JP5376762B2 - Satellite signal noise estimation device, signal-to-noise ratio calculation device, and satellite signal reception device - Google Patents

Satellite signal noise estimation device, signal-to-noise ratio calculation device, and satellite signal reception device Download PDF

Info

Publication number
JP5376762B2
JP5376762B2 JP2007027657A JP2007027657A JP5376762B2 JP 5376762 B2 JP5376762 B2 JP 5376762B2 JP 2007027657 A JP2007027657 A JP 2007027657A JP 2007027657 A JP2007027657 A JP 2007027657A JP 5376762 B2 JP5376762 B2 JP 5376762B2
Authority
JP
Japan
Prior art keywords
signal
noise
correlation
coherent
coherent addition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007027657A
Other languages
Japanese (ja)
Other versions
JP2008191068A (en
Inventor
勝男 由井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP2007027657A priority Critical patent/JP5376762B2/en
Publication of JP2008191068A publication Critical patent/JP2008191068A/en
Application granted granted Critical
Publication of JP5376762B2 publication Critical patent/JP5376762B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To find a noise distribution value (noise average and noise dispersion) and a noise-to-signal ratio, when tracking a satellite signal from a navigation satellite such as a GPS under a very weak environment thereof in an indoor space, under a high-level structure or the like, and to allow stable frequency tracking. <P>SOLUTION: A non-correlative signal not correlated with a reception signal from a satellite is carrier-correlated by a 1 ms correlation channel circuit 1n for a noise, to be output in every 1 ms, and a noise power dispersion &sigma;<SP>2</SP>during the 1 ms in every 1 ms by a noise dispersion measuring instrument 4. A prescribed time (N) coherent addition is executed using the noise power dispersion &sigma;<SP>2</SP>during the 1ms, so as to find the noise distribution value including the noise average and the noise dispersion, corresponding to the case when added by a prescribed frequency (M). <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、携帯電話機や車などの移動体に設置され、GPSなどの航法衛星からの衛星信号が屋内や高架下など非常に弱い環境の場合でも安定して周波数追尾を行うための雑音推定装置、信号対雑音比演算装置、及び衛星信号受信装置に関する。   The present invention relates to a noise estimation device that is installed in a mobile body such as a mobile phone or a car, and performs frequency tracking stably even in a very weak environment such as a satellite signal from a navigation satellite such as GPS indoors or under an overhead. The present invention relates to a signal-to-noise ratio calculation device and a satellite signal reception device.

地球を周回する航法衛星(人工衛星)までの距離及び当該航法衛星の軌道に関する情報を利用し、地球上の物体(以下「利用者」と呼ぶ)の位置、速度等を求めるシステムである米国のGlobal Positioning System(GPS)等のGlobal Navigation Satellite System(GNSS)の衛星信号受信装置において、衛星信号を捕捉する際に、受信する衛星信号が非常に弱い環境であっても衛星信号を順次サーチすることによって、低加速状態であることや数秒以上の観測時間を要する等の制約はあるものの、衛星信号を捕捉し測位位置を求められる捕捉手段が利用できるようになってきている。しかし、衛星信号の追尾中において加速度が高い状態(受信キャリア周波数が変化する状態)でもリアルタイムで測位可能になる簡易構成で高感度な追尾手段の実現が望まれている。   A system for determining the position, velocity, etc. of objects on the earth (hereinafter referred to as “users”) using information on the distance to navigation satellites (artificial satellites) that orbit the earth and the orbits of the navigation satellites. When a satellite signal is received by a Global Navigation Satellite System (GNSS) satellite signal receiver such as the Global Positioning System (GPS), the satellite signal is searched sequentially even in an environment where the received satellite signal is very weak. Therefore, although there are restrictions such as a low acceleration state and an observation time of several seconds or more, it is possible to use a capturing means that captures a satellite signal and obtains a positioning position. However, it is desired to realize a high-sensitivity tracking means with a simple configuration that allows positioning in real time even when the acceleration of the satellite signal is high (when the received carrier frequency changes).

まず、衛星信号が非常に弱い環境下でその衛星信号をサーチ(高感度サーチ)する場合は、衛星信号を受信した受信信号に対してPNコード相関及びキャリア周波数相関が取られた相関信号を加算する加算時間を長くすることによって、信号対雑音比(S/N比)を改善した加算相関信号を得、その加算相関信号に基づいてキャリア周波数相関に用いる局部発振器(キャリアNCO)の発振周波数信号の周波数(及び位相)を制御することが必要である。そのために、特許文献1にはコヒーレント加算とノンコヒーレント加算の2種類の加算処理を併用することが示されている。   First, when searching for a satellite signal in an environment where the satellite signal is very weak (high-sensitivity search), a correlation signal obtained by taking a PN code correlation and a carrier frequency correlation is added to the received signal. The added correlation signal with improved signal-to-noise ratio (S / N ratio) is obtained by lengthening the addition time, and the oscillation frequency signal of the local oscillator (carrier NCO) used for carrier frequency correlation based on the added correlation signal It is necessary to control the frequency (and phase). For this purpose, Patent Document 1 shows that two types of addition processing, coherent addition and non-coherent addition, are used in combination.

コヒーレント加算は、I(搬送波正位相)相関信号とQ(搬送波90°移相)相関信号を各々そのまま加算する加算方法であり、大きなS/N比の改善が行える方法である。GPSでは20ms毎しかI,Q相関信号の反転は起こらないので、20msまではコヒーレント加算が行える。   Coherent addition is an addition method in which an I (carrier positive phase) correlation signal and a Q (carrier 90 ° phase shift) correlation signal are added as they are, and a method capable of greatly improving the S / N ratio. In GPS, inversion of the I and Q correlation signals occurs only every 20 ms, so that coherent addition can be performed up to 20 ms.

ノンコヒーレント加算は、I,Q相関信号またはこれらをコヒーレント加算した信号の信号パワーP(=I2+Q2、又は、=(I2+Q21/2)を加算していく方法である。この方法のS/N比の改善度はコヒーレント加算に劣るが、I,Q相関信号の反転の影響を受けないため、衛星からの航法メッセージの反転パターンが未知の場合でもS/N比の改善が行える利点がある。 Non-coherent addition is a method of adding the signal power P (= I 2 + Q 2 or = (I 2 + Q 2 ) 1/2 ) of an I, Q correlation signal or a signal obtained by coherent addition of these signals. Although the degree of improvement in the S / N ratio of this method is inferior to coherent addition, it is not affected by the inversion of the I and Q correlation signals, so the S / N ratio is improved even when the inversion pattern of the navigation message from the satellite is unknown. There is an advantage that can be done.

感度向上のためにはそれらの加算時間を長くすることが望ましいが、加速度への追従の面では加算時間が短い方が望ましい。しかしながら、移動等による受信環境変化に伴う信号パワー変動及び移動加速度は、一般的には測定前には未知である。そこで、加算時間が長くS/N比の改善度が高い第1方式と、加算時間が短くS/N比の改善度は低いが加速度追従性が良い第2方式とを同時に実施しておき、第1方式と第2方式から例えば測定期間中のS/N比に適した方式の加算結果を用いることが考えられる。このためには、測定期間中のS/N比を求める必要がある。   In order to improve sensitivity, it is desirable to increase the addition time, but in terms of following the acceleration, it is desirable that the addition time is short. However, the signal power fluctuation and the movement acceleration accompanying the reception environment change due to movement or the like are generally unknown before measurement. Therefore, the first method having a long addition time and a high improvement in the S / N ratio and the second method having a short addition time and a low improvement in the S / N ratio but good acceleration follow-up are performed simultaneously. From the first method and the second method, for example, it is conceivable to use an addition result of a method suitable for the S / N ratio during the measurement period. For this purpose, it is necessary to obtain the S / N ratio during the measurement period.

高感度サーチ時においては、特定衛星信号に関する受信信号に対して、内部の拡散コード(PNコード)の開始タイミングを順次ずらすことで、図2の(a)に示すような相関パワー分布が得られる。この図2(a)では、横軸はコードオフセット値(chip)を示しており、受信信号の拡散コードの位相と内部の拡散コードの位相とが一致したときに一番強い自己相関パワー(即ち、信号パワー)Smesが得られ、信号パワーSmes以外の自己相関パワーは雑音である。信号パワーSmes以外の自己相関パワーを用いれば、同図(a)、(b)に示されるように雑音平均Nmean及びその雑音分散Nrmsは同時に算出可能である。それらの測定結果及び算出結果を用いて、高感度サーチ時のS/N比を、「S/N=(Smes−Nmean)/Nrms」により求めることができる。   At the time of high sensitivity search, the correlation power distribution as shown in FIG. 2A can be obtained by sequentially shifting the start timing of the internal spreading code (PN code) with respect to the received signal related to the specific satellite signal. . In FIG. 2A, the horizontal axis indicates the code offset value (chip), and the strongest autocorrelation power (ie, when the phase of the spreading code of the received signal matches the phase of the internal spreading code) , Signal power) Smes, and the autocorrelation power other than the signal power Smes is noise. If autocorrelation power other than the signal power Smes is used, the noise average Nmean and its noise variance Nrms can be calculated simultaneously as shown in FIGS. Using these measurement results and calculation results, the S / N ratio at the time of high sensitivity search can be obtained by “S / N = (Smes−Nmean) / Nrms”.

また、追尾時におけるS/N比は、追尾周波数制御に用いるI,Q相関信号に関して、コヒーレント加算をする区間(時間)とノンコヒーレント加算をする区間(時間)が同一の区間内における、[コヒーレント加算値/ノンコヒーレント加算値]からS/N比を求めることが、非特許文献1に記載されている。
米国特許第6,724,343号明細書 GLOBAL POSITIONING SYSTEM:Theory and Applications Vol.1、Bradford W. Parkinson,James J.Spilker Jr. 、pp391-393
Also, the S / N ratio at the time of tracking is [coherent for the I and Q correlation signals used for tracking frequency control within the same interval (time) where coherent addition is performed (time) and noncoherent addition (interval). Non-Patent Document 1 describes that the S / N ratio is obtained from “added value / non-coherent added value”].
US Pat. No. 6,724,343 GLOBAL POSITIONING SYSTEM: Theory and Applications Vol.1, Bradford W. Parkinson, James J. Spilker Jr., pp391-393

この高感度サーチ用に実施されている図2の方法を追尾でも行うことを考えた場合、追尾中であるから信号パワーSmesは当然に得られるが、追尾チャンネルのみでは雑音情報は得られない。雑音情報を得るために、再公表特許WO01/094972号公報に示されるように、雑音推定用のチャンネルを設けて雑音レベルを求め、その雑音レベルによって追尾チャンネルでの信号パワーSmesを判定することが知られている。しかし、この再公表特許では、雑音レベルが求まるだけであり、雑音分散Nrmsを求めることはできない。また、雑音分散Nrmsを求めるために複数回観測することはリアルタイムでの計算ができないし、観測区間以外の変動の影響を受けるから実用上この方法でのS/N比は計算できない欠点があった。   When considering that the method of FIG. 2 implemented for the high-sensitivity search is also performed in tracking, the signal power Smes can be naturally obtained because tracking is in progress, but noise information cannot be obtained only by the tracking channel. In order to obtain noise information, a noise estimation channel is provided to obtain a noise level, and the signal power Smes in the tracking channel is determined based on the noise level, as shown in the republished patent application WO01 / 094972. Are known. However, in this re-published patent, only the noise level is obtained, and the noise variance Nrms cannot be obtained. In addition, in order to obtain the noise variance Nrms, it is impossible to calculate in real time, and it is not possible to calculate the S / N ratio in this method practically because it is affected by fluctuations other than the observation interval. .

また、一般の追尾に用いられている非特許文献1に示されている方法の場合には、非特許文献1の図39に示されているように、信号パワーが弱くなるにつれてS/N比の信頼度が急激に低下し、高感度(信号対雑音比で約20dB以下)の場合には、実質上利用できない欠点があった。   Further, in the case of the method shown in Non-Patent Document 1 used for general tracking, as shown in FIG. 39 of Non-Patent Document 1, as the signal power becomes weaker, the S / N ratio. In the case of high sensitivity (signal-to-noise ratio of about 20 dB or less), there is a drawback that it cannot be used practically.

本発明は、以上の点に鑑みてなされたものであり、GPSなどの航法衛星からの衛星信号が屋内や高架下など非常に弱い環境での追尾時に、ノイズ分布値(ノイズ平均及びノイズ分散)及び信号対雑音比を求めるとともに、安定して周波数追尾を行うための、雑音推定装置、信号対雑音比演算装置、及び衛星信号受信装置を提供することを目的とする。   The present invention has been made in view of the above points, and at the time of tracking in a very weak environment such as a satellite signal from a navigation satellite such as GPS indoors or under an overpass, a noise distribution value (noise average and noise variance). An object of the present invention is to provide a noise estimation device, a signal-to-noise ratio calculation device, and a satellite signal reception device for obtaining a signal-to-noise ratio and performing frequency tracking stably.

請求項1に記載の雑音推定装置は、衛星信号を変換し入力される特定衛星信号に関する受信信号と該受信信号と相関を採ることができない非相関信号とのキャリア相関が採られ、1ms間のI相関信号I0nとQ相関信号Q0nとを同時に1ms毎に出力する雑音用1ms相関チャンネル回路1nと、
前記雑音用1ms相関チャンネル回路1nからのI相関信号I0nとQ相関信号Q0nとから1ms間の雑音パワーの分散σを1ms毎に測定するノイズ分散測定器4と、
前記1ms間の雑音パワーの分散σ所定時間のコヒーレント加算時間(N)、及び所定回数のコヒーレント加算回数(M)を統計的に決定されるノイズ分布の関数式に代入することにより、前記受信信号に対応したノイズ平均Nmean及びノイズ分散Nrmsを含むノイズ分布値を求めるノイズ分布演算器5と、を有することを特徴とする。
The noise estimation apparatus according to claim 1, wherein a carrier correlation between a received signal related to a specific satellite signal input by converting a satellite signal and a non-correlated signal that cannot be correlated with the received signal is taken. A 1 ms correlation channel circuit 1n for noise that outputs the I correlation signal I0n and the Q correlation signal Q0n simultaneously every 1 ms;
A noise variance measuring device 4 for measuring a noise power variance σ 2 between 1 ms from the I correlation signal I0n and the Q correlation signal Q0n from the noise 1 ms correlation channel circuit 1n;
By substituting the noise power variance σ 2 for 1 ms, the coherent addition time (N) for a predetermined time, and the number of coherent additions (M) for a predetermined number of times into a statistically determined noise distribution function expression, And a noise distribution calculator 5 for obtaining a noise distribution value including a noise average Nmean and a noise variance Nrms corresponding to the received signal .

請求項2に記載の雑音推定装置は、衛星信号を変換し入力される特定衛星信号に関する受信信号と該受信信号と相関を採ることができない非相関信号とのキャリア相関が採られ、1ms間のI相関信号I0nとQ相関信号Q0nとを同時に1ms毎に出力する雑音用1ms相関チャンネル回路1nと、
前記雑音用1ms相関チャンネル回路1nからのI相関信号I0nとQ相関信号Q0nとから1ms間の雑音パワーの分散σを1ms毎に測定するノイズ分散測定器4と、
前記1ms間の雑音パワーの分散σを第1ノイズ平均N1mean及び第1ノイズ分散N1rmsを含む第1ノイズ分布値を求める第1ノイズ分布演算器51と、
前記1ms間の雑音パワーの分散σ第1所定時間のコヒーレント加算時間(N1)、及び第1所定回数のコヒーレント加算回数(M1)を、統計的に決定されるノイズ分布の関数式に代入することにより、前記受信信号に対応した第1ノイズ平均N1mean及び第1ノイズ分散N1rmsを含む第1ノイズ分布値を求める第1ノイズ分布演算器51と、
前記1ms間の雑音パワーの分散σを、前記第1所定時間(N1)より短い第2所定時間のコヒーレント加算時間(N2<N1)、及び第2所定回数のコヒーレント加算回数(M2)を、統計的に決定されるノイズ分布の関数式に代入することにより、前記受信信号に対応した第2ノイズ平均N2mean及び第2ノイズ分散N2rmsを含む第2ノイズ分布値を求める第2ノイズ分布演算器52と、を有することを特徴とする。
The noise estimation apparatus according to claim 2 converts a satellite signal and receives a carrier correlation between a received signal related to a specific satellite signal input and a non-correlated signal that cannot be correlated with the received signal. A 1 ms correlation channel circuit 1n for noise that outputs the I correlation signal I0n and the Q correlation signal Q0n simultaneously every 1 ms;
A noise variance measuring device 4 for measuring a noise power variance σ 2 between 1 ms from the I correlation signal I0n and the Q correlation signal Q0n from the noise 1 ms correlation channel circuit 1n;
A first noise distribution calculator 51 for obtaining the first noise distribution value containing a dispersion sigma 2 of the noise power of the first noise average N1mean and first noise variance N1rms between the 1 ms,
The noise power variance σ 2 for 1 ms, the first predetermined time coherent addition time (N1), and the first predetermined number of coherent addition times (M1) are substituted into a statistically determined noise distribution function expression. A first noise distribution calculator 51 for obtaining a first noise distribution value including a first noise average N1mean and a first noise variance N1rms corresponding to the received signal ;
The noise power variance σ 2 between 1 ms, a coherent addition time (N2 <N1) of a second predetermined time shorter than the first predetermined time (N1), and a second predetermined number of times of coherent addition (M2), A second noise distribution calculator 52 for obtaining a second noise distribution value including a second noise average N2mean and a second noise variance N2rms corresponding to the received signal by substituting into a statistically determined noise distribution function expression. It is characterized by having.

請求項3に記載の信号対雑音比演算装置は、周波数制御信号Foutを受けてキャリア周波数信号を発生するキャリア局部発振器(キャリアNCO)1aを含み、衛星信号を変換し入力される特定衛星信号に関する受信信号とPNコードとのコード相関及び前記キャリア周波数信号とのキャリア相関が採られ、1ms間のI相関信号I0iとQ相関信号Q0iとを同時に1ms毎に出力する信号用1ms相関チャンネル回路1sと、
前記信号用1ms相関チャンネル回路1sからのI相関信号I0iとQ相関信号Q0iを前記特定衛星信号の航法データの切り替わりタイミングに同期して所定時間(N)分コヒーレント加算を行い、そのIコヒーレント加算値IciとQコヒーレント加算値Qciとを出力するコヒーレント加算器2と、
前記Iコヒーレント加算値Ici及びQコヒーレント加算値Qciから、コヒーレント加算区間内の信号パワーを求め、その信号パワーの所定回数(M)の累積加算を行って累積信号パワーPを求めて出力するノンコヒーレント加算器3と、
前記受信信号と該受信信号と相関を採ることができない非相関信号とのキャリア相関が採られ、1ms間のI相関信号I0nとQ相関信号Q0nとを同時に1ms毎に出力する雑音用1ms相関チャンネル回路1nと、
前記雑音用1ms相関チャンネル回路1nからのI相関信号I0nとQ相関信号Q0nとから1ms間の雑音パワーの分散σを1ms毎に測定するノイズ分散測定器4と、
前記1ms間の雑音パワーの分散σ前記所定時間のコヒーレント加算時間(N)、及び前記所定回数のコヒーレント加算回数(M)を統計的に決定されるノイズ分布の関数式に代入することにより、前記受信信号に対応したノイズ平均Nmean及びノイズ分散Nrmsを含むノイズ分布値を求めるノイズ分布演算器5と、
前記累積信号パワーPと、前記ノイズ平均Nmean及びノイズ分散Nrmsを用いて、信号対雑音比S/Nを、[信号対雑音比S/N=(累積信号パワーP−ノイズ平均Nmean)/ノイズ分散Nrms]により算出する演算手段6と、を有することを特徴とする。
The signal-to-noise ratio calculation apparatus according to claim 3 includes a carrier local oscillator (carrier NCO) 1a that receives a frequency control signal Fout and generates a carrier frequency signal, and relates to a specific satellite signal that is input after converting the satellite signal. A 1 ms correlation channel circuit 1s for a signal that takes a code correlation between a received signal and a PN code and a carrier correlation with the carrier frequency signal and outputs an I correlation signal I0i and a Q correlation signal Q0i for 1 ms at the same time every 1 ms; ,
The I correlation signal I0i and the Q correlation signal Q0i from the signal 1 ms correlation channel circuit 1s are subjected to coherent addition for a predetermined time (N) in synchronization with the navigation data switching timing of the specific satellite signal, and the I coherent addition value is obtained. A coherent adder 2 that outputs Ici and a Q coherent addition value Qci;
Non-coherent that obtains signal power P in a coherent addition section from the I coherent addition value Ici and Q coherent addition value Qci, obtains the accumulated signal power P by performing cumulative addition of the signal power a predetermined number of times (M), and outputs it Adder 3;
A carrier correlation between the received signal and a non-correlated signal that cannot be correlated with the received signal, and a 1 ms correlation channel for noise that simultaneously outputs an I correlation signal I0n and a Q correlation signal Q0n for 1 ms every 1 ms. Circuit 1n;
A noise variance measuring device 4 for measuring a noise power variance σ 2 between 1 ms from the I correlation signal I0n and the Q correlation signal Q0n from the noise 1 ms correlation channel circuit 1n;
By substituting the noise power variance σ 2 for 1 ms, the coherent addition time (N) for the predetermined time, and the coherent addition number (M) for the predetermined number of times into a statistically determined noise distribution function expression. A noise distribution calculator 5 for obtaining a noise distribution value including a noise average Nmean and a noise variance Nrms corresponding to the received signal ;
Using the cumulative signal power P, the noise average Nmean, and the noise variance Nrms, the signal-to-noise ratio S / N is calculated as [signal-to-noise ratio S / N = (cumulative signal power P−noise average Nmean) / noise variance. Nrms] is calculated.

請求項4に記載の信号対雑音比演算装置は、周波数制御信号Foutを受けてキャリア周波数信号を発生するキャリア局部発振器(キャリアNCO)1aを含み、衛星信号を変換し入力される特定衛星信号に関する受信信号とPNコードとのコード相関及び前記キャリア周波数信号とのキャリア相関が採られ、1ms間のI相関信号I0iとQ相関信号Q0iとを同時に1ms毎に出力する信号用1ms相関チャンネル回路1sと、
前記信号用1ms相関チャンネル回路1sからのI相関信号I0iとQ相関信号Q0iを前記特定衛星信号の航法データの切り替わりタイミングに同期して第1所定時間(N1)分コヒーレント加算を行い、その第1Iコヒーレント加算値Ici1と第1Qコヒーレント加算値Qci1とを出力する第1コヒーレント加算器21と、
前記第1Iコヒーレント加算値Ici1び第1Qコヒーレント加算値Qci1から、第1コヒーレント加算区間内の信号パワーを求め、その信号パワーの第1所定回数(M1)の累積加算を行って第1累積信号パワーP1を求めて出力する第1ノンコヒーレント加算器31と、
前記信号用1ms相関チャンネル回路1sからのI相関信号I0iとQ相関信号Q0iを前記第1所定時間(N1)よりも短い第2所定時間(N2<N1)分コヒーレント加算を行い、その第2Iコヒーレント加算値Ici2と第2Qコヒーレント加算値Qci2とを出力する第2コヒーレント加算器22と、
前記第2Iコヒーレント加算値Ici2及び第2Qコヒーレント加算値Qci2から、第2コヒーレント加算区間内の信号パワーを求め、その信号パワーの第2所定回数(M2)の累積加算を行って第2累積信号パワーP2を求めて出力する第2ノンコヒーレント加算器32と、
前記受信信号と該受信信号と相関を採ることができない非相関信号とのキャリア相関が採られ、1ms間のI相関信号I0nとQ相関信号Q0nとを同時に1ms毎に出力する雑音用1ms相関チャンネル回路1nと、
前記雑音用1ms相関チャンネル回路1nからのI相関信号I0nとQ相関信号Q0nとから1ms間の雑音パワーの分散σを1ms毎に測定するノイズ分散測定器4と、
前記1ms間の雑音パワーの分散σ前記第1所定時間のコヒーレント加算時間(N1)、及び前記第1所定回数のコヒーレント加算回数(M1)を、統計的に決定されるノイズ分布の関数式に代入することにより、前記受信信号に対応した第1ノイズ平均N1mean及び第1ノイズ分散N1rmsを含む第1ノイズ分布値を求める第1ノイズ分布演算器51と、
前記1ms間の雑音パワーの分散σ前記第2所定時間のコヒーレント加算時間(N2)、及び前記第2所定回数のコヒーレント加算回数(M2)を、統計的に決定されるノイズ分布の関数式に代入することにより、前記受信信号に対応した第2ノイズ平均N2mean及び第2ノイズ分散N2rmsを含む第2ノイズ分布値を求める第2ノイズ分布演算器52と、
前記第1,第2累積信号パワーP1,P2と、前記第1,第2ノイズ平均N1mean,N2mean及び第1,第2ノイズ分散N1rms,N2rmsを用いて、第1,第2信号対雑音比S1/N1、S2/N2を、[第1信号対雑音比S1/N1=(第1累積信号パワーP1−第1ノイズ平均N1mean)/第1ノイズ分散N1rms]、及び[第2信号対雑音比S2/N2=(第2累積信号パワーP2−第2ノイズ平均N2mean)/第2ノイズ分散N2rms]、により算出する演算手段6と、を有することを特徴とする。
The signal-to-noise ratio calculation apparatus according to claim 4 includes a carrier local oscillator (carrier NCO) 1a that receives a frequency control signal Fout and generates a carrier frequency signal, and relates to a specific satellite signal that is input after converting a satellite signal. A 1 ms correlation channel circuit 1s for a signal that takes a code correlation between a received signal and a PN code and a carrier correlation with the carrier frequency signal and outputs an I correlation signal I0i and a Q correlation signal Q0i for 1 ms at the same time every 1 ms; ,
The I correlation signal I0i and the Q correlation signal Q0i from the signal 1 ms correlation channel circuit 1s are coherently added for a first predetermined time (N1) in synchronization with the navigation data switching timing of the specific satellite signal, and the first I A first coherent adder 21 that outputs a coherent addition value Ici1 and a first Q coherent addition value Qci1;
The signal power in the first coherent addition interval is obtained from the first I coherent addition value Ici1 and the first Q coherent addition value Qci1, and the first accumulated signal power is accumulated for the first predetermined number of times (M1). A first non-coherent adder 31 for obtaining and outputting P1,
The I correlation signal I0i and the Q correlation signal Q0i from the signal 1 ms correlation channel circuit 1s are subjected to a second predetermined time (N2 <N1) shorter than the first predetermined time (N1), and the second I coherent is obtained. A second coherent adder 22 that outputs the addition value Ici2 and the second Q coherent addition value Qci2,
The signal power in the second coherent addition interval is obtained from the second I coherent addition value Ici2 and the second Q coherent addition value Qci2, and the signal power is accumulated for a second predetermined number of times (M2) to obtain the second accumulated signal power. A second non-coherent adder 32 for determining and outputting P2,
A carrier correlation between the received signal and a non-correlated signal that cannot be correlated with the received signal, and a 1 ms correlation channel for noise that simultaneously outputs an I correlation signal I0n and a Q correlation signal Q0n for 1 ms every 1 ms. Circuit 1n;
A noise variance measuring device 4 for measuring a noise power variance σ 2 between 1 ms from the I correlation signal I0n and the Q correlation signal Q0n from the noise 1 ms correlation channel circuit 1n;
The noise distribution variance σ 2 for the 1 ms, the first predetermined time coherent addition time (N1), and the first predetermined number of coherent addition times (M1) are statistically determined function expressions of noise distribution. A first noise distribution calculator 51 for obtaining a first noise distribution value including a first noise average N1mean and a first noise variance N1rms corresponding to the received signal ,
The noise distribution variance σ 2 for 1 ms, the second predetermined time coherent addition time (N2), and the second predetermined number of coherent addition times (M2) are statistically determined function expressions of noise distribution. And a second noise distribution calculator 52 for obtaining a second noise distribution value including a second noise average N2mean and a second noise variance N2rms corresponding to the received signal ,
Using the first and second accumulated signal powers P1 and P2, the first and second noise averages N1mean and N2mean and the first and second noise variances N1rms and N2rms, the first and second signal-to-noise ratio S1. / N1, S2 / N2, [first signal-to-noise ratio S1 / N1 = (first cumulative signal power P1−first noise average N1mean) / first noise variance N1rms], and [second signal-to-noise ratio S2] / N2 = (second cumulative signal power P2−second noise average N2mean) / second noise variance N2rms].

請求項5に記載の衛星信号受信装置は、周波数制御信号Foutを受けてキャリア周波数信号を発生するキャリア局部発振器(キャリアNCO)1aを含み、衛星信号を変換し入力される特定衛星信号に関する受信信号とPNコードとのコード相関及び前記キャリア周波数信号とのキャリア相関が採られ、1ms間のI相関信号I0iとQ相関信号Q0iとを同時に1ms毎に出力する信号用1ms相関チャンネル回路1sと、
前記信号用1ms相関チャンネル回路1sからのI相関信号I0iとQ相関信号Q0iを前記特定衛星信号の航法データの切り替わりタイミングに同期して第1所定時間(N1)分コヒーレント加算を行い、その第1Iコヒーレント加算値Ici1と第1Qコヒーレント加算値Qci1とを出力する第1コヒーレント加算器21と、
前記第1Iコヒーレント加算値Ici1及び第1Qコヒーレント加算値Qci1から、第1コヒーレント加算区間内の信号パワーを求め、その信号パワーの第1所定回数(M1)の累積加算を行って第1累積信号パワーP1を求めて出力する第1ノンコヒーレント加算器31と、
前記第1I,Qコヒーレント加算値Ici1,Qci1に基づいて前記周波数制御信号Foutを決定するコスタスループ演算器4と、
前記信号用1ms相関チャンネル回路1sからのI相関信号I0iとQ相関信号Q0iを前記第1所定時間(N1)よりも短い第2所定時間(N2<N1)分コヒーレント加算を行い、その第2Iコヒーレント加算値Ici2と第2Qコヒーレント加算値Qci2とを出力する第2コヒーレント加算器22と、
前記第2Iコヒーレント加算値Ici2及び第2Qコヒーレント加算値Qci2から、第2コヒーレント加算区間内の信号パワーを求め、その信号パワーの第2所定回数(M2)の累積加算を行って第2累積信号パワーP2を求めて出力する第2ノンコヒーレント加算器32と、
前記受信信号と該受信信号と相関を採ることができない非相関信号とのキャリア相関が採られ、1ms間のI相関信号I0nとQ相関信号Q0nとを同時に1ms毎に出力する雑音用1ms相関チャンネル回路1nと、
前記雑音用1ms相関チャンネル回路1nからのI相関信号I0nとQ相関信号Q0nとから1ms間の雑音パワーの分散σを1ms毎に測定するノイズ分散測定器4と、
前記1ms間の雑音パワーの分散σ前記第1所定時間のコヒーレント加算時間(N1)、及び前記第1所定回数のコヒーレント加算回数(M1)を、統計的に決定されるノイズ分布の関数式に代入することにより、前記受信信号に対応した第1ノイズ平均N1mean及び第1ノイズ分散N1rmsを含む第1ノイズ分布値を求める第1ノイズ分布演算器51と、
前記1ms間の雑音パワーの分散σ前記第2所定時間のコヒーレント加算時間(N2)、及び前記第2所定回数のコヒーレント加算回数(M2)を、統計的に決定されるノイズ分布の関数式に代入することにより、前記受信信号に対応した第2ノイズ平均N2mean及び第2ノイズ分散N2rmsを含む第2ノイズ分布値を求める第2ノイズ分布演算器52と、
前記第1,第2累積信号パワーP1,P2と、前記第1,第2ノイズ平均N1mean,N2mean及び第1,第2ノイズ分散N1rms,N2rmsを用いて、第1,第2信号対雑音比S1/N1、S2/N2を、[第1信号対雑音比S1/N1=(第1累積信号パワーP1−第1ノイズ平均N1mean)/第1ノイズ分散N1rms]、及び[第2信号対雑音比S2/N2=(第2累積信号パワーP2−第2ノイズ平均N2mean)/第2ノイズ分散N2rms]、により算出するとともに、前記第1、第2信号対雑音比S1/N1,S2/N2に基づいて前記コスタスループ演算器4の特性もしくは入力を変更して前記周波数制御信号Foutを制御する演算・制御手段6と、を有することを特徴とする。
The satellite signal receiving apparatus according to claim 5 includes a carrier local oscillator (carrier NCO) 1a that receives a frequency control signal Fout and generates a carrier frequency signal, and converts the satellite signal into a received signal related to a specific satellite signal that is input. A 1 ms correlation channel circuit 1s for a signal that outputs the I correlation signal I0i and the Q correlation signal Q0i for 1 ms at the same time every 1 ms.
The I correlation signal I0i and the Q correlation signal Q0i from the signal 1 ms correlation channel circuit 1s are coherently added for a first predetermined time (N1) in synchronization with the navigation data switching timing of the specific satellite signal, and the first I A first coherent adder 21 that outputs a coherent addition value Ici1 and a first Q coherent addition value Qci1;
From the first I coherent addition value Ici1 and the first Q coherent addition value Qci1, the signal power in the first coherent addition interval is obtained, and the first predetermined signal power is accumulated for the first predetermined number of times (M1). A first non-coherent adder 31 for obtaining and outputting P1,
A Costas loop computing unit 4 for determining the frequency control signal Fout based on the first I and Q coherent addition values Ici1 and Qci1;
The I correlation signal I0i and the Q correlation signal Q0i from the signal 1 ms correlation channel circuit 1s are subjected to a second predetermined time (N2 <N1) shorter than the first predetermined time (N1), and the second I coherent is obtained. A second coherent adder 22 that outputs the addition value Ici2 and the second Q coherent addition value Qci2,
The signal power in the second coherent addition interval is obtained from the second I coherent addition value Ici2 and the second Q coherent addition value Qci2, and the signal power is accumulated for a second predetermined number of times (M2) to obtain the second accumulated signal power. A second non-coherent adder 32 for determining and outputting P2,
A carrier correlation between the received signal and a non-correlated signal that cannot be correlated with the received signal, and a 1 ms correlation channel for noise that simultaneously outputs an I correlation signal I0n and a Q correlation signal Q0n for 1 ms every 1 ms. Circuit 1n;
A noise variance measuring device 4 for measuring a noise power variance σ 2 between 1 ms from the I correlation signal I0n and the Q correlation signal Q0n from the noise 1 ms correlation channel circuit 1n;
The noise distribution variance σ 2 for the 1 ms, the first predetermined time coherent addition time (N1), and the first predetermined number of coherent addition times (M1) are statistically determined function expressions of noise distribution. A first noise distribution calculator 51 for obtaining a first noise distribution value including a first noise average N1mean and a first noise variance N1rms corresponding to the received signal ,
The noise distribution variance σ 2 for 1 ms, the second predetermined time coherent addition time (N2), and the second predetermined number of coherent addition times (M2) are statistically determined function expressions of noise distribution. And a second noise distribution calculator 52 for obtaining a second noise distribution value including a second noise average N2mean and a second noise variance N2rms corresponding to the received signal ,
Using the first and second accumulated signal powers P1 and P2, the first and second noise averages N1mean and N2mean and the first and second noise variances N1rms and N2rms, the first and second signal-to-noise ratio S1. / N1, S2 / N2, [first signal-to-noise ratio S1 / N1 = (first cumulative signal power P1−first noise average N1mean) / first noise variance N1rms], and [second signal-to-noise ratio S2] / N2 = (second cumulative signal power P2−second noise average N2mean) / second noise variance N2rms], and based on the first and second signal-to-noise ratios S1 / N1 and S2 / N2. And calculating / controlling means 6 for controlling the frequency control signal Fout by changing the characteristic or input of the Costas loop calculator 4.

本発明の雑音推定装置、信号対雑音比演算装置、及び衛星信号受信装置によれば、GPSなどの航法衛星からの衛星信号が屋内や高架下など非常に弱い環境での追尾時に、ノイズ分布値(ノイズ平均及びノイズ分散)及び信号対雑音比をリアルタイムに求めることができるとともに、安定して周波数追尾を行うことができる。   According to the noise estimation device, the signal-to-noise ratio calculation device, and the satellite signal reception device of the present invention, the noise distribution value is obtained when the satellite signal from the navigation satellite such as GPS is tracked in a very weak environment such as indoors or under an overhead. (Noise average and noise variance) and signal-to-noise ratio can be obtained in real time, and frequency tracking can be performed stably.

以下、図1,図2を参照して、GPSを例として本発明の雑音推定装置、信号対雑音比演算装置、及び衛星信号受信装置の実施例について説明する。   Hereinafter, with reference to FIGS. 1 and 2, embodiments of the noise estimation device, the signal-to-noise ratio calculation device, and the satellite signal reception device of the present invention will be described using GPS as an example.

図1において、衛星からアンテナ101に到来した衛星信号は、ダウンコンバータ102で中間周波数に変換され、A/D変換回路103にてディジタル処理のためにディジタル信号に変換され、受信信号としてキャリアNCO1aを含む信号用1ms相関チャンネル回路1sに入力される。また、その受信信号は、雑音用1ms相関チャンネル1nにも入力される。   In FIG. 1, a satellite signal arriving at an antenna 101 from a satellite is converted to an intermediate frequency by a down converter 102, converted to a digital signal for digital processing by an A / D conversion circuit 103, and a carrier NCO 1a is received as a received signal. The input signal is input to the 1 ms correlation channel circuit 1s. The received signal is also input to the 1 ms correlation channel 1n for noise.

1ms相関チャンネル回路1sは、周波数制御信号Foutを受けてキャリア周波数信号を発生するキャリア局部発振器1aを含み、衛星信号を変換し入力される特定衛星信号に関する受信信号とPNコードとのコード相関及び前記キャリア周波数信号とのキャリア相関が採られ、1ms間のI相関信号I0iとQ相関信号Q0iとを同時に1ms毎に出力する。この1ms相関チャンネル回路1sは、従来のGPS受信装置で使用されているものと同様のものでよい。念のためにその主要構成について例示する。   The 1 ms correlation channel circuit 1s includes a carrier local oscillator 1a that receives a frequency control signal Fout and generates a carrier frequency signal. The 1ms correlation channel circuit 1s converts the satellite signal and receives the code correlation between the received signal and the PN code related to the input specific satellite signal. The carrier correlation with the carrier frequency signal is taken, and the I correlation signal I0i and the Q correlation signal Q0i for 1 ms are simultaneously output every 1 ms. The 1 ms correlation channel circuit 1s may be the same as that used in a conventional GPS receiver. As a precaution, the main configuration is illustrated.

即ち、受信しようとする衛星のPNコードと同一のPNコードをコード発生器で発生し、受信信号と発生したPNコードとをコード相関器で相関を採る。このコード相関器の相関値が最大となるようにコードNCOにてコード発生器のPNコード位相を制御するように遅延ロックループ(DLL)を構成する。このコード相関器の出力は、Iキャリア相関器にてキャリアNCO1aで発生したIキャリア周波数信号と、またQキャリア相関器にてキャリアNCO1aで発生したQキャリア周波数信号とそれぞれ相関が採られて相関値を出力する。Iキャリア相関器の出力はレジスタなどで構成されるI1ms積分器で積分され、1ms間のI加算相関値I0iとして1ms毎に出力される。同様に、Qキャリア相関器の出力はQ1ms積分器で積分され、1ms間のQ加算相関値Q0iとして1ms毎に出力される。   That is, a PN code identical to the PN code of the satellite to be received is generated by the code generator, and the received signal and the generated PN code are correlated by the code correlator. A delay lock loop (DLL) is configured so that the code NCO controls the PN code phase of the code generator so that the correlation value of the code correlator is maximized. The output of the code correlator is correlated with the I carrier frequency signal generated by the carrier NCO 1a by the I carrier correlator and the Q carrier frequency signal generated by the carrier NCO 1a by the Q carrier correlator. Is output. The output of the I carrier correlator is integrated by an I1 ms integrator composed of a register or the like, and output as an I addition correlation value I0i for 1 ms every 1 ms. Similarly, the output of the Q carrier correlator is integrated by a Q1 ms integrator and is output every 1 ms as a Q addition correlation value Q0i for 1 ms.

1ms相関チャンネル回路1sから出力されるI,Q加算相関値I0i,Q0iは真に追尾されるべき真追尾周波数と、その時点でキャリアNCO1aから出力されている現追尾周波数との周波数差、位相差に応じた周波数成分を持つことになる。現追尾周波数が真追尾周波数に等しい場合には、I,Q加算相関値I0i,Q0iの周波数成分は理想的には零になる。   The I and Q addition correlation values I0i and Q0i output from the 1 ms correlation channel circuit 1s are the frequency difference and phase difference between the true tracking frequency to be truly tracked and the current tracking frequency output from the carrier NCO 1a at that time. It has a frequency component corresponding to. When the current tracking frequency is equal to the true tracking frequency, the frequency components of the I and Q addition correlation values I0i and Q0i are ideally zero.

第1コヒーレント加算器であるN1msコヒーレント加算器21では、1ms相関チャンネル回路1sから1ms間のI,Q加算相関値I0i,Q0iが出力される毎にI加算相関値I0i及びQ加算相関値Q0iのコヒーレント加算を、N1ms間だけ行う。具体的には、衛星からの航法データの切替タイミング(エッジ情報)の間だけ、コヒーレント加算を行う。そして、エッジタイミングになった時に、N1ms(例えば、20ms)毎に、そのコヒーレント加算結果であるI,Qコヒーレント加算値Ici1,Qci1を出力し、その後の次回コヒーレント区間での積算のために内部加算結果をリセットする。   In the N1ms coherent adder 21 that is the first coherent adder, the I addition correlation value I0i and the Q addition correlation value Q0i are output every time I, Q addition correlation values I0i, Q0i are output from the 1 ms correlation channel circuit 1s for 1 ms. Coherent addition is performed for N1 ms. Specifically, coherent addition is performed only during the switching timing (edge information) of the navigation data from the satellite. When the edge timing is reached, the I and Q coherent addition values Ici1 and Qci1 as the coherent addition results are output every N1 ms (for example, 20 ms), and then added internally for integration in the next coherent interval. Reset the result.

エッジ情報発生器8からエッジ情報が、供給される。このエッジ情報は、概略のユーザ位置(即ち、衛星信号受信装置の存在位置)、衛星軌道情報が既知で、1つ以上の衛星信号の強い衛星に追尾している条件下であれば全衛星のエッジ位置は正確に求められる。その求め方は例えば、(1)通常感度の衛星を1衛星以上追尾してGPS時刻を得る、(2)アシスト情報から得られるエフェメリス情報(衛星軌道情報)を用いて、現在時刻におけるGPS衛星位置を求める、(3)概略のユーザ位置を用い、GPS衛星と現在位置間の距離差を求め、それを光速で割ってGPS衛星からの信号が到達するまでの時間を求める、(4)その時間をエッジ間隔で割ったあまりの時間T2を求め、その値を切替タイミングとして記憶する、(5)GPS時刻をエッジ間隔で割った余りが値T2になったときに切り替える、ことにより得られる。
Edge information is supplied from the edge information generator 8. This edge information is the approximate user position (that is, the position where the satellite signal receiver is present), the satellite orbit information is known, and if all satellites are tracked under the condition of tracking one or more strong satellite signals, The edge position is accurately determined. For example, (1) the GPS time is obtained by tracking one or more satellites of normal sensitivity, and (2) the GPS satellite position at the current time using the ephemeris information (satellite orbit information) obtained from the assist information. (3) Using the approximate user position, the distance difference between the GPS satellite and the current position is obtained, and divided by the speed of light to obtain the time until the signal from the GPS satellite arrives. (4) The time Is obtained by determining the time T2 that is excessively divided by the edge interval and storing the value as the switching timing, and (5) switching when the remainder obtained by dividing the GPS time by the edge interval becomes the value T2.

コスタスループ演算器7は、通常、コヒーレント加算時間分S/N比が改善されたI,Qコヒーレント加算値Ici1,Qci1に基づいて、キャリアNCO1aへ与えるキャリア周波数制御信号Foutを決定する。なお、キャリア周波数制御信号Foutは、S/N演算・制御装置からの制御信号(重み付け値wや、切替信号cos)によって、コスタスループ演算器4の特性もしくは入力を変更して、制御される。   The Costas loop calculator 7 normally determines the carrier frequency control signal Fout to be given to the carrier NCO 1a based on the I and Q coherent addition values Ici1 and Qci1 whose S / N ratio is improved by the coherent addition time. The carrier frequency control signal Fout is controlled by changing the characteristic or input of the Costas loop calculator 4 by a control signal (weight value w or switching signal cos) from the S / N calculation / control device.

このコスタスループ演算器7、キャリアNCO1aを含む1ms相関チャンネル回路1s,N1msコヒーレント加算器21によってコスタスループが形成される。このコスタスループは、閉ループ制御であり、コヒーレント加算時間はN1ms(=20ms)であるためにS/N比が改善されるから、衛星信号が弱い場合にも精度良いキャリア周波数制御信号Fout、即ち高精度のキャリア周波数を得ることができる。   A Costas loop is formed by the Costas loop calculator 7, the 1 ms correlation channel circuit 1 s including the carrier NCO 1 a, and the N 1 ms coherent adder 21. This Costas loop is closed loop control, and since the S / N ratio is improved because the coherent addition time is N1 ms (= 20 ms), the carrier frequency control signal Fout with high accuracy even when the satellite signal is weak, An accurate carrier frequency can be obtained.

第1ノンコヒーレント加算器であるM1回ノンコヒーレント加算器31は、第1Iコヒーレント加算値Ici1及び第1Qコヒーレント加算値Qci1から、第1コヒーレント加算区間内の信号パワーを求め、その信号パワーの第1所定回数(例えば、M1=25回)の累積加算を行って第1累積信号パワーP1を求めて出力する。累積信号パワーP1は、出力する毎にリセットされる。   The M1-th non-coherent adder 31 as the first non-coherent adder obtains the signal power in the first coherent addition section from the first I coherent addition value Ici1 and the first Q coherent addition value Qci1, and the first of the signal power Accumulative addition is performed a predetermined number of times (for example, M1 = 25 times) to obtain and output the first cumulative signal power P1. The accumulated signal power P1 is reset every time it is output.

第2コヒーレント加算器であるN2msコヒーレント加算器22では、1ms相関チャンネル回路1sから1ms間のI,Q加算相関値I0i,Q0iが出力される毎にI加算相関値I0i及びQ加算相関値Q0iのコヒーレント加算を、N2ms(例えば、5ms)間だけ行う。この場合にも、衛星からの航法データの切替タイミング(エッジ情報)に合わせて、コヒーレント加算を行うことが望ましい。但し、N2msは、N1msより格段に短いから、必ずしもエッジ情報に同期させる必要はない。そして、そのコヒーレント加算結果であるI,Qコヒーレント加算値Ici2,Qci2を出力し、その後の次回コヒーレント区間での積算のために内部加算結果をリセットする。   In the N2ms coherent adder 22 as the second coherent adder, the I addition correlation value I0i and the Q addition correlation value Q0i are output each time the I, Q addition correlation values I0i and Q0i are output from the 1 ms correlation channel circuit 1s for 1 ms. Coherent addition is performed for N2 ms (for example, 5 ms). Also in this case, it is desirable to perform coherent addition in accordance with the switching timing (edge information) of the navigation data from the satellite. However, since N2ms is much shorter than N1ms, it is not always necessary to synchronize with the edge information. Then, I and Q coherent addition values Ici2 and Qci2 as the coherent addition results are output, and the internal addition results are reset for integration in the next coherent interval.

第2ノンコヒーレント加算器であるM2回ノンコヒーレント加算器32は、第2Iコヒーレント加算値Ici2及び第2Qコヒーレント加算値Qci2から、第2コヒーレント加算区間内の信号パワーを求め、その信号パワーの第2所定回数(例えば、M2=40回)の累積加算を行って第2累積信号パワーP2を求めて出力する。累積信号パワーP2は、出力する毎にリセットされる。   The M2 non-coherent adder 32, which is the second non-coherent adder, obtains the signal power in the second coherent addition interval from the second I coherent addition value Ici2 and the second Q coherent addition value Qci2, and obtains the second of the signal power. Accumulative addition is performed a predetermined number of times (for example, M2 = 40 times) to obtain and output the second cumulative signal power P2. The accumulated signal power P2 is reset every time it is output.

N1msコヒーレント加算器21は加算時間が長くS/N比の改善度が高い追尾を行うために長いコヒーレント加算時間N1=20msが用いられ、N2msコヒーレント加算器22は加算時間が短くS/N比改善度は低いが加速度追従性がよい追尾を行うために短い加算時間N2=5msが用いられる。即ち、N1≧N2(N1とN2とが等しい場合も含まれて良い)であり、また、ノンコヒーレント回数を加味すると、N1*M1>N2*M2であることがよい。   The N1ms coherent adder 21 uses a long coherent addition time N1 = 20 ms for tracking with a long addition time and a high improvement in the S / N ratio, and the N2ms coherent adder 22 has a short addition time and an improved S / N ratio. A short addition time N2 = 5 ms is used to perform tracking with a low degree of acceleration but good acceleration tracking. That is, N1 ≧ N2 (the case where N1 and N2 are equal may be included), and it is preferable that N1 * M1> N2 * M2 considering the number of non-coherent times.

雑音用1ms相関チャンネル回路1nは、受信信号とこの受信信号と相関を採ることができない非相関信号とのキャリア相関が採られ、1ms間のI相関信号I0nとQ相関信号Q0nとを同時に1ms毎に出力する。   The 1 ms correlation channel circuit 1n for noise takes a carrier correlation between a received signal and a non-correlated signal that cannot be correlated with the received signal, and simultaneously outputs an I correlated signal I0n and a Q correlated signal Q0n for 1 ms every 1 ms. Output to.

この雑音用1ms相関チャンネル回路1nは、キャリアNCOは有しておらず、固定周波数でのキャリア相関を行う。ダウンコンバータ102のコンバート周波数(例えば、数10MHz)と数MHz程度異なる周波数をその固定周波数とすることでよい。   The 1 ms correlation channel circuit 1n for noise does not have a carrier NCO and performs carrier correlation at a fixed frequency. A frequency different from the conversion frequency (for example, several tens of MHz) of the down converter 102 by about several MHz may be set as the fixed frequency.

また、雑音用1ms相関チャンネル回路1nでのコード相関は、雑音との相関を得ることが目的であるから、上空にいない測位衛星のPNコードとの相関を採れば雑音との相関が採れる。ただ、上空にいない測位衛星を選択するものでは、測位衛星を選択するために用いるアルマナック情報が正しくない場合(例えば、起動直後とか、アルマナック情報が更新されていないとき)には、上空にいる測位衛星のコードを選んでしまう可能性がある。このような事態を避けるために当該衛星受信装置の航法システムのコードと異なるコードを用いることがよい。異なるコードとしては、当該衛星受信装置の航法システムがGPSシステムである場合には、例えばGLONASSシステムのコードを用いればよいし、また、単純な繰り返し信号であっても良い。また、そのような異なるコードを使用せずに、受信信号を1ms間だけ加算した信号を用いても良い。
The purpose of the code correlation in the 1 ms correlation channel circuit 1n for noise is to obtain a correlation with noise. Therefore, if the correlation with the PN code of a positioning satellite not in the sky is taken, the correlation with noise can be obtained. However, if you select a positioning satellite that is not in the sky, if the almanac information used to select the positioning satellite is incorrect (for example, immediately after startup or when the almanac information has not been updated), positioning in the sky There is a possibility of selecting a satellite code. In order to avoid such a situation , it is preferable to use a code different from the code of the navigation system of the satellite receiver. As a different code, when the navigation system of the satellite receiver is a GPS system, for example, a code of a GLONASS system may be used, or a simple repetitive signal may be used. Moreover, you may use the signal which added the received signal only for 1 ms, without using such a different code | cord | chord.

ノイズ分散測定器4は、雑音用1ms相関チャンネル回路1nからの1ms毎に出力されるI相関信号I0nとQ相関信号Q0nを一定期間(例えば、500ms)観測し、1ms間の雑音パワーの分散σ2を1ms毎に測定する。 The noise variance measuring device 4 observes the I correlation signal I0n and the Q correlation signal Q0n output every 1 ms from the 1 ms correlation channel circuit 1n for noise for a certain period (for example, 500 ms), and disperses the noise power σ between 1 ms. 2 is measured every 1 ms.

第1ノイズ分布演算器である方式1のノイズ分布演算器51は、1ms間の雑音パワーの分散σ2を用いて、第1所定時間(N1=20ms)分コヒーレント加算し、そのコヒーレント加算結果を第1所定回数(M1=25回)加算した場合に相当する、第1ノイズ平均N1mean及び第1ノイズ分散N1rmsを含む第1ノイズ分布値を求める。 The noise distribution calculator 51 of method 1 which is a first noise distribution calculator performs coherent addition for a first predetermined time (N1 = 20 ms) using the noise power variance σ 2 for 1 ms, and the coherent addition result is obtained. A first noise distribution value including a first noise average N1mean and a first noise variance N1rms, corresponding to a case where the first predetermined number of times (M1 = 25) is added, is obtained.

また、第2ノイズ分布演算器である方式2のノイズ分布演算器52は、1ms間の雑音パワーの分散σ2を用いて、第1所定時間(N1)より短い第2所定時間(N2=5ms<N1)分コヒーレント加算し、そのコヒーレント加算結果を第2所定回数(M2=40回)加算した場合に相当する、第2ノイズ平均N2mean及び第2ノイズ分散N2rmsを含む第2ノイズ分布値を求める。 In addition, the noise distribution calculator 52 of the method 2, which is the second noise distribution calculator, uses the noise power variance σ 2 for 1 ms, and the second predetermined time (N2 = 5 ms) shorter than the first predetermined time (N1). <N1) Coherent addition is performed, and a second noise distribution value including the second noise average N2mean and the second noise variance N2rms corresponding to a case where the coherent addition result is added a second predetermined number of times (M2 = 40 times) is obtained. .

第1,第2ノイズ分布値を求めるに際して、コヒーレント加算時間Nmsとノンコヒーレント回数Mが与えられた場合、雑音が正規分布(0、σ2)のガウス雑音であれば、コヒーレント加算時間Nmsとノンコヒーレント回数Mの加算を行った場合のノイズ分布が統計的に得られる。つまり、ノイズ分布のノイズ平均Nmean及びそのノイズ分散Nrmsは、Nmean=F1(N、M、σ2)、Nrms=F2(N、M、σ2)、の関数となる。 When obtaining the first and second noise distribution values, if the coherent addition time Nms and the non-coherent number M are given, and if the noise is Gaussian noise of the normal distribution (0, σ 2 ), the coherent addition time Nms and the non-coherent addition time Nms. A noise distribution when the number of coherent times M is added is statistically obtained. That is, the noise average Nmean of the noise distribution and its noise variance Nrms are functions of Nmean = F1 (N, M, σ 2 ) and Nrms = F2 (N, M, σ 2 ).

このノイズ平均Nmean及びそのノイズ分散Nrmsの関数におけるN,Mに関する部分は複雑であるが、実際にはN、Mは予め決めた値しか採らないので、結局、ノイズ平均Nmean及びそのノイズ分散Nrmsは、
Nmean=Fnm(σ2)≒Anmσ2+Bnm、
Nrms =Fnm(σ2)≒Cnmσ2+Dnm、
で近似できる。この近似式により求めたノイズ平均Nmean及びそのノイズ分散Nrmsは、元の関数によって求めた値に、それぞれ相当する。
Although the parts related to N and M in the function of this noise average Nmean and its noise variance Nrms are complicated, in reality, N and M take only predetermined values, so that the noise average Nmean and its noise variance Nrms are eventually ,
Nmean = Fnm (σ 2 ) ≈Anmσ 2 + Bnm,
Nrms = Fnm (σ 2 ) ≈Cnmσ 2 + Dnm,
Can be approximated by The noise average Nmean and the noise variance Nrms obtained by this approximate expression correspond to the values obtained by the original function, respectively.

このことを利用して、方式1のノイズ分布演算器51に特定の係数A1nm、B1nm、C1nm、D1nmを、方式2のノイズ分布演算器52に特定の係数A2nm、B2nm、C2nm、D2nmを、それぞれ予め設定する。そして、方式1のノイズ分布演算器51では、N1mean≒A1nmσ2+B1nm、N1rms≒C1nmσ2+D1nm、で求め、方式2のノイズ分布演算器52では、N2mean≒A2nmσ2+B2nm、N2rms≒C2nmσ2+D2nm、で求める。 Using this, specific coefficients A1 nm, B1 nm, C1 nm, and D1 nm are assigned to the noise distribution calculator 51 of method 1, and specific coefficients A2 nm, B2 nm, C2 nm, and D2 nm are assigned to the noise distribution calculator 52 of method 2, respectively. Set in advance. Then, in the noise distribution calculator 51 of method 1, N1mean≈A1 nmσ 2 + B1 nm, N1rms≈C1 nmσ 2 + D1 nm, and in the noise distribution calculator 52 of method 2, N2mean≈A2 nmσ 2 + B2 nm, N2rms≈C2 nmσ 2 + D2 nm Ask.

演算・制御手段であるS/N演算・制御装置6は、第1,第2累積信号パワーP1,P2と、第1,第2ノイズ平均N1mean,N2mean及び第1,第2ノイズ分散N1rms,N2rmsが入力され、それらを用いて第1,第2信号対雑音比S1/N1、S2/N2を、[第1信号対雑音比S1/N1=(第1累積信号パワーP1−第1ノイズ平均N1mean)/第1ノイズ分散N1rms]、及び[第2信号対雑音比S2/N2=(第2累積信号パワーP2−第2ノイズ平均N2mean)/第2ノイズ分散N2rms]、により算出する。このS/N演算・制御装置6から、第1,第2信号対雑音比S1/N1,S2/N2、及び第1,第2累積信号パワーP1,P2、第1,第2ノイズ平均N1mean,N2mean、第1,第2ノイズ分散N1rms,N2rmsを外部に出力して、図示しない他の装置で利用できる。   The S / N calculation / control device 6 serving as calculation / control means includes first and second cumulative signal powers P1, P2, first and second noise averages N1mean and N2mean, and first and second noise variances N1rms and N2rms. Are used, and the first and second signal-to-noise ratios S1 / N1 and S2 / N2 are used as [first signal-to-noise ratio S1 / N1 = (first accumulated signal power P1−first noise average N1mean ) / First noise variance N1rms] and [second signal-to-noise ratio S2 / N2 = (second accumulated signal power P2−second noise average N2mean) / second noise variance N2rms]. From the S / N calculation / control device 6, the first and second signal-to-noise ratios S1 / N1, S2 / N2, the first and second accumulated signal powers P1, P2, the first and second noise averages N1mean, N2mean, the first and second noise variances N1rms and N2rms are output to the outside and can be used in another device (not shown).

本発明では、第1,第2信号対雑音比S1/N1,S2/N2、ノイズ平均N1mean,N2mean及びそのノイズ分散N1rms,N2rmsは、それらの算出の元になっている、1ms間の雑音パワーの分散σ2がノイズ分散測定器4により常時更新されているので、リアルタイムに正確に求められる。また、複数の加算方式に関しても、単にノイズ分布計算用の係数を設定するだけで、同時に求められる。 In the present invention, the first and second signal-to-noise ratios S1 / N1, S2 / N2, the noise averages N1mean and N2mean and their noise variances N1rms and N2rms are the sources of their calculation. since variance sigma 2 of are constantly updated by the noise variance measuring device 4 is accurately determined in real time. Also, a plurality of addition methods can be obtained simultaneously by simply setting a coefficient for noise distribution calculation.

S/N演算・制御装置6は、信号対雑音比S1/N1,S2/N2に基づいてコスタスループ演算器4の特性もしくは入力を変更して周波数制御信号Foutを制御する。   The S / N calculation / control device 6 controls the frequency control signal Fout by changing the characteristic or input of the Costas loop calculation unit 4 based on the signal-to-noise ratios S1 / N1 and S2 / N2.

S/N演算・制御装置6で求められた、加算時間が長くS/N改善度が高い第1信号対雑音比S1/N1と、加算時間は短くS/N改善度は低いが加速度追従性がよい第2信号対雑音比S2/N2の両方を勘案して、重み値wをコスタスループ演算器7に供給する。コスタスループ演算器7ではI,Qコヒーレント加算値Ici1,Qci1による周波数制御信号Foutの制御に重み値wによる重み付けを行う。例えば、重み値wによる重み付けは、第1,第2信号対雑音比S1/N1,第2信号対雑音比S2/N2の両方を勘案して得られた雑音成分が、大きいときにはコスタスループ演算器7の応答性を高くし、小さいときにはコスタスループ演算器7の応答性を低くすることでよい。   The first signal-to-noise ratio S1 / N1 obtained by the S / N arithmetic / control device 6 and having a long addition time and a high S / N improvement degree, and an acceleration follow-up property although the addition time is short and the S / N improvement degree is low. The weight value w is supplied to the Costas loop computing unit 7 in consideration of both the second signal-to-noise ratio S2 / N2 that is good. The Costas loop calculator 7 weights the frequency control signal Fout by the I and Q coherent addition values Ici1 and Qci1 using the weight value w. For example, weighting by the weight value w is performed when the noise component obtained by considering both the first and second signal-to-noise ratios S1 / N1 and the second signal-to-noise ratio S2 / N2 is large. 7 may be increased, and when small, the response of the Costas loop calculator 7 may be decreased.

また、S/N演算・制御装置6による制御として、図1に破線で示すように、コスタスループ演算器7に、第1Iコヒーレント加算値Ici1と第1Qコヒーレント加算値Qci1とともに、第2コヒーレント加算器22からの第2Iコヒーレント加算値Ici2と第2Qコヒーレント加算値Qci2をも入力する。そして、S/N演算・制御装置6で求められた重み値wと同様にして得られた切替信号cosによって、第1コヒーレント加算値Ici1,Qci1と第2コヒーレント加算値Ici2,Qci2とを切り替えて使用する。即ち、コスタスループ演算器4への入力を、常時使用している第1コヒーレント加算値Ici1,Qci1から、第2コヒーレント加算値Ici2,Qci2へ、あるいはその逆に切り替え変更して周波数制御信号Foutを制御する。例えば、その切替は、第1,第2信号対雑音比S1/N1,S2/N2の両方を勘案して得られた雑音成分が、小さいときには加算時間が長くS/N改善度が高い第1コヒーレント加算値Ici1,Qci1を使用し、大きいときには加算時間は短くS/N改善度は低いが加速度追従性がよい第2コヒーレント加算値Ici1,Qci2を使用するようにすることでよい。   Further, as control by the S / N calculation / control device 6, as shown by a broken line in FIG. 1, the Costas loop calculation unit 7 is supplied with the first I coherent addition value Ici1 and the first Q coherent addition value Qci1 together with the second coherent adder. The second I coherent addition value Ici2 and the second Q coherent addition value Qci2 from 22 are also input. Then, the first coherent addition values Ici1, Qci1 and the second coherent addition values Ici2, Qci2 are switched by the switching signal cos obtained in the same manner as the weight value w obtained by the S / N calculation / control device 6. use. That is, the frequency control signal Fout is changed by switching the input to the Costas loop calculator 4 from the first coherent addition value Ici1, Qci1 that is always used to the second coherent addition value Ici2, Qci2, or vice versa. Control. For example, in the switching, the first and second signal-to-noise ratios S1 / N1 and S2 / N2 are taken into account when the noise component obtained is small, the addition time is long and the S / N improvement degree is high. The coherent addition values Ici1 and Qci1 may be used. When the coherent addition values Ici1 and Qci1 are large, the second coherent addition values Ici1 and Qci2 having a short addition time and low S / N improvement but good acceleration follow-up may be used.

図1の実施例では、N1msコヒーレント加算器21、M1回ノンコヒーレント加算器31、方式1のノイズ分布演算器51により第1信号対雑音比S1/N1を求める第1系列と、N2msコヒーレント加算器22、M2回ノンコヒーレント加算器32、方式2のノイズ分布演算器52により第2信号対雑音比S2/N2を求める第2系列とを設けているが、このうち第2系列を省略して、第1系列のみで構成しても良い。しかし、図1の実施例のように、第1系列と第2系列の両方を設けることにより、加算結果(時間及び回数)が異なる2種の信号対雑音比S1/N1、S2/N2が得られるから、受信信号中の信号レベルや雑音レベル、さらにはそれらの時間的変動などの状況をより詳しく把握することができる。なお、第1,第2系列に、さらに第3系列などを加えて、3系列以上として、3種以上の信号対雑音比を得るようにしてもよい。   In the embodiment of FIG. 1, a first sequence for determining a first signal-to-noise ratio S1 / N1 by an N1 ms coherent adder 21, an M1 non-coherent adder 31, and a noise distribution calculator 51 of method 1; and an N2 ms coherent adder 22, M2 times non-coherent adder 32, and the second series for obtaining the second signal-to-noise ratio S2 / N2 by the noise distribution computing unit 52 of method 2 are provided. Of these, the second series is omitted, You may comprise only the 1st series. However, as in the embodiment of FIG. 1, by providing both the first sequence and the second sequence, two types of signal-to-noise ratios S1 / N1 and S2 / N2 with different addition results (time and frequency) are obtained. Therefore, it is possible to grasp in more detail the situation such as the signal level and noise level in the received signal, and their temporal variation. Note that a third series or the like may be added to the first and second series to obtain three or more types of signal-to-noise ratios.

本発明の雑音推定装置、信号対雑音比演算装置及び衛星信号受信装置をハードウエアで実現する構成に代えて、それらの処理の一部又は全部をソフトウエア処理で行っても良い。   Instead of the configuration in which the noise estimation device, signal-to-noise ratio calculation device, and satellite signal reception device of the present invention are implemented by hardware, some or all of the processing may be performed by software processing.

本発明の実施例に係る衛星信号受信装置の全体構成図1 is an overall configuration diagram of a satellite signal receiving device according to an embodiment of the present invention. 高感度サーチ時に得られる相関パワー分布を説明するための図Diagram for explaining correlation power distribution obtained during high-sensitivity search

符号の説明Explanation of symbols

101 アンテナ、102 ダウンコンバータ、103 A/D変換器
1s 信号用1ms相関チャンネル回路、1n 雑音用1ms相関チャンネル回路
1a キャリアNCO、21 N1msコヒーレント加算器、22 N2msコヒーレント加算器、31 M1回ノンコヒーレント加算器、32 M2回ノンコヒーレント加算器
4 ノイズ分散測定器、51 方式1のノイズ分布演算器、52 方式2のノイズ分布演算器、6 S/N演算・制御装置、7 コスタスループ演算器、8 エッジ情報発生器
101 antenna, 102 down converter, 103 A / D converter 1 s 1 ms correlation channel circuit for signal, 1 n 1 ms correlation channel circuit for noise 1 a carrier NCO, 21 N1 ms coherent adder, 22 N2 ms coherent adder, 31 M1 times non-coherent addition , 32 M2 times non-coherent adder 4 Noise variance measuring device, 51 Method 1 noise distribution calculator, 52 Method 2 noise distribution calculator, 6 S / N calculation / control device, 7 Costas loop calculator, 8 Edge Information generator

Claims (5)

衛星信号を変換し入力される特定衛星信号に関する受信信号と該受信信号と相関を採ることができない非相関信号とのキャリア相関が採られ、1ms間のI相関信号とQ相関信号とを同時に1ms毎に出力する雑音用1ms相関チャンネル回路と、
前記雑音用1ms相関チャンネル回路からのI相関信号とQ相関信号とから1ms間の雑音パワーの分散を1ms毎に測定するノイズ分散測定器と、
前記1ms間の雑音パワーの分散、所定時間のコヒーレント加算時間、及び所定回数のコヒーレント加算回数を統計的に決定されるノイズ分布の関数式に代入することにより、前記受信信号に対応したノイズ平均及びノイズ分散を含むノイズ分布値を求めるノイズ分布演算器と、を有することを特徴とする、雑音推定装置。
The carrier correlation between the received signal related to the specific satellite signal that is converted from the satellite signal and the uncorrelated signal that cannot be correlated with the received signal is taken, and the I correlation signal and the Q correlation signal for 1 ms are simultaneously converted to 1 ms. 1 ms correlation channel circuit for noise to be output every time,
A noise variance measuring device for measuring the variance of noise power between 1 ms from the I correlation signal and the Q correlation signal from the 1 ms correlation channel circuit for noise every 1 ms;
By substituting the noise power distribution for 1 ms, the coherent addition time for a predetermined time, and the predetermined number of coherent additions into a function expression of a statistically determined noise distribution, the noise average corresponding to the received signal and And a noise distribution computing unit for obtaining a noise distribution value including noise variance.
衛星信号を変換し入力される特定衛星信号に関する受信信号と該受信信号と相関を採ることができない非相関信号とのキャリア相関が採られ、1ms間のI相関信号とQ相関信号とを同時に1ms毎に出力する雑音用1ms相関チャンネル回路と、
前記雑音用1ms相関チャンネル回路からのI相関信号とQ相関信号とから1ms間の雑音パワーの分散を1ms毎に測定するノイズ分散測定器と、
前記1ms間の雑音パワーの分散σ第1所定時間のコヒーレント加算時間、及び第1所定回数のコヒーレント加算回数を、統計的に決定されるノイズ分布の関数式に代入することにより、前記受信信号に対応した第1ノイズ平均及び第1ノイズ分散を含む第1ノイズ分布値を求める第1ノイズ分布演算器と、
前記1ms間の雑音パワーの分散σを、前記第1所定時間より短い第2所定時間のコヒーレント加算時間、及び第2所定回数のコヒーレント加算回数を、統計的に決定されるノイズ分布の関数式に代入することにより、前記受信信号に対応した第2ノイズ平均及び第2ノイズ分散を含む第2ノイズ分布値を求める第2ノイズ分布演算器と、を有することを特徴とする、雑音推定装置。
The carrier correlation between the received signal related to the specific satellite signal that is converted from the satellite signal and the uncorrelated signal that cannot be correlated with the received signal is taken, and the I correlation signal and the Q correlation signal for 1 ms are simultaneously converted to 1 ms. 1 ms correlation channel circuit for noise to be output every time,
A noise variance measuring device for measuring the variance of noise power between 1 ms from the I correlation signal and the Q correlation signal from the 1 ms correlation channel circuit for noise every 1 ms;
By substituting the noise power variance σ 2 for 1 ms, the first predetermined time coherent addition time, and the first predetermined number of coherent addition times into a statistically determined noise distribution function formula, A first noise distribution calculator for obtaining a first noise distribution value including a first noise average and a first noise variance corresponding to the signal ;
The noise power variance σ 2 for 1 ms, the coherent addition time for a second predetermined time shorter than the first predetermined time, and the second predetermined number of coherent additions are statistically determined as a functional expression of noise distribution And a second noise distribution computing unit that obtains a second noise distribution value including a second noise average and a second noise variance corresponding to the received signal by substituting into the received signal .
周波数制御信号を受けてキャリア周波数信号を発生するキャリア局部発振器を含み、衛星信号を変換し入力される特定衛星信号に関する受信信号とPNコードとのコード相関及び前記キャリア周波数信号とのキャリア相関が採られ、1ms間のI相関信号とQ相関信号とを同時に1ms毎に出力する信号用1ms相関チャンネル回路と、
前記信号用1ms相関チャンネル回路からのI相関信号とQ相関信号を前記特定衛星信号の航法データの切り替わりタイミングに同期して所定時間分コヒーレント加算を行い、そのIコヒーレント加算値とQコヒーレント加算値とを出力するコヒーレント加算器と、
前記Iコヒーレント加算値及びQコヒーレント加算値から、コヒーレント加算区間内の信号パワーを求め、その信号パワーの所定回数の累積加算を行って累積信号パワーを求めて出力するノンコヒーレント加算器と、
前記受信信号と該受信信号と相関を採ることができない非相関信号とのキャリア相関が採られ、1ms間のI相関信号とQ相関信号とを同時に1ms毎に出力する雑音用1ms相関チャンネル回路と、
前記雑音用1ms相関チャンネル回路からのI相関信号とQ相関信号とから1ms間の雑音パワーの分散を1ms毎に測定するノイズ分散測定器と、
前記1ms間の雑音パワーの分散σ前記所定時間のコヒーレント加算時間、及び前記所定回数のコヒーレント加算回数を統計的に決定されるノイズ分布の関数式に代入することにより、前記受信信号に対応したノイズ平均及びノイズ分散を含むノイズ分布値を求めるノイズ分布演算器と、
前記累積信号パワーと、前記ノイズ平均及びノイズ分散を用いて、信号対雑音比を、[信号対雑音比=(累積信号パワー−ノイズ平均)/ノイズ分散]により算出する演算手段と、を有することを特徴とする、信号対雑音比演算装置。
It includes a carrier local oscillator that receives a frequency control signal and generates a carrier frequency signal, and takes the code correlation between the received signal and the PN code related to the input specific satellite signal after converting the satellite signal and the carrier correlation with the carrier frequency signal. A 1 ms correlation channel circuit for a signal that simultaneously outputs an I correlation signal and a Q correlation signal for 1 ms every 1 ms;
The I correlation signal and the Q correlation signal from the 1 ms correlation channel circuit for signals are subjected to coherent addition for a predetermined time in synchronization with the navigation data switching timing of the specific satellite signal, and the I coherent addition value and the Q coherent addition value are A coherent adder that outputs
A non-coherent adder for obtaining a signal power in a coherent addition section from the I coherent addition value and the Q coherent addition value, performing a cumulative addition of the signal power a predetermined number of times, and obtaining and outputting the accumulated signal power;
A 1 ms correlation channel circuit for noise that takes a carrier correlation between the received signal and a non-correlated signal that cannot be correlated with the received signal, and simultaneously outputs an I correlation signal and a Q correlation signal for 1 ms every 1 ms; ,
A noise variance measuring device for measuring the variance of noise power between 1 ms from the I correlation signal and the Q correlation signal from the 1 ms correlation channel circuit for noise every 1 ms;
Corresponding to the received signal by substituting the noise power variance σ 2 for 1 ms, the coherent addition time of the predetermined time, and the coherent addition number of the predetermined number of times into a statistically determined noise distribution function expression a noise distribution calculator for obtaining the noise distribution value containing the noise mean and noise variance,
And a calculation means for calculating a signal-to-noise ratio by [signal-to-noise ratio = (cumulative signal power−noise average) / noise variance] using the accumulated signal power and the noise average and noise variance. A signal-to-noise ratio calculation device.
周波数制御信号を受けてキャリア周波数信号を発生するキャリア局部発振器を含み、衛星信号を変換し入力される特定衛星信号に関する受信信号とPNコードとのコード相関及び前記キャリア周波数信号とのキャリア相関が採られ、1ms間のI相関信号とQ相関信号とを同時に1ms毎に出力する信号用1ms相関チャンネル回路と、
前記信号用1ms相関チャンネル回路からのI相関信号とQ相関信号を前記特定衛星信号の航法データの切り替わりタイミングに同期して第1所定時間分コヒーレント加算を行い、その第1Iコヒーレント加算値と第1Qコヒーレント加算値とを出力する第1コヒーレント加算器と、
前記第1Iコヒーレント加算値び第1Qコヒーレント加算値から、第1コヒーレント加算区間内の信号パワーを求め、その信号パワーの第1所定回数の累積加算を行って第1累積信号パワーを求めて出力する第1ノンコヒーレント加算器と、
前記信号用1ms相関チャンネル回路からのI相関信号とQ相関信号を前記第1所定時間よりも短い第2所定時間分コヒーレント加算を行い、その第2Iコヒーレント加算値と第2Qコヒーレント加算値とを出力する第2コヒーレント加算器と、
前記第2Iコヒーレント加算値及び第2Qコヒーレント加算値から、第2コヒーレント加算区間内の信号パワーを求め、その信号パワーの第2所定回数の累積加算を行って第2累積信号パワーを求めて出力する第2ノンコヒーレント加算器と、
前記受信信号と該受信信号と相関を採ることができない非相関信号とのキャリア相関が採られ、1ms間のI相関信号とQ相関信号とを同時に1ms毎に出力する雑音用1ms相関チャンネル回路と、
前記雑音用1ms相関チャンネル回路からのI相関信号とQ相関信号とから1ms間の雑音パワーの分散を1ms毎に測定するノイズ分散測定器と、
前記1ms間の雑音パワーの分散σ前記第1所定時間のコヒーレント加算時間、及び前記第1所定回数のコヒーレント加算回数を、統計的に決定されるノイズ分布の関数式に代入することにより、前記受信信号に対応した第1ノイズ平均及び第1ノイズ分散を含む第1ノイズ分布値を求める第1ノイズ分布演算器と、
前記1ms間の雑音パワーの分散σ前記第2所定時間のコヒーレント加算時間、及び前記第2所定回数のコヒーレント加算回数を、統計的に決定されるノイズ分布の関数式に代入することにより、前記受信信号に対応した第2ノイズ平均及び第2ノイズ分散を含む第2ノイズ分布値を求める第2ノイズ分布演算器と、
前記第1,第2累積信号パワーと、前記第1,第2ノイズ平均及び第1,第2ノイズ分散を用いて、第1,第2信号対雑音比を、[第1信号対雑音比=(第1累積信号パワー−第1ノイズ平均)/第1ノイズ分散]、及び[第2信号対雑音比=(第2累積信号パワー−第2ノイズ平均)/第2ノイズ分散]、により算出する演算手段と、を有することを特徴とする、信号対雑音比演算装置。
It includes a carrier local oscillator that receives a frequency control signal and generates a carrier frequency signal, and takes the code correlation between the received signal and the PN code related to the input specific satellite signal after converting the satellite signal and the carrier correlation with the carrier frequency signal. A 1 ms correlation channel circuit for a signal that simultaneously outputs an I correlation signal and a Q correlation signal for 1 ms every 1 ms;
The I correlation signal and the Q correlation signal from the signal 1 ms correlation channel circuit are subjected to coherent addition for a first predetermined time in synchronization with the navigation data switching timing of the specific satellite signal, and the first I coherent addition value and the first Q A first coherent adder that outputs a coherent addition value;
From the first I coherent addition value and the first Q coherent addition value, the signal power in the first coherent addition interval is obtained, the first predetermined number of times of cumulative addition of the signal power is performed, and the first cumulative signal power is obtained and output. A first non-coherent adder;
The I correlation signal and the Q correlation signal from the 1 ms correlation channel circuit for signal are subjected to coherent addition for a second predetermined time shorter than the first predetermined time, and the second I coherent addition value and the second Q coherent addition value are output. A second coherent adder,
The signal power in the second coherent addition interval is obtained from the second I coherent addition value and the second Q coherent addition value, and the second predetermined signal power is accumulated for a second predetermined number of times to obtain and output the second accumulated signal power. A second non-coherent adder;
A 1 ms correlation channel circuit for noise that takes a carrier correlation between the received signal and a non-correlated signal that cannot be correlated with the received signal, and simultaneously outputs an I correlation signal and a Q correlation signal for 1 ms every 1 ms; ,
A noise variance measuring device for measuring the variance of noise power between 1 ms from the I correlation signal and the Q correlation signal from the 1 ms correlation channel circuit for noise every 1 ms;
By substituting the noise power variance σ 2 for 1 ms, the coherent addition time of the first predetermined time, and the coherent addition number of the first predetermined number of times into a statistical expression of a noise distribution function expression, A first noise distribution calculator for obtaining a first noise distribution value including a first noise average and a first noise variance corresponding to the received signal ;
By substituting the noise power variance σ 2 for 1 ms, the coherent addition time of the second predetermined time, and the coherent addition number of the second predetermined number of times into a statistically determined function expression of the noise distribution, A second noise distribution calculator for obtaining a second noise distribution value including a second noise average and a second noise variance corresponding to the received signal ;
Using the first and second accumulated signal powers, the first and second noise averages, and the first and second noise variances, the first and second signal-to-noise ratios are expressed as [first signal-to-noise ratio = (First cumulative signal power-first noise average) / first noise variance] and [second signal-to-noise ratio = (second cumulative signal power-second noise average) / second noise variance]. And a signal-to-noise ratio calculation device.
周波数制御信号を受けてキャリア周波数信号を発生するキャリア局部発振器を含み、衛星信号を変換し入力される特定衛星信号に関する受信信号とPNコードとのコード相関及び前記キャリア周波数信号とのキャリア相関が採られ、1ms間のI相関信号とQ相関信号とを同時に1ms毎に出力する信号用1ms相関チャンネル回路と、
前記信号用1ms相関チャンネル回路からのI相関信号とQ相関信号を前記特定衛星信号の航法データの切り替わりタイミングに同期して第1所定時間分コヒーレント加算を行い、その第1Iコヒーレント加算値と第1Qコヒーレント加算値とを出力する第1コヒーレント加算器と、
前記第1Iコヒーレント加算値及び第1Qコヒーレント加算値から、第1コヒーレント加算区間内の信号パワーを求め、その信号パワーの第1所定回数の累積加算を行って第1累積信号パワーを求めて出力する第1ノンコヒーレント加算器と、
前記第1I,Qコヒーレント加算値に基づいて前記周波数制御信号を決定するコスタスループ演算器と、
前記信号用1ms相関チャンネル回路からのI相関信号とQ相関信号を前記第1所定時間よりも短い第2所定時間分コヒーレント加算を行い、その第2Iコヒーレント加算値と第2Qコヒーレント加算値とを出力する第2コヒーレント加算器と、
前記第2Iコヒーレント加算値及び第2Qコヒーレント加算値から、第2コヒーレント加算区間内の信号パワーを求め、その信号パワーの第2所定回数の累積加算を行って第2累積信号パワーを求めて出力する第2ノンコヒーレント加算器と、
前記受信信号と該受信信号と相関を採ることができない非相関信号とのキャリア相関が採られ、1ms間のI相関信号とQ相関信号とを同時に1ms毎に出力する雑音用1ms相関チャンネル回路と、
前記雑音用1ms相関チャンネル回路からのI相関信号とQ相関信号とから1ms間の雑音パワーの分散を1ms毎に測定するノイズ分散測定器と、
前記1ms間の雑音パワーの分散σ前記第1所定時間のコヒーレント加算時間、及び前記第1所定回数のコヒーレント加算回数を、統計的に決定されるノイズ分布の関数式に代入することにより、前記受信信号に対応した第1ノイズ平均及び第1ノイズ分散を含む第1ノイズ分布値を求める第1ノイズ分布演算器と、
前記1ms間の雑音パワーの分散σ前記第2所定時間のコヒーレント加算時間、及び前記第2所定回数のコヒーレント加算回数を、統計的に決定されるノイズ分布の関数式に代入することにより、前記受信信号に対応した第2ノイズ平均及び第2ノイズ分散を含む第2ノイズ分布値を求める第2ノイズ分布演算器と、
前記第1,第2累積信号パワーと、前記第1,第2ノイズ平均及び第1,第2ノイズ分散を用いて、第1,第2信号対雑音比を、[第1信号対雑音比=(第1累積信号パワー−第1ノイズ平均)/第1ノイズ分散]、及び[第2信号対雑音比=(第2累積信号パワー−第2ノイズ平均)/第2ノイズ分散]、により算出するとともに、前記第1、第2信号対雑音比に基づいて前記コスタスループ演算器の特性もしくは入力を変更して前記周波数制御信号を制御する演算・制御手段6と、を有することを特徴とする、衛星信号受信装置。
It includes a carrier local oscillator that receives a frequency control signal and generates a carrier frequency signal, and takes the code correlation between the received signal and the PN code related to the input specific satellite signal after converting the satellite signal and the carrier correlation with the carrier frequency signal. A 1 ms correlation channel circuit for a signal that simultaneously outputs an I correlation signal and a Q correlation signal for 1 ms every 1 ms;
The I correlation signal and the Q correlation signal from the signal 1 ms correlation channel circuit are subjected to coherent addition for a first predetermined time in synchronization with the navigation data switching timing of the specific satellite signal, and the first I coherent addition value and the first Q A first coherent adder that outputs a coherent addition value;
From the first I coherent addition value and the first Q coherent addition value, the signal power in the first coherent addition interval is obtained, and the signal power is accumulated for a first predetermined number of times to obtain and output the first accumulated signal power. A first non-coherent adder;
A Costas loop computing unit that determines the frequency control signal based on the first I and Q coherent addition values;
The I correlation signal and the Q correlation signal from the 1 ms correlation channel circuit for signal are subjected to coherent addition for a second predetermined time shorter than the first predetermined time, and the second I coherent addition value and the second Q coherent addition value are output. A second coherent adder,
The signal power in the second coherent addition interval is obtained from the second I coherent addition value and the second Q coherent addition value, and the second predetermined signal power is accumulated for a second predetermined number of times to obtain and output the second accumulated signal power. A second non-coherent adder;
A 1 ms correlation channel circuit for noise that takes a carrier correlation between the received signal and a non-correlated signal that cannot be correlated with the received signal, and simultaneously outputs an I correlation signal and a Q correlation signal for 1 ms every 1 ms; ,
A noise variance measuring device for measuring the variance of noise power between 1 ms from the I correlation signal and the Q correlation signal from the 1 ms correlation channel circuit for noise every 1 ms;
By substituting the noise power variance σ 2 for 1 ms, the coherent addition time of the first predetermined time, and the coherent addition number of the first predetermined number of times into a statistical expression of a noise distribution function expression, A first noise distribution calculator for obtaining a first noise distribution value including a first noise average and a first noise variance corresponding to the received signal ;
By substituting the noise power variance σ 2 for 1 ms, the coherent addition time of the second predetermined time, and the coherent addition number of the second predetermined number of times into a statistically determined function expression of the noise distribution, A second noise distribution calculator for obtaining a second noise distribution value including a second noise average and a second noise variance corresponding to the received signal ;
Using the first and second accumulated signal powers, the first and second noise averages, and the first and second noise variances, the first and second signal-to-noise ratios are expressed as [first signal-to-noise ratio = (First cumulative signal power-first noise average) / first noise variance] and [second signal-to-noise ratio = (second cumulative signal power-second noise average) / second noise variance]. And an arithmetic / control means 6 for controlling the frequency control signal by changing characteristics or inputs of the Costas loop arithmetic unit based on the first and second signal-to-noise ratios. Satellite signal receiver.
JP2007027657A 2007-02-07 2007-02-07 Satellite signal noise estimation device, signal-to-noise ratio calculation device, and satellite signal reception device Active JP5376762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007027657A JP5376762B2 (en) 2007-02-07 2007-02-07 Satellite signal noise estimation device, signal-to-noise ratio calculation device, and satellite signal reception device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007027657A JP5376762B2 (en) 2007-02-07 2007-02-07 Satellite signal noise estimation device, signal-to-noise ratio calculation device, and satellite signal reception device

Publications (2)

Publication Number Publication Date
JP2008191068A JP2008191068A (en) 2008-08-21
JP5376762B2 true JP5376762B2 (en) 2013-12-25

Family

ID=39751293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007027657A Active JP5376762B2 (en) 2007-02-07 2007-02-07 Satellite signal noise estimation device, signal-to-noise ratio calculation device, and satellite signal reception device

Country Status (1)

Country Link
JP (1) JP5376762B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112904374B (en) * 2021-01-29 2024-03-19 湖南国科微电子股份有限公司 Satellite signal strength evaluation method and device, GNSS receiver and medium

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07140224A (en) * 1993-11-16 1995-06-02 Nippondenso Co Ltd Spread spectrum signal tracking device
US5982811A (en) * 1996-07-12 1999-11-09 General Electric Company Method for efficient sampling in a correlator
JP2001153942A (en) * 1999-11-24 2001-06-08 Japan Radio Co Ltd Spectrum spreading demodulator and gps receiver
WO2001094972A1 (en) * 2000-06-06 2001-12-13 Mitsubishi Denki Kabushiki Kaisha Gps receiver and gps reception
US7340279B2 (en) * 2001-03-23 2008-03-04 Qualcomm Incorporated Wireless communications with an adaptive antenna array
US6724343B2 (en) * 2002-04-30 2004-04-20 The Johns Hopkins University Weak signal and anti-jamming Global Positioning System receiver and method using full correlation grid
JP2005184407A (en) * 2003-12-18 2005-07-07 Japan Radio Co Ltd Signal to noise power ratio detection system and apparatus
JP2005241584A (en) * 2004-02-27 2005-09-08 Furuno Electric Co Ltd Distance-error detecting device and positioning error-detecting device
JP2005331368A (en) * 2004-05-20 2005-12-02 Sony Corp Gps receiver and synchronization retaining method in gps receiver
JP5241057B2 (en) * 2004-09-16 2013-07-17 古野電気株式会社 L2C signal tracking device and GPS receiver using the same
US8254512B2 (en) * 2004-11-17 2012-08-28 Qualcomm Incorporated Method and apparatus for increasing coherent integration length while receiving a positioning signal
JP4810190B2 (en) * 2004-12-02 2011-11-09 ルネサスエレクトロニクス株式会社 Receiver
JP3998023B2 (en) * 2005-05-27 2007-10-24 株式会社日立製作所 Ranging and position measuring method using spread spectrum signal and apparatus for performing the method
JP4708098B2 (en) * 2005-06-17 2011-06-22 日本無線株式会社 GPS receiver
JP4869022B2 (en) * 2006-10-30 2012-02-01 日本無線株式会社 Satellite signal tracking device and satellite signal receiver including the same
JP2007078703A (en) * 2006-11-02 2007-03-29 Mitsubishi Electric Corp Gps receiver
JP2008141545A (en) * 2006-12-04 2008-06-19 Sanyo Electric Co Ltd Receiver in m-ary communication system

Also Published As

Publication number Publication date
JP2008191068A (en) 2008-08-21

Similar Documents

Publication Publication Date Title
KR102572948B1 (en) Method and system for correcting the frequency or phase of a local signal generated using a local oscillator
US20220404511A1 (en) Method and system for calibrating a system parameter
US11982753B2 (en) Method and system for calibrating a system parameter
JP4869022B2 (en) Satellite signal tracking device and satellite signal receiver including the same
US9075139B2 (en) Satellite signal tracking method and receiver
US20060114970A1 (en) Method and apparatus for performing signal correlation at multiple resolutions to mitigate multipath interference
Van Graas et al. Closed-loop sequential signal processing and open-loop batch processing approaches for GNSS receiver design
CN109313270B (en) Method, apparatus, computer program, chip set or data structure for correlating a digital signal with a correlation code
Lin et al. Development of a context-aware vector-based high-sensitivity GNSS software receiver
Sun et al. Use of a reduced IMU to aid a GPS receiver with adaptive tracking loops for land vehicle navigation
Karaim Ultra-tight GPS/INS integrated system for land vehicle navigation in challenging environments
US11513235B2 (en) Global navigation satellite system (GNSS) signal tracking
JP2011117830A (en) Gnss receiver and positioning method
JP5376762B2 (en) Satellite signal noise estimation device, signal-to-noise ratio calculation device, and satellite signal reception device
Schmid et al. Combined Galileo/GPS architecture for enhanced sensitivity reception
Dou et al. Performance assessment of GNSS scalar and vector frequency tracking loops
JP5933559B2 (en) Signal capturing apparatus and method
JP5267478B2 (en) Satellite signal tracking method and position calculation apparatus
JP2009168451A (en) Positioning apparatus
Hui et al. Frequency tracking for high dynamic GPS signals based on vector frequency lock loop
Kanouj et al. Adaptive unscented Kalman filter for tracking GPS signals in the case of an unknown and time-varying noise covariance
Liu et al. A tracking method for GPS L2C signal based on the joint using of data and pilot channels
JP2005207815A (en) Multipath signal detection device
Kanouj et al. A new approach to designing a positioning system for operation under the conditions of dynamic stress and high noise level
Bellad Intermittent GNSS signal tracking for improved receiver power performance

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090119

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090130

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130924

R150 Certificate of patent or registration of utility model

Ref document number: 5376762

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150