JP5377875B2 - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
JP5377875B2
JP5377875B2 JP2008085357A JP2008085357A JP5377875B2 JP 5377875 B2 JP5377875 B2 JP 5377875B2 JP 2008085357 A JP2008085357 A JP 2008085357A JP 2008085357 A JP2008085357 A JP 2008085357A JP 5377875 B2 JP5377875 B2 JP 5377875B2
Authority
JP
Japan
Prior art keywords
negative electrode
graphite
secondary battery
powder
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008085357A
Other languages
Japanese (ja)
Other versions
JP2009238657A (en
Inventor
昌久 奥田
賢二 原
教広 篠塚
雄介 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vehicle Energy Japan Inc
Original Assignee
Hitachi Vehicle Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Vehicle Energy Ltd filed Critical Hitachi Vehicle Energy Ltd
Priority to JP2008085357A priority Critical patent/JP5377875B2/en
Publication of JP2009238657A publication Critical patent/JP2009238657A/en
Application granted granted Critical
Publication of JP5377875B2 publication Critical patent/JP5377875B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明はリチウム二次電池に係り、特に、リチウム含有複合酸化物を含む活物質合剤を正極集電体に塗着した正極板と、充放電によりリチウムイオンを吸蔵・放出可能な非晶質炭素材および負極導電材を含む活物質合剤を負極集電体に塗着した負極板とを非水電解液に浸潤させたリチウム二次電池に関する。   The present invention relates to a lithium secondary battery, and in particular, a positive electrode plate in which an active material mixture containing a lithium-containing composite oxide is applied to a positive electrode current collector, and an amorphous material capable of inserting and extracting lithium ions by charging and discharging. The present invention relates to a lithium secondary battery in which a negative electrode plate in which an active material mixture containing a carbon material and a negative electrode conductive material is applied to a negative electrode current collector is infiltrated into a non-aqueous electrolyte.

リチウム二次電池は、高エネルギー密度であるメリットを活かして、VTRカメラやノート型パソコン、携帯電話などのポータブル機器の電源に広く使用されている。一方、自動車産業界においては、環境問題に対応すべく、動力源を電池のみとする電気自動車(EV)や、内燃機関エンジンと電池との両方を動力源とするハイブリッド式電気自動車(HEV)の開発が加速され、一部は実用化されている。EV用やHEV用のリチウム二次電池では、高容量、高出力性能だけでなく、長期の使用期間に対応すべく電池の長寿命化も求められる。ここでいう長寿命化は、電池容量のみならず、出力の低下を抑制し、電気自動車を走行させるのに必要な電気エネルギー供給能力を長期に亘って満足することである。   Lithium secondary batteries are widely used as power sources for portable devices such as VTR cameras, notebook computers, and mobile phones, taking advantage of the high energy density. On the other hand, in the automobile industry, in order to cope with environmental problems, an electric vehicle (EV) using only a battery as a power source and a hybrid electric vehicle (HEV) using both an internal combustion engine and a battery as a power source are used. Development has been accelerated and some have been put to practical use. In the lithium secondary battery for EV or HEV, not only high capacity and high output performance, but also a long battery life is required to cope with a long use period. The extension of the life here means that not only the battery capacity but also the decrease in output is suppressed and the electric energy supply capability necessary for running the electric vehicle is satisfied over a long period of time.

一般に、リチウム二次電池では、正極活物質にリチウム含有複合酸化物が用いられており、負極活物質には、天然黒鉛、人造黒鉛等の黒鉛系炭素材やフラン樹脂等を焼成した非晶質炭素材等の炭素材が用いられる。負極活物質に非晶質炭素材を用いた場合、理論容量値が黒鉛系炭素材より高いため、容量、サイクル特性に優れると共に、充放電時の電圧特性に傾きを有するため、電圧測定により電池状態を容易かつ正確に推定可能なリチウム二次電池を得ることができる。ところが、不可逆容量が黒鉛系炭素材より大きいため、電池での高容量化が難しく、また、黒鉛系炭素材と比べて電子伝導性が劣っている。これに対し、黒鉛系炭素材を用いた場合、不可逆容量が非晶質炭素材より小さく電圧特性が平坦なため、高容量、高出力のリチウム二次電池を得ることができる。ところが、充放電に伴う結晶の体積変化が非晶質炭素材と比べて大きいため、早期に寿命に至り、また、大電流密度での充電受け入れ性が非晶質炭素材と比べて劣っている。更に、黒鉛系炭素材の表面では、非水電解液の分解が生じて電子伝導性が低下するので、出力、サイクル特性の低下を招く。   Generally, in a lithium secondary battery, a lithium-containing composite oxide is used as a positive electrode active material, and the negative electrode active material is an amorphous material obtained by firing a graphite-based carbon material such as natural graphite or artificial graphite, a furan resin, or the like. A carbon material such as a carbon material is used. When an amorphous carbon material is used as the negative electrode active material, the theoretical capacity value is higher than that of the graphite-based carbon material, so that the capacity and cycle characteristics are excellent, and the voltage characteristics during charging and discharging have a slope. A lithium secondary battery capable of estimating the state easily and accurately can be obtained. However, since the irreversible capacity is larger than that of the graphite-based carbon material, it is difficult to increase the capacity in the battery, and the electronic conductivity is inferior to that of the graphite-based carbon material. On the other hand, when the graphite-based carbon material is used, the irreversible capacity is smaller than that of the amorphous carbon material and the voltage characteristics are flat, so that a high capacity, high output lithium secondary battery can be obtained. However, since the volume change of the crystal accompanying charging / discharging is larger than that of the amorphous carbon material, the life is reached early, and the charge acceptability at a large current density is inferior to that of the amorphous carbon material. . Furthermore, since the nonaqueous electrolytic solution is decomposed on the surface of the graphite-based carbon material and the electron conductivity is lowered, the output and cycle characteristics are lowered.

一方、EV用やHEV用のリチウム二次電池では、充放電時の電流密度が大きくなることから、長寿命化、高出力化の要求を満たすため、通常、複数のリチウム二次電池(単電池)が接続されて用いられる。この場合、単電池の特性のバラツキが寿命特性や安全性を左右することから、通常、各単電池の電池状態が監視されている。上述したように、非晶質炭素材では電圧から電池状態を正確に監視できるので、負極活物質として非晶質炭素材を主体とすることが望ましい。ところが、非晶質炭素材を主体とした電池では、黒鉛系炭素材に比べて電子伝導性が低くなるので、重量エネルギー密度の低下を抑えながら電子伝導性を向上させるため、金属材料と比較して軽量で電子伝導性の高い黒鉛系炭素材を導電材として添加する方法が有効である。例えば、負極導電材として黒鉛系炭素材を用い、黒鉛系炭素材の負極活物質に対する添加量を制限する技術が開示されている(特許文献1参照)。   On the other hand, in lithium secondary batteries for EV and HEV, the current density at the time of charging / discharging becomes large. Therefore, in order to satisfy the demand for long life and high output, a plurality of lithium secondary batteries (single cells) are usually used. ) Is connected and used. In this case, since the variation in the characteristics of the single cells affects the life characteristics and safety, the battery state of each single cell is usually monitored. As described above, since the battery state can be accurately monitored from the voltage in the amorphous carbon material, it is desirable that the amorphous carbon material is mainly used as the negative electrode active material. However, batteries with amorphous carbon materials as the main component have lower electronic conductivity than graphite-based carbon materials, so compared with metal materials, the electronic conductivity is improved while suppressing the decrease in weight energy density. It is effective to add a graphite-based carbon material that is lightweight and has high electron conductivity as a conductive material. For example, a technique is disclosed in which a graphite-based carbon material is used as the negative electrode conductive material and the amount of the graphite-based carbon material added to the negative electrode active material is limited (see Patent Document 1).

特開2007−73334号公報JP 2007-73334 A

しかしながら、特許文献1の技術では、導電材として黒鉛系炭素材のみを用いているため、放電時の電子伝導性に優れるものの、非晶質炭素材と比較して充電受け入れ性が遜色する。従って、充放電時全体の電子伝導性が不十分となりリチウム二次電池の高出力化を図ることが難しい、という問題がある。   However, in the technique of Patent Document 1, since only a graphite-based carbon material is used as a conductive material, the charge acceptability is inferior to that of an amorphous carbon material, although it is excellent in electronic conductivity during discharge. Therefore, there is a problem in that it is difficult to increase the output of the lithium secondary battery due to insufficient overall electron conductivity during charging and discharging.

本発明は上記事案に鑑み、高出力化および長寿命化を図ることができるリチウム二次電池を提供することを課題とする。   In view of the above-described case, an object of the present invention is to provide a lithium secondary battery capable of achieving high output and long life.

上記課題を解決するために、本発明は、リチウム含有複合酸化物を含む活物質合剤を正極集電体に塗着した正極板と、充放電によりリチウムイオンを吸蔵・放出可能な非晶質炭素材および負極導電材を含む活物質合剤を負極集電体に塗着した負極板とを非水電解液に浸潤させたリチウム二次電池において、前記負極導電材は、黒鉛系炭素材の表面にカーボンブラックがメカノケミカル処理されたものであるとともに、前記黒鉛系炭素材と前記カーボンブラックとの比表面積割合が、黒鉛系炭素材:カーボンブラック=50:50〜90:10の範囲であり、前記負極板の活物質合剤には、前記非晶質炭素材が前記負極導電材より多く含まれたことを特徴とする。 In order to solve the above problems, the present invention provides a positive electrode plate in which an active material mixture containing a lithium-containing composite oxide is applied to a positive electrode current collector, and an amorphous material capable of inserting and extracting lithium ions by charging and discharging. In a lithium secondary battery in which a negative electrode plate in which an active material mixture including a carbon material and a negative electrode conductive material is applied to a negative electrode current collector is infiltrated into a non-aqueous electrolyte, the negative electrode conductive material is made of a graphite-based carbon material. The surface of the carbon black is mechanochemically treated, and the specific surface area ratio between the graphite-based carbon material and the carbon black is in the range of graphite-based carbon material: carbon black = 50: 50 to 90:10. The active material mixture of the negative electrode plate includes the amorphous carbon material more than the negative electrode conductive material .

本発明では、負極導電材の黒鉛系炭素材の表面にカーボンブラックがメカノケミカル処理されているため、高出力化および長寿命化を図ることができる。 In the present invention, since the carbon black is mechanochemically treated on the surface of the graphite-based carbon material of the negative electrode conductive material, high output and long life can be achieved.

また、上記課題を解決するために、本発明は、リチウム含有複合酸化物を含む活物質合剤を正極集電体に塗着した正極板と、充放電によりリチウムイオンを吸蔵・放出可能な非晶質炭素材および負極導電材を含む活物質合剤を負極集電体に塗着した負極板とを非水電解液に浸潤させたリチウム二次電池において、前記負極導電材は、黒鉛系炭素材の表面にカーボンブラックがメカノケミカル処理されたものであるとともに、前記黒鉛系炭素材と前記カーボンブラックとの比表面積割合が、黒鉛系炭素材:カーボンブラック=70:30〜95:5の範囲であり、前記負極板の活物質合剤には、前記非晶質炭素材が前記負極導電材より多く含まれたことを特徴とする。In order to solve the above problems, the present invention provides a positive electrode plate in which an active material mixture containing a lithium-containing composite oxide is applied to a positive electrode current collector, and a non-occlusion / release of lithium ions by charging and discharging. In a lithium secondary battery in which a negative electrode plate in which an active material mixture containing a crystalline carbon material and a negative electrode conductive material is applied to a negative electrode current collector is infiltrated into a non-aqueous electrolyte, the negative electrode conductive material includes graphite-based carbon. The surface of the material is mechanochemically treated with carbon black, and the specific surface area ratio between the graphite-based carbon material and the carbon black is in the range of graphite-based carbon material: carbon black = 70: 30 to 95: 5. In the active material mixture of the negative electrode plate, the amorphous carbon material is more contained than the negative electrode conductive material.

本発明によれば、負極導電材の黒鉛系炭素材の表面にカーボンブラックがメカノケミカル処理されているため、高出力化および長寿命化を図ることができる、という効果を得ることができる。
According to the present invention, since carbon black is mechanochemically treated on the surface of the graphite-based carbon material of the negative electrode conductive material, it is possible to obtain an effect that high output and long life can be achieved.

以下、図面を参照して、本発明を適用した円筒型リチウムイオン二次電池の実施の形態について説明する。   Embodiments of a cylindrical lithium ion secondary battery to which the present invention is applied will be described below with reference to the drawings.

(構成)
本実施形態の円筒型リチウムイオン二次電池20は、図1に示すように、電池容器となるニッケルメッキを施された鉄製で有底円筒状の電池缶17を有している。電池缶17には、帯状の正極板1および負極板3が捲回された捲回群15が収容されている。
(Constitution)
As shown in FIG. 1, the cylindrical lithium ion secondary battery 20 according to the present embodiment includes a nickel-plated iron-made bottomed cylindrical battery can 17 serving as a battery container. The battery can 17 accommodates a wound group 15 in which the belt-like positive electrode plate 1 and the negative electrode plate 3 are wound.

捲回群15では、正極板1および負極板3がリチウムイオンが通過可能なポリエチレン製微多孔膜のセパレータ5を介して断面渦巻状に捲回されている。セパレータ5は、本例では、厚さが40μmに設定されている。捲回群15の上側には、一端を正極板1に固定されたアルミニウム製でリボン状の正極タブ端子12が導出されている。正極タブ端子12の他端は、捲回群15の上側に配置され正極外部端子となる円盤状の上蓋16の下面に超音波溶接で接合されている。一方、捲回群15の下側には、一端を負極板3に固定された銅製でリボン状の負極タブ端子13が導出されている。負極タブ端子13の他端は、電池缶17の内底面に抵抗溶接で接合されている。従って、正極タブ端子12および負極タブ端子13は、それぞれ捲回群15の両端面から互いに反対側に導出されている。捲回群15の外周面全周には、図示を省略した絶縁被覆が施されている。   In the wound group 15, the positive electrode plate 1 and the negative electrode plate 3 are wound in a spiral shape in cross section through a polyethylene microporous membrane separator 5 through which lithium ions can pass. In this example, the separator 5 has a thickness of 40 μm. On the upper side of the wound group 15, a ribbon-like positive electrode tab terminal 12 made of aluminum and having one end fixed to the positive electrode plate 1 is led out. The other end of the positive electrode tab terminal 12 is disposed on the upper side of the wound group 15 and is joined to the lower surface of a disk-shaped upper lid 16 serving as a positive electrode external terminal by ultrasonic welding. On the other hand, a ribbon-shaped negative electrode tab terminal 13 made of copper and having one end fixed to the negative electrode plate 3 is led below the winding group 15. The other end of the negative electrode tab terminal 13 is joined to the inner bottom surface of the battery can 17 by resistance welding. Therefore, the positive electrode tab terminal 12 and the negative electrode tab terminal 13 are led out from the both end surfaces of the wound group 15 to the opposite sides. An insulation coating (not shown) is applied to the entire outer peripheral surface of the wound group 15.

上蓋16は、絶縁性のガスケット18を介して電池缶17の上部にカシメ固定されている。このため、リチウムイオン二次電池20の内部は密封されている。また、電池缶17内には、非水電解液が注液されている。非水電解液には、エチレンカーボネート、ジメチルカーボネートおよびジエチルカーボネートを体積比で1:1:1の割合で混合した混合溶媒中に6フッ化リン酸リチウム(LiPF)を1モル/リットル溶解したものが用いられている。 The upper lid 16 is fixed by caulking to the upper part of the battery can 17 via an insulating gasket 18. For this reason, the inside of the lithium ion secondary battery 20 is sealed. Further, a non-aqueous electrolyte is injected into the battery can 17. In the non-aqueous electrolyte, 1 mol / liter of lithium hexafluorophosphate (LiPF 6 ) was dissolved in a mixed solvent in which ethylene carbonate, dimethyl carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1: 1. Things are used.

捲回群15を構成する負極板3は、負極集電体として圧延銅箔を有している。圧延銅箔の厚さは本例では10μmに設定されている。圧延銅箔の両面には、負極活物質を含む負極合剤(活物質合剤)が略均等に塗着されて負極合剤層4が形成されている。負極合剤層4には、負極導電材として黒鉛粉末の表面に非晶質炭素粉末がメカノケミカル処理された複合粉末が配合されている。   The negative electrode plate 3 constituting the wound group 15 has a rolled copper foil as a negative electrode current collector. The thickness of the rolled copper foil is set to 10 μm in this example. On both surfaces of the rolled copper foil, a negative electrode mixture (active material mixture) containing a negative electrode active material is applied substantially evenly to form a negative electrode mixture layer 4. The negative electrode mixture layer 4 is mixed with a composite powder obtained by mechanochemically processing amorphous carbon powder on the surface of graphite powder as a negative electrode conductive material.

ここで、メカノケミカル処理について説明する。メカノケミカル処理では、微粒子に衝撃、剪断、摩砕、摩擦、圧縮等の機械的エネルギーが加えられる。加えられた機械的エネルギーの一部が微粒子内に蓄積され、微粒子表面の活性・反応性が高められることで、周囲の物質との反応(メカノケミカル反応)を起こさせることができる。この反応を利用して、本例では、黒鉛粉末と非晶質炭素粉末との複合粉末が次のようにして調製される。   Here, the mechanochemical treatment will be described. In the mechanochemical treatment, mechanical energy such as impact, shear, grinding, friction, and compression is applied to the fine particles. A part of the added mechanical energy is accumulated in the fine particles, and the activity / reactivity of the fine particle surface is enhanced, whereby a reaction (mechanochemical reaction) with surrounding substances can be caused. By utilizing this reaction, in this example, a composite powder of graphite powder and amorphous carbon powder is prepared as follows.

黒鉛粉末と非晶質炭素粉末とがプラネタリミキサを用いて乾式混合される。得られた混合粉末を圧縮摩砕して、黒鉛粉末の表面に非晶質炭素粉末を付着させ、メカノケミカル反応を起こさせて複合粉末を形成させる。   The graphite powder and the amorphous carbon powder are dry mixed using a planetary mixer. The obtained mixed powder is compressed and ground to attach amorphous carbon powder to the surface of the graphite powder, and a mechanochemical reaction is caused to form a composite powder.

混合粉末を圧縮摩砕する方法として、本例では、圧縮摩砕式粉砕機(浅田鉄工株式会社製、ミラクルKCK−32)が用いられる。圧縮摩砕式粉砕機は、一定の内部空間が形成され回転速度により黒鉛粉末および非晶質炭素粉末を一定量供給し続けるスクリューフィーダと、このスクリューフィーダの固定軸に固定された固定ブレードと、回転ブレードとを備えている。固定ブレードおよび回転ブレードの形状、回転数、並びに、各粉末の供給量により圧縮剪断応力を調整することでメカノケミカル反応を起こさせる。この反応により、黒鉛粉末の表面に非晶質炭素粉末が付着して複合粉末が形成される。本例では、圧縮摩砕式粉砕機の負荷電流を18A、冷却水温度を20℃、主軸回転数を70rpmにそれぞれ設定し、黒鉛粉末と非晶質炭素粉末との比表面積(単位重量あたりの表面積)割合(黒鉛粉末:非晶質炭素粉末)を40:60〜95:5の範囲に設定してメカノケミカル処理を実施した。   As a method of compressing and grinding the mixed powder, in this example, a compression and grinding pulverizer (Miracle KCK-32, manufactured by Asada Tekko Co., Ltd.) is used. The compression mill type pulverizer includes a screw feeder that forms a constant internal space and continues to supply a certain amount of graphite powder and amorphous carbon powder at a rotational speed, a fixed blade fixed to a fixed shaft of the screw feeder, And a rotating blade. The mechanochemical reaction is caused by adjusting the compressive shear stress according to the shape of the fixed blade and the rotating blade, the number of rotations, and the supply amount of each powder. By this reaction, the amorphous carbon powder adheres to the surface of the graphite powder to form a composite powder. In this example, the load current of the compression mill type pulverizer is set to 18 A, the cooling water temperature is set to 20 ° C., the spindle rotational speed is set to 70 rpm, and the specific surface area of graphite powder and amorphous carbon powder (per unit weight). Surface area) ratio (graphite powder: amorphous carbon powder) was set in the range of 40:60 to 95: 5, and mechanochemical treatment was performed.

負極合剤には、負極活物質の非晶質炭素粉末と、導電材のメカノケミカル処理された複合粉末と、バインダのポリフッ化ビニリデン(以下、PVDFと略記する。)とが質量比で80:10:10の割合で配合されている。負極合剤が圧延銅箔に塗着されるときは、粘度調整溶媒としてN−メチルピロリドンが用いられ、略均一に混練されてスラリ状の溶液が調製される。調製された溶液が圧延銅箔の両面に塗布され、乾燥させることで負極合剤層4が形成される。負極板3は、圧延銅箔を含まない負極活物質塗布部(負極合剤層4)の厚さが70μmとなるように、ロールプレス機でプレス加工されて一体化されている。また、負極板3は、幅が56mm、長さが500mmの帯状に裁断されている。負極板3の長手方向一端部には、負極タブ端子13の一端が超音波溶接で接合されている。   In the negative electrode mixture, the amorphous carbon powder of the negative electrode active material, the mechanochemically processed composite powder of the conductive material, and the polyvinylidene fluoride binder (hereinafter abbreviated as PVDF) in a mass ratio of 80: It is blended at a ratio of 10:10. When the negative electrode mixture is applied to the rolled copper foil, N-methylpyrrolidone is used as a viscosity adjusting solvent and is kneaded substantially uniformly to prepare a slurry-like solution. The prepared solution is applied to both sides of the rolled copper foil and dried to form the negative electrode mixture layer 4. The negative electrode plate 3 is integrated by being pressed by a roll press so that the thickness of the negative electrode active material application part (negative electrode mixture layer 4) not including the rolled copper foil is 70 μm. The negative electrode plate 3 is cut into a strip shape having a width of 56 mm and a length of 500 mm. One end of the negative electrode tab terminal 13 is joined to one end of the negative electrode plate 3 in the longitudinal direction by ultrasonic welding.

一方、正極板1は、正極集電体としてアルミニウム箔を有している。アルミニウム箔の厚さは本例では20μmに設定されている。アルミニウム箔の両面には、正極活物質としてマンガン酸リチウム粉末を含む正極合剤(活物質合剤)が塗着されて正極合剤層2が形成されている。正極合剤には、マンガン酸リチウム粉末と、主導電材の黒鉛粉末と、副導電材のアセチレンブラックと、バインダのPVDFとが質量比85:8:2:5の割合で配合されている。正極板1は、負極板3と同様にして、アルミニウム箔の両面に正極合剤層2が形成されている。正極板1は、アルミニウム箔を含まない正極活物質塗布部(正極合剤層2)の厚さが70μmとなるように、ロールプレス機でプレス加工されて一体化されている。また、正極板1は、幅が54mm、長さが450mmの帯状に裁断されている。正極板1の長手方向略中央部には、正極タブ端子12の一端が超音波溶接で接合されている。   On the other hand, the positive electrode plate 1 has an aluminum foil as a positive electrode current collector. The thickness of the aluminum foil is set to 20 μm in this example. On both surfaces of the aluminum foil, a positive electrode mixture layer (active material mixture) containing lithium manganate powder as a positive electrode active material is applied to form a positive electrode mixture layer 2. In the positive electrode mixture, lithium manganate powder, graphite powder as a main conductive material, acetylene black as a sub conductive material, and PVDF as a binder are blended in a mass ratio of 85: 8: 2: 5. The positive electrode plate 1 has the positive electrode mixture layer 2 formed on both surfaces of an aluminum foil in the same manner as the negative electrode plate 3. The positive electrode plate 1 is integrated by being pressed by a roll press so that the thickness of the positive electrode active material application part (positive electrode mixture layer 2) not including the aluminum foil is 70 μm. Moreover, the positive electrode plate 1 is cut into a strip shape having a width of 54 mm and a length of 450 mm. One end of the positive electrode tab terminal 12 is joined to the substantially central portion in the longitudinal direction of the positive electrode plate 1 by ultrasonic welding.

次に、本実施形態に従い作製したリチウムイオン二次電池20の実施例について説明する。なお、比較のために作製した比較例についても説明する。   Next, examples of the lithium ion secondary battery 20 manufactured according to the present embodiment will be described. A comparative example produced for comparison will also be described.

(実施例1)
下表1に示すように、実施例1では、負極板3の導電材として、黒鉛粉末(日本黒鉛製、JSP)と、非晶質炭素粉末である低結晶性のカーボンブラック(電気化学工業製、デンカブラックHS−100)とを用いた。黒鉛粉末と非晶質炭素粉末との比表面積割合を95:5に設定し、メカノケミカル処理を行って複合粉末を調製した。この複合粉末を用いて負極合剤層4を形成し、実施例1のリチウムイオン二次電池20を作製した。なお、下表1において、Aは黒鉛を、Bは非晶質炭素をそれぞれ示している。
Example 1
As shown in Table 1 below, in Example 1, as the conductive material of the negative electrode plate 3, graphite powder (manufactured by Nippon Graphite, JSP) and low crystalline carbon black (manufactured by Electrochemical Industry) which is an amorphous carbon powder. , Denka Black HS-100). The specific surface area ratio of the graphite powder and the amorphous carbon powder was set to 95: 5, and mechanochemical treatment was performed to prepare a composite powder. A negative electrode mixture layer 4 was formed using this composite powder, and a lithium ion secondary battery 20 of Example 1 was produced. In Table 1 below, A indicates graphite and B indicates amorphous carbon.

Figure 0005377875
Figure 0005377875

(実施例2〜実施例7)
表1に示すように、実施例2〜実施例7では、黒鉛粉末と非晶質炭素粉末との比表面積割合を変える以外は実施例1と同様にしてリチウムイオン二次電池20を作製した。黒鉛粉末と非晶質炭素粉末との比表面積割合は、実施例2では90:10、実施例3では80:20、実施例4では70:30、実施例5では60:40、実施例6では50:50、実施例7では40:60に設定した。
(Example 2 to Example 7)
As shown in Table 1, in Examples 2 to 7, lithium ion secondary batteries 20 were produced in the same manner as in Example 1 except that the specific surface area ratio between the graphite powder and the amorphous carbon powder was changed. The specific surface area ratio between the graphite powder and the amorphous carbon powder is 90:10 in Example 2, 80:20 in Example 3, 70:30 in Example 4, 60:40 in Example 5, and Example 6 Then, it was set to 50:50 and in Example 7, it was set to 40:60.

(比較例1、比較例2)
表1に示すように、比較例1では黒鉛粉末のみを、比較例2では非晶質炭素粉末のみをそれぞれ用いて負極合剤層を形成した以外は実施例1と同様にしてリチウムイオン二次電池を作製した。
(Comparative Example 1 and Comparative Example 2)
As shown in Table 1, the lithium ion secondary was formed in the same manner as in Example 1 except that the negative electrode mixture layer was formed using only graphite powder in Comparative Example 1 and only amorphous carbon powder in Comparative Example 2. A battery was produced.

(比較例3〜比較例9)
表1に示すように、比較例3〜比較例9では、黒鉛粉末と非晶質炭素粉末との比表面積割合を変えて、単に混合して混合粉末を調製した。この混合粉末を用いて実施例1と同様にしてリチウムイオン二次電池を作製した。黒鉛粉末と非晶質炭素粉末との比表面積割合は、比較例3では95:5、比較例4では90:10、比較例5では80:20、比較例6では70:30、比較例7では60:40、比較例8では50:50、比較例9では40:60に設定した。
(Comparative Example 3 to Comparative Example 9)
As shown in Table 1, in Comparative Examples 3 to 9, mixed powders were prepared by simply mixing by changing the specific surface area ratio of the graphite powder and the amorphous carbon powder. Using this mixed powder, a lithium ion secondary battery was produced in the same manner as in Example 1. The specific surface area ratio between the graphite powder and the amorphous carbon powder was 95: 5 in Comparative Example 3, 90:10 in Comparative Example 4, 80:20 in Comparative Example 5, 70:30 in Comparative Example 6, and Comparative Example 7 Then, 60:40 was set, 50:50 was set in Comparative Example 8, and 40:60 was set in Comparative Example 9.

(評価1)
作製したリチウムイオン二次電池について、以下の試験を実施し出力特性を評価した。各電池を充電した後放電し、環境温度23〜27℃の雰囲気下で初期放電容量を測定した。充電条件は4.2V定電圧、制限電流5A、充電時間2.5時間とした。放電条件は5A定電流、終止電圧2.7Vとした。初期放電容量を測定後、上述した充電条件で充電し、25A定電流放電を行い、再度、上述した充電条件で充電し、50A定電流放電した。各電池の50A定電流放電開始から10秒目の電圧から出力(出力密度)を算出した。黒鉛粉末と非晶質炭素粉末との比表面積割合が同じで、混合粉末を用いた比較例の電池の出力に対する複合粉末を用いた実施例の電池の出力の比(例えば、比較例3に対する実施例1)を百分率で求めた結果を下表2に示す。
(Evaluation 1)
About the produced lithium ion secondary battery, the following tests were implemented and output characteristics were evaluated. Each battery was charged and then discharged, and the initial discharge capacity was measured in an atmosphere at an ambient temperature of 23 to 27 ° C. The charging conditions were a 4.2 V constant voltage, a limiting current of 5 A, and a charging time of 2.5 hours. The discharge conditions were a 5A constant current and a final voltage of 2.7V. After measuring the initial discharge capacity, the battery was charged under the above-mentioned charging conditions, discharged at a constant current of 25 A, charged again at the above-described charging conditions, and discharged at a constant current of 50 A. The output (power density) was calculated from the voltage 10 seconds after the start of 50 A constant current discharge of each battery. The ratio of the specific surface area ratio of the graphite powder and the amorphous carbon powder is the ratio of the output of the battery of the example using the composite powder to the output of the battery of the comparative example using the mixed powder (for example, the implementation for the comparative example 3 Table 2 shows the results of the determination of Example 1) as a percentage.

Figure 0005377875
Figure 0005377875

表2に示すように、負極導電材にメカノケミカル処理を施した複合粉末を用いた各実施例のリチウムイオン二次電池20では、ただ単に混合した混合粉末を用いた各比較例のリチウムイオン二次電池に対し、出力が100%を超える値となり、出力が向上したことが判明した。また、黒鉛粉末と非晶質炭素粉末との比表面積割合が50:50〜90:10の範囲(実施例2〜実施例6)では、110%以上という優れた出力の向上効果が確認された。   As shown in Table 2, in the lithium ion secondary battery 20 of each example using the composite powder obtained by subjecting the negative electrode conductive material to mechanochemical treatment, the lithium ion secondary battery 20 of each comparative example using only the mixed powder was mixed. It was found that the output of the secondary battery exceeded 100%, and the output was improved. Moreover, when the specific surface area ratio of the graphite powder and the amorphous carbon powder was in the range of 50:50 to 90:10 (Example 2 to Example 6), an excellent output improvement effect of 110% or more was confirmed. .

(評価2)
また、各実施例および比較例のリチウムイオン二次電池に対して環境温度48〜52℃の雰囲気下で上述した評価1と同じ充放電条件による充放電を300回繰り返した。その後、環境温度23〜27℃の雰囲気下で初期放電容量測定と同様にして放電容量を測定し、評価1で測定した初期放電容量に対する300サイクル目の放電容量の割合を百分率で求め、300サイクル目の容量維持率(寿命結果)とした。下表3に300サイクル目の寿命結果の測定結果を示す。
(Evaluation 2)
Moreover, charging / discharging by the same charging / discharging conditions as the evaluation 1 mentioned above was repeated 300 times in the atmosphere of environmental temperature 48-52 degreeC with respect to the lithium ion secondary battery of each Example and the comparative example. Thereafter, the discharge capacity is measured in the same manner as the initial discharge capacity measurement in an atmosphere having an ambient temperature of 23 to 27 ° C., and the ratio of the discharge capacity at the 300th cycle to the initial discharge capacity measured in Evaluation 1 is obtained as a percentage, and 300 cycles. The eye capacity retention rate (lifetime result) was used. Table 3 below shows the measurement results of the lifetime results at the 300th cycle.

Figure 0005377875
Figure 0005377875

表3に示すように、各実施例のリチウムイオン二次電池20は比表面積割合を同じに設定した各比較例のリチウムイオン二次電池と比較すると高い容量維持率を示しており、寿命の低下が抑制されていることが判った。また、黒鉛粉末と非晶質炭素粉末との比表面積割合が70:30〜95:5の範囲(実施例1〜実施例4)では、83%以上という優れた容量維持率を示すことが判明した。   As shown in Table 3, the lithium ion secondary battery 20 of each example shows a high capacity retention rate compared with the lithium ion secondary battery of each comparative example in which the specific surface area ratio is set to be the same, and the lifetime is reduced. Was found to be suppressed. In addition, when the specific surface area ratio of the graphite powder and the amorphous carbon powder is in the range of 70:30 to 95: 5 (Examples 1 to 4), it is found that the capacity retention rate is 83% or more. did.

以上の評価結果から、黒鉛粉末の表面に非晶質炭素粉末がメカノケミカル処理されたものを負極導電材として用いることで、リチウムイオン二次電池20の高出力化および長寿命化を実現できることが判明した。   From the above evaluation results, it is possible to realize higher output and longer life of the lithium ion secondary battery 20 by using the mechanochemical treatment of the amorphous carbon powder on the surface of the graphite powder as the negative electrode conductive material. found.

(作用等)
次に、本実施形態のリチウムイオン二次電池20の作用等について説明する。
(Action etc.)
Next, the operation and the like of the lithium ion secondary battery 20 of the present embodiment will be described.

本実施形態では、負極合剤層4に配合される負極導電材に、黒鉛粉末の表面に非晶質炭素粉末がメカノケミカル処理されたものが用いられている。このため、黒鉛粉末、非晶質炭素粉末をそれぞれ単独で用いた場合や単に混合して用いた場合と比較して、得られるリチウムイオン二次電池20の高出力化および長寿命化を図ることができる。このメカニズムについては明確になっていないが、次のように推察される。すなわち、黒鉛粉末の場合、非晶質炭素粉末と比較して、放電時の電子伝導性に優れるものの、充電受け入れ性が遜色する。黒鉛粉末の表面に非晶質炭素粉末を配することで、黒鉛粉末による電子伝導性を確保しつつ、非晶質炭素粉末により充電受け入れ性を向上させることができ、負極導電材全体として充放電時の電子伝導性が向上し高出力化されたものと考えられる。また、黒鉛粉末では、充放電時にリチウムイオンを吸蔵、放出する可能性もあり、非晶質炭素材と比較して劣化しやすい可能性がある。本実施形態の負極導電材では、表面に配された非晶質炭素粉末により黒鉛粉末に対するリチウムイオンの吸蔵、放出が制限されることから、負極導電材として電子伝導性が維持され長寿命化されたものと考えられる。   In the present embodiment, the negative electrode conductive material blended in the negative electrode mixture layer 4 is obtained by mechanochemically treating amorphous carbon powder on the surface of graphite powder. For this reason, as compared with the case where graphite powder and amorphous carbon powder are used alone or in a case where they are used alone, the resulting lithium ion secondary battery 20 has higher output and longer life. Can do. Although this mechanism is not clear, it is presumed as follows. That is, in the case of graphite powder, the charge acceptability is inferior to that of amorphous carbon powder, although it is excellent in electron conductivity during discharge. By arranging the amorphous carbon powder on the surface of the graphite powder, it is possible to improve the charge acceptability with the amorphous carbon powder while ensuring the electron conductivity by the graphite powder, and charge and discharge as the whole negative electrode conductive material It is thought that the electron conductivity at the time was improved and the output was increased. In addition, graphite powder may occlude and release lithium ions during charge and discharge, and may be more easily deteriorated than an amorphous carbon material. In the negative electrode conductive material of this embodiment, the amorphous carbon powder placed on the surface restricts the insertion and release of lithium ions from the graphite powder, so that the electronic conductivity is maintained and the life of the negative electrode conductive material is extended. It is thought that.

また、本実施形態では、負極板3の導電材としてメカノケミカル処理される黒鉛粉末と非晶質炭素粉末との比表面積割合が40:60〜95:5の範囲に設定されており、リチウムイオン二次電池20を高出力化および長寿命化を実現することができた(実施例1〜実施例7)。上述した評価1の結果から、比表面積割合を50:50〜90:10の範囲とすることで、リチウムイオン二次電池20を一層高出力化することができた(実施例2〜実施例6)。一方、評価2の結果から、比表面積割合を70:30〜95:5の範囲とすることで、リチウムイオン二次電池20を一層長寿命化することができた(実施例1〜実施例4)。従って、比表面積割合を70:30〜90:10の範囲とすることにより、リチウムイオン二次電池20の高出力化および長寿命化を共に向上させることができる(実施例2〜実施例4)。   Moreover, in this embodiment, the specific surface area ratio of the graphite powder to be mechanochemically processed as the conductive material of the negative electrode plate 3 and the amorphous carbon powder is set in a range of 40:60 to 95: 5, and lithium ion The secondary battery 20 was able to achieve higher output and longer life (Example 1 to Example 7). From the result of the evaluation 1 described above, by setting the specific surface area ratio in the range of 50:50 to 90:10, it was possible to further increase the output of the lithium ion secondary battery 20 (Examples 2 to 6). ). On the other hand, from the result of evaluation 2, the lifetime of the lithium ion secondary battery 20 could be further extended by setting the specific surface area ratio in the range of 70:30 to 95: 5 (Examples 1 to 4). ). Therefore, by setting the specific surface area ratio in the range of 70:30 to 90:10, it is possible to improve both the high output and long life of the lithium ion secondary battery 20 (Example 2 to Example 4). .

なお、本実施形態では、負極導電材の黒鉛系炭素材として一例を示したが、本発明はこれに限定されるものではない。例えば、天然黒鉛、人造黒鉛、気相成長炭素繊維等の黒鉛系炭素材であればよい。また、黒鉛系炭素材とメカノケミカル処理される非晶質炭素材として低結晶性のカーボンブラックを例示したが、特に制限されるものではない。更に、これらの炭素材の形状についても、特に制限されないことはもちろんである。   In the present embodiment, an example is shown as the graphite-based carbon material of the negative electrode conductive material, but the present invention is not limited to this. For example, any graphite-based carbon material such as natural graphite, artificial graphite, or vapor-grown carbon fiber may be used. Moreover, although the low crystalline carbon black was illustrated as an amorphous carbon material mechanochemically processed with a graphite-type carbon material, it does not restrict | limit in particular. Furthermore, it is needless to say that the shape of these carbon materials is not particularly limited.

また、本実施形態では、メカノケミカル処理に圧縮摩砕式粉砕機を用いる例を示したが、本発明はこれに制限されるものではない。黒鉛粉末と非晶質炭素粉末との混合粉末にメカノケミカル反応を起こさせるのに十分な機械的エネルギーを加えることができれば、いかなる方法、装置を用いてもよい。このような装置としては、例えば、回転力や振動力等を利用し多数の球体で粉末を粉砕処理する遊星ボールミル等のボールミルを挙げることができる。   In the present embodiment, an example in which a compression mill type pulverizer is used for the mechanochemical treatment is shown, but the present invention is not limited to this. Any method and apparatus may be used as long as sufficient mechanical energy can be applied to the mixed powder of graphite powder and amorphous carbon powder to cause a mechanochemical reaction. Examples of such an apparatus include a ball mill such as a planetary ball mill that uses a rotational force, a vibration force, or the like to pulverize powder with a large number of spheres.

更に、本実施形態では、正極活物質のリチウム含有複合酸化物として、マンガン酸リチウムを示したが、本発明はこれに限定されるものではない。例えば、結晶中のマンガンやリチウムの一部をそれら以外の、Fe、Co、Ni、Cr、Al、Mg、等の元素で置換又はドープした組成の異なるリチウム含有複合酸化物を用いてもよい。また、結晶構造についても特に制限されるものではなく、例えば、スピネル結晶構造や層状結晶構造であってもよい。更に、本実施形態では、正極導電材として黒鉛粉末およびアセチレンブラックを例示したが、本発明はこれらに限定されるものではない。電子伝導性を有している他の物質を用いてもよいし、特に導電材を用いなくてもよい。   Further, in the present embodiment, lithium manganate is shown as the lithium-containing composite oxide of the positive electrode active material, but the present invention is not limited to this. For example, lithium-containing composite oxides having different compositions in which a part of manganese or lithium in a crystal is substituted or doped with other elements such as Fe, Co, Ni, Cr, Al, and Mg may be used. Further, the crystal structure is not particularly limited, and may be, for example, a spinel crystal structure or a layered crystal structure. Furthermore, in this embodiment, graphite powder and acetylene black are exemplified as the positive electrode conductive material, but the present invention is not limited to these. Other materials having electron conductivity may be used, and in particular, a conductive material may not be used.

また更に、本実施形態では、非水電解液としてエチレンカーボネート、ジメチルカーボネート、ジエチルカーボネートを体積比1:1:1で混合した混合溶媒中にLiPFを1モル/リットル溶解したものを例示したが、本発明はこれに限定されるものではなく、一般的なリチウム塩を電解質とし、これを有機溶媒に溶解したものを使用することができる。また、バインダについてもPVDFに限定されるものではなく、通常リチウムイオン二次電池に用いられるバインダを用いてもよい。 Furthermore, in the present embodiment, the non-aqueous electrolyte is exemplified by a solution obtained by dissolving 1 mol / liter of LiPF 6 in a mixed solvent in which ethylene carbonate, dimethyl carbonate, and diethyl carbonate are mixed at a volume ratio of 1: 1: 1. The present invention is not limited to this, and it is possible to use a general lithium salt as an electrolyte dissolved in an organic solvent. Further, the binder is not limited to PVDF, and a binder usually used for a lithium ion secondary battery may be used.

また、本実施形態では、電気自動車用の電源に用いられる比較的大型のリチウム二次電池を例示したが、本発明に係るリチウム二次電池は、電池の容量、サイズ、形状等に制限されるものではない。更に、本発明の適用可能な電池の構造としては、上述した電池缶に上蓋がカシメ固定されて封口されている構造の電池以外であっても構わない。このような構造の一例として正負極外部端子が電池蓋を貫通し電池容器内で軸芯を介して押し合っている状態の電池を挙げることができる。   Moreover, in this embodiment, the comparatively large lithium secondary battery used for the power supply for electric vehicles was illustrated, However, The lithium secondary battery which concerns on this invention is restrict | limited to the capacity | capacitance, size, shape, etc. of a battery. It is not a thing. Furthermore, the structure of the battery to which the present invention can be applied may be other than the battery having a structure in which the upper lid is crimped and sealed to the battery can described above. As an example of such a structure, a battery in a state where positive and negative external terminals penetrate through the battery lid and are pressed through the shaft core in the battery container can be mentioned.

本発明は高出力化および長寿命化を図ることができるリチウム二次電池を提供するため、リチウム二次電池の製造、販売に寄与するので、産業上の利用可能性を有する。   Since the present invention contributes to the manufacture and sale of lithium secondary batteries in order to provide a lithium secondary battery capable of achieving high output and long life, it has industrial applicability.

本発明を適用した実施形態の円筒型リチウムイオン二次電池を示す断面図である。It is sectional drawing which shows the cylindrical lithium ion secondary battery of embodiment to which this invention is applied.

符号の説明Explanation of symbols

1 正極板
2 正極合剤層(活物質合剤)
3 負極板
4 負極合剤層(活物質合剤)
15 捲回群
20 円筒型リチウムイオン二次電池(リチウム二次電池)
DESCRIPTION OF SYMBOLS 1 Positive electrode plate 2 Positive electrode mixture layer (active material mixture)
3 Negative electrode plate 4 Negative electrode mixture layer (active material mixture)
15 Winding group 20 Cylindrical lithium ion secondary battery (lithium secondary battery)

Claims (2)

リチウム含有複合酸化物を含む活物質合剤を正極集電体に塗着した正極板と、充放電によりリチウムイオンを吸蔵・放出可能な非晶質炭素材および負極導電材を含む活物質合剤を負極集電体に塗着した負極板とを非水電解液に浸潤させたリチウム二次電池において、前記負極導電材は、黒鉛系炭素材の表面にカーボンブラックがメカノケミカル処理されたものであるとともに、前記黒鉛系炭素材と前記カーボンブラックとの比表面積割合が、黒鉛系炭素材:カーボンブラック=50:50〜90:10の範囲であり、前記負極板の活物質合剤には、前記非晶質炭素材が前記負極導電材より多く含まれたことを特徴とするリチウム二次電池。 A positive electrode plate in which an active material mixture including a lithium-containing composite oxide is applied to a positive electrode current collector, and an active material mixture including an amorphous carbon material capable of occluding and releasing lithium ions by charge and discharge, and a negative electrode conductive material In a lithium secondary battery in which a negative electrode plate coated with a negative electrode current collector is infiltrated with a non-aqueous electrolyte, the negative electrode conductive material is obtained by mechanochemical treatment of carbon black on the surface of a graphite-based carbon material. In addition, the specific surface area ratio between the graphite-based carbon material and the carbon black is in the range of graphite-based carbon material: carbon black = 50: 50 to 90:10, and the active material mixture of the negative electrode plate includes: A lithium secondary battery, wherein the amorphous carbon material is contained in a larger amount than the negative electrode conductive material . リチウム含有複合酸化物を含む活物質合剤を正極集電体に塗着した正極板と、充放電によりリチウムイオンを吸蔵・放出可能な非晶質炭素材および負極導電材を含む活物質合剤を負極集電体に塗着した負極板とを非水電解液に浸潤させたリチウム二次電池において、前記負極導電材は、黒鉛系炭素材の表面にカーボンブラックがメカノケミカル処理されたものであるとともに、前記黒鉛系炭素材と前記カーボンブラックとの比表面積割合が、黒鉛系炭素材:カーボンブラック=70:30〜95:5の範囲であり、前記負極板の活物質合剤には、前記非晶質炭素材が前記負極導電材より多く含まれたことを特徴とするリチウム二次電池。A positive electrode plate in which an active material mixture including a lithium-containing composite oxide is applied to a positive electrode current collector, and an active material mixture including an amorphous carbon material capable of occluding and releasing lithium ions by charge and discharge, and a negative electrode conductive material In a lithium secondary battery in which a negative electrode plate coated with a negative electrode current collector is infiltrated with a non-aqueous electrolyte, the negative electrode conductive material is obtained by mechanochemical treatment of carbon black on the surface of a graphite-based carbon material. In addition, the specific surface area ratio between the graphite-based carbon material and the carbon black is in the range of graphite-based carbon material: carbon black = 70: 30 to 95: 5, and the active material mixture of the negative electrode plate includes: A lithium secondary battery, wherein the amorphous carbon material is contained in a larger amount than the negative electrode conductive material.
JP2008085357A 2008-03-28 2008-03-28 Lithium secondary battery Active JP5377875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008085357A JP5377875B2 (en) 2008-03-28 2008-03-28 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008085357A JP5377875B2 (en) 2008-03-28 2008-03-28 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2009238657A JP2009238657A (en) 2009-10-15
JP5377875B2 true JP5377875B2 (en) 2013-12-25

Family

ID=41252342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008085357A Active JP5377875B2 (en) 2008-03-28 2008-03-28 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP5377875B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3292792B2 (en) * 1995-07-13 2002-06-17 エフ・ディ−・ケイ株式会社 Lithium secondary battery
JPH1012217A (en) * 1996-06-26 1998-01-16 Mitsubishi Pencil Co Ltd Negative electrode for lithium ion secondary battery
JP3711726B2 (en) * 1998-01-20 2005-11-02 日立化成工業株式会社 Graphite particles, production method thereof, lithium secondary battery and negative electrode thereof
JPH11265716A (en) * 1998-03-16 1999-09-28 Denso Corp Negative electrode active material for lithium secondary battery and its manufacture
JP4672958B2 (en) * 2002-10-10 2011-04-20 Jfeケミカル株式会社 Graphite particles, lithium ion secondary battery, negative electrode material therefor and negative electrode
JP4542352B2 (en) * 2004-02-26 2010-09-15 Jfeケミカル株式会社 Negative electrode for lithium ion secondary battery and lithium ion secondary battery

Also Published As

Publication number Publication date
JP2009238657A (en) 2009-10-15

Similar Documents

Publication Publication Date Title
AU2008349765B2 (en) Core-shell type anode active material for lithium secondary batteries, method for preparing the same and lithium secondary batteries comprising the same
CN107534144B (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery using same
US20080213670A1 (en) Non-aqueous electrolyte secondary battery
JP2007035358A (en) Positive electrode active substance, its manufacturing method and lithium ion secondary battery
JP5820662B2 (en) Lithium ion secondary battery
JP2007265668A (en) Cathode for nonaqueous electrolyte secondary battery and its manufacturing method
JP2008243684A (en) Lithium secondary battery
WO2012144177A1 (en) Negative electrode for lithium ion secondary batteries and lithium ion secondary battery using negative electrode
JP5696904B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP2007335360A (en) Lithium secondary cell
JP2006134762A (en) Secondary battery
JP2009158239A (en) Lithium secondary battery
JP5279567B2 (en) Nonaqueous electrolyte secondary battery
WO2012025963A1 (en) Nonaqueous-electrolyte battery
JP5354984B2 (en) Lithium secondary battery
JP2005158623A (en) Nonaqueous electrolyte secondary battery
JP6848199B2 (en) A method for producing a positive electrode material for a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery using the positive electrode material, and a positive electrode material for a non-aqueous electrolyte secondary battery.
JP7209265B2 (en) lithium ion battery
JP2005327489A (en) Positive electrode for power storage element
JP2010033869A (en) Electrode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same
JP5377875B2 (en) Lithium secondary battery
JP2007220455A (en) Nonaqueous electrolyte secondary battery
WO2012014259A1 (en) Non-aqueous electrolyte secondary battery
WO2020158169A1 (en) Non-aqueous electrolyte secondary cell and electrolytic solution used in same
JP5254910B2 (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130925

R150 Certificate of patent or registration of utility model

Ref document number: 5377875

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250