった。樹脂がポリアミド樹脂の場合、溶融前後から変色を開始する。そのため、窒素ガスで周囲を満たして試験したが、変色度がやや少ない程度で気泡は同様に生じた。熱板に冷却水を通じて室温近くまで冷やす過程で気泡は消え、表面にmm単位周期の波状凹凸はあるものの溶融樹脂層で全面が覆われた金属合金薄板が完成した。   In view of the above circumstances, it was examined whether there was a method for firmly fusing the resin composition to the metal alloy thin plate without using a vacuum hot press. The simplest method is to place a metal alloy sheet on a hot plate under atmospheric pressure, and then place a resin film on it, then heat the hot plate to the melting point or higher to melt the film. This is a method of raising the temperature to about 50 ° C. As a result of conducting such an experiment, bubbles were generated in the molten resin. It was unclear whether the air that was sandwiched between the resin and the metal alloy sheet and disappeared from the air became bubbles or was due to thermal decomposition of the resin. When the resin is a polyamide resin, the color change starts before and after melting. For this reason, the test was performed with nitrogen gas filled in the surroundings, but bubbles were similarly generated with a slightly lower degree of discoloration. Bubbles disappeared in the process of cooling the hot plate to near room temperature by cooling water, and a metal alloy thin plate that was entirely covered with a molten resin layer was completed although the surface had wavy irregularities with a period of mm units.

これと同様に、樹脂分を数十μm径の粉体にした物を原料にして金属合金薄板に粉体塗装した溶融樹脂層付きの金属合金薄板を作成することもできる。この粉体塗装法は、前記した樹脂フィルムの代わりに樹脂粉体を付着したものであり、溶融付着の方法(粉体塗装では溶融焼付け工程という)は同様である。この方法は、本発明者らが過去に公開した塗装技術(特許文献9)を応用したものであるが、特許文献9では溶液や懸濁溶液型塗料を使用しているのに対し、本発明では粉体塗料を使用している。   Similarly, a metal alloy thin plate with a molten resin layer, which is obtained by powder-coating a metal alloy thin plate from a material in which the resin content is made into a powder having a diameter of several tens of μm, can be produced. In this powder coating method, resin powder is attached instead of the above-described resin film, and the melt adhesion method (referred to as a melt baking process in powder coating) is the same. This method is an application of the coating technique (Patent Document 9) previously disclosed by the present inventors. In Patent Document 9, a solution or suspension solution type paint is used, whereas the present invention is applied. So, powder paint is used.

(溶融焼き付け工程)
溶融焼き付け工程において留意すべき点がある。積層板や交互積層板は中間材であって、更に熱プレスにより曲面化加工等が為されるため、最終商品となるまでに、加工性や物性に樹脂の酸化による悪影響が出るおそれがある。樹脂溶融時に金属薄板周囲の雰囲気を窒素下にすることで、そのようなリスクを回避することが可能である。但し、樹脂溶融時の環境に関しては、実際に大量生産を行って詳細な検査を行う必要がある。実際には生産を繰り返し、得られた積層板の詳細な物性を統計的に測った上で判断すべきである。大気下のような雰囲気中でも何ら問題が生じない可能性もあるが、使用樹脂が全て耐熱性樹脂であり、それ故に融点も高いので、樹脂の酸化に関しては留意すべきである。なお、本発明者らが大気圧下で作成した交互積層板作成には、何ら支障は認められなかった。仮に樹脂溶融工程を窒素下で行うことで、高性能な積層板が得られるとした場合、窒素ガスで熱板上や熱板周囲をカバーするカバー容器の作成費用、使用する窒素ガスの費用は、大型真空プレス機を設計製作する費用に比較すれば軽微と考えられる。
(Melting process)
There are points to be noted in the melt baking process. Laminated plates and alternating laminated plates are intermediate materials, and are further subjected to curved surface processing by hot pressing, and therefore, there is a possibility that the workability and physical properties may be adversely affected by oxidation of the resin before becoming a final product. Such a risk can be avoided by making the atmosphere around the metal thin plate under nitrogen when the resin is melted. However, regarding the environment at the time of resin melting, it is necessary to carry out a detailed inspection by actually performing mass production. In practice, production should be repeated, and detailed physical properties of the resulting laminate should be measured statistically. There is a possibility that no problem occurs even in an atmosphere such as the atmosphere. However, since all the resins used are heat-resistant resins and therefore have a high melting point, attention should be paid to the oxidation of the resins. It should be noted that no trouble was observed in the production of the alternating laminate produced by the present inventors under atmospheric pressure. If a high-performance laminate is obtained by performing the resin melting step under nitrogen, the cost of creating a cover container that covers the top of the hot plate with nitrogen gas and the cost of the nitrogen gas to be used is Compared to the cost of designing and manufacturing a large vacuum press, this is considered to be negligible.

粉体塗装法等のように、金属合金薄板上で樹脂層を溶融焼き付けする手法を取った場合、得られた樹脂層付きの金属合金薄板同士を面接合させる為に、熱プレス操作が必要である。この工程に真空プレス機を使用する必要性は低い。面接合力に最も影響する樹脂相と金属合金表面との接合は既に完了しているため、この工程自体は困難ではない。熱プレス機の下熱板の上に平金型を置き、樹脂層付きの金属合金薄板の樹脂層同士を向かい合わせて積層し、積層物を平金型で挟み込んで数MPa程度のプレス圧をかけ、金型温度を樹脂融点以上にして樹脂層同士を面融着させることで金属合金薄板/樹脂層/金属合金薄板の積層板を得ることができる。ここで留意すべき点は、前述した方法と同様に十分に冷却してからプレス圧を下げて離型することである。   When the method of melt-baking the resin layer on the metal alloy thin plate, such as the powder coating method, is used, a hot press operation is required to surface-bond the obtained metal alloy thin plate with the resin layer. is there. The need to use a vacuum press for this process is low. Since the bonding between the resin phase that has the greatest influence on the surface bonding force and the metal alloy surface has already been completed, this process itself is not difficult. Place a flat die on the lower heat plate of the heat press machine, laminate the resin layers of the metal alloy thin plate with the resin layer facing each other, sandwich the laminate with the flat die, and apply a press pressure of several MPa. Then, a metal alloy thin plate / resin layer / metal alloy thin plate laminate can be obtained by making the mold temperature equal to or higher than the resin melting point and fusing the resin layers to each other. The point to be noted here is to release the mold by lowering the press pressure after sufficiently cooling as in the above-described method.

[実験例]
本発明者らは以下に示すように、積層板の作成実験を行った。実験に使用した代表的な装置を(a)〜(f)に示す。
(a)電子顕微鏡観察
SEM型の電子顕微鏡「S−4800(株式会社 日立製作所製)」及び「JSM−6700F(日本電子株式会社(日本国東京都)製)」を使用し1〜2KVにて観察した。
(b)走査型プローブ顕微鏡観察
ダイナミックフォース型の走査型プローブ顕微鏡「SPM−9600(株式会社 島津製作所製)」を使用した。
(c)試験片の接合強度の測定
引っ張り試験機「AG−10kNX(株式会社 島津製作所製)」を使用し、引っ張り速度10mm/分でせん断破断力を測定した。
(d)真空熱プレス機
真空プレス機「バキュームネオ(ミカドテクノス株式会社製)」を使用した。
(e)非破壊検査機
超音波型非破壊検査機「FSライン(日立建機ファインテック株式会社製)」を使用した。
(f)温度衝撃試験機
温度衝撃試験機「冷熱衝撃試験機TSA71S(エスペック株式会社製)」を使用した。
[Experimental example]
The present inventors conducted an experiment for producing a laminate as described below. Typical devices used in the experiment are shown in (a) to (f).
(A) Electron Microscope Observation Using SEM type electron microscopes “S-4800 (manufactured by Hitachi, Ltd.)” and “JSM-6700F (manufactured by JEOL Ltd. (Tokyo, Japan))” at 1-2 KV Observed.
(B) Scanning Probe Microscope Observation A dynamic force scanning probe microscope “SPM-9600 (manufactured by Shimadzu Corporation)” was used.
(C) Measurement of bonding strength of test piece Using a tensile tester “AG-10kNX (manufactured by Shimadzu Corporation)”, shear breaking force was measured at a pulling speed of 10 mm / min.
(D) Vacuum heat press machine The vacuum press "vacuum neo (made by Mikado Technos Co., Ltd.)" was used.
(E) Nondestructive inspection machine An ultrasonic nondestructive inspection machine “FS line (manufactured by Hitachi Construction Machinery Finetech Co., Ltd.)” was used.
(F) Thermal shock tester A thermal shock tester “Cold Thermal Shock Tester TSA71S (manufactured by Espec Corp.)” was used.

[実験例1](A5052アルミニウム合金の表面処理)
市販の0.3mm厚のA5052アルミニウム合金板材を入手し、切断して130mm×100mmの長方形片を多数作成した。槽の水に市販のアルミニウム合金用脱脂剤「NE−6(メルテックス株式会社製)」を投入して濃度7.5%の水溶液(60℃)とした。これに前記長方形片を7分浸漬し、よく水洗した。続いて別の槽に1%濃度の塩酸水溶液(40℃)を用意し、これに前記長方形片を1分浸漬してよく水洗した。次いで別の槽に1.5%濃度の苛性ソーダ水溶液(40℃)を用意し、これに前記長方形片を2分浸漬してよく水洗した。続いて別の槽に3%濃度の硝酸水溶液(40℃)を用意し、これに前記長方形片を3分浸漬し、水洗した。次いで別の槽に一水和ヒドラジンを3.5%含む水溶液(60℃)を用意し、これに前記長方形片を2分浸漬し、水洗した。次いで前記長方形片を67℃にした温風乾燥機に15分入れて乾燥した。乾燥後、前記長方形片をアルミ箔で包み、さらにこれをポリ袋に入れて封じ保管した。
[Experiment 1] (A5052 aluminum alloy surface treatment)
Commercially available 0.3 mm thick A5052 aluminum alloy sheet was obtained and cut to produce a large number of rectangular pieces of 130 mm × 100 mm. A commercially available aluminum alloy degreasing agent “NE-6 (manufactured by Meltex Co., Ltd.)” was added to the water in the tank to prepare a 7.5% aqueous solution (60 ° C.). The rectangular piece was immersed in this for 7 minutes and washed thoroughly with water. Subsequently, a 1% hydrochloric acid aqueous solution (40 ° C.) was prepared in another tank, and the rectangular piece was immersed in this for 1 minute and washed with water. Then, a 1.5% strength aqueous caustic soda solution (40 ° C.) was prepared in another tank, and the rectangular piece was immersed in this for 2 minutes and washed with water. Subsequently, a 3% nitric acid aqueous solution (40 ° C.) was prepared in another tank, and the rectangular piece was immersed in this for 3 minutes and washed with water. Next, an aqueous solution (60 ° C.) containing 3.5% monohydric hydrazine was prepared in another tank, and the rectangular piece was immersed in this for 2 minutes and washed with water. Subsequently, the rectangular piece was put into a hot air dryer set at 67 ° C. for 15 minutes and dried. After drying, the rectangular piece was wrapped with aluminum foil, which was then sealed in a plastic bag.

前記処理をしたA5052アルミニウム合金片を電子顕微鏡観察したところ、10〜60nm径の凹部や、20〜50nm幅の溝状凹部、10〜20nm周期の細かい皴状凹凸など、無数の凹部で全面が覆われていることが分かった。これを図3の写真に示す。前記処理をしたA5052アルミニウム合金片を、走査型プローブ顕微鏡にかけて40μm/秒で20μm分を走査し、RSmとRzを求めたところ、RSmは1.1μ、Rzは.0.3μmであった。前記処理をしたA5052アルミニウム合金片に対して、XPSを使用してアルミニウム原子の観察をした。購入したA5052ではAl(0価)とAl(3価)が約1:3で観察されたのに対し、前記処理をしたA5052アルミニウム合金片では、Al(0価)は見当たらず、酸化アルミニウムの膜厚が厚くなったことが分かった。XPSでは表面から1〜2nmまでの深さの原子構成が検出されるので、酸化アルミニウム表層の厚さは少なくとも2nm以上になったことが明らかだった。   When the treated A5052 aluminum alloy piece was observed with an electron microscope, the entire surface was covered with an infinite number of recesses such as recesses with a diameter of 10 to 60 nm, groove-like recesses with a width of 20 to 50 nm, and fine bowl-like unevenness with a period of 10 to 20 nm. I found out. This is shown in the photograph of FIG. The processed A5052 aluminum alloy piece was scanned with a scanning probe microscope for 20 μm at 40 μm / sec to obtain RSm and Rz. As a result, RSm was 1.1 μm and Rz was 0.3 μm. The A5052 aluminum alloy pieces treated as described above were observed for aluminum atoms using XPS. In the purchased A5052, Al (zero valence) and Al (trivalent) were observed at about 1: 3, whereas in the treated A5052 aluminum alloy piece, Al (zero valence) was not found, and aluminum oxide It turned out that the film thickness became thick. In XPS, since the atomic composition with a depth of 1 to 2 nm from the surface was detected, it was clear that the thickness of the aluminum oxide surface layer was at least 2 nm or more.

[実験例2](SUS304ステンレス鋼の表面処理)
市販の0.15mm厚SUS304の薄板材を入手し、切断して130mm×100mmの長方形片を多数作成した。槽に市販のアルミニウム合金用脱脂剤「NE−6」を7.5%含む水溶液(60℃)を用意し、これに前記長方形片を5分浸漬し、よく水洗した。続いて別の槽に1.5%濃度の苛性ソーダ水溶液(40℃)を用意し、これに前記長方形片を1分浸漬し、よく水洗した。続いて別の槽に5%濃度の硫酸水溶液(65℃)を用意し、これに前記長方形片を4分浸漬してよく水洗した。次いで3%濃度の硝酸水溶液(40℃)を用意し、これに前記長方形片を3分浸漬し、水洗した。これを80℃にした温風乾燥機に15分入れて乾燥した。乾燥後、前記長方形片をアルミ箔で包み、さらにこれをポリ袋に入れて封じ保管した。
[Experimental Example 2] (SUS304 stainless steel surface treatment)
A commercially available thin sheet material of 0.15 mm thick SUS304 was obtained and cut to produce a large number of rectangular pieces of 130 mm × 100 mm. An aqueous solution (60 ° C.) containing 7.5% of a commercially available aluminum alloy degreasing agent “NE-6” was prepared in a tank, and the rectangular piece was immersed in this for 5 minutes and washed thoroughly with water. Subsequently, a 1.5% strength aqueous caustic soda solution (40 ° C.) was prepared in another tank, and the rectangular piece was immersed in this for 1 minute and washed thoroughly with water. Subsequently, a 5% strength aqueous sulfuric acid solution (65 ° C.) was prepared in another tank, and the rectangular piece was immersed in this for 4 minutes and washed with water. Next, a 3% concentration nitric acid aqueous solution (40 ° C.) was prepared, and the rectangular piece was immersed in this for 3 minutes and washed with water. This was put into a warm air dryer set at 80 ° C. for 15 minutes and dried. After drying, the rectangular piece was wrapped with aluminum foil, which was then sealed in a plastic bag.

前記処理をしたSUS304ステンレス鋼片を電子顕微鏡観察したところ、20〜40nm径の凸部が重なり合って高山のガレ場のような形状になっており、重なり合ったガレ場の周期は100〜300nmになっているように観察された。この写真を図4に示す。前記処理をしたSUS304ステンレス鋼片を、走査型プローブ顕微鏡にかけて40μm/秒で20μm分を走査し、RSmとRzを求めたところ、RSmは2.8μ、Rzは.0.6μmであった。   Observation of the treated SUS304 stainless steel piece with an electron microscope revealed that the convex portions with a diameter of 20 to 40 nm overlapped to form a shape like an alpine galley field, and the period of the overlapped galley field became 100 to 300 nm. As observed. This photograph is shown in FIG. The treated SUS304 stainless steel piece was scanned with a scanning probe microscope for 20 μm at 40 μm / sec to obtain RSm and Rz. As a result, RSm was 2.8 μm and Rz was 0.6 μm.

[実験例3](AZ31Bマグネシウム合金の表面処理)
市販の1mm厚のAZ31Bマグネシウム合金板材(日本金属株式会社製)を入手し、切断して130mm×100mmの長方形片を多数作成した。槽の水に市販のマグネシウム合金用脱脂剤「クリーナー160(メルテックス株式会社製)」を投入して濃度5%の水溶液(65℃)とした。これに前記長方形片を5分浸漬し、よく水洗した。続いて別の槽に1%濃度の水和クエン酸水溶液(40℃)を用意し、これに前記長方形片を4分浸漬して、よく水洗した。続いて別の槽に1%濃度の炭酸ソーダと1%濃度の炭酸水素ナトリウムを含む水溶液(65℃)を用意し、これに前記長方形片を5分浸漬して、よく水洗した。次いで15%濃度の苛性ソーダ水溶液(65℃)を用意し、これに前記AZ31B片を5分浸漬し、水洗した。続いて別の槽に0.25%濃度の水和クエン酸水溶液(40℃)を用意し、これに前記長方形片を1分浸漬してよく水洗した。次いで2%濃度の過マンガン酸カリウムと1%濃度の酢酸と0.5%濃度の水和酢酸ソーダを含む水溶液(45℃)を用意し、これに前記長方形片を1分浸漬し、水洗した。次いで前記長方形片を、80℃にした温風乾燥機に15分入れて乾燥した。乾燥後、前記長方形片をアルミ箔で包み、さらにこれをポリ袋に入れて封じ保管した。
[Experimental Example 3] (Surface treatment of AZ31B magnesium alloy)
A commercially available AZ31B magnesium alloy sheet (manufactured by Nippon Metal Co., Ltd.) having a thickness of 1 mm was obtained and cut to produce a large number of 130 mm × 100 mm rectangular pieces. A commercially available degreasing agent for magnesium alloy “Cleaner 160 (manufactured by Meltex Co., Ltd.)” was added to the water in the tank to prepare an aqueous solution (65 ° C.) having a concentration of 5%. The rectangular piece was immersed in this for 5 minutes and washed thoroughly with water. Subsequently, a 1% strength aqueous hydrated citric acid solution (40 ° C.) was prepared in another tank, and the rectangular pieces were immersed in this for 4 minutes and washed thoroughly with water. Subsequently, an aqueous solution (65 ° C.) containing 1% sodium carbonate and 1% sodium hydrogen carbonate was prepared in another tank, and the rectangular piece was immersed in this for 5 minutes and washed thoroughly with water. Next, a 15% strength aqueous sodium hydroxide solution (65 ° C.) was prepared, and the AZ31B piece was immersed in this for 5 minutes and washed with water. Subsequently, a 0.25% strength aqueous hydrated citric acid solution (40 ° C.) was prepared in another tank, and the rectangular piece was immersed in this for 1 minute and washed with water. Next, an aqueous solution (45 ° C.) containing 2% concentration potassium permanganate, 1% concentration acetic acid and 0.5% concentration hydrated sodium acetate was prepared, and the rectangular piece was immersed in this for 1 minute and washed with water. . Next, the rectangular piece was placed in a hot air dryer at 80 ° C. for 15 minutes and dried. After drying, the rectangular piece was wrapped with aluminum foil, which was then sealed in a plastic bag.

前記処理をしたAZ31Bマグネシウム合金片を電子顕微鏡観察したところ、5〜10nm径の棒状結晶が複雑に絡み合っている箇所や、それらの塊が100nm径程度の球状物となりその球状物が積み重なった形の箇所があった。電子顕微鏡を10万倍として観察したときの写真を図5と図6に示した。又、走査型プローブ顕微鏡で走査して粗度観測を行ったところRSmが2〜3μm、Rzが1〜1.5μmであった。   Observation of the AZ31B magnesium alloy pieces treated as described above with an electron microscope revealed that the 5 to 10 nm diameter rod-shaped crystals were intricately entangled with each other, and the lumps of these lumps became spherical with a diameter of about 100 nm. There was a place. The photographs when the electron microscope is observed at a magnification of 100,000 are shown in FIGS. Further, when the roughness was observed by scanning with a scanning probe microscope, RSm was 2 to 3 μm and Rz was 1 to 1.5 μm.

[実験例4](KS15−3−3−3チタン合金の表面処理)
市販の0.3mm厚のβ型チタン合金「KS15−3−3−3(株式会社 神戸製鋼所製)」の薄板材を入手し、切断して130mm×100mmの長方形片を多数作成した。槽の水に市販のアルミニウム合金用脱脂剤「NE−6」を投入して濃度7.5%の水溶液(60℃)とした。これに前記長方形片を5分浸漬し、よく水洗した。続いて別の槽に1.5%濃度の苛性ソーダ水溶液(40℃)を用意し、これに前記長方形片を1分浸漬して、よく水洗した。続いて別の槽に10%濃度の硫酸と1%濃度の1水素2弗化アンモニウムを含む水溶液(65℃)を用意し、これに前記長方形片を5分浸漬して、よく水洗した。次いで3%濃度の硝酸水溶液(40℃)を用意し、これに前記長方形片を3分浸漬し、水洗した。次いで2%濃度の過マンガン酸カリウムと3%濃度の苛性カリを含む水溶液(70℃)を用意し、これに前記長方形片を2分浸漬し、水洗した。次いで前記長方形片を80℃にした温風乾燥機に15分入れて乾燥した。乾燥後、前記長方形片をアルミ箔で包み、さらにこれをポリ袋に入れて封じ保管した。
[Experimental Example 4] (KS15-3-3-3 titanium alloy surface treatment)
A thin sheet material of a commercially available 0.3 mm thick β-type titanium alloy “KS15-3-3-3 (manufactured by Kobe Steel, Ltd.)” was obtained and cut to produce a large number of rectangular pieces of 130 mm × 100 mm. A commercially available degreasing agent “NE-6” for aluminum alloy was added to the water in the tank to prepare an aqueous solution (60 ° C.) having a concentration of 7.5%. The rectangular piece was immersed in this for 5 minutes and washed thoroughly with water. Subsequently, a 1.5% caustic soda aqueous solution (40 ° C.) was prepared in another tank, and the rectangular piece was immersed in this for 1 minute and washed thoroughly with water. Subsequently, an aqueous solution (65 ° C.) containing 10% sulfuric acid and 1% ammonium hydrogen fluoride monofluoride was prepared in another tank, and the rectangular piece was immersed in this for 5 minutes and washed thoroughly with water. Next, a 3% concentration nitric acid aqueous solution (40 ° C.) was prepared, and the rectangular piece was immersed in this for 3 minutes and washed with water. Next, an aqueous solution (70 ° C.) containing 2% potassium permanganate and 3% caustic potash was prepared, and the rectangular piece was immersed in this for 2 minutes and washed with water. Next, the rectangular pieces were put in a hot air dryer set at 80 ° C. for 15 minutes and dried. After drying, the rectangular piece was wrapped with aluminum foil, which was then sealed in a plastic bag.

前記処理をしたチタン合金片を電子顕微鏡観察したところ、10〜100nm径の無数の凸部が不規則に全面を覆った礫岩原のような形状が観察された。これを図7に示す。又、前記処理をしたチタン合金片を走査型プローブ顕微鏡にかけて40μm/秒で20μm分を走査し、RSmとRzを求めたところ、RSmは5.1μ、Rzは0.7μmであった。   When the treated titanium alloy pieces were observed with an electron microscope, a shape like a conglomerate was observed in which innumerable convex portions having a diameter of 10 to 100 nm randomly covered the entire surface. This is shown in FIG. Further, the treated titanium alloy piece was scanned with a scanning probe microscope for 20 μm at 40 μm / sec to obtain RSm and Rz. As a result, RSm was 5.1 μm and Rz was 0.7 μm.

[実験例5](ステンレス鋼とマグネシウム合金からなる積層板の作成)
真空プレス機の熱板上に、SS440製で150mm×150mm(厚さ10mm)の平板を下型としてセットし、この上に実験例2で作成した130mm×100mm(厚さ0.15mm)のSUS304薄板を置いた。次いで、この上に50μm厚のPA6単層フィルム(東レフィルム加工株式会社製)を積層した。PA6単層フィルムは、130mm×100mmである。次いで、この上に実験例3で作成した厚さ1mmのAZ31Bマグネシウム合金板(130mm×100mm)を積層した。次いで、この上に前記と同じ50μm厚のPA6単層フィルム(130mm×100mm)を積層した。さらに、この上に実験例2で作成した130mm×100mm(厚さ0.15mm)のSUS304薄板を置いた。この上にSS440製で150mm×150mm(厚さ10mm)の平板を上型としてセットした。
[Experimental Example 5] (Preparation of laminated plate made of stainless steel and magnesium alloy)
A 150 mm × 150 mm (thickness 10 mm) flat plate made of SS440 was set as a lower mold on a hot plate of a vacuum press machine, and 130 mm × 100 mm (thickness 0.15 mm) SUS304 prepared in Experimental Example 2 was formed thereon. A thin plate was placed. Next, a PA6 single layer film (manufactured by Toray Film Processing Co., Ltd.) having a thickness of 50 μm was laminated thereon. The PA6 single layer film is 130 mm × 100 mm. Next, an AZ31B magnesium alloy plate (130 mm × 100 mm) having a thickness of 1 mm prepared in Experimental Example 3 was laminated thereon. Then, the same 50 μm thick PA6 single layer film (130 mm × 100 mm) as above was laminated thereon. Further, a 130 mm × 100 mm (thickness 0.15 mm) SUS304 thin plate prepared in Experimental Example 2 was placed thereon. On top of this, a flat plate of 150 mm × 150 mm (thickness 10 mm) made of SS440 was set as an upper mold.

プレス機構を稼動させて、積層物を上下の熱板で挟んで圧力2tをかけた。次いで積層物に真空カバーを被せて全体を3mmHg以下の減圧下にし、加熱電源を入れて昇温し上下熱板が260℃になるまで待ち、この温度で30分置いた。そこで系に空気を入れて常圧に戻し、次いでプレス圧を5tに上昇させた。プレス圧を5tにしたままで熱板の水冷ラインに冷却水を通して冷却した。熱板温度が50℃となるまで待ち、それから圧を下げ全体を開放して積層物を取り出した。SS440の鋼材の間からSUS304/PA6/AZ31B/PA6/SUS304の積層板が得られた。積層板の上下両面はまっ平らであった。   The press mechanism was operated, and the laminate was sandwiched between upper and lower hot plates and a pressure of 2 t was applied. Next, the laminate was covered with a vacuum cover, and the whole was put under a reduced pressure of 3 mmHg or less, the heating power supply was turned on, the temperature was raised and the upper and lower heating plates were kept at 260 ° C., and this temperature was set for 30 minutes. Therefore, air was introduced into the system to return to normal pressure, and then the press pressure was increased to 5 t. Cooling water was passed through the water cooling line of the hot plate while keeping the press pressure at 5 t. After waiting until the hot plate temperature reached 50 ° C., the pressure was lowered and the whole was released to take out the laminate. A laminate of SUS304 / PA6 / AZ31B / PA6 / SUS304 was obtained from between the steel materials of SS440. The upper and lower surfaces of the laminate were completely flat.

得られた積層板の周囲(4辺)をダイヤモンドカッターで切り落とし、120mm×90mm(厚さ2.2mm)の整った長方形形状とした。この際、積層板が昇温しないように留意した。次いで、前記積層板の周囲(4辺)に2液性エポキシ接着剤「#1500(セメダイン株式会社製)」を塗って端部処理をした。端部処理の翌日、超音波型非破壊検査機「FSライン」を使用して、積層板を水中に漬けて全境界層(全8面)を検査した。この検査でどの層間にも空隙は検出されなかった。次いで「冷熱衝撃試験機TSA71S」を使用して温度衝撃試験を行った。条件は−40℃/+80℃であり、高低温の保持時間は60分、移動時間は5分以内、サイクル数は1000サイクルとした。試験終了後に取り出した積層板の上下両面はまっ平らであった。   The periphery (4 sides) of the obtained laminated board was cut off with a diamond cutter to form a rectangular shape with a size of 120 mm × 90 mm (thickness 2.2 mm). At this time, attention was paid so as not to raise the temperature of the laminate. Next, a two-component epoxy adhesive “# 1500 (manufactured by Cemedine Co., Ltd.)” was applied to the periphery (four sides) of the laminate to perform end treatment. The day after the edge treatment, using an ultrasonic non-destructive inspection machine “FS line”, the laminate was immersed in water and all boundary layers (all eight sides) were inspected. No void was detected between any layers in this inspection. Next, a thermal shock test was performed using a “cold thermal shock tester TSA71S”. The conditions were −40 ° C./+80° C., the high and low temperature holding time was 60 minutes, the movement time was within 5 minutes, and the number of cycles was 1000 cycles. The upper and lower surfaces of the laminate taken out after the test were completely flat.

[実験例6](高強度チタン合金とマグネシウム合金からなる積層板の作成)
真空プレス機の熱板上に、SS440製で150mm×150mm(厚さ10mm)の平板を下型としてセットし、この上に実験例4で作成した130mm×100mm(厚さ0.3mm)のKS15−3−3−3チタン合金薄板を置いた。次いで、この上に50μm厚のPA6単層フィルム(東レフィルム加工株式会社製)を積層した。PA6単層フィルムは、130mm×100mmである。次いで、この上に実験例3で作成した厚さ1mmのAZ31Bマグネシウム合金板(130mm×100mm)を積層した。次いで、この上に前記と同じ50μm厚のPA6単層フィルム(130mm×100mm)を積層した。さらに、この上に実験例4で作成した130mm×100mm(厚さ0.3mm)のKS15−3−3−3チタン合金薄板を置いた。この上にSS440製で150mm×150mm(厚さ10mm)の平板を上型としてセットした。
[Experimental Example 6] (Preparation of a laminate made of a high-strength titanium alloy and a magnesium alloy)
A 150 mm × 150 mm (thickness 10 mm) flat plate made of SS440 was set as a lower mold on the hot plate of the vacuum press machine, and a 130 mm × 100 mm (thickness 0.3 mm) KS15 prepared in Experimental Example 4 thereon. A 3-3-3 titanium alloy sheet was placed. Next, a PA6 single layer film (manufactured by Toray Film Processing Co., Ltd.) having a thickness of 50 μm was laminated thereon. The PA6 single layer film is 130 mm × 100 mm. Next, an AZ31B magnesium alloy plate (130 mm × 100 mm) having a thickness of 1 mm prepared in Experimental Example 3 was laminated thereon. Then, the same 50 μm thick PA6 single layer film (130 mm × 100 mm) as above was laminated thereon. Further, a 130 mm × 100 mm (thickness 0.3 mm) KS15-3-3-3 titanium alloy thin plate prepared in Experimental Example 4 was placed thereon. On top of this, a flat plate of 150 mm × 150 mm (thickness 10 mm) made of SS440 was set as an upper mold.

プレス機構を稼動させて、積層物を上下の熱板で挟んで圧力2tをかけた。次いで積層物に真空カバーを被せて全体を5mmHg以下の減圧下にし、加熱電源を入れて昇温し上下熱板が260℃になるまで待ち、この温度で30分置いた。そこで系に空気を入れて常圧に戻し、次いでプレス圧を5tに上昇させた。プレス圧を5tにしたままで熱板の水冷ラインに冷却水を通して冷却した。熱板温度が50℃となるまで待ち、それから圧を下げ全体を開放して積層物を取り出した。SS440の鋼材の間からKS15−3−3−3/AZ31B/KS15−3−3−3の積層板が得られた。積層板の上下両面はまっ平らであった。   The press mechanism was operated, and the laminate was sandwiched between upper and lower hot plates and a pressure of 2 t was applied. Next, the laminate was covered with a vacuum cover, and the whole was put under a reduced pressure of 5 mmHg or less, the heating power was turned on, the temperature was raised and the upper and lower heating plates were kept at 260 ° C., and the temperature was set for 30 minutes. Therefore, air was introduced into the system to return to normal pressure, and then the press pressure was increased to 5 t. Cooling water was passed through the water cooling line of the hot plate while keeping the press pressure at 5 t. After waiting until the hot plate temperature reached 50 ° C., the pressure was lowered and the whole was released to take out the laminate. A laminate of KS15-3-3-3 / AZ31B / KS15-3-3-3 was obtained from between the steel materials of SS440. The upper and lower surfaces of the laminate were completely flat.

得られた積層板の周囲(4辺)をダイヤモンドカッターで切り落とし、120mm×90mm(厚さ2.2mm)の整った長方形形状とした。この際、積層板が昇温しないように留意した。次いで、前記積層板の周囲(4辺)に2液性エポキシ接着剤「#1500」を塗って端部処理をした。端部処理の翌日、超音波型非破壊検査機「FSライン」を使用して、積層板を水中に漬けて全境界層(全8面)を検査した。この検査でどの層間にも空隙は検出されなかった。次いで「冷熱衝撃試験機TSA71S」を使用して温度衝撃試験を行った。条件は−40℃/+80℃であり、高低温の保持時間は30分、移動時間は5分以内、サイクル数は1000サイクルとした。試験終了後に取り出した積層板の上下両面はまっ平らであった。   The periphery (4 sides) of the obtained laminated board was cut off with a diamond cutter to form a rectangular shape with a size of 120 mm × 90 mm (thickness 2.2 mm). At this time, attention was paid so as not to raise the temperature of the laminate. Next, the two-part epoxy adhesive “# 1500” was applied to the periphery (four sides) of the laminate to perform end treatment. The day after the edge treatment, using an ultrasonic non-destructive inspection machine “FS line”, the laminate was immersed in water and all boundary layers (all eight sides) were inspected. No void was detected between any layers in this inspection. Next, a thermal shock test was performed using a “cold thermal shock tester TSA71S”. The conditions were −40 ° C./+80° C., the high and low temperature holding time was 30 minutes, the movement time was within 5 minutes, and the number of cycles was 1000 cycles. The upper and lower surfaces of the laminate taken out after the test were completely flat.

[実験例7](アルミニウム合金とGFRTPからなる交互積層板の作成)
真空プレス機の熱板上に、SS440製で150mm×150mm(厚さ10mm)の平板を下型としてセットし、この上に実験例1で作成した130mm×100mm(厚さ0.3mm)のアルミニウム合金薄板を置いた。次いで、この上に50μm厚のPA6単層フィルム(東レフィルム加工株式会社製)を積層した。PA6単層フィルムは、130mm×100mmである。次いで、この上に平織のナイロン用シランカップリング処理をした厚さ0.18mmで209g/m2のガラス繊維クロス「#7628(株式会社 日東紡製)」を1枚置き、次いで、この上に75μm厚のPA6単層フィルム(130mm×100mm)を積層した。また、この上に平織のナイロン用シランカップリング処理をした厚さ0.18mmで209g/m2のガラス繊維クロス「#7628(株式会社 日東紡製)」を1枚置き、次いで、この上に75μm厚のPA6単層フィルム(130mm×100mm)を積層した。
さらに、この上に、実験例1で作成した130mm×100mm(厚さ0.3mm)のアルミニウム合金薄板を置いた。ここまでの積層物は、アルミニウム合金/PA6/#7628/PA6/#7628/PA6/アルミニウム合金である。
[Experimental Example 7] (Creation of Alternating Laminate Made of Aluminum Alloy and GFRTP)
A 150 mm × 150 mm (thickness 10 mm) flat plate made of SS440 is set as a lower mold on a hot plate of a vacuum press machine, and 130 mm × 100 mm (thickness 0.3 mm) aluminum prepared in Experimental Example 1 is formed thereon. An alloy sheet was placed. Next, a PA6 single layer film (manufactured by Toray Film Processing Co., Ltd.) having a thickness of 50 μm was laminated thereon. The PA6 single layer film is 130 mm × 100 mm. Next, a glass fiber cloth “# 7628 (manufactured by Nittobo Co., Ltd.)” having a thickness of 0.18 mm and a thickness of 209 g / m 2, which is subjected to a plain woven silane coupling treatment, is placed thereon, and then 75 μm is placed thereon. A thick PA6 monolayer film (130 mm × 100 mm) was laminated. Further, a glass fiber cloth “# 7628 (manufactured by Nittobo Co., Ltd.)” having a thickness of 0.18 mm and a thickness of 209 g / m 2 subjected to a plain woven silane coupling treatment for nylon is placed thereon, and then 75 μm is placed thereon. A thick PA6 monolayer film (130 mm × 100 mm) was laminated.
Further, the aluminum alloy thin plate of 130 mm × 100 mm (thickness 0.3 mm) prepared in Experimental Example 1 was placed thereon. The laminate so far is aluminum alloy / PA6 / # 7628 / PA6 / # 7628 / PA6 / aluminum alloy.

このようにして、PA6/#7628/PA6/#7628/PA6の層を置き、この上に前記と同じアルミニウム合金薄板を置いた。このように、PA6/#7628/PA6/#7628/PA6の層と、アルミニウム合金薄とを交互に積層した。結果として、アルミニウム合金が5層、GFRTP(PA6/#7628/PA6/#7628/PA6の層)が4層からなる交互積層板を作成した。この上にSS440製で150mm×150mm(厚さ10mm)の平板を上型としてセットした。   In this way, a layer of PA6 / # 7628 / PA6 / # 7628 / PA6 was placed, and the same aluminum alloy sheet as described above was placed thereon. In this way, PA6 / # 7628 / PA6 / # 7628 / PA6 layers and aluminum alloy thin layers were alternately laminated. As a result, an alternately laminated plate having 5 layers of aluminum alloy and 4 layers of GFRTP (PA6 / # 7628 / PA6 / # 7628 / PA6 layer) was prepared. On top of this, a flat plate of 150 mm × 150 mm (thickness 10 mm) made of SS440 was set as an upper mold.

プレス機構を稼動させて、積層物を上下の熱板で挟んで圧力2tをかけた。次いで積層物に真空カバーを被せて全体を5mmHg以下の減圧下にし、加熱電源を入れて昇温し上下熱板が260℃になるまで待ち、この温度で30分置いた。そこで系に空気を入れて常圧に戻し、次いでプレス圧を5tに上昇させた。プレス圧を5tにしたままで熱板の水冷ラインに冷却水を通して冷却した。熱板温度が50℃となるまで待ち、それから圧を下げ全体を開放して積層物を取り出した。SS440の鋼材の間から、アルミニウム合金5層とGFRTP4層からなる交互積層板が得られた。積層板の上下両面はまっ平らであった。   The press mechanism was operated, and the laminate was sandwiched between upper and lower hot plates and a pressure of 2 t was applied. Next, the laminate was covered with a vacuum cover, and the whole was put under a reduced pressure of 5 mmHg or less, the heating power was turned on, the temperature was raised and the upper and lower heating plates were kept at 260 ° C., and the temperature was set for 30 minutes. Therefore, air was introduced into the system to return to normal pressure, and then the press pressure was increased to 5 t. Cooling water was passed through the water cooling line of the hot plate while keeping the press pressure at 5 t. After waiting until the hot plate temperature reached 50 ° C., the pressure was lowered and the whole was released to take out the laminate. Between the steel materials of SS440, an alternately laminated plate composed of five aluminum alloy layers and four GFRTP layers was obtained. The upper and lower surfaces of the laminate were completely flat.

得られた積層板の周囲(4辺)をダイヤモンドカッターで切り落とし、120mm×90mm(厚さ2.2mm)の整った長方形形状とした。この際、積層板が昇温しないように留意した。次いで、前記積層板の周囲(4辺)に2液性エポキシ接着剤「#1500」を塗って端部処理をした。端部処理の翌日、超音波型非破壊検査機「FSライン」を使用して、積層板を水中に漬けて全境界層(全8面)を検査した。この検査でどの層間にも空隙は検出されなかった。次いで「冷熱衝撃試験機TSA71S」を使用して温度衝撃試験を行った。条件は−40℃/+80℃であり、高低温の保持時間は30分、移動時間は5分以内、サイクル数は1000サイクルとした。試験終了後に取り出した積層板の上下両面はまっ平らであった。   The periphery (4 sides) of the obtained laminated board was cut off with a diamond cutter to form a rectangular shape with a size of 120 mm × 90 mm (thickness 2.2 mm). At this time, attention was paid so as not to raise the temperature of the laminate. Next, the two-part epoxy adhesive “# 1500” was applied to the periphery (four sides) of the laminate to perform end treatment. The day after the edge treatment, using an ultrasonic non-destructive inspection machine “FS line”, the laminate was immersed in water and all boundary layers (all eight sides) were inspected. No void was detected between any layers in this inspection. Next, a thermal shock test was performed using a “cold thermal shock tester TSA71S”. The conditions were −40 ° C./+80° C., the high and low temperature holding time was 30 minutes, the movement time was within 5 minutes, and the number of cycles was 1000 cycles. The upper and lower surfaces of the laminate taken out after the test were completely flat.

[実験例8](ステンレス鋼とマグネシウム合金からなるPPS使用の積層板の作成)
真空プレス機の熱板上に、SS440製で150mm×150mm(厚さ10mm)の平板を下型としてセットし、この上に実験例2で作成した130mm×100mm(厚さ0.15mm)のSUS304薄板を置いた。次いで、この上に50μm厚のPPS単層フィルム(東レ株式会社製)を積層した。PPS単層フィルムは、130mm×100mmである。 次いで、この上に実験例3で作成した厚さ1mmのAZ31Bマグネシウム合金板(130mm×100mm)を積層した。次いで、この上に50μm厚の前記PPS単層フィルム(130mm×100mm)を積層した。さらに、この上に実験例2で作成した130mm×100mm(厚さ0.15mm)のSUS304薄板を置いた。この上にSS440製で150mm×150mm(厚さ10mm)の平板を上型としてセットした。
[Experimental Example 8] (Preparation of PPS laminate made of stainless steel and magnesium alloy)
A 150 mm × 150 mm (thickness 10 mm) flat plate made of SS440 was set as a lower mold on a hot plate of a vacuum press machine, and 130 mm × 100 mm (thickness 0.15 mm) SUS304 prepared in Experimental Example 2 was formed thereon. A thin plate was placed. Next, a PPS single layer film (manufactured by Toray Industries, Inc.) having a thickness of 50 μm was laminated thereon. The PPS single layer film is 130 mm × 100 mm. Next, an AZ31B magnesium alloy plate (130 mm × 100 mm) having a thickness of 1 mm prepared in Experimental Example 3 was laminated thereon. Subsequently, the PPS single layer film (130 mm × 100 mm) having a thickness of 50 μm was laminated thereon. Further, a 130 mm × 100 mm (thickness 0.15 mm) SUS304 thin plate prepared in Experimental Example 2 was placed thereon. On top of this, a flat plate of 150 mm × 150 mm (thickness 10 mm) made of SS440 was set as an upper mold.

プレス機構を稼動させて、積層物を上下の熱板で挟んで圧力2tをかけた。次いで積層物に真空カバーを被せて全体を5mmHg以下の減圧下にし、加熱電源を入れて昇温し上下熱板が320℃になるまで待ち、この温度で30分置いた。そこで系に空気を入れて常圧に戻し、次いでプレス圧を5tに上昇させた。プレス圧を5tにしたままで熱板の水冷ラインに冷却水を通して冷却した。熱板温度が50℃となるまで待ち、それから圧を下げ全体を開放して積層物を取り出した。SS440の鋼材の間から、SUS304/PPS/AZ31B/PPS/SUS304の積層板が得られた。積層板の上下両面はまっ平らであった。   The press mechanism was operated, and the laminate was sandwiched between upper and lower hot plates and a pressure of 2 t was applied. Next, the laminate was covered with a vacuum cover, and the whole was under a reduced pressure of 5 mmHg or less, the heating power was turned on, the temperature was raised, and the upper and lower hot plates were kept at 320 ° C., and the temperature was set for 30 minutes. Therefore, air was introduced into the system to return to normal pressure, and then the press pressure was increased to 5 t. Cooling water was passed through the water cooling line of the hot plate while keeping the press pressure at 5 t. After waiting until the hot plate temperature reached 50 ° C., the pressure was lowered and the whole was released to take out the laminate. A laminate of SUS304 / PPS / AZ31B / PPS / SUS304 was obtained from between the steel materials of SS440. The upper and lower surfaces of the laminate were completely flat.

[実験例9](ステンレス鋼とアルミニウム合金からなるPEEK使用の積層板の作成)
真空プレス機の熱板上に、SS440製で150mm×150mm(厚さ10mm)の平板を下型としてセットし、この上に実験例2で作成した130mm×100mm(厚さ0.15mm)のSUS304薄板を置いた。次いで、この上に100μm厚のPEEK単層フィルム(住友ベークライト株式会社製)を積層した。PEEK単層フィルムは、130mm×100mmである。次いで、この上に実験例1で作成した厚さ1.6mmのA5052アルミニウム合金板(130mm×100mm)を積層した。次いで、この上に100μm厚の前記PEEK単層フィルム(130mm×100mm)を積層した。さらに、この上に実験例2で作成した130mm×100mm(厚さ0.15mm)のSUS304薄板を置いた。この上にSS440製で150mm×150mm(厚さ10mm)の平板を上型としてセットした。
[Experimental Example 9] (Preparation of laminate using PEEK made of stainless steel and aluminum alloy)
A 150 mm × 150 mm (thickness 10 mm) flat plate made of SS440 was set as a lower mold on a hot plate of a vacuum press machine, and 130 mm × 100 mm (thickness 0.15 mm) SUS304 prepared in Experimental Example 2 was formed thereon. A thin plate was placed. Next, a 100 μm thick PEEK single layer film (manufactured by Sumitomo Bakelite Co., Ltd.) was laminated thereon. The PEEK monolayer film is 130 mm × 100 mm. Next, an A5052 aluminum alloy plate (130 mm × 100 mm) having a thickness of 1.6 mm prepared in Experimental Example 1 was laminated thereon. Next, the PEEK monolayer film (130 mm × 100 mm) having a thickness of 100 μm was laminated thereon. Further, a 130 mm × 100 mm (thickness 0.15 mm) SUS304 thin plate prepared in Experimental Example 2 was placed thereon. On top of this, a flat plate of 150 mm × 150 mm (thickness 10 mm) made of SS440 was set as an upper mold.

プレス機構を稼動させて、積層物を上下の熱板で挟んで圧力2tをかけた。次いで積層物に真空カバーを被せて全体を5mmHg以下の減圧下にし、加熱電源を入れて昇温し上下熱板が380℃になるまで待ち、この温度で30分置いた。そこで系に空気を入れて常圧に戻し、次いでプレス圧を5tに上昇させた。プレス圧を5tにしたままで熱板の水冷ラインに冷却水を通して冷却した。熱板温度が50℃となるまで待ち、それから圧を下げ全体を開放して積層物を取り出した。SS440の鋼材の間から、SUS304/PEEK/A5052/PEEK/SUS304の積層板が得られた。積層板の上下両面はまっ平らであった。   The press mechanism was operated, and the laminate was sandwiched between upper and lower hot plates and a pressure of 2 t was applied. Next, the laminate was covered with a vacuum cover, and the whole was placed under a reduced pressure of 5 mmHg or less, the heating power was turned on, the temperature was raised, and the upper and lower heating plates were kept at 380 ° C., and the temperature was set for 30 minutes. Therefore, air was introduced into the system to return to normal pressure, and then the press pressure was increased to 5 t. Cooling water was passed through the water cooling line of the hot plate while keeping the press pressure at 5 t. After waiting until the hot plate temperature reached 50 ° C., the pressure was lowered and the whole was released to take out the laminate. A laminate of SUS304 / PEEK / A5052 / PEEK / SUS304 was obtained between the steel materials of SS440. The upper and lower surfaces of the laminate were completely flat.

得られた積層板の周囲(4辺)をダイヤモンドカッターで切り落とし、120mm×90mm(厚さ2.2mm)の整った長方形形状とした。この際、積層板が昇温しないように留意した。次いで、前記積層板の周囲(4辺)に2液性エポキシ接着剤「#1500」を塗って端部処理をした。端部処理の翌日、超音波型非破壊検査機「FSライン」を使用して、積層板を水中に漬けて全境界層(全8面)を検査した。この検査でどの層間にも空隙は検出されなかった。次いで「冷熱衝撃試験機TSA71S」を使用して温度衝撃試験を行った。条件は−55℃/+100℃であり、高低温の保持時間は30分、移動時間は5分以内、サイクル数は1000サイクルとした。試験終了後に取り出した積層板の上下両面はまっ平らであった。   The periphery (4 sides) of the obtained laminated board was cut off with a diamond cutter to form a rectangular shape with a size of 120 mm × 90 mm (thickness 2.2 mm). At this time, attention was paid so as not to raise the temperature of the laminate. Next, the two-part epoxy adhesive “# 1500” was applied to the periphery (four sides) of the laminate to perform end treatment. The day after the edge treatment, using an ultrasonic non-destructive inspection machine “FS line”, the laminate was immersed in water and all boundary layers (all eight sides) were inspected. No void was detected between any layers in this inspection. Next, a thermal shock test was performed using a “cold thermal shock tester TSA71S”. The conditions were −55 ° C./+100° C., the high and low temperature holding time was 30 minutes, the movement time was within 5 minutes, and the number of cycles was 1000 cycles. The upper and lower surfaces of the laminate taken out after the test were completely flat.

[実験例10](ステンレス鋼とアルミニウム合金からなるPEEK使用の積層板の作成)
実験例9と同様の操作を行い、0.15mm厚のSUS304薄板/PEEK/1.6mm厚のA5052アルミニウム合金板/PEEK/0.15mm厚のSUS304薄板からなる積層板を作成した。但し、実験例9と異なる点は、最終工程において、真空熱プレス機での金型冷却時に370℃から50℃付近まで一挙に冷却しなかったことである。本実験例において、温度計(熱電対)は熱板の金型接触側近くに設置されていたが、その温度表示が180℃を指した時点で水冷ラインの注水を止め、30分そのままにした。温度表示は注水中止後に一旦上昇し、それからごく緩やかに下降したので金型内は180〜190℃に30分程度保たれたと推定される。その後に水冷を再開し、熱板温度が50℃となるまで待ち、それから圧を下げ全体を開放して積層物を取り出した。SS440の鋼材の間から、SUS304/PEEK/A5052/PEEK/SUS304の積層板が得られた。積層板の上下両面はまっ平らであった。
[Experimental Example 10] (Preparation of PEEK laminate made of stainless steel and aluminum alloy)
The same operation as in Experimental Example 9 was performed to prepare a laminated plate made of 0.15 mm thick SUS304 thin plate / PEEK / 1.6 mm thick A5052 aluminum alloy plate / PEEK / 0.15 mm thick SUS304 thin plate. However, the difference from Experimental Example 9 is that in the final process, the mold was not cooled from 370 ° C. to around 50 ° C. at the time of mold cooling in the vacuum hot press machine. In this experimental example, the thermometer (thermocouple) was installed near the mold contact side of the hot plate, but when the temperature display pointed to 180 ° C., water injection into the water cooling line was stopped and left for 30 minutes. . The temperature display rises once after the water injection is stopped and then drops very slowly, so it is estimated that the inside of the mold was kept at 180 to 190 ° C. for about 30 minutes. Thereafter, water cooling was resumed, and it was waited until the hot plate temperature reached 50 ° C. Then, the pressure was lowered and the whole was released to take out the laminate. A laminate of SUS304 / PEEK / A5052 / PEEK / SUS304 was obtained between the steel materials of SS440. The upper and lower surfaces of the laminate were completely flat.

得られた積層板の周囲(4辺)をダイヤモンドカッターで切り落とし、120mm×90mm(厚さ2.2mm)の整った長方形形状とした。この際、積層板が昇温しないように留意した。次いで、前記積層板の周囲(4辺)に2液性エポキシ接着剤「#1500」を塗って端部処理をした。端部処理の翌日、超音波型非破壊検査機「FSライン」を使用して、積層板を水中に漬けて全境界層(全8面)を検査した。この検査でどの層間にも空隙は検出されなかった。次いで「冷熱衝撃試験機TSA71S」を使用して温度衝撃試験を行った。条件は−55℃/+100℃であり、高低温の保持時間は30分、移動時間は5分以内、サイクル数は1000サイクルとした。試験終了後に取り出した積層板の上下両面はまっ平らであった。   The periphery (4 sides) of the obtained laminated board was cut off with a diamond cutter to form a rectangular shape with a size of 120 mm × 90 mm (thickness 2.2 mm). At this time, attention was paid so as not to raise the temperature of the laminate. Next, the two-part epoxy adhesive “# 1500” was applied to the periphery (four sides) of the laminate to perform end treatment. The day after the edge treatment, using an ultrasonic non-destructive inspection machine “FS line”, the laminate was immersed in water and all boundary layers (all eight sides) were inspected. No void was detected between any layers in this inspection. Next, a thermal shock test was performed using a “cold thermal shock tester TSA71S”. The conditions were −55 ° C./+100° C., the high and low temperature holding time was 30 minutes, the movement time was within 5 minutes, and the number of cycles was 1000 cycles. The upper and lower surfaces of the laminate taken out after the test were completely flat.

積層板の作成法において、上記のように180℃程度の温度に数十分置く方法は、PEEKの結晶化度が上限まで上がり易いとの考えに基づくものであった。但し、このような措置をせずとも、実験例9で得た積層板も含め、非破壊検査、温度衝撃試験で同様な結果が得られた。今後は実験例9と10の間に詳細な機械物性の違いがあるのかを探し出し、この結晶化促進の追加操作が有効か否かを調べることが重要となる。   In the method for producing a laminated board, the method of placing several tens of minutes at a temperature of about 180 ° C. as described above is based on the idea that the crystallinity of PEEK tends to rise to the upper limit. However, the same results were obtained in the nondestructive inspection and the temperature shock test including the laminate obtained in Experimental Example 9 without taking such measures. In the future, it will be important to find out whether there is a detailed difference in mechanical properties between Experimental Examples 9 and 10, and to check whether this additional operation for promoting crystallization is effective.

[実験例11](アルミニウム合金とGFRTPからなる交互積層板の作成)
真空プレス機の熱板上に、SS440製で150mm×150mm(厚さ10mm)の平板を下型としてセットし、この上に実験例4で作成した130mm×100mm(厚さ0.3mm)のKS15−3−3−3チタン合金薄板材を置いた。次いで、この上に75μm厚のPA6単層フィルム(東レフィルム加工株式会社製)を積層した。PA6単層フィルムは、130mm×100mmである。次いで、この上に平織のナイロン用シランカップリング処理をした厚さ0.18mmで209g/m2のガラス繊維クロス「#7628(株式会社 日東紡製)」を1枚置き、次いで、この上に75μm厚のPA6単層フィルム(130mm×100mm)を2枚積層した。さらにその上に、「#7628(株式会社 日東紡製)」を1枚置き、この上に75μm厚のPA6単層フィルム(130mm×100mm)を1枚積層した。ここまでの積層物は、チタン合金/PA6/#7628/PA6/PA6/#7628/PA6である。
[Experimental Example 11] (Creation of Alternating Laminates Made of Aluminum Alloy and GFRTP)
A 150 mm × 150 mm (thickness 10 mm) flat plate made of SS440 was set as a lower mold on the hot plate of the vacuum press machine, and a 130 mm × 100 mm (thickness 0.3 mm) KS15 prepared in Experimental Example 4 thereon. A 3-3-3 titanium alloy sheet was placed. Next, a 75 μm thick PA6 monolayer film (manufactured by Toray Film Processing Co., Ltd.) was laminated thereon. The PA6 single layer film is 130 mm × 100 mm. Next, a glass fiber cloth “# 7628 (manufactured by Nittobo Co., Ltd.)” having a thickness of 0.18 mm and a thickness of 209 g / m 2, which is subjected to a plain woven silane coupling treatment, is placed thereon, and then 75 μm is placed thereon. Two thick PA6 single layer films (130 mm × 100 mm) were laminated. Furthermore, one sheet of “# 7282 (manufactured by Nittobo Co., Ltd.)” was placed thereon, and one sheet of PA6 single layer film (130 mm × 100 mm) having a thickness of 75 μm was laminated thereon. The laminate so far is titanium alloy / PA6 / # 7628 / PA6 / PA6 / # 7628 / PA6.

次いで、この上に上記チタン合金の上に積層したPA6フィルム4枚とガラス繊維クロス2枚のセット(PA6/#7628/PA6/PA6/#7628/PA6)を同様に積層し、また、この上にPA6フィルム4枚とガラス繊維クロス2枚のセット(PA6/#7628/PA6/PA6/#7628/PA6)を積層した。さらにこの上に、PA6フィルム4枚とガラス繊維クロス2枚のセット(PA6/#7628/PA6/PA6/#7628/PA6)を積層した。最後に実験例4で作成したKS15−3−3−3チタン合金薄板材を乗せた。積層したのは、PA6フィルムを除いて、チタン合金薄板材を計2枚(計0.6mm)、ガラス繊維クロスを計8枚(計1.44mm)である。この上にSS440製で150mm×150mm(厚さ10mm)の平板を上型としてセットした。   Next, a set of four PA6 films and two glass fiber cloths (PA6 / # 7628 / PA6 / PA6 / # 7628 / PA6) laminated on the titanium alloy was laminated in the same manner. A set of four PA6 films and two glass fiber cloths (PA6 / # 7628 / PA6 / PA6 / # 7628 / PA6) was laminated. Further, a set of four PA6 films and two glass fiber cloths (PA6 / # 7628 / PA6 / PA6 / # 7628 / PA6) was laminated thereon. Finally, the KS15-3-3-3 titanium alloy sheet material prepared in Experimental Example 4 was placed. Except for the PA6 film, a total of two titanium alloy sheet materials (total 0.6 mm) and a total of eight glass fiber cloths (total 1.44 mm) were laminated. On top of this, a flat plate of 150 mm × 150 mm (thickness 10 mm) made of SS440 was set as an upper mold.

プレス機構を稼動させて、積層物を上下の熱板で挟んで圧力2tをかけた。次いで積層物に真空カバーを被せて全体を5mmHg以下の減圧下にし、加熱電源を入れて昇温し上下熱板が260℃になるまで待ち、この温度で40分置いた。そこで系に空気を入れて常圧に戻し、次いでプレス圧を5tに上昇させた。プレス圧を5tにしたままで熱板の水冷ラインに冷却水を通して冷却した。熱板温度が50℃となるまで待ち、それから圧を下げ全体を開放して積層物を取り出した。SS440の鋼材の間からPA6製GFRTP積層板が得られた。積層板の上下両面はまっ平らであった。   The press mechanism was operated, and the laminate was sandwiched between upper and lower hot plates and a pressure of 2 t was applied. Next, the laminate was covered with a vacuum cover, and the whole was under a reduced pressure of 5 mmHg or less, the heating power was turned on, the temperature was raised, and the upper and lower hot plates were kept at 260 ° C., and the temperature was set for 40 minutes. Therefore, air was introduced into the system to return to normal pressure, and then the press pressure was increased to 5 t. Cooling water was passed through the water cooling line of the hot plate while keeping the press pressure at 5 t. After waiting until the hot plate temperature reached 50 ° C., the pressure was lowered and the whole was released to take out the laminate. A PA6-made GFRTP laminate was obtained from between the steel materials of SS440. The upper and lower surfaces of the laminate were completely flat.

[実験例12](アルミニウム合金とステンレス鋼からなる交互積層板:粉体塗装)
市販の0.6mm厚のA5052アルミニウム合金板材を入手し、切断して130mm×100mmの長方形片を多数作成した。このアルミニウム合金片に対して、実験例1と全く同様の表面処理を行った。即ち、新NMTで要求する形状となるようにした。また、市販の0.5mm厚のSUS304ステンレス鋼板材を入手し、切断して130mm×100mmの長方形片を多数作成した。その後は実験例2と全く同様の表面処理を行った。一方、PPS樹脂「トレリナA900(東レ株式会社製)」を入手し、樹脂用粉砕機「ターボディスクミルTD−150型(株式会社マツボー(日本国東京都)製)」を使用してこれを粉砕し、粉砕物から40〜100メッシュのふるいを通過したPPS粉体を分級した。このPPS粉体を原料とし、前記A5052アルミニウム合金片2枚の各々片面、及び、SUS304ステンレス鋼板片の両面に静電塗装し、窒素下320℃で焼き付けた。塗膜厚は、何れも30〜100μmの範囲内であった。
[Experimental example 12] (Alternate laminated plate made of aluminum alloy and stainless steel: powder coating)
A commercially available A5052 aluminum alloy sheet having a thickness of 0.6 mm was obtained and cut to produce a large number of rectangular pieces of 130 mm × 100 mm. This aluminum alloy piece was subjected to the same surface treatment as in Experimental Example 1. In other words, the shape required by the new NMT was achieved. Moreover, a commercially available SUS304 stainless steel plate material having a thickness of 0.5 mm was obtained and cut to produce a large number of 130 mm × 100 mm rectangular pieces. Thereafter, the same surface treatment as in Experimental Example 2 was performed. Meanwhile, PPS resin “Torelina A900 (manufactured by Toray Industries, Inc.)” was obtained and pulverized using a resin crusher “Turbo Disc Mill TD-150 (manufactured by Matsubo, Tokyo, Japan)”. The PPS powder that passed through a 40-100 mesh sieve was classified from the pulverized product. Using this PPS powder as a raw material, electrostatic coating was performed on one side of each of the two A5052 aluminum alloy pieces and on both sides of a SUS304 stainless steel plate piece and baked at 320 ° C. under nitrogen. The coating thickness was in the range of 30 to 100 μm.

熱プレス機の熱板上に、SS440製で150mm×150mm(厚さ10mm)の平板を下型としてセットし、この上に前記130mm×100mm(厚さ0.6mm)のA5052アルミニウム合金板材を塗装面が上になるように置いた。次いで、この上に前記SUS304ステンレス鋼板片を置き、さらにその上にもう一枚の前記A5052アルミニウム合金板材を塗装面が下になるように置いた。この上にSS440製で150mm×150mm(厚さ10mm)の平板を上型としてセットした。   A flat plate of 150mm x 150mm (thickness 10mm) made of SS440 is set as the lower mold on the hot plate of the hot press machine, and the A5052 aluminum alloy sheet of 130mm x 100mm (thickness 0.6mm) is coated on it. It was placed with the side facing up. Next, the SUS304 stainless steel plate was placed thereon, and another A5052 aluminum alloy plate was placed on the SUS304 stainless steel plate so that the coated surface was down. On top of this, a flat plate of 150 mm × 150 mm (thickness 10 mm) made of SS440 was set as an upper mold.

プレス機構を稼動させて、積層物を上下の熱板で挟んで圧力2tをかけた。次いで加熱電源を入れて昇温し上下熱板が310℃になるまで待ち、この温度で20分置いた。次いでプレス圧を5tに上昇させた。プレス圧を5tにしたままで熱板の水冷ラインに冷却水を通して冷却した。熱板温度が50℃となるまで待ち、それから圧を下げ全体を開放して積層物を取り出した。SS440の鋼材の間からA5052/PPS/SUS304/PPS/A5052の積層板が真っ平らで得られた。   The press mechanism was operated, and the laminate was sandwiched between upper and lower hot plates and a pressure of 2 t was applied. Next, the heating power source was turned on, the temperature was raised, and the temperature was waited until the upper and lower heating plates reached 310 ° C., and the temperature was kept for 20 minutes. Next, the press pressure was increased to 5 t. Cooling water was passed through the water cooling line of the hot plate while keeping the press pressure at 5 t. After waiting until the hot plate temperature reached 50 ° C., the pressure was lowered and the whole was released to take out the laminate. A laminate of A5052 / PPS / SUS304 / PPS / A5052 was obtained between the steel materials of SS440.

40…金属合金
41…セラミック質層
42…樹脂層
40 ... Metal alloy 41 ... Ceramic layer 42 ... Resin layer

Claims (14)

金属酸化物又は金属リン酸化物のセラミック質薄層で覆われた表面を有し、その表面は、輪郭曲線要素の平均長さ(RSm)が0.8〜10μm、最大高さ(Rz)が0.2〜5μmであるミクロンオーダーの粗度があり、且つ、その粗度を有する面内に10〜300nm周期の超微細凹凸が存在する第1の金属合金薄板と、
金属酸化物又は金属リン酸化物のセラミック質薄層で覆われた表面を有し、その表面は、輪郭曲線要素の平均長さ(RSm)が0.8〜10μm、最大高さ(Rz)が0.2〜5μmであるミクロンオーダーの粗度があり、且つ、その粗度を有する面内に10〜300nm周期の超微細凹凸が存在する第2の金属合金薄板が、
樹脂層を挟んで積層された積層板であって、
前記樹脂層は、硬質で結晶性の熱可塑性樹脂を主成分とする樹脂からなり、当該樹脂層が、前記第1の金属合金薄板及び前記第2の金属合金薄板の双方の表面と接触し、
且つ、各層の面積が100cm以上であることを特徴とする積層板。
It has a surface covered with a ceramic thin layer of metal oxide or metal phosphate, and the surface has an average length (RSm) of contour curve elements of 0.8 to 10 μm and a maximum height (Rz). There are roughness micron order is 0.2 to 5 .mu.m, and a first metal alloy sheet is present ultra-fine irregularities of 10~300nm period in a plane with the roughness,
It has a surface covered with a ceramic thin layer of metal oxide or metal phosphate, and the surface has an average length (RSm) of contour curve elements of 0.8 to 10 μm and a maximum height (Rz). There are roughness micron order is 0.2 to 5 .mu.m, and a second metal alloy sheet is present ultra-fine irregularities of 10~300nm period in a plane with the roughness,
A laminated board laminated with a resin layer in between,
The resin layer is made of a resin mainly composed of a hard and crystalline thermoplastic resin, and the resin layer is in contact with both surfaces of the first metal alloy thin plate and the second metal alloy thin plate,
And the area of each layer is 100 cm < 2 > or more, The laminated board characterized by the above-mentioned.
金属酸化物又は金属リン酸化物のセラミック質薄層で覆われた表面を有し、その表面は、輪郭曲線要素の平均長さ(RSm)が0.8〜10μm、最大高さ(Rz)が0.2〜5μmであるミクロンオーダーの粗度があり、且つ、その粗度を有する面内に10〜300nm周期の超微細凹凸が存在する第1の金属合金薄板と、
マトリックス樹脂として硬質で結晶性の熱可塑性樹脂を主成分とする樹脂が使用された繊維強化プラスチック製シートの積層板であって、
前記第1の金属合金薄板の表面と前記繊維強化プラスチック製シートの表面が、接着剤を介在せずに、前記マトリックス樹脂の硬化物によって相互に接着されており、
且つ各層の面積が100cm以上であることを特徴とする積層板。
It has a surface covered with a ceramic thin layer of metal oxide or metal phosphate, and the surface has an average length (RSm) of contour curve elements of 0.8 to 10 μm and a maximum height (Rz). There are roughness micron order is 0.2 to 5 .mu.m, and a first metal alloy sheet is present ultra-fine irregularities of 10~300nm period in a plane with the roughness,
A laminate of a fiber reinforced plastic sheet in which a resin mainly composed of a hard and crystalline thermoplastic resin is used as a matrix resin,
Wherein the first metal alloy surface and the fiber-reinforced surface of the plastic sheet of thin plate, without intervening adhesive, is bonded to each other by the cured product of said matrix resin,
And the area of each layer is 100 cm < 2 > or more, The laminated board characterized by the above-mentioned.
請求項2に記載した積層板であって、
前記繊維強化プラスチック製シートに使用される強化繊維がガラス繊維であることを特徴とする積層板。
A laminate according to claim 2,
A laminated board, wherein the reinforcing fibers used in the fiber-reinforced plastic sheet are glass fibers.
請求項1ないし3から選択される1項に記載の積層板であって、
前記熱可塑性樹脂が、ポリアミド樹脂、ポリフェニレンサルファイド樹脂、及びポリエーテルエーテルケトン樹脂から選択される1種以上であることを特徴とする積層板。
The laminate according to claim 1, which is selected from claims 1 to 3,
The thermoplastic resin is at least one selected from polyamide resin, polyphenylene sulfide resin, and polyether ether ketone resin.
請求項4に記載した積層板であって、
前記熱可塑性樹脂が、前記ポリアミド樹脂として6ナイロン樹脂を含むことを特徴とする積層板。
The laminate according to claim 4, wherein
The laminated board, wherein the thermoplastic resin contains 6 nylon resin as the polyamide resin.
面積が100cm以上である第1の金属合金薄板及び第2の金属合金薄板の表面を、金属酸化物又は金属リン酸化物のセラミック質薄層で覆われ、輪郭曲線要素の平均長さ(RSm)が0.8〜10μm、最大高さ(Rz)が0.2〜5μmであるミクロンオーダーの粗度形成され、且つ、その粗度を有する面内に10〜300nm周期の超微細凹凸形成された形状とするための表面処理を行う表面処理工程と、
前記表面処理工程を経た第1の金属合金薄板の表面に、硬質で結晶性の熱可塑性樹脂を主成分とする厚さ10μm以上の樹脂フィルムを積層し、さらにその樹脂フィルムの表面に前記表面処理工程を経た第2の金属合金薄板を積層する積層工程と、
前記積層工程を経た積層物を熱プレス機で挟んで、前記樹脂フィルムの樹脂の融点以上まで昇温し、且つ前記積層物の厚さが当該昇温前の各層の厚さの合計値より小さくなったときにもプレス圧を維持する熱プレス工程と、
前記熱プレス工程後に、温度を低下させて前記積層物の各層が接合された積層板を取り出す取出工程と、
を含むことを特徴とする積層板の製造方法。
The surface of the first metal alloy sheet and the second metal alloy sheet having an area of 100 cm 2 or more is covered with a ceramic thin layer of metal oxide or metal phosphate , and the average length of the contour curve element (RSm ) Is 0.8 to 10 μm, the maximum height (Rz) is 0.2 to 5 μm, and a micron-order roughness is formed, and ultrafine irregularities with a period of 10 to 300 nm are formed in the surface having the roughness. A surface treatment step for performing a surface treatment to form a formed shape ;
On the surface of the first metal alloy sheet having passed through the surface treatment step, a thickness greater than 10μm of the resin film containing as a main component a crystalline thermoplastic resin with rigid laminated, further the surface treatment on the surface of the resin film A laminating step of laminating the second metal alloy thin plate that has undergone the step;
The laminate that has undergone the laminating step is sandwiched by a hot press, and the temperature is raised to the melting point of the resin of the resin film or more, and the thickness of the laminate is smaller than the total thickness of each layer before the temperature rise. A hot press process that maintains the press pressure even when
After the hot pressing step, the temperature is lowered to take out the laminated plate to which the layers of the laminate are joined; and
The manufacturing method of the laminated board characterized by including.
面積が100cm以上である第1の金属合金薄板及び第2の金属合金薄板の表面を、金属酸化物又は金属リン酸化物のセラミック質薄層で覆われ、輪郭曲線要素の平均長さ(RSm)が0.8〜10μm、最大高さ(Rz)が0.2〜5μmであるミクロンオーダーの粗度形成され、且つ、その粗度を有する面内に10〜300nm周期の超微細凹凸形成された形状とするための表面処理を行う表面処理工程と、
前記表面処理工程を経た第1の金属合金薄板の表面に、マトリックス樹脂として硬質で結晶性の熱可塑性樹脂を主成分とする樹脂が使用された繊維強化プラスチック製シートを積層し、さらにその繊維強化プラスチック製シートの表面に前記表面処理工程を経た第2の金属合金薄板を積層する積層工程と、
前記積層工程を経た積層物を熱プレス機で挟んで、前記樹脂の融点以上まで昇温し、且つ前記積層物の厚さが当該昇温前の各層の厚さの合計値より小さくなったときにもプレス圧を維持する熱プレス工程と、
前記熱プレス工程後に、温度を低下させて前記積層物の各層が接合された積層板を取り出す取出工程と、
を含むことを特徴とする積層板の製造方法。
The surface of the first metal alloy sheet and the second metal alloy sheet having an area of 100 cm 2 or more is covered with a ceramic thin layer of metal oxide or metal phosphate , and the average length of the contour curve element (RSm ) Is 0.8 to 10 μm, the maximum height (Rz) is 0.2 to 5 μm, and a micron-order roughness is formed, and ultrafine irregularities with a period of 10 to 300 nm are formed in the surface having the roughness. A surface treatment step for performing a surface treatment to form a formed shape ;
On the surface of the first metal alloy sheet having undergone the surface treatment, hard resin mainly composed of crystalline thermoplastic resin is laminated fiber reinforced plastic sheet was used as the matrix resin, further the fiber reinforced A laminating step of laminating the second metal alloy thin plate that has undergone the surface treatment step on the surface of the plastic sheet ;
When the laminate subjected to the laminating step is sandwiched by a hot press, the temperature is raised to the melting point of the resin or more, and the thickness of the laminate becomes smaller than the total thickness of each layer before the temperature rise In addition, a hot press process for maintaining the press pressure,
After the hot pressing step, the temperature is lowered to take out the laminated plate to which the layers of the laminate are joined; and
The manufacturing method of the laminated board characterized by including.
請求項6又は7に記載した積層板の製造方法であって、
前記熱プレス工程において真空熱プレス機を使用し、
前記積層物を前記真空熱プレス機内のプレス型で挟んだ状態で、当該真空熱プレス機内を減圧し、前記樹脂の融点以上まで昇温し、且つ前記積層物の厚さが当該昇温前の各層の厚さの合計値より小さくなったときにもプレス圧を維持することを特徴とする積層板の製造方法。
A method for producing a laminated board according to claim 6 or 7,
In the hot press process, using a vacuum hot press machine,
In a state where the laminate is sandwiched between the press dies in the vacuum hot press, the inside of the vacuum hot press is depressurized, the temperature is raised to the melting point of the resin or more, and the thickness of the laminate is before the temperature rise. A method for producing a laminated board, characterized in that the pressing pressure is maintained even when the thickness becomes smaller than the total thickness of each layer.
面積が100cm以上である第1の金属合金薄板及び第2の金属合金薄板の表面を、金属酸化物又は金属リン酸化物のセラミック質薄層で覆われ、輪郭曲線要素の平均長さ(RSm)が0.8〜10μm、最大高さ(Rz)が0.2〜5μmであるミクロンオーダーの粗度形成され、且つ、その粗度を有する面内に10〜300nm周期の超微細凹凸形成された形状とするための表面処理を行う表面処理工程と、
前記表面処理工程を経た第1の金属合金薄板の表面に、硬質で結晶性の熱可塑性樹脂を主成分とする樹脂が使用されたプラスチックフィルム及び繊維強化クロスを連続して積層し、さらにそのプラスチックフィルムの表面に前記表面処理工程を経た第2の金属合金薄板を積層する積層工程と、
前記積層工程を経た積層物を真空熱プレス機内のプレス型で挟んだ状態で、当該真空熱プレス機内を減圧し、前記樹脂の融点以上まで昇温し、且つ前記積層物の厚さが当該昇温前の各層の厚さの合計値より小さくなったときにもプレス圧を維持する熱プレス工程と、
前記熱プレス工程後に、温度を低下させて前記積層物の各層が接合された積層板を取り出す取出工程と、
を含むことを特徴とする積層板の製造方法。
The surface of the first metal alloy sheet and the second metal alloy sheet having an area of 100 cm 2 or more is covered with a ceramic thin layer of metal oxide or metal phosphate , and the average length of the contour curve element (RSm ) Is 0.8 to 10 μm, the maximum height (Rz) is 0.2 to 5 μm, and a micron-order roughness is formed, and ultrafine irregularities with a period of 10 to 300 nm are formed in the surface having the roughness. A surface treatment step for performing a surface treatment to form a formed shape ;
On the surface of the first metal alloy sheet having passed through the surface treatment step, the plastic film resin composed mainly of crystalline thermoplastic resin with rigid were used and the fiber-reinforced cloth are continuously laminated, further the plastic A laminating step of laminating the second metal alloy thin plate that has undergone the surface treatment step on the surface of the film ;
In a state where the laminate after the lamination step is sandwiched between press molds in a vacuum hot press, the inside of the vacuum hot press is depressurized, the temperature is raised to the melting point of the resin or more, and the thickness of the laminate is increased. A hot press process for maintaining the press pressure even when the thickness is smaller than the total thickness of each layer before heating;
After the hot pressing step, the temperature is lowered to take out the laminated plate to which the layers of the laminate are joined; and
The manufacturing method of the laminated board characterized by including.
面積が100cm以上である第1の金属合金薄板及び第2の金属合金薄板の表面を、金属酸化物又は金属リン酸化物のセラミック質薄層で覆われ、輪郭曲線要素の平均長さ(RSm)が0.8〜10μm、最大高さ(Rz)が0.2〜5μmであるミクロンオーダーの粗度形成され、且つ、その粗度を有する面内に10〜300nm周期の超微細凹凸形成された形状とするための表面処理を行う表面処理工程と、
前記表面処理工程を経た第1の金属合金薄板及び第2の金属合金薄板に、硬質で結晶性の熱可塑性樹脂を主成分とする厚さ10μm以上の樹脂フィルムを載せて加熱して溶融させることにより、当該第1の金属合金薄板及び第2の金属合金薄板の表面を熱可塑性樹脂層で覆う溶融工程と、
前記溶融工程を経た第1の金属合金薄板及び第2の金属合金薄板を、各々の熱可塑性樹脂層が接着対象面を向くように接触させて積層する積層工程と、
前記積層工程を経た積層物を熱プレス機で挟んで、前記樹脂フィルムの樹脂の融点以上まで昇温し、且つ前記積層物の厚さが当該昇温前の各層の厚さの合計値より小さくなったときにもプレス圧を維持する熱プレス工程と、
前記熱プレス工程後に、温度を低下させて前記積層物の各層が接合された積層板を取り出す取出工程と、
を含むことを特徴とする積層板の製造方法。
The surface of the first metal alloy sheet and the second metal alloy sheet having an area of 100 cm 2 or more is covered with a ceramic thin layer of metal oxide or metal phosphate , and the average length of the contour curve element (RSm ) Is 0.8 to 10 μm, the maximum height (Rz) is 0.2 to 5 μm, and a micron-order roughness is formed, and ultrafine irregularities with a period of 10 to 300 nm are formed in the surface having the roughness. A surface treatment step for performing a surface treatment to form a formed shape ;
A resin film having a thickness of 10 μm or more mainly composed of a hard and crystalline thermoplastic resin is placed on the first metal alloy thin plate and the second metal alloy thin plate that have undergone the surface treatment step and heated to melt. A melting step of covering the surfaces of the first metal alloy thin plate and the second metal alloy thin plate with a thermoplastic resin layer,
A laminating step of laminating the first metal alloy thin plate and the second metal alloy thin plate that have undergone the melting step so that each thermoplastic resin layer is in contact with the surface to be bonded; and
The laminate that has undergone the laminating step is sandwiched by a hot press, and the temperature is raised to the melting point of the resin of the resin film or more, and the thickness of the laminate is smaller than the total thickness of each layer before the temperature rise. A hot press process that maintains the press pressure even when
After the hot pressing step, the temperature is lowered to take out the laminated plate to which the layers of the laminate are joined; and
The manufacturing method of the laminated board characterized by including.
面積が100cm以上である第1の金属合金薄板及び第2の金属合金薄板の表面を、金属酸化物又は金属リン酸化物のセラミック質薄層で覆われ、輪郭曲線要素の平均長さ(RSm)が0.8〜10μm、最大高さ(Rz)が0.2〜5μmであるミクロンオーダーの粗度形成され、且つ、その粗度を有する面内に10〜300nm周期の超微細凹凸形成された形状とするための表面処理を行う表面処理工程と、
前記表面処理工程を経た第1の金属合金薄板及び第2の金属合金薄板の表面に、硬質で結晶性の熱可塑性樹脂を主成分とする樹脂粉体を塗装して溶融させることにより、当該第1の金属合金薄板及び第2の金属合金薄板の表面を熱可塑性樹脂層で覆う溶融工程と、
前記溶融工程を経た第1の金属合金薄板及び第2の金属合金薄板を、各々の熱可塑性樹脂層が接着対象面を向くように接触させて積層する積層工程と、
前記積層工程を経た積層物を熱プレス機で挟んで、前記樹脂粉体の融点以上まで昇温し、且つ前記積層物の厚さが当該昇温前の各層の厚さの合計値より小さくなったときにもプレス圧を維持する熱プレス工程と、
前記熱プレス工程後に、温度を低下させて前記積層物の各層が接合された積層板を取り出す取出工程と、
を含むことを特徴とする積層板の製造方法。
The surface of the first metal alloy sheet and the second metal alloy sheet having an area of 100 cm 2 or more is covered with a ceramic thin layer of metal oxide or metal phosphate , and the average length of the contour curve element (RSm ) Is 0.8 to 10 μm, the maximum height (Rz) is 0.2 to 5 μm, and a micron-order roughness is formed, and ultrafine irregularities with a period of 10 to 300 nm are formed in the surface having the roughness. A surface treatment step for performing a surface treatment to form a formed shape ;
The surface of the first metal alloy thin plate and the second metal alloy thin plate that have undergone the surface treatment step is coated with a resin powder mainly composed of a hard and crystalline thermoplastic resin, and is melted. A melting step of covering the surfaces of the first metal alloy sheet and the second metal alloy sheet with a thermoplastic resin layer;
A laminating step of laminating the first metal alloy thin plate and the second metal alloy thin plate that have undergone the melting step so that each thermoplastic resin layer is in contact with the surface to be bonded; and
The laminate that has undergone the laminating step is sandwiched by a hot press, and the temperature is raised to the melting point of the resin powder or more, and the thickness of the laminate becomes smaller than the total thickness of each layer before the temperature rise. A hot pressing process that maintains the pressing pressure even when
After the hot pressing step, the temperature is lowered to take out the laminated plate to which the layers of the laminate are joined; and
The manufacturing method of the laminated board characterized by including.
面積が100cm以上である第1の金属合金薄板及び第2の金属合金薄板の表面を、金属酸化物又は金属リン酸化物のセラミック質薄層で覆われ、輪郭曲線要素の平均長さ(RSm)が0.8〜10μm、最大高さ(Rz)が0.2〜5μmであるミクロンオーダーの粗度形成され、且つ、その粗度を有する面内に10〜300nm周期の超微細凹凸形成された形状とするための表面処理を行う表面処理工程と、
前記表面処理工程を経た第1の金属合金薄板及び第2の金属合金薄板に、硬質で結晶性の熱可塑性樹脂を主成分とする厚さ10μm以上の樹脂フィルムを載せて加熱して溶融させることにより、当該第1の金属合金薄板及び第2の金属合金薄板の表面を熱可塑性樹脂層で覆う溶融工程と、
前記溶融工程を経た第1の金属合金薄板及び第2の金属合金薄板を、各々の熱可塑性樹脂層が接着対象面を向くように積層する際、当該熱可塑性樹脂層に接する繊維強化プラスチック製シートであって、マトリックス樹脂として前記熱可塑性樹脂を主成分とするものを、当該第1の金属合金薄板及び当該第2の金属合金薄板の双方の熱可塑性樹脂層と接触するように積層する積層工程と、
前記積層工程を経た積層物を熱プレス機で挟んで、前記熱可塑性樹脂の融点以上まで昇温し、且つ前記積層物の厚さが当該昇温前の各層の厚さの合計値より小さくなったときにもプレス圧を維持する熱プレス工程と、
前記熱プレス工程後に、温度を低下させて前記積層物の各層が接合された積層板を取り出す取出工程と、
を含むことを特徴とする積層板の製造方法。
The surface of the first metal alloy sheet and the second metal alloy sheet having an area of 100 cm 2 or more is covered with a ceramic thin layer of metal oxide or metal phosphate , and the average length of the contour curve element (RSm ) Is 0.8 to 10 μm, the maximum height (Rz) is 0.2 to 5 μm, and a micron-order roughness is formed, and ultrafine irregularities with a period of 10 to 300 nm are formed in the surface having the roughness. A surface treatment step for performing a surface treatment to form a formed shape ;
A resin film having a thickness of 10 μm or more mainly composed of a hard and crystalline thermoplastic resin is placed on the first metal alloy thin plate and the second metal alloy thin plate that have undergone the surface treatment step and heated to melt. A melting step of covering the surfaces of the first metal alloy thin plate and the second metal alloy thin plate with a thermoplastic resin layer,
A fiber-reinforced plastic sheet that contacts the thermoplastic resin layer when the first metal alloy thin plate and the second metal alloy thin plate that have undergone the melting step are laminated so that each thermoplastic resin layer faces the surface to be bonded. A laminating step of laminating a matrix resin mainly composed of the thermoplastic resin so as to be in contact with the thermoplastic resin layers of both the first metal alloy thin plate and the second metal alloy thin plate. When,
The laminate subjected to the laminating step is sandwiched by a hot press machine, the temperature is raised to the melting point of the thermoplastic resin or more, and the thickness of the laminate becomes smaller than the total thickness of each layer before the temperature rise. A hot pressing process that maintains the pressing pressure even when
After the hot pressing step, the temperature is lowered to take out the laminated plate to which the layers of the laminate are joined; and
The manufacturing method of the laminated board characterized by including.
面積が100cm以上である第1の金属合金薄板及び第2の金属合金薄板の表面を、金属酸化物又は金属リン酸化物のセラミック質薄層で覆われ、輪郭曲線要素の平均長さ(RSm)が0.8〜10μm、最大高さ(Rz)が0.2〜5μmであるミクロンオーダーの粗度形成され、且つ、その粗度を有する面内に10〜300nm周期の超微細凹凸形成された形状とするための表面処理を行う表面処理工程と、
前記表面処理工程を経た第1の金属合金薄板及び第2の金属合金薄板の表面に、硬質で結晶性の熱可塑性樹脂を主成分とする樹脂粉体を塗装して溶融させることにより、当該第1の金属合金薄板及び第2の金属合金薄板の表面を熱可塑性樹脂層で覆う溶融工程と、
前記溶融工程を経た第1の金属合金薄板及び第2の金属合金薄板を、各々の熱可塑性樹脂層が接着対象面を向くように積層する際、当該熱可塑性樹脂層に接する繊維強化プラスチック製シートであって、マトリックス樹脂として前記熱可塑性樹脂を主成分とするものを、当該第1の金属合金薄板及び当該第2の金属合金薄板の双方の熱可塑性樹脂層と接触するように積層する積層工程と、
前記積層工程を経た積層物を熱プレス機で挟んで、前記熱可塑性樹脂の融点以上まで昇温し、且つ前記積層物の厚さが当該昇温前の各層の厚さの合計値より小さくなったときにもプレス圧を維持する熱プレス工程と、
前記熱プレス工程後に、温度を低下させて前記積層物の各層が接合された積層板を取り出す取出工程と、
を含むことを特徴とする積層板の製造方法。
The surface of the first metal alloy sheet and the second metal alloy sheet having an area of 100 cm 2 or more is covered with a ceramic thin layer of metal oxide or metal phosphate , and the average length of the contour curve element (RSm ) Is 0.8 to 10 μm, the maximum height (Rz) is 0.2 to 5 μm, and a micron-order roughness is formed, and ultrafine irregularities with a period of 10 to 300 nm are formed in the surface having the roughness. A surface treatment step for performing a surface treatment to form a formed shape ;
The surface of the first metal alloy thin plate and the second metal alloy thin plate that have undergone the surface treatment step is coated with a resin powder mainly composed of a hard and crystalline thermoplastic resin, and is melted. A melting step of covering the surfaces of the first metal alloy sheet and the second metal alloy sheet with a thermoplastic resin layer;
A fiber-reinforced plastic sheet that contacts the thermoplastic resin layer when the first metal alloy thin plate and the second metal alloy thin plate that have undergone the melting step are laminated so that each thermoplastic resin layer faces the surface to be bonded. A laminating step of laminating a matrix resin mainly composed of the thermoplastic resin so as to be in contact with the thermoplastic resin layers of both the first metal alloy thin plate and the second metal alloy thin plate. When,
The laminate subjected to the laminating step is sandwiched by a hot press machine, the temperature is raised to the melting point of the thermoplastic resin or more, and the thickness of the laminate becomes smaller than the total thickness of each layer before the temperature rise. A hot pressing process that maintains the pressing pressure even when
After the hot pressing step, the temperature is lowered to take out the laminated plate to which the layers of the laminate are joined; and
The manufacturing method of the laminated board characterized by including.
請求項6、7、9、10、11、12、及び13から選択される1項に記載した積層板の製造方法であって、
前記取出工程において、前記熱プレス工程におけるプレス圧を維持したまま温度を低下させることを特徴とする積層板の製造方法。

It is a manufacturing method of the laminated board described in 1 selected from Claims 6, 7, 9, 10, 11, 12, and 13,
In the extracting step, the temperature is lowered while maintaining the pressing pressure in the hot pressing step.

JP2010115165A 2010-05-19 2010-05-19 Laminate and manufacturing method thereof Active JP5379743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010115165A JP5379743B2 (en) 2010-05-19 2010-05-19 Laminate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010115165A JP5379743B2 (en) 2010-05-19 2010-05-19 Laminate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011240620A JP2011240620A (en) 2011-12-01
JP5379743B2 true JP5379743B2 (en) 2013-12-25

Family

ID=45407759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010115165A Active JP5379743B2 (en) 2010-05-19 2010-05-19 Laminate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5379743B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016101678A1 (en) * 2014-12-24 2016-06-30 广东银禧科技股份有限公司 High-flowability glass fibre reinforced polyphenyl thioether composite based on nano forming technology
TWI732756B (en) * 2015-04-21 2021-07-11 日商索馬龍股份有限公司 Injection molding method for thermosetting resin composition

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6106972B2 (en) * 2012-07-10 2017-04-05 富士通株式会社 Composite manufacturing method, composite, and electronic device casing
JP6036350B2 (en) * 2013-02-01 2016-11-30 王子ホールディングス株式会社 Aluminum coated composite panel
KR101666434B1 (en) * 2013-10-31 2016-10-14 주식회사 엘지화학 Debris shatter-proof laminated aluminium and secondary battery having thereof
JP6419499B2 (en) * 2014-09-16 2018-11-07 大成プラス株式会社 Method for producing composite of metal and FRTP
JP6224017B2 (en) * 2015-02-18 2017-11-01 大成プラス株式会社 Method for producing CFRTP complex
CN106317802A (en) * 2016-08-25 2017-01-11 安特普工程塑料(苏州)有限公司 NMT-based PBT composition and manufacturing method
US20210129488A1 (en) 2016-12-28 2021-05-06 Nippon Steel Chemical & Material Co., Ltd. Metal/fiber-reinforced resin material composite body, method for producing same and bonding sheet
JP6630297B2 (en) * 2017-01-13 2020-01-15 大成プラス株式会社 An integrated product of metal and resin
TW201903013A (en) 2017-03-31 2019-01-16 日商新日鐵住金化學股份有限公司 Metal-fiber reinforced resin material composite and method of producing the same
JP7348709B2 (en) * 2017-04-21 2023-09-21 三井化学株式会社 Packaging bodies, methods for storing or transporting metal members, and methods for manufacturing metal/resin composite structures
JP7295376B2 (en) 2017-12-28 2023-06-21 日本製鉄株式会社 METAL-FIBER REINFORCED RESIN MATERIAL COMPOSITE AND PRODUCTION METHOD THEREOF
JP7215163B2 (en) 2017-12-28 2023-01-31 日本製鉄株式会社 Metal-fiber reinforced resin material composite
JP7352059B2 (en) 2018-02-28 2023-09-28 日本製鉄株式会社 Metal-fiber-reinforced resin material composite and method for producing metal-fiber-reinforced resin material composite

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS597049A (en) * 1982-07-06 1984-01-14 住友化学工業株式会社 Press molding machining method for metal/resin /metallic sandwich laminate
JPH01127332A (en) * 1987-11-12 1989-05-19 Kawasaki Steel Corp Laminated composite steel sheet having high adhesion
JPH04303642A (en) * 1991-04-01 1992-10-27 Kawasaki Steel Corp Composite lightweight metal plate with sandwiched resin
JPH07156171A (en) * 1993-12-08 1995-06-20 Toshiba Chem Corp Production of laminated sheet for printed circuit board
JPH0880539A (en) * 1994-09-14 1996-03-26 Toshiba Corp Manufacture of resin laminated plate and metal-clad laminated plate
JPH10305523A (en) * 1997-03-06 1998-11-17 Tsutsunaka Plast Ind Co Ltd Metal-fiber reinforced resin composite body and reinforced laminated body using the same
JP3989176B2 (en) * 2001-01-17 2007-10-10 古河スカイ株式会社 Method for producing thermoplastic resin-coated aluminum alloy sheet for molding process with excellent adhesion and workability of coating layer
US20110008644A1 (en) * 2008-03-17 2011-01-13 Taisei Plas Co., Ltd. Bonded body of galvanized steel sheet and adherend, and manufacturing method thereof
JP2009298144A (en) * 2008-05-14 2009-12-24 Taisei Plas Co Ltd Bonded composite article of a plurality of metallic shaped bodies, and method for production thereof
JP5572935B2 (en) * 2008-09-24 2014-08-20 宇部興産株式会社 Metal cladding
JP5217660B2 (en) * 2008-06-10 2013-06-19 宇部興産株式会社 Metal cladding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016101678A1 (en) * 2014-12-24 2016-06-30 广东银禧科技股份有限公司 High-flowability glass fibre reinforced polyphenyl thioether composite based on nano forming technology
TWI732756B (en) * 2015-04-21 2021-07-11 日商索馬龍股份有限公司 Injection molding method for thermosetting resin composition

Also Published As

Publication number Publication date
JP2011240620A (en) 2011-12-01

Similar Documents

Publication Publication Date Title
JP5379743B2 (en) Laminate and manufacturing method thereof
KR101216800B1 (en) Steel product composite and process for producing the steel product composite
JP5129903B2 (en) Magnesium alloy composite and manufacturing method thereof
JP5008040B2 (en) Titanium alloy composite and its joining method
JP6419499B2 (en) Method for producing composite of metal and FRTP
JP4927871B2 (en) Metal-resin composite and method for producing the composite
JP5295741B2 (en) Composite of metal alloy and fiber reinforced plastic and method for producing the same
US8932719B2 (en) Aluminum alloy composite and method for joining thereof
CN107709002B (en) Metal resin composite molded body and method for producing same
JP5426932B2 (en) Composite of metal alloy and thermosetting resin and method for producing the same
WO2011027854A1 (en) Aluminum alloy article, aluminum alloy member, and production method therefor
KR20140144694A (en) Method for producing bonded member, and bonded member
JP5733999B2 (en) Method for producing metal resin composite
JPWO2008126812A1 (en) Copper alloy composite and manufacturing method thereof
JP4906004B2 (en) Method for producing composite of metal alloy and fiber reinforced plastic
JP2009298144A (en) Bonded composite article of a plurality of metallic shaped bodies, and method for production thereof
JP2011073191A (en) Joined body of cfrp and adherend and method of manufacturing the same
Zopp et al. Quasi-static and fatigue bending behavior of a continuous fiber-reinforced thermoplastic/metal laminate
JPWO2009078466A1 (en) Metal-resin composite and method for producing the same
JP2009241569A (en) Tubular joining composite
JP6341880B2 (en) Method for producing metal-containing composite
CN103963214A (en) Method for bonding aluminum-containing base material and plastic
JP2009061648A (en) Joint composite material including metal alloy and manufacturing method thereof
JP5714864B2 (en) CFRP prepreg and bonded material
KR20150009976A (en) Manufacturing method for molded resin product with metal insert

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130927

R150 Certificate of patent or registration of utility model

Ref document number: 5379743

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250