JP5374818B2 - Liquid epoxy resin composition for sealing, electronic component device and wafer level chip size package - Google Patents

Liquid epoxy resin composition for sealing, electronic component device and wafer level chip size package Download PDF

Info

Publication number
JP5374818B2
JP5374818B2 JP2006342733A JP2006342733A JP5374818B2 JP 5374818 B2 JP5374818 B2 JP 5374818B2 JP 2006342733 A JP2006342733 A JP 2006342733A JP 2006342733 A JP2006342733 A JP 2006342733A JP 5374818 B2 JP5374818 B2 JP 5374818B2
Authority
JP
Japan
Prior art keywords
epoxy resin
liquid epoxy
resin composition
silicone
electronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006342733A
Other languages
Japanese (ja)
Other versions
JP2008150555A (en
Inventor
敦司 桑野
悟 土田
道俊 荒田
伸介 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2006342733A priority Critical patent/JP5374818B2/en
Publication of JP2008150555A publication Critical patent/JP2008150555A/en
Application granted granted Critical
Publication of JP5374818B2 publication Critical patent/JP5374818B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid epoxy resin composition for encapsulation having small wafer warpage after curing resin, and difficulty in reducing strength, reflow resistance, temperature cycle resistance and moisture resistance reliability, and an electronic component device and a wafer level chip-size package provided with an element encapsulated with the same. <P>SOLUTION: The liquid epoxy resin composition for encapsulation includes a liquid epoxy resin (A), an aromatic amine curing agent (B), a fine particle (C) of a core-shell silicone polymer composed of a solid silicone polymer core and an organic polymer shell, an inorganic filler (D), and an organic solvent (E). <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、封止用液状エポキシ樹脂組成物、及びこの封止用液状エポキシ樹脂組成物で封止した素子を備えた電子部品装置およびウエハーレベルチップサイズパッケージに関する。   The present invention relates to a liquid epoxy resin composition for sealing, and an electronic component device and a wafer level chip size package including an element sealed with the liquid epoxy resin composition for sealing.

近年、電子部品装置の低コスト化、小型・薄型・軽量化、高性能・高機能化を図るために素子の配線の微細化、多層化、多ピン化、パッケージの小型薄型化による高密度実装化が進んでいる。これに伴い、ICの素子とほぼ同じサイズの電子部品装置、すなわち、CSP(Chip Size Package)が広く用いられるようになってきている。
その中で、ウエハー段階で樹脂封止を行うウエハーレベルチップサイズパッケージが究極のパッケージとして注目されている。このウエハーレベルチップサイズパッケージでは、ウエハー段階で、固形のエポキシ樹脂組成物を用いたトランスファーモールド成形や、液状のエポキシ樹脂組成物を用いた印刷成形により多数の素子を一度に封止し個片化するため、素子を個片化してから封止する方法に比べ大幅な生産合理化が可能となる。しかしながら、封止したウエハーが反りやすく、この反りがその後の搬送、研削、検査、個片化等の各工程で問題となっており、デバイスによっては素子特性に変動が生じる問題がある。ウエハー径は、更なるコストダウンやパッケージの薄型化を図るため益々大きく、薄くなる傾向にあり、ウエハー径が大きく、薄くなればなるほど反りが大きくなるため、ウエハーの反りを小さくすることがウエハーレベルチップサイズパッケージを普及させる上で重要な課題となっている。
一方、従来から、トランジスタ、IC等の電子部品装置の素子封止の分野では、生産性、コスト等の面から樹脂封止が主流となり、エポキシ樹脂成形材料が広く用いられている。この理由としては、エポキシ樹脂が電気特性、耐湿性、耐熱性、機械特性、インサート品との接着性等の諸特性にバランスがとれているためである。ウエハーの反りは、このエポキシ樹脂組成物の成形収縮や、シリコンウエハーとエポキシ樹脂組成物の熱膨張係数のミスマッチによって発生する応力が影響するものであり、パッケージの信頼性も低下させる恐れがある。そのため、このような用途に用いるエポキシ樹脂組成物には低応力化が必要となり、一般には、エポキシ樹脂組成物の成形収縮を下げたり、無機充填剤を高充填し熱膨張係数を小さくしたり、可撓化剤や可撓性樹脂を用い弾性率を小さくすることが有効とされている。
例えば、特許文献1記載では、ナフタレン骨格型エポキシ樹脂又はビフェニル骨格型エポキシ樹脂を含有し、シリコーンパウダーとシリコーンオイルを添加した液状エポキシ樹脂組成物が開示されている。また、特許文献2及び特許文献3では、シリコーン変性エポキシ樹脂を主成分とし、常温での弾性率が5GPa以下の液状樹脂組成物が開示されている。
In recent years, high-density mounting has been achieved by miniaturizing the wiring of devices, increasing the number of layers, increasing the number of pins, and reducing the size and thickness of packages in order to reduce the cost, size, thickness, and weight of electronic component devices, and to increase performance and functionality. Is progressing. Accordingly, electronic component devices having almost the same size as IC elements, that is, CSP (Chip Size Package) have been widely used.
Among them, a wafer level chip size package that performs resin sealing at the wafer stage is attracting attention as an ultimate package. In this wafer level chip size package, a large number of elements are sealed and separated at a wafer stage by transfer molding using a solid epoxy resin composition or printing molding using a liquid epoxy resin composition. Therefore, the production can be greatly rationalized as compared with the method of sealing after the elements are separated. However, the sealed wafer is likely to warp, and this warpage is a problem in subsequent processes such as conveyance, grinding, inspection, and singulation, and there is a problem that the device characteristics vary depending on the device. The wafer diameter tends to become larger and thinner for further cost reduction and package thinning, and the larger the wafer diameter and the thinner, the larger the warpage. Therefore, it is necessary to reduce the wafer warpage at the wafer level. It has become an important issue in spreading chip size packages.
On the other hand, conventionally, in the field of element sealing of electronic component devices such as transistors and ICs, resin sealing has become the mainstream in terms of productivity and cost, and epoxy resin molding materials have been widely used. This is because the epoxy resin is balanced in various properties such as electrical properties, moisture resistance, heat resistance, mechanical properties, and adhesiveness with inserts. The warpage of the wafer is influenced by the molding shrinkage of the epoxy resin composition and the stress generated by the mismatch between the thermal expansion coefficients of the silicon wafer and the epoxy resin composition, and may reduce the reliability of the package. Therefore, it is necessary to reduce the stress in the epoxy resin composition used for such applications, and in general, the molding shrinkage of the epoxy resin composition is reduced, the inorganic filler is highly filled to reduce the thermal expansion coefficient, It is effective to reduce the elastic modulus by using a flexible agent or a flexible resin.
For example, Patent Document 1 discloses a liquid epoxy resin composition containing a naphthalene skeleton-type epoxy resin or a biphenyl skeleton-type epoxy resin and adding silicone powder and silicone oil. Patent Documents 2 and 3 disclose a liquid resin composition containing a silicone-modified epoxy resin as a main component and having an elastic modulus of 5 GPa or less at room temperature.

特許第3397176号公報Japanese Patent No. 3397176 特開2003−238651号公報JP 2003-238651 A 特開2003−238652号公報Japanese Patent Laid-Open No. 2003-238652

しかしながら、無機充填剤を高充填することにより熱膨張係数をウエハーに近づける手法だけでは、硬化物自体の弾性率が高くなるために応力低減が不十分となり低反りには限界がある。上記特許文献1記載のシリコーンパウダーとシリコーンオイルを添加する手法では、粒子の平均1次粒子径が3〜10μm程度のシリコーンゴムを添加するために、硬化物中に均一に微細分散することが困難であり、ウエハーの反りを十分に小さくすることができない問題が生じる場合がある。また、シリコーンパウダーとシリコーンオイルから成るシリコーン成分中におけるシリコーンオイルの量は、液状エポキシ樹脂組成物の粘度を下げて流動性を最適化するために65〜85質量%に設定する必要があり、シリコーン成分の大部分がシリコーンオイルから成る。
ウエハーの反りを小さくするためにシリコーンパウダーの量を増やすと、それ以上にシリコーンオイルの量も増えるために、機械的強度が低下し、研削時やウエハーダイシング時に封止樹脂がかけたりする問題が生じ易くなる。
また、上記特許文献2及び特許文献3記載のシリコーン樹脂をベース樹脂に用いる手法では、硬化物の弾性率が低下し応力緩和により反りを小さくすることができる。しかしながら、樹脂組成物の主成分が低弾性体の柔らかい樹脂骨格から成るため、シリコーン樹脂の量が増えると機械的強度が低下し、封止樹脂を均一に研削することが困難になったり、ウエハーダイシング時に封止樹脂がかけたりする問題が生じ易くなる。更に、強度やガラス転移温度の低下により耐湿信頼性が低下しやすい欠点がある。
ウエハーレベルチップサイズパッケージに使用される封止用液状エポキシ樹脂組成物には、成形性、高強度、高信頼性を発現させながら低応力化を図り、ウエハーの反りを抑えることが望ましいが、有効な解決策は見出されていない。
本発明はかかる状況に鑑みなされたもので、ウエハーレベルチップサイズパッケージ等の低反り性が要求される電子部品装置に適用しても反りが小さく抑えられる。また、強度、耐熱衝撃性、耐湿性等の信頼性が低下しにくい封止用エポキシ樹脂組成物、及びこの封止用エポキシ樹脂組成物で封止した素子を備えた電子部品装置及びウエハーレベルチップサイズパッケージを提供することを目的とする。
However, only the method of bringing the thermal expansion coefficient closer to the wafer by highly filling the inorganic filler increases the elastic modulus of the cured product itself, so that the stress reduction is insufficient and there is a limit to the low warpage. In the method of adding the silicone powder and the silicone oil described in Patent Document 1, since the silicone rubber having an average primary particle diameter of about 3 to 10 μm is added, it is difficult to uniformly finely disperse it in the cured product. Thus, there may be a problem that the warpage of the wafer cannot be made sufficiently small. Further, the amount of silicone oil in the silicone component consisting of silicone powder and silicone oil needs to be set to 65 to 85% by mass in order to lower the viscosity of the liquid epoxy resin composition and optimize the fluidity. Most of the ingredients consist of silicone oil.
Increasing the amount of silicone powder to reduce wafer warpage further increases the amount of silicone oil, which decreases the mechanical strength and causes the sealing resin to be applied during grinding or wafer dicing. It tends to occur.
In the method using the silicone resin described in Patent Document 2 and Patent Document 3 as the base resin, the elastic modulus of the cured product is lowered, and the warpage can be reduced by stress relaxation. However, since the main component of the resin composition is composed of a soft resin skeleton of a low elastic body, when the amount of the silicone resin increases, the mechanical strength decreases and it becomes difficult to uniformly grind the sealing resin. The problem that the sealing resin is applied during dicing tends to occur. Furthermore, there is a drawback that the moisture resistance reliability is likely to be lowered due to a decrease in strength and glass transition temperature.
For liquid epoxy resin compositions for sealing used in wafer level chip size packages, it is desirable to reduce stress while exhibiting moldability, high strength, and high reliability, and to suppress wafer warpage. No solution has been found.
The present invention has been made in view of such a situation, and even when applied to an electronic component device that requires low warpage such as a wafer level chip size package, the warpage can be suppressed to a small level. Further, an epoxy resin composition for sealing in which reliability such as strength, thermal shock resistance, and moisture resistance is unlikely to decrease, and an electronic component device and a wafer level chip provided with an element sealed with the epoxy resin composition for sealing The purpose is to provide a size package.

本発明は以下の(1)〜(9)に関する。
(1)(A)液状エポキシ樹脂、(B)芳香族アミン硬化剤、(C)固形シリコーン重合体のコアと有機重合体のシェルからなり平均1次粒子径が0.05〜1.0μmのコアシェルシリコーン重合体の微粒子、(D)無機充填剤、(E)有機溶剤を含有し、前記(A)液状エポキシ樹脂がシリコーン変性エポキシ樹脂を含み、前記(C)コアシェルシリコーン重合体の微粒子の配合割合が前記(A)成分及び前記(C)成分の合計量に対して10〜40質量%であり、前記(D)無機充填剤の配合割合が前記(A)成分、前記(B)成分、前記(C)成分及び前記(D)成分の合計量に対して81〜93質量%であり、前記(A)液状エポキシ樹脂成分の全量に対して、前記シリコーン変性エポキシ樹脂が5〜50質量%であり、前記シリコーン変性エポキシ樹脂成分と前記(C)コアシェルシリコーン重合体の微粒子との合計量に対して、前記シリコーン変性エポキシ樹脂が8〜80質量%である、電子部品装置の素子封止用液状エポキシ樹脂組成物。
(2)(C)コアシェルシリコーン重合体の微粒子が、[RSiO3/2]及び/又は[SiO4/2]からなる単位を有する、[RR'SiO2/2]単位(ここで、Rは炭素数6以下のアルキル基、アリール基、又は末端に炭素二重結合を有する置換基であり、R'は炭素数6以下のアルキル基又はアリール基を表す)のシリコーン重合体のコアと、ビニル重合により得られる有機重合体のシェルからなるものである前記1に記載の電子部品装置の素子封止用液状エポキシ樹脂組成物。
(3)(C)成分のビニル重合により得られる有機重合体が、アクリル樹脂又はアクリル樹脂の共重合体である前記2に記載の電子部品装置の素子封止用液状エポキシ樹脂組成物。
(4)(A)液状エポキシ樹脂が液状ビスフェノール型エポキシ樹脂を含む前記1〜3のいずれか1項に記載の電子部品装置の素子封止用液状エポキシ樹脂組成物。
(5)(B)芳香族アミン硬化剤がジエチルトルエンジアミン又は3,3’−ジエチル−4,4’−ジアミノジフェニルメタンである前記1〜4のいずれか1項に記載の電子部品装の素子封止用液状エポキシ樹脂組成物。
(6)前記シリコーン変性エポキシ樹脂が、下記式(II)で表されるエポキシ樹脂とビスフェノール類との反応物である前記1〜のいずれか1項に記載の電子部品装置の素子封止用液状エポキシ樹脂組成物。

〔式(II)中、Rは各々独立にアルキル基又はフェニル基を表し、nは1以上の整数である。〕
)前記1〜のいずれか1項に記載の電子部品装置の素子封止用液状エポキシ樹脂組成物により封止された素子を備えた電子部品装置。
)ウエハーレベルチップサイズパッケージの封止に用いられる前記1〜のいずれか1項に記載の電子部品装置の素子封止用液状エポキシ樹脂組成物。
)前記1〜のいずれか1項に記載の電子部品装置の素子封止用液状エポキシ樹脂組成物により封止された素子を備えたウエハーレベルチップサイズパッケージ。
The present invention relates to the following (1) to (9).
(1) (A) liquid epoxy resin, (B) aromatic amine curing agent, (C) a solid silicone polymer core and an organic polymer shell, and an average primary particle size of 0.05 to 1.0 μm A core-shell silicone polymer fine particle, (D) an inorganic filler, (E) an organic solvent, (A) the liquid epoxy resin contains a silicone-modified epoxy resin, and (C) the fine particle of the core-shell silicone polymer The proportion is 10 to 40% by mass with respect to the total amount of the component (A) and the component (C), and the proportion of the inorganic filler (D) is the component (A), the component (B), the (C) component and the (D) from 81 to 93% by mass relative to the total amount of the components is, the (a) the total amount of the liquid epoxy resin component, the silicone-modified epoxy resin is from 5 to 50 mass %, The siri With respect to the total amount of the fine particles of over the the down-modified epoxy resin component (C) core-shell silicone polymer, the silicone-modified epoxy resin is Ru 8-80% by mass, liquid epoxy element encapsulation of the electronic component device Resin composition.
(2) (C) Core-shell silicone polymer fine particles having units consisting of [RSiO 3/2 ] and / or [SiO 4/2 ] [RR′SiO 2/2 ] units (where R is A silicone polymer core of an alkyl group having 6 or less carbon atoms, an aryl group, or a substituent having a carbon double bond at the terminal, and R ′ represents an alkyl group or aryl group having 6 or less carbon atoms), vinyl 2. The liquid epoxy resin composition for sealing an element of an electronic component device as described in 1 above, comprising an organic polymer shell obtained by polymerization.
(3) The liquid epoxy resin composition for sealing an element of an electronic component device as described in 2 above, wherein the organic polymer obtained by vinyl polymerization of the component (C) is an acrylic resin or an acrylic resin copolymer.
(4) (A) liquid epoxy resin element encapsulation liquid epoxy resin composition of the electronic component device according to any one of the 1 to 3 comprising a liquid bisphenol type epoxy resin.
(5) (B) an aromatic amine curing agent is an electronic component equipment of elements according to any one of the 1-4 diethyl toluene diamine or 3,3'-diethyl-4,4'-diaminodiphenylmethane Liquid epoxy resin composition for sealing.
(6) For element sealing of the electronic component device according to any one of 1 to 5 , wherein the silicone-modified epoxy resin is a reaction product of an epoxy resin represented by the following formula (II) and a bisphenol. Liquid epoxy resin composition.

[In formula (II), R represents an alkyl group or a phenyl group each independently, and n is an integer greater than or equal to 1. ]
( 7 ) An electronic component device including an element sealed with the liquid epoxy resin composition for sealing an element of the electronic component device according to any one of 1 to 6 above.
( 8 ) The liquid epoxy resin composition for element sealing of the electronic component device according to any one of 1 to 6 , which is used for sealing a wafer level chip size package.
( 9 ) A wafer level chip size package comprising an element sealed with the liquid epoxy resin composition for element sealing of the electronic component device according to any one of 1 to 6 above.

ウエハーレベルチップサイズパッケージ等の低反り性が要求される電子部品装置に適用しても反りが小さく抑えられる。また、強度、耐熱衝撃性、耐湿性等の信頼性が低下しにくい封止用エポキシ樹脂組成物、及びこの封止用エポキシ樹脂組成物で封止した素子を備えた電子部品装置及びウエハーレベルチップサイズパッケージを提供することが可能となる。   Even when applied to an electronic component device that requires low warpage, such as a wafer level chip size package, the warpage can be kept small. Further, an epoxy resin composition for sealing in which reliability such as strength, thermal shock resistance, and moisture resistance is unlikely to decrease, and an electronic component device and a wafer level chip provided with an element sealed with the epoxy resin composition for sealing Size packages can be provided.

本発明において用いられる(A)液状エポキシ樹脂は、一分子中に1個以上のエポキシ基を有するもので、常温で液状であれば制限はなく、封止用エポキシ樹脂組成物で一般に使用されている液状エポキシ樹脂を用いることができる。本発明で使用できるエポキシ樹脂としては、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールAD、ビスフェノールS、水添ビスフェノールA等のジグリシジルエーテル型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂を代表とするフェノール類とアルデヒド類のノボラック樹脂をエポキシ化したもの、フタル酸、ダイマー酸等の多塩基酸とエピクロルヒドリンの反応により得られるグリシジルエステル型エポキシ樹脂、p―アミノフェノール、ジアミノジフェニルメタン、イソシアヌル酸等のアミン化合物とエピクロルヒドリンの反応により得られるグリシジルアミン型エポキシ樹脂、オレフィン結合を過酢酸等の過酸により酸化して得られる線状脂肪族エポキシ樹脂、脂環族エポキシ樹脂等が挙げられ、これらを単独で用いても2種以上を組み合わせて用いてもよい。
なかでも、流動性、耐熱性、機械的強度のバランスの点からは液状ビスフェノール型エポキシ樹脂が好ましく、その配合量は、その性能を発揮するためにエポキシ樹脂成分全量に対して好ましくは50質量%以上、より好ましくは60質量%以上に設定される。50質量%以上配合することで、ウエハーの反り低減と所望の弾性率や強度の達成を両立する効果が充分に得られやすい。
この液状ビスフェノール型エポキシ樹脂の一部または全部は、固形シリコーン重合体のコアと有機重合体のシェルからなるコアシェルシリコーン重合体の微粒子との混合物として用いることができる。
また、液状エポキシ樹脂として、シリコーン変性エポキシ樹脂を含む。シリコーン変性エポキシ樹脂は、印刷塗布後の破泡性、脱泡性及び成形時の低応力性を向上させることができ、一般式(I)で示されるシロキサン構造を有するものが挙げられる。
The (A) liquid epoxy resin used in the present invention has one or more epoxy groups in one molecule and is not limited as long as it is liquid at room temperature, and is generally used in an epoxy resin composition for sealing. A liquid epoxy resin can be used. Examples of epoxy resins that can be used in the present invention include diglycidyl ether type epoxy resins such as bisphenol A, bisphenol F, bisphenol AD, bisphenol S, hydrogenated bisphenol A, and phenols typified by orthocresol novolac type epoxy resins. Epoxidized aldehyde novolak resin, glycidyl ester type epoxy resin obtained by reaction of polybasic acid such as phthalic acid and dimer acid and epichlorohydrin, amine compound such as p-aminophenol, diaminodiphenylmethane, isocyanuric acid and epichlorohydrin Glycidylamine-type epoxy resin obtained by the above reaction, linear aliphatic epoxy resin obtained by oxidizing olefinic bonds with peracid such as peracetic acid, alicyclic epoxy resin, etc. May be used in combination of two or more kinds thereof may be used alone.
Among these, liquid bisphenol type epoxy resin is preferable from the viewpoint of balance of fluidity, heat resistance, and mechanical strength, and its blending amount is preferably 50% by mass with respect to the total amount of the epoxy resin component in order to exhibit its performance. As described above, it is more preferably set to 60% by mass or more. By blending 50% by mass or more, the effect of achieving both reduction of the warpage of the wafer and achievement of the desired elastic modulus and strength can be sufficiently obtained.
Part or all of the liquid bisphenol type epoxy resin can be used as a mixture of a core of a solid silicone polymer and fine particles of a core-shell silicone polymer comprising a shell of an organic polymer.
Further, as the liquid epoxy resin, including a silicone-modified epoxy resin. Silicone-modified epoxy resins can improve the foam breaking property, defoaming property and low stress property during molding after printing and include those having a siloxane structure represented by the general formula (I).

ここで一般式(I)中のRはアルキル基又はフェニル基であり、同一でも異なっていても良く、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、フェニル基等が挙げられるが、特にメチル基が好ましい。一般式(I)中のnは1以上の整数である。一般式(I)で示されるシロキサン構造を有するシリコーン変性エポキシ樹脂として、工業的に入手可能な市販品としては、ALBIFLEX296、ALBIFLEX348、XP544(Hanse Chemie社製商品名)等がある。
また、その他のシリコーン変性エポキシ樹脂としては、式(I)で示されるシロキサン構造を有するエポキシ樹脂と、フェノール性水酸基、アミノ基、カルボキシル基、チオール基等のエポキシ基と反応することができる置換基を有し、かつシロキサン構造を有さない化合物と反応して得られるもの、また、ビスフェノールA型、ビスフェノールF型、ビスフェノールAD型エポキシ樹脂のようなシロキサン構造を有さないエポキシ樹脂と、フェノール性水酸基、アミノ基、カルボキシル基、チオール基等のエポキシ基と反応することができる置換基を有し、かつ式(I)で示されるシロキサン構造を有する化合物と反応して得られるものが挙げられる。
中でも、下式(II)で示されるエポキシ樹脂とビスフェノール類とを反応したものが好ましい。
Here, R in the general formula (I) is an alkyl group or a phenyl group, and may be the same or different. Specifically, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a phenyl group, etc. Among them, a methyl group is particularly preferable. N in the general formula (I) is an integer of 1 or more. Examples of commercially available commercially available silicone-modified epoxy resins having a siloxane structure represented by the general formula (I) include ALBIFLEX296, ALBIFLEX348, XP544 (trade names manufactured by Hanse Chemie) and the like.
In addition, as other silicone-modified epoxy resins, the epoxy resin having a siloxane structure represented by the formula (I) and a substituent capable of reacting with an epoxy group such as a phenolic hydroxyl group, amino group, carboxyl group, and thiol group Obtained by reacting with a compound having no siloxane structure and an epoxy resin having no siloxane structure such as bisphenol A type, bisphenol F type, bisphenol AD type epoxy resin, and phenolic Examples thereof include those obtained by reacting with a compound having a substituent capable of reacting with an epoxy group such as a hydroxyl group, an amino group, a carboxyl group, and a thiol group and having a siloxane structure represented by the formula (I).
Among these, those obtained by reacting an epoxy resin represented by the following formula (II) with bisphenols are preferable.

ここでRはアルキル基又はフェニル基であり、同一でも異なっていても良く、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、フェニル基等が挙げられるが、特にメチル基が好ましい。また、nは1以上の整数であり、25以下が好ましく、15以下がより好ましい。式(II)で示されるエポキシ樹脂として工業的に入手可能な市販品としては、KF−105、X22−163A(信越化学工業株式会社製商品名)、TSL9906(GE東芝シリコーン株式会社製商品名)等があり、エポキシ当量は1000g/eq.以下が好ましく、600g/eq.以下がより好ましい。
反応に用いられるビスフェノール類としては、一分子中にフェノール性水酸基を2個有するものであれば特に制限はなく、例えば、ハイドロキノン、レゾルシノール、カテコール等の単環二官能フェノール類、ビスフェノールA、ビスフェノールF、ビスフェノールAD、ビスフェノールS等のビスフェノール類、4,4´−ジヒドロキシビフェニル等のジヒドロキシビフェニル類、ビス(4−ヒドロキシフェニル)エーテル等のジヒドロキシフェニルエーテル類及びこれらのフェノール骨格の芳香環に直鎖アルキル基、分岐アルキル基、アリール基、メチロール、アリル基、環状脂肪族基等を導入したもの、これらのビスフェノール骨格の中央にある炭素原子に直鎖アルキル基、分岐アルキル基、アリル基、置換基のついたアリル基、環状脂肪族基、アルコキシカルボニル基等を導入した多環二官能フェノール類などが挙げられ、これらを単独で用いても2種以上を組み合わせて用いてもよい。
Here, R is an alkyl group or a phenyl group, which may be the same or different. Specific examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, and a phenyl group. Groups are preferred. Moreover, n is an integer greater than or equal to 1, 25 or less are preferable and 15 or less are more preferable. Commercially available products that are industrially available as the epoxy resin represented by the formula (II) are KF-105, X22-163A (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.), TSL9906 (trade name, manufactured by GE Toshiba Silicone Co., Ltd.). The epoxy equivalent is 1000 g / eq. The following is preferable, and 600 g / eq. The following is more preferable.
The bisphenol used in the reaction is not particularly limited as long as it has two phenolic hydroxyl groups in one molecule. For example, monocyclic bifunctional phenols such as hydroquinone, resorcinol and catechol, bisphenol A and bisphenol F Bisphenols such as bisphenol AD and bisphenol S, dihydroxybiphenyls such as 4,4′-dihydroxybiphenyl, dihydroxyphenyl ethers such as bis (4-hydroxyphenyl) ether and linear alkyls on the aromatic ring of these phenol skeletons Group, branched alkyl group, aryl group, methylol, allyl group, cycloaliphatic group, etc., linear alkyl group, branched alkyl group, allyl group, substituent of carbon atom in the center of these bisphenol skeletons Attached allyl group, cyclic Aliphatic group, alkoxy such as polycyclic bifunctional phenols obtained by introducing a carbonyl group and the like, may be used in combination of two or more even with these alone.

シリコーン変性エポキシ樹脂は、例えば、式(II)で示されるエポキシ樹脂とビスフェノール類を混合し、必要に応じて、触媒を添加し、更に必要に応じて有機溶剤を添加し加熱反応させることにより得られる。触媒としては以下のものが例示される。1,8−ジアザビシクロ〔5,4,0〕ウンデセン−7、1,5−ジアザビシクロ〔4,3,0〕ノネン−5、5,6−ジブチルアミノ−1,8−ジアザビシクロ〔5,4,0〕ウンデセン−7等のシクロアミジン化合物、その誘導体、トリエチルアミン、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール等の3級アミン類、2−メチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、1−ベンジル−2−メチルイミダゾール等のイミダゾール類、トリブチルホスフィン、メチルジフェニルホスフィン、トリフェニルホスフィン、ジフェニルホスフィン、フェニルホスフィン等の有機ホスフィン類、テトラフェニルホスホニウム・テトラフェニルボレート、トリフェニルホスフィンテトラフェニルボレート、2−エチル−4−メチルイミダゾール・テトラフェニルボレート、N−メチルモルホリン・テトラフェニルボレート等のテトラフェニルボロン塩等。反応する際のエポキシ樹脂とビスフェノール類との当量比は、エポキシ当量/水酸基当量の比が1〜5であることが好ましい。
また、式(II)で示されるエポキシ樹脂中のシロキサン鎖長nが1の短鎖シロキサンのエポキシ樹脂とビスフェノール類の反応から得られるシリコーン変性エポキシ樹脂は、界面活性作用が弱く破泡性に劣る傾向にあり、また低応力性にも劣る傾向にあるため単独で用いるよりも、シロキサン鎖長nが3〜10の長鎖シロキサンを有するシリコーン変性エポキシ樹脂と併用することが好ましい。
この場合は、長鎖シロキサンを有するシリコーン変性エポキシ樹脂と混合したり、ビスフェノール類と反応させる時に、長鎖シロキサンを有するエポキシ樹脂と一緒に反応させたりする。反応時の長鎖シロキサンを有するエポキシ樹脂の当量Aと短鎖シロキサンを有するエポキシ樹脂の当量Bとの当量比A/Bは0.2〜5であることが好ましく、0.3〜3がより好ましい。0.2未満では破泡性、脱泡性、低応力性が不十分となる傾向があり、5を超えると得られたシリコーン変性エポキシ樹脂の反応性が低下する傾向がある。
シリコーン変性エポキシ樹脂の量は、好ましくは(A)成分の液状エポキシ樹脂成分の全量に対して5質量%以上、50質量%以下、及びシリコーン変性エポキシ樹脂成分と(C)成分の合計量に対して8質量%以上、80質量%以下に設定される。より好ましくは(A)成分の液状エポキシ樹脂成分の全量に対して5質量%以上、40質量%以下、及びシリコーン変性エポキシ樹脂成分と(C)成分の合計量に対して8質量%以上、75質量%以下に設定される。更に好ましくは(A)成分の液状エポキシ樹脂成分の全量に対して5質量%以上、30質量%未満、及びシリコーン変性エポキシ樹脂成分と(C)成分の合計量に対して10質量%以上、65質量%未満に設定される。(A)成分の液状エポキシ樹脂成分の全量に対して5質量%未満では、十分な界面活性作用が働かないために破泡性、脱泡性が低下する傾向があり、また、低応力性も小さくなる傾向がある。50質量%を超えると機械的強度の低下、揺変指数の増加による脱泡性の低下、さらに耐湿性の低下が生じ易くなる。同様に、シリコーン変性エポキシ樹脂成分と(C)成分の合計量に対して8質量%未満では、十分な界面活性作用が働かないために破泡性、脱泡性が低下する傾向があり、また、低応力性も小さくなる傾向がある。80質量%を超えると機械的強度の低下、揺変指数の増加による脱泡性の低下、さらに耐湿性の低下が生じ易くなる。
本発明において用いられる(B)芳香族アミン硬化剤としては、特に制限はなく、エポキシ樹脂の硬化剤として一般に使用されているものを用いることができる。例えば、ジエチルトルエンジアミン、3,3´−ジエチル−4,4´−ジアミノジフェニルメタン、3,3´,5,5´−テトラメチル−4,4´−ジアミノジフェニルメタン、3,3´−ジイソプロピル−5,5´−ジメチル−4,4´ジアミノジフェニルメタンなどが挙げられる。市販品としては、JERキュアW、JERキュアZ(ジャパンエポキシレジン株式会社製商品名)、カヤハードA−A、カヤハードA−B、カヤハードA−S、カヤボンドC−200S、カヤボンドC−300S(日本化薬株式会社製商品名)、ARADUR5200 US(バンティコ株式会社製商品名)、MIPA、MEPA(Lonza社製商品名)等が入手可能で、これらを単独で用いても2種以上を組み合わせて用いてもよい。中でも粘度を下げたり、反りをより小さく抑える観点からは液状のジエチルトルエンジアミン、3,3´−ジエチル−4,4´−ジアミノジフェニルメタンが特に好ましい。
(B)芳香族アミン硬化剤は、アミンの中で、一液タイプの樹脂組成物にした場合にポットライフが低下しにくいため好ましい。(A)液状エポキシ樹脂と(B)芳香族アミン硬化剤との当量比は、それぞれの未反応分を少なく抑えるために、エポキシ樹脂に対して硬化剤を0.8〜1.4当量の範囲に設定することが好ましく、0.9〜1.2当量がより好ましい。0.8〜1.4当量の範囲からはずれた場合、未反応のアミノ基が存在したり、硬化反応が不十分となったりして信頼性が低下する傾向がある。ここで、芳香族アミンの当量はエポキシ基1個に対しアミノ基の活性水素1個が反応するものとして計算される。
本発明において用いられる(C)コアシェルシリコーン重合体の微粒子は、固形シリコーン重合体のコアと有機重合体のシェルからなるものである。コアとなるシリコーン重合体は[RR'SiO2/2]単位を有するオルガノポリシロキサンであり、架橋成分として3官能性シロキサン単位([RSiO3/2])あるいは4官能性シロキサン単位([SiO4/2])を用いることが好ましい。これらの3官能または4官能シロキサン成分は0.5〜20モル%が好ましく、さらには3官能シロキサン成分を2〜10モル%使用することが好ましい。3官能または4官能シロキサン成分が多くなるとコアとなるシリコーン重合体の硬度、弾性率が高くなり、目的とする封止用液状エポキシ樹脂組成物の硬化物の弾性率低減、発生応力の低減効果が小さくなってしまう。また、3官能または4官能シロキサン成分が少なくなると、弾性率の低い重合体を得ることができるが、架橋密度が低くなるため、未反応シロキサン成分が多くなる。
The silicone-modified epoxy resin can be obtained, for example, by mixing an epoxy resin represented by the formula (II) and bisphenols, adding a catalyst as necessary, and further adding an organic solvent as necessary to cause a heat reaction. It is done. The following are illustrated as a catalyst. 1,8-diazabicyclo [5,4,0] undecene-7,1,5-diazabicyclo [4,3,0] nonene-5,5,6-dibutylamino-1,8-diazabicyclo [5,4,0 ] Cyclamidine compounds such as undecene-7, derivatives thereof, tertiary amines such as triethylamine, triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, 2-methylimidazole, 2-ethyl-4-methylimidazole, Imidazoles such as 2-phenylimidazole, 2-phenyl-4-methylimidazole and 1-benzyl-2-methylimidazole, organic phosphines such as tributylphosphine, methyldiphenylphosphine, triphenylphosphine, diphenylphosphine and phenylphosphine, tetraphenyl Ruhosuhoniumu · tetraphenyl borate, triphenyl phosphine tetraphenyl borate, 2-ethyl-4-methylimidazole · tetraphenyl borate, tetraphenyl boron salts such as N- methylmorpholine tetraphenylborate. It is preferable that the ratio of epoxy equivalent / hydroxyl equivalent is 1 to 5 as the equivalent ratio of the epoxy resin and the bisphenol during the reaction.
In addition, the silicone-modified epoxy resin obtained by the reaction of a short-chain siloxane epoxy resin having a siloxane chain length n of 1 and a bisphenol in the epoxy resin represented by the formula (II) has a weak surface activity and poor foam resistance. It tends to be inferior in low-stress properties and is preferably used in combination with a silicone-modified epoxy resin having a long-chain siloxane having a siloxane chain length n of 3 to 10 rather than using alone.
In this case, it is mixed with a silicone-modified epoxy resin having a long-chain siloxane or reacted with an epoxy resin having a long-chain siloxane when reacting with a bisphenol. The equivalent ratio A / B of the equivalent A of the epoxy resin having a long-chain siloxane and the equivalent B of an epoxy resin having a short-chain siloxane during the reaction is preferably 0.2 to 5, more preferably 0.3 to 3. preferable. If it is less than 0.2, the foam-breaking property, defoaming property, and low stress tend to be insufficient, and if it exceeds 5, the reactivity of the resulting silicone-modified epoxy resin tends to decrease.
The amount of the silicone-modified epoxy resin is preferably 5% by mass or more and 50% by mass or less based on the total amount of the liquid epoxy resin component of the component (A), and the total amount of the silicone-modified epoxy resin component and the component (C). And 8 mass% or more and 80 mass% or less. More preferably, it is 5% by mass or more and 40% by mass or less with respect to the total amount of the liquid epoxy resin component of component (A), and 8% by mass or more with respect to the total amount of the silicone-modified epoxy resin component and component (C), 75 Set to mass% or less. More preferably, it is 5% by mass or more and less than 30% by mass with respect to the total amount of the liquid epoxy resin component of component (A), and 10% by mass or more with respect to the total amount of the silicone-modified epoxy resin component and component (C), 65 It is set to less than mass%. When the amount is less than 5% by mass based on the total amount of the liquid epoxy resin component of component (A), there is a tendency that the foam breaking property and defoaming property are lowered because sufficient surface active action does not work, and the low stress property is also low. There is a tendency to become smaller. When it exceeds 50% by mass, the mechanical strength is lowered, the defoaming property is lowered due to an increase in the fluctuation index, and the moisture resistance is easily lowered. Similarly, if the amount is less than 8% by mass based on the total amount of the silicone-modified epoxy resin component and the component (C), sufficient surface active action does not work, and there is a tendency for foam breaking and defoaming properties to decrease. Also, the low stress property tends to be small. When it exceeds 80% by mass, the mechanical strength is lowered, the defoaming property is lowered due to the increase of the fluctuation index, and the moisture resistance is easily lowered.
There is no restriction | limiting in particular as (B) aromatic amine hardening | curing agent used in this invention, What is generally used as a hardening | curing agent of an epoxy resin can be used. For example, diethyltoluenediamine, 3,3′-diethyl-4,4′-diaminodiphenylmethane, 3,3 ′, 5,5′-tetramethyl-4,4′-diaminodiphenylmethane, 3,3′-diisopropyl-5 , 5'-dimethyl-4,4'diaminodiphenylmethane and the like. Commercially available products include JER Cure W, JER Cure Z (trade name, manufactured by Japan Epoxy Resin Co., Ltd.), Kayahard A-A, Kayahard AB, Kayahard AS, Kayabond C-200S, Kayabond C-300S (Nipponization) (Trade name made by Yakuhin Co., Ltd.), ARADUR5200 US (trade name made by Bantico Co., Ltd.), MIPA, MEPA (trade name made by Lonza), etc. are available, and these may be used alone or in combination of two or more. Also good. Among these, liquid diethyltoluenediamine and 3,3′-diethyl-4,4′-diaminodiphenylmethane are particularly preferable from the viewpoint of lowering the viscosity and suppressing warpage to a smaller extent.
(B) Aromatic amine curing agents are preferred because the pot life is unlikely to decrease when a one-component resin composition is used in the amine. The equivalent ratio of (A) liquid epoxy resin and (B) aromatic amine curing agent is in the range of 0.8 to 1.4 equivalents of curing agent with respect to the epoxy resin in order to suppress the respective unreacted components. Is preferably set to 0.9 to 1.2 equivalents. When deviating from the range of 0.8 to 1.4 equivalents, there is a tendency that unreacted amino groups are present or the curing reaction is insufficient and reliability is lowered. Here, the equivalent of an aromatic amine is calculated on the assumption that one active hydrogen of an amino group reacts with one epoxy group.
The fine particles of (C) core-shell silicone polymer used in the present invention are composed of a solid silicone polymer core and an organic polymer shell. The silicone polymer as the core is an organopolysiloxane having [RR′SiO 2/2 ] units, and a trifunctional siloxane unit ([RSiO 3/2 ]) or tetrafunctional siloxane unit ([SiO 4 ] is used as a crosslinking component. / 2 ]) is preferred. These trifunctional or tetrafunctional siloxane components are preferably used in an amount of 0.5 to 20 mol%, and more preferably 2 to 10 mol% of the trifunctional siloxane component. When the trifunctional or tetrafunctional siloxane component is increased, the hardness and elastic modulus of the silicone polymer as the core are increased, and the effect of reducing the elastic modulus of the cured product of the target sealing liquid epoxy resin composition and the effect of reducing the generated stress are obtained. It gets smaller. Further, when the trifunctional or tetrafunctional siloxane component is decreased, a polymer having a low elastic modulus can be obtained, but the crosslinking density is decreased, so that the unreacted siloxane component is increased.

(C)成分のコアとなるシリコーン重合体の[RR'SiO2/2]、[RSiO3/2]単位について、R'はメチル基、エチル基等の炭素数6以下のアルキル基又はフェニル基等のアリール基が好ましく(R'は一種類でも二種以上であっても良い)、低弾性率、コストの点からはメチル基が好ましい。RもR'と同様なアルキル基又はアリール基が好ましい(Rは一種類でも二種以上であっても良く、R'、Rは同種でも異種でも良い)が、少なくとも一部に末端に炭素二重結合を有する置換基を持つことが好ましい。この理由としては、コアを重合させた後、ビニル重合により得られる有機重合体をシェルとして重合を行う際に、コアに含まれる炭素二重結合とシェルの有機重合体がグラフト化することでコア−シェル界面を有機結合により強固に結合できるためである。炭素二重結合を有する置換基としてはビニル基、アリル基、メタクリル基、メタクリロキシ基、またはこれらを末端にもつアルキル基等があげられる。
(C)成分のシェルとなる有機重合体としては、エポキシ樹脂及び/又は芳香族アミン硬化剤と相溶性の良い樹脂であることが好ましい。これを例示すれば、ポリビニルブチラール、ポリ酢酸ビニル、ポリスチレン、アクリル樹脂やその共重合体などがあげられ、特に、アクリル樹脂又はアクリル樹脂の共重合体が好ましい。アクリル樹脂としてはアクリル酸及びそのエステル、メタクリル酸及びそのエステル、アクリルアミド、アクリロニトリルなどの重合物や、一般的に行われるようにスチレンなど他のモノマーとの共重合体があげられる。アクリル樹脂については特に限定するものではないが、強靭性、耐加水分解性の面からポリメタクリル酸エステルが好ましく、さらには価格、反応性を考慮すればポリメタクリル酸メチル及びその共重合体が好ましい。
(C)コアシェルシリコーン重合体の微粒子を得る方法としては、乳化重合によりコアとなるシリコーン重合体を合成し、次にアクリルモノマーと開始剤を添加して2段目の重合を行うことでシェルを形成する方法などがある。この場合、1段目の重合に用いるオルガノシロキサンモノマーまたはオリゴマー成分に二重結合を有するシロキサン化合物を適度に配合することで、二重結合を介してアクリル樹脂がグラフト化し、コアとシェルの界面が強固になる。
(C)コアシェルシリコーン重合体の微粒子の粒径は組成物を均一に変性するためには細かい方が良好であり、平均1次粒子径が0.05〜1.0μmの範囲であることが好ましく、0.05〜0.5μmの範囲であることがより好ましい。1.0μm以上で粒径の大きいものでは低反りの効果が低減する傾向がある。また、このコアシェルシリコーン重合体の微粒子は、予め(A)成分の液状エポキシ樹脂との混合物として配合することが好ましい。混合物を得る方法としては、80〜120℃程度に加熱した(A)成分の液状エポキシ樹脂中に、コアシェルシリコーン重合体の微粒子を攪拌下添加し高速せん断攪拌したり、プラネタリーミキサー、ホモミキサー、三本ロール等の混練機で混合、分散することができる。
(C)コアシェルシリコーン重合体の微粒子の量は、本発明の効果を達成するために、(A)成分及び(C)成分の合計量に対して10〜40質量%に設定されることが好ましく、10〜30質量%に設定されることがより好ましい。10質量%未満では、十分な低応力化が図れないために反りが大きくなる傾向があり、40質量%を超えると、硬化物の強度や耐湿性が低下する傾向がある。
本発明において用いられる(D)無機充填剤としては、例えば、溶融シリカ、結晶シリカ等のシリカ、炭酸カルシウム、クレー、酸化アルミナ等のアルミナ、窒化珪素、炭化珪素、窒化ホウ素、珪酸カルシウム、チタン酸カリウム、窒化アルミ、ベリリア、ジルコニア、ジルコン、フォステライト、ステアタイト、スピネル、ムライト、チタニア等の粉体、又はこれらを球形化したビーズ、ガラス繊維などが挙げられる。さらに、難燃効果のある無機充填剤としては水酸化アルミニウム、水酸化マグネシウム、硼酸亜鉛、モリブデン酸亜鉛等が挙げられる。これらの無機充填剤は単独で用いても2種以上を組み合わせて用いてもよい。中でも線膨張係数低減の観点からは溶融シリカが、高熱伝導性の観点からはアルミナが好ましく、充填剤の形状は高充填化及び液状エポキシ樹脂組成物の微細間隙への流動性・浸透性の観点から球形が好ましい。また、シリカは、封止用エポキシ樹脂組成物の流動性やポットライフの点からは、あらかじめカップリング剤で処理されたものが好ましい。
(C) About the [RR′SiO 2/2 ] and [RSiO 3/2 ] units of the silicone polymer that is the core of the component, R ′ is an alkyl group having 6 or less carbon atoms such as a methyl group or an ethyl group, or a phenyl group. (R ′ may be one type or two or more types), and a methyl group is preferable from the viewpoint of low elastic modulus and cost. R is preferably the same alkyl group or aryl group as R ′ (R may be one type or two or more types, and R ′ and R may be the same type or different types). It preferably has a substituent having a heavy bond. The reason for this is that, after polymerizing the core, when the polymerization is performed using the organic polymer obtained by vinyl polymerization as a shell, the carbon double bond contained in the core and the organic polymer of the shell are grafted to the core. This is because the shell interface can be firmly bonded by an organic bond. Examples of the substituent having a carbon double bond include a vinyl group, an allyl group, a methacryl group, a methacryloxy group, or an alkyl group having a terminal thereof.
The organic polymer serving as the shell of the component (C) is preferably a resin having good compatibility with the epoxy resin and / or the aromatic amine curing agent. Illustrative examples include polyvinyl butyral, polyvinyl acetate, polystyrene, acrylic resins and copolymers thereof, and acrylic resins or copolymers of acrylic resins are particularly preferred. Examples of the acrylic resin include polymers such as acrylic acid and esters thereof, methacrylic acid and esters thereof, acrylamide and acrylonitrile, and copolymers with other monomers such as styrene as is generally performed. The acrylic resin is not particularly limited, but a polymethacrylic acid ester is preferable from the viewpoint of toughness and hydrolysis resistance, and polymethyl methacrylate and its copolymer are preferable in consideration of price and reactivity. .
(C) As a method for obtaining fine particles of a core-shell silicone polymer, a silicone polymer as a core is synthesized by emulsion polymerization, and then an acrylic monomer and an initiator are added to perform a second stage polymerization to form a shell. There is a method of forming. In this case, an acrylic resin is grafted through the double bond by appropriately blending the siloxane compound having a double bond with the organosiloxane monomer or oligomer component used in the first stage polymerization, and the interface between the core and the shell is Become stronger.
(C) The fine particle diameter of the core-shell silicone polymer is preferably fine in order to uniformly modify the composition, and the average primary particle diameter is preferably in the range of 0.05 to 1.0 μm. The range of 0.05 to 0.5 μm is more preferable. When the particle size is 1.0 μm or more and the particle size is large, the effect of low warpage tends to be reduced. The core-shell silicone polymer fine particles are preferably blended in advance as a mixture with the component (A) liquid epoxy resin. As a method for obtaining a mixture, in the liquid epoxy resin of the component (A) heated to about 80 to 120 ° C., the fine particles of the core-shell silicone polymer are added with stirring and high-speed shearing stirring, a planetary mixer, a homomixer, It can mix and disperse | distribute with kneading machines, such as a three roll.
In order to achieve the effects of the present invention, the amount of the fine particles of the (C) core-shell silicone polymer is preferably set to 10 to 40% by mass with respect to the total amount of the component (A) and the component (C). 10 to 30% by mass is more preferable. If the amount is less than 10% by mass, the warp tends to increase because sufficient stress cannot be reduced, and if it exceeds 40% by mass, the strength and moisture resistance of the cured product tend to decrease.
Examples of the (D) inorganic filler used in the present invention include silica such as fused silica and crystalline silica, alumina such as calcium carbonate, clay and alumina oxide, silicon nitride, silicon carbide, boron nitride, calcium silicate and titanic acid. Examples thereof include powders such as potassium, aluminum nitride, beryllia, zirconia, zircon, fosterite, steatite, spinel, mullite, and titania, or beads and glass fibers formed by spheroidizing them. Furthermore, examples of the inorganic filler having a flame retardant effect include aluminum hydroxide, magnesium hydroxide, zinc borate, and zinc molybdate. These inorganic fillers may be used alone or in combination of two or more. Among them, fused silica is preferable from the viewpoint of reducing the linear expansion coefficient, and alumina is preferable from the viewpoint of high thermal conductivity, and the shape of the filler is high, and from the viewpoint of fluidity and permeability into the fine gaps of the liquid epoxy resin composition. The spherical shape is preferred. Silica is preferably pretreated with a coupling agent from the viewpoint of fluidity and pot life of the sealing epoxy resin composition.

(D)無機充填剤の平均粒径は、特に球形シリカの場合、0.5〜20μmの範囲のシリカを用いることが好ましく、0.5〜15μmの範囲がより好ましい。ここで平均粒径は、レーザー回折法による寸法で表示する。平均粒径が0.5μm未満では液状樹脂へ充填剤を高濃度に分散することが困難になる傾向があり、20μmを超えると粗粒成分が多くなり、微細間隙への充填不足、印刷時のスジ状の不良又は表面平滑性が低下する傾向がある。
(D)無機充填剤の量は、本発明の効果を達成するために、(A)成分〜(D)成分の合計量に対して81〜93質量%の範囲が好ましく、86〜93質量%の範囲がより好ましい。配合量が81質量%未満では熱膨張係数の低減効果が低くなり反りが大きくなる傾向があり、93質量%を超えると粘度が上昇するため塗布作業性が低下する傾向があり、粘度を下げるために添加する有機溶剤の量を増やすとボイドや著しい膜減りなどの不具合を招く傾向がある。
本発明において用いられる(E)有機溶剤は、シリコーン変性エポキシ樹脂の配合量の増大による硬化物の機械的強度の低下を生じさせずに、エポキシ樹脂組成物の印刷成形性に最適な粘度及び揺変指数を付与させるための成分である。この有機溶剤としては、加熱硬化時の急激な揮発によるボイド形成を避けたり、印刷作業中での溶剤揮発を抑えたりする点からは沸点が170℃以上のものが好ましく、沸点が200℃以上のものがより好ましい。また、真空印刷により塗膜を形成する場合には、エポキシ樹脂組成物が常時真空下で扱われるため溶剤が徐々に揮発し粘度変化が生じる懸念がある。この場合には、有機溶剤の沸点は240℃〜300℃の範囲のものが好ましい。具体的には、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコールモノブチルエーテル、テトラエチレングリコールモノブチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、エチレングリコールモノヘキシルエーテル、ジエチレングリコールモノヘキシルエーテル、エチレングリコールフェニールエーテル、エチレングリコールモノ−2−エチルヘキシルエーテル、ジエチレングリコールモノ−2−エチルヘキシルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノブチルエーテル、ジプロピレングリコールプロピルエーテル、トリプロピレングリコールモノメチルエーテル、プロピレングリコールモノn−ブチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、3−メチル−3−メトキシブチルアセテート、ブチルカルビトールアセテート、2,2,4−トリメチル−1,3−ペンタンジオールモノイソブチレート、2,2,4−トリメチル−1,3−ペンタンジオールジイソブチレート、γ−ブチロラクトン等が挙げられ、これらを単独で用いても2種以上を組み合わせて用いてもよい。
(D) The average particle diameter of the inorganic filler is preferably 0.5 to 20 μm, more preferably 0.5 to 15 μm, particularly in the case of spherical silica. Here, the average particle diameter is expressed as a dimension by a laser diffraction method. When the average particle size is less than 0.5 μm, it tends to be difficult to disperse the filler in a high concentration in the liquid resin. When the average particle size exceeds 20 μm, the coarse particle component increases, and the filling of the fine gap is insufficient. There is a tendency for streak-like defects or surface smoothness to decrease.
(D) In order to achieve the effect of the present invention, the amount of the inorganic filler is preferably in the range of 81 to 93% by mass, and 86 to 93% by mass with respect to the total amount of the components (A) to (D). The range of is more preferable. If the blending amount is less than 81% by mass, the effect of reducing the thermal expansion coefficient tends to be low and warpage tends to increase. If the blending amount exceeds 93% by mass, the viscosity increases and the coating workability tends to decrease. Increasing the amount of organic solvent added to the glass tends to cause problems such as voids and significant film loss.
The organic solvent (E) used in the present invention does not cause a decrease in the mechanical strength of the cured product due to an increase in the amount of the silicone-modified epoxy resin, and the viscosity and vibration optimal for the print moldability of the epoxy resin composition. It is a component for giving a variable index. As the organic solvent, those having a boiling point of 170 ° C. or higher are preferable from the viewpoint of avoiding void formation due to rapid volatilization at the time of heat curing or suppressing solvent volatilization during printing work, and having a boiling point of 200 ° C. or higher. More preferred. Moreover, when forming a coating film by vacuum printing, since an epoxy resin composition is always handled under vacuum, there exists a possibility that a solvent volatilizes gradually and a viscosity change may arise. In this case, the boiling point of the organic solvent is preferably in the range of 240 ° C to 300 ° C. Specifically, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monobutyl ether, triethylene glycol monobutyl ether, tetraethylene glycol monobutyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, ethylene glycol Monohexyl ether, diethylene glycol monohexyl ether, ethylene glycol phenyl ether, ethylene glycol mono-2-ethylhexyl ether, diethylene glycol mono-2-ethylhexyl ether, propylene glycol monobutyl ether, dipropylene glycol monomethyl ether, dipropylene glycol Monoethyl ether, dipropylene glycol monobutyl ether, dipropylene glycol propyl ether, tripropylene glycol monomethyl ether, propylene glycol mono n-butyl ether, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, 3-methyl-3-methoxybutyl acetate, Butyl carbitol acetate, 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate, 2,2,4-trimethyl-1,3-pentanediol diisobutyrate, γ-butyrolactone, etc. These may be used alone or in combination of two or more.

(E)有機溶剤の量は、本発明の液状エポキシ樹脂組成物に対して1〜10質量%の範囲に設定されることが好ましい。配合量が1質量%未満では粘度が高くなり塗布作業性や印刷性が低下したり、膜の均一性に欠けたり、また未充填が生じやすくなる。10質量%を超えると粘度が下がりすぎ流れやすくなるため、印刷後、樹脂組成物がウエハー裏面へ流れたり、硬化後ボイドや著しい膜減りが発生したりするなどの不具合を招く懸念がある。
本発明の液状エポキシ樹脂組成物には必要に応じて、樹脂と無機充填剤或いは樹脂と電子部品の構成部材との界面接着を強固にする目的で、カップリング剤を使用することができる。カップリング剤としては特に制限はなく、エポキシシラン、アミノシラン、ウレイドシラン、ビニルシラン、アルキルシラン、メルカプトシラン、イソシアネートシラン等の各種シラン系化合物、チタン系化合物、アルミニウムキレート類を用いることができる。具体的には、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(γ−メトキシエトキシ)シラン、γ−メタクリロキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、γ−(2−アミノエチル)アミノプロピルトリメトキシシラン、γ−(2−アミノエチル)アミノプロピルジメトキシシラン、γ−ウレイドプロピルトリエトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−アニリノプロピルトリメトキシシラン、γ−アニリノプロピルジメトキシシラン、γ−ジブチルアミノプロピルトリメトキシシラン、N−(トリメトキシシリルプロピル)エチレンジアミン、N−(ジメトキシメチルシリルイソプロピル)エチレンジアミン、メチルトリメトキシシラン、メチルジメトキシシラン、メチルトリエトキシシラン、ヘキサメチルジシラン、ヒドロキシプロピルトリメトキシシラン等のシラン系カップリング剤、イソプロピルトリイソステアロイルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、イソプロピルトリオクタノイルチタネート等のチタネート系カップリング剤が挙げられ、これらを単独で用いても2種以上を組み合わせて用いてもよい。
さらに、本発明の液状エポキシ樹脂組成物には必要に応じて、IC等の半導体素子の耐マイグレーション性、耐湿性及び高温放置特性を向上させる観点から、イオントラップ剤を使用することができる。イオントラップ剤としては特に制限はなく、従来公知のものを用いることができるが、例えば、ハイドロタルサイト類や、マグネシウム、アルミニウム、チタン、ジルコニウム、ビスマス等の元素の含水酸化物等が挙げられ、これらを単独で用いても2種以上を組み合わせて用いてもよい。具体的には、DHT−4A(協和化学工業株式会社製商品名)、IXE500(東亜合成株式会社製商品名)等がある。イオントラップ剤の配合量は、ハロゲンイオン等の陰イオンやナトリウム等の陽イオンを補足できる十分量であれば特に制限はないが、液状エポキシ樹脂に対して1〜10質量%が好ましい。
その他の添加剤として、硬化促進剤、染料、顔料、カーボンブラック等の着色剤、界面活性剤、酸化防止剤、リン酸エステル、メラミン、メラミン誘導体、トリアジン環を有する化合物、シアヌル酸誘導体、イソシアヌル酸誘導体等の窒素含有化合物、シクロホスファゼン等の燐窒素含有化合物、酸化亜鉛、酸化鉄、酸化モリブデン、フェロセン等の金属化合物、三酸化アンチモン、四酸化アンチモン、五酸化アンチモン等の酸化アンチモン、ブロム化エポキシ樹脂などの従来公知の難燃剤などを必要に応じて配合することができる。
(E) It is preferable that the quantity of the organic solvent is set to the range of 1-10 mass% with respect to the liquid epoxy resin composition of this invention. If the blending amount is less than 1% by mass, the viscosity becomes high and the coating workability and printability are deteriorated, the film is not uniform, and unfilling tends to occur. If it exceeds 10% by mass, the viscosity tends to decrease too much and flow easily, and there is a concern that after printing, the resin composition may flow to the backside of the wafer, or voids or significant film loss may occur after curing.
If necessary, a coupling agent can be used in the liquid epoxy resin composition of the present invention for the purpose of strengthening the interfacial adhesion between the resin and the inorganic filler or the resin and the component of the electronic component. The coupling agent is not particularly limited, and various silane compounds such as epoxy silane, amino silane, ureido silane, vinyl silane, alkyl silane, mercapto silane, and isocyanate silane, titanium compounds, and aluminum chelates can be used. Specifically, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, γ-glycidoxypropyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (γ-methoxy) Ethoxy) silane, γ-methacryloxypropyltrimethoxysilane, vinyltriacetoxysilane, γ- (2-aminoethyl) aminopropyltrimethoxysilane, γ- (2-aminoethyl) aminopropyldimethoxysilane, γ-ureidopropyltri Ethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropylmethyldimethoxysilane, γ-aminopropyltriethoxysilane, γ-anilinopropyltrimethoxysilane, γ-anilinopropyldimethoxysilane γ-dibutylaminopropyltrimethoxysilane, N- (trimethoxysilylpropyl) ethylenediamine, N- (dimethoxymethylsilylisopropyl) ethylenediamine, methyltrimethoxysilane, methyldimethoxysilane, methyltriethoxysilane, hexamethyldisilane, hydroxypropyltri Examples include silane coupling agents such as methoxysilane, titanate coupling agents such as isopropyl triisostearoyl titanate, isopropyl tris (dioctyl pyrophosphate) titanate, isopropyl trioctanoyl titanate, and these can be used alone or in combination. A combination of the above may also be used.
Furthermore, an ion trap agent can be used in the liquid epoxy resin composition of the present invention, if necessary, from the viewpoint of improving migration resistance, moisture resistance and high temperature storage characteristics of a semiconductor element such as an IC. The ion trapping agent is not particularly limited and conventionally known ones can be used, for example, hydrotalcites, hydrous oxides of elements such as magnesium, aluminum, titanium, zirconium, bismuth, etc. These may be used alone or in combination of two or more. Specifically, there are DHT-4A (trade name, manufactured by Kyowa Chemical Industry Co., Ltd.), IXE500 (trade name, manufactured by Toagosei Co., Ltd.), and the like. The compounding amount of the ion trapping agent is not particularly limited as long as it is sufficient to supplement anions such as halogen ions and cations such as sodium, but is preferably 1 to 10% by mass with respect to the liquid epoxy resin.
Other additives include curing accelerators, dyes, pigments, colorants such as carbon black, surfactants, antioxidants, phosphate esters, melamine, melamine derivatives, compounds having a triazine ring, cyanuric acid derivatives, isocyanuric acid Nitrogen-containing compounds such as derivatives, phosphorus-nitrogen-containing compounds such as cyclophosphazene, metal compounds such as zinc oxide, iron oxide, molybdenum oxide, and ferrocene, antimony oxides such as antimony trioxide, antimony tetraoxide, and antimony pentoxide, brominated epoxies A conventionally known flame retardant such as a resin can be blended as necessary.

本発明の液状エポキシ樹脂組成物は、上記各種成分を均一に分散混合できるのであれば、いかなる手法を用いても調製できるが、一般的な手法として、所定の配合量の成分を秤量し、三本ロール、らい潰機、プラネタリーミキサー、ホモミキサー等によって分散混練を行う方法を挙げることができる。また、適当量の液状ビスフェノール型エポキシ樹脂、コアシェルシリコーン重合体微粒子、無機充填剤、カップリング剤、有機溶剤等の配合成分を予備分散及び予備加熱させたマスターバッチを用いる手法が、均一分散性や流動性の点から好ましい。
本発明で得られる封止用液状エポキシ樹脂組成物の25℃での粘度は5Pa・s〜100Pa・s、揺変指数は1.6以下が好ましく、粘度10Pa・s〜70Pa・s、揺変指数1.4以下がより好ましい。5Pa・s未満では、印刷後に樹脂組成物がウエハー端部や裏面へ流れてしまう傾向があり、100Pa・sを超えると広がり性や充填性が低下する傾向がある。また、揺変指数が1.6を超えると広がり性低下により成形性に不具合が生じたり、脱泡性低下により硬化物中にボイドが発生し易くなる。
ここで粘度はE型粘度計(3°コーン使用)の5rpmでの値とし、揺変指数は1rpmでの粘度/5rpmでの粘度の比とする。
また、本発明で得られる封止用液状エポキシ樹脂組成物の硬化物のガラス転移温度は80℃以上であることが好ましい。シリコーン変性エポキシ樹脂の量が過剰な場合、ガラス転移温度が80℃未満となりやすく、このような場合、機械的強度や耐湿信頼性の低下を招く傾向がある。硬化物のガラス転移温度以下での線膨張係数が15ppm/℃以下であることが好ましい。無機充填剤の量が不十分な場合、ガラス転移温度以下の線膨張係数が15ppm/℃を超えやすく、この場合、反りの増大を招く傾向がある。また、常温における弾性率が10〜26GPaであることが好ましい。シリコーン変性エポキシ樹脂の量が過剰な場合、常温における弾性率が10GPa未満となりやすく、機械的強度や耐湿信頼性の低下を招く傾向があり、26GPaを超えると反りの増大を招く傾向がある。ここで線膨張係数は、熱機械分析装置を用いて測定した時の熱膨張挙動から求めることができ、ガラス転移温度及び弾性率は、動的粘弾性測定装置(周波数10Hz)を用いて測定した時の動的粘弾性挙動から求めることができ、損失正接の極大値を示す温度をガラス転移温度とする。
本発明で得られる液状エポキシ樹脂組成物により素子を封止して得られる電子部品装置としては、リードフレーム、配線済みのテープキャリア、配線板、ガラス、シリコンウエハー等の支持部材に、半導体チップ、トランジスタ、ダイオード、サイリスタ等の能動素子、コンデンサ、抵抗体、抵抗アレイ、コイル、スイッチ等の受動素子などの素子を搭載し、必要な部分を本発明の液状エポキシ樹脂組成物で封止して得られる電子部品装置などが挙げられる。中でも、本発明の液状エポキシ樹脂組成物は低反り性、高信頼性を要求される電子部品装置に有効であり、特にウエハーレベルチップサイズパッケージに好適である。本発明の液状エポキシ樹脂組成物を用いて素子を封止する方法としては、ディスペンス方式、注型方式、印刷方式等が挙げられるが、特に印刷方式が好適である。
The liquid epoxy resin composition of the present invention can be prepared by any method as long as the above-mentioned various components can be uniformly dispersed and mixed. However, as a general method, a predetermined amount of components are weighed, Examples of the method include dispersion kneading using a roll, a crushed machine, a planetary mixer, a homomixer, or the like. In addition, a technique using a master batch in which compounding components such as an appropriate amount of liquid bisphenol-type epoxy resin, core-shell silicone polymer fine particles, inorganic filler, coupling agent, organic solvent and the like are pre-dispersed and pre-heated is used for uniform dispersibility and It is preferable from the viewpoint of fluidity.
The viscosity at 25 ° C. of the liquid epoxy resin composition for sealing obtained in the present invention is preferably 5 Pa · s to 100 Pa · s, the throttling index is preferably 1.6 or less, and the viscosity is 10 Pa · s to 70 Pa · s. An index of 1.4 or less is more preferable. If it is less than 5 Pa · s, the resin composition tends to flow to the wafer edge or back surface after printing, and if it exceeds 100 Pa · s, the spreadability and filling property tend to be lowered. On the other hand, if the tumbling index exceeds 1.6, defects in formability occur due to a decrease in spreadability, and voids are easily generated in the cured product due to a decrease in defoaming property.
Here, the viscosity is a value at 5 rpm of an E-type viscometer (using a 3 ° cone), and the throttling index is a ratio of viscosity at 1 rpm / viscosity at 5 rpm.
Moreover, it is preferable that the glass transition temperature of the hardened | cured material of the liquid epoxy resin composition for sealing obtained by this invention is 80 degreeC or more. When the amount of the silicone-modified epoxy resin is excessive, the glass transition temperature tends to be less than 80 ° C. In such a case, the mechanical strength and the moisture resistance reliability tend to be lowered. The linear expansion coefficient at the glass transition temperature or lower of the cured product is preferably 15 ppm / ° C. or lower. When the amount of the inorganic filler is insufficient, the linear expansion coefficient below the glass transition temperature tends to exceed 15 ppm / ° C., and in this case, there is a tendency to increase warpage. Moreover, it is preferable that the elasticity modulus in normal temperature is 10-26 GPa. When the amount of the silicone-modified epoxy resin is excessive, the elastic modulus at normal temperature tends to be less than 10 GPa, and the mechanical strength and moisture resistance reliability tend to be lowered, and when it exceeds 26 GPa, the warpage tends to be increased. Here, the linear expansion coefficient can be obtained from the thermal expansion behavior when measured using a thermomechanical analyzer, and the glass transition temperature and elastic modulus were measured using a dynamic viscoelasticity measuring apparatus (frequency 10 Hz). The temperature that can be obtained from the dynamic viscoelastic behavior at the time and shows the maximum value of the loss tangent is defined as the glass transition temperature.
As an electronic component device obtained by sealing an element with the liquid epoxy resin composition obtained in the present invention, a lead frame, a wired tape carrier, a wiring board, glass, a support member such as a silicon wafer, a semiconductor chip, Mounted with active elements such as transistors, diodes, thyristors, etc., passive elements such as capacitors, resistors, resistor arrays, coils, switches, etc. and obtained by sealing the necessary parts with the liquid epoxy resin composition of the present invention. Electronic component devices that can be used. Among these, the liquid epoxy resin composition of the present invention is effective for an electronic component device that requires low warpage and high reliability, and is particularly suitable for a wafer level chip size package. Examples of a method for sealing an element using the liquid epoxy resin composition of the present invention include a dispensing method, a casting method, a printing method, and the like, and a printing method is particularly preferable.

次に実施例により本発明を説明するが、本発明の範囲はこれらの実施例に限定されるものではない。
(製造例1:シリコーン変性エポキシ樹脂)
窒素導入管、温度計、冷却管及びメカニカルスターラーを取り付けた1リットルのフラスコに、エポキシ樹脂KF−105(信越化学工業株式会社製商品名)200g、エポキシ樹脂TSL9906(GE東芝シリコーン株式会社製商品名)74.8g、テルペンジフェノール YP−90(ヤスハラケミカル株式会社製商品名)67g、触媒として1,8−ジアザビシクロ(5,4,0)ウンデセン−7 DBU(サンアプロ株式会社製商品名)2.8gをそれぞれ入れ、窒素雰囲気下、150℃で5時間反応させた。このようにしてエポキシ当量830g/eq.の液状のシリコーン変性エポキシ樹脂を得た。
(実施例1〜9及び比較例1〜6)
以下の成分をそれぞれ表1及び表2に示す質量部で配合し、三本ロール、次いでらい潰機にて混練分散した後、真空脱泡して、実施例1〜9及び比較例1〜6の封止用液状エポキシ樹脂組成物を作製した。
(A)液状エポキシ樹脂としてビスフェノールF型エポキシ樹脂(東都化成株式会社製、商品名YDF8170C)を使用した。
(B)芳香族アミン硬化剤として、芳香族アミン1(ジエチルトルエンジアミン、ジャパンエポキシレジン株式会社製、商品名JERキュアW)、及び芳香族アミン2(3,3´−ジエチル−4,4´−ジアミノジフェニルメタン、日本化薬株式会社製、商品名カヤハードA−A)を使用した。
(C)コアシェルシリコーン重合体の微粒子として、コアが3官能シロキサン成分としてメチルトリメトキシシラン3モル%及びメタクリロキシプロピルトリメトキシシラン2モル%含むジメチル型固形シリコーン重合体で、シェルがポリメチルメタクリレートで構成され、コア/シェル重量比率2/1、平均1次粒子径0.12μmのコアシェルシリコーン重合体の微粒子を使用した。また、比較のためにジメチル型固形シリコーンゴム粒子の表面がエポキシ基で修飾された、平均1次粒子径5μmのシリコーンゴム粒子(東レ・ダウコーニング・シリコーン株式会社製、商品名トレフィルE−601)、平均1次粒子径0.5μmのコアシェル型アクリルゴム粒子(ガンツ化成株式会社製、商品名スタフィロイドAC3832)を使用した。
(D)無機充填剤として、平均粒径6μmと平均粒径0.5μmの球状シリカの混合物(無機充填剤1)及び平均粒径15μmと平均粒径0.5μmの球状シリカの混合物(無機充填剤2)を使用した。
(E)有機溶剤として、ジエチレングリコールモノエチルエーテルアセテートを使用した。
また、シリコーン変性エポキシ樹脂として製造例1で得たシリコーン変性エポキシ樹脂、カップリング剤としてγ−グリシドキシプロピルトリメトキシシラン(信越化学工業株式会社製、商品名KBM403)、着色剤としてカーボンブラック、イオントラップ剤としてIXE500(東亞合成株式会社製商品名)を使用した。
EXAMPLES Next, although an Example demonstrates this invention, the scope of the present invention is not limited to these Examples.
(Production Example 1: Silicone-modified epoxy resin)
Epoxy resin KF-105 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.) 200 g, epoxy resin TSL9906 (trade name, manufactured by GE Toshiba Silicone Co., Ltd.) in a 1-liter flask equipped with a nitrogen introduction tube, a thermometer, a cooling tube, and a mechanical stirrer ) 74.8 g, terpene diphenol YP-90 (trade name, manufactured by Yasuhara Chemical Co., Ltd.) 67 g, 1,8-diazabicyclo (5,4,0) undecene-7 DBU (trade name, manufactured by San Apro Co., Ltd.) 2.8 g as a catalyst. Were allowed to react at 150 ° C. for 5 hours under a nitrogen atmosphere. In this way, an epoxy equivalent of 830 g / eq. A liquid silicone-modified epoxy resin was obtained.
(Examples 1-9 and Comparative Examples 1-6)
The following components were blended in parts by mass shown in Table 1 and Table 2, respectively, kneaded and dispersed in a three-roller and then a cracking machine, and then vacuum degassed, and Examples 1 to 9 and Comparative Examples 1 to 6 A liquid epoxy resin composition for sealing was prepared.
(A) A bisphenol F type epoxy resin (manufactured by Toto Kasei Co., Ltd., trade name: YDF8170C) was used as the liquid epoxy resin.
(B) As an aromatic amine curing agent, aromatic amine 1 (diethyltoluenediamine, manufactured by Japan Epoxy Resin Co., Ltd., trade name JER Cure W), and aromatic amine 2 (3,3'-diethyl-4,4 ' -Diaminodiphenylmethane, Nippon Kayaku Co., Ltd. make, brand name Kayahard AA) was used.
(C) The core-shell silicone polymer fine particles are a dimethyl type solid silicone polymer in which the core contains 3 mol% of methyltrimethoxysilane and 2 mol% of methacryloxypropyltrimethoxysilane as a trifunctional siloxane component, and the shell is polymethylmethacrylate. Core-shell silicone polymer fine particles having a core / shell weight ratio of 2/1 and an average primary particle size of 0.12 μm were used. In addition, for comparison, silicone rubber particles having an average primary particle diameter of 5 μm whose surface of dimethyl type solid silicone rubber particles has been modified with an epoxy group (trade name Trefil E-601, manufactured by Toray Dow Corning Silicone Co., Ltd.) Core-shell type acrylic rubber particles (manufactured by Ganz Kasei Co., Ltd., trade name Staphyloid AC3832) having an average primary particle size of 0.5 μm were used.
(D) As an inorganic filler, a mixture of spherical silica having an average particle diameter of 6 μm and an average particle diameter of 0.5 μm (inorganic filler 1) and a mixture of spherical silica having an average particle diameter of 15 μm and an average particle diameter of 0.5 μm (inorganic filling) Agent 2) was used.
(E) Diethylene glycol monoethyl ether acetate was used as the organic solvent.
Further, the silicone-modified epoxy resin obtained in Production Example 1 as a silicone-modified epoxy resin, γ-glycidoxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name KBM403) as a coupling agent, carbon black as a colorant, IXE500 (trade name, manufactured by Toagosei Co., Ltd.) was used as the ion trapping agent.


ただし、表1及び表2において
※1:シリコーン変性エポキシ樹脂/(液状ビスフェノール型エポキシ樹脂+シリコーン変性エポキシ樹脂)
※2:コアシェルシリコーン重合体の微粒子又はゴム粒子/(液状ビスフェノール型エポキシ樹脂+シリコーン変性エポキシ樹脂+コアシェルシリコーン重合体の微粒子又はゴム粒子)
※3:シリコーン変性エポキシ樹脂/(シリコーン変性エポキシ樹脂+コアシェルシリコーン重合体の微粒子又はシリコーンゴム粒子)
In Tables 1 and 2, * 1: Silicone-modified epoxy resin / (Liquid bisphenol-type epoxy resin + Silicone-modified epoxy resin)
* 2: Core shell silicone polymer fine particles or rubber particles / (Liquid bisphenol type epoxy resin + silicone modified epoxy resin + core shell silicone polymer fine particles or rubber particles)
* 3: Silicone-modified epoxy resin / (silicone-modified epoxy resin + core-shell silicone polymer fine particles or silicone rubber particles)

作製した実施例及び比較例の液状エポキシ樹脂組成物を次の各試験により評価した。なお、各種試験用硬化物は、芳香族アミン1を用いる場合は、液状エポキシ樹脂組成物を130℃、1時間、次いで200℃、3時間の加熱条件で、芳香族アミン2を用いる場合は、液状エポキシ樹脂組成物を130℃、1時間、次いで180℃、3時間の加熱条件で作製した。評価結果を表3及び表4に示した。
(1)粘度、揺変指数
E型粘度計(株式会社東京計器製)を用いて、25℃、5rpmでの粘度(Pa・s)及び揺変指数(1rpmでの粘度/5rpmでの粘度の比)を測定した。
(2)反り
8インチシリコンウエハー(厚み約730μm)上に、開口197mmφ、厚さ300μmのメタルマスクを用い、印刷成形法により液状エポキシ樹脂組成物を約180μm厚に加熱硬化した。続いて、硬化物を50μm厚に研削し、次いで、ウエハーを230μm厚に研削した後、定盤上にウエハーを置き、浮上った最大高さを測定した。
(3)弾性率
液状エポキシ樹脂組成物を290μm厚のシート状に硬化し、このシートを4mm×34mm(サンプル間長25mm)の短冊状に切り取り試験片とした。そして、動的粘弾性測定装置DVE型(株式会社レオロジ製)を用いて周波数10Hz、25℃での弾性率(GPa)を測定した。
(4)ダイシェア強度
ポリイミドを塗布した8mm角のシリコンウエハー上に、3mmφの穴を切り抜いた厚さ1mmのシリコーンラバーシート枠を用いて、液状エポキシ樹脂組成物を円柱状に硬化した。そして、ボンドテスターシリーズ4000(デイジ社製)を用いて、ヘッド位置が基材から50μm、ヘッドスピード50μm/sで測定し、硬化物とポリイミド界面の剥離強度又は硬化物の破壊強度を測定した。また、試験片を130℃、85%RHの条件で300h処理後同様な試験を行い、加湿試験後の剥離強度又は硬化物の破壊強度を測定した。
(5)ダイシング性
ポリイミドを塗布した8インチシリコンウエハー(厚み約730μm)上に、開口197mmφ、厚さ250μmのメタルマスクを用い、減圧下で印刷成形法により液状エポキシ樹脂組成物を約160μm厚に加熱硬化した。作製したシリコンウエハーを、オートマッチックダイシングソーDAD341(ディスコ社製)により5mm角にダイシングし、硬化物の外観及びウエハー断面の顕微鏡観察を行い、外観不良(かけ、クラック等)が生じている試験片の数/測定試験片の数で評価した。
(6)耐リフロー性
上記(5)と同様にして作製したシリコンウエハーを5mm角のサイズに切断し、この試験片を85℃/85%RHの条件で飽和吸湿後、260℃リフロー処理を20回行った。そして、硬化物の外観及びウエハー断面の顕微鏡観察を行い、外観不良(かけ、クラック等)又は剥離が生じている試験片の数/測定試験片の数で評価した。
(7)耐温度サイクル性
上記(6)と同様にして作製した試験片を−50℃/150℃、各15分のヒートサイクルで1000サイクル処理し、硬化物の外観及びウエハー断面の顕微鏡観察を行い、外観不良(かけ、クラック等)又は剥離が生じている試験片の数/測定試験片の数で評価した。
(8)耐湿信頼性
ポリイミドを塗布したシリコンウエハー上に、ライン/スペースが15μm/25μm、厚さ5μmで電解めっきCu膜を櫛歯電極状に形成させたテストエレメントグループ(TEG)を作製した。次いで、櫛歯電極部を液状エポキシ樹脂組成物で約90μmの厚さに硬化・封止したTEGを、135℃、85%RH環境下、5V印加で300時間導通試験を行い、不良パッケージ数/測定パッケージ数で評価した。
The produced liquid epoxy resin compositions of Examples and Comparative Examples were evaluated by the following tests. In addition, when the aromatic amine 1 is used for the various test cured products, the liquid epoxy resin composition is heated at 130 ° C. for 1 hour, then at 200 ° C. for 3 hours, and when the aromatic amine 2 is used, A liquid epoxy resin composition was prepared under heating conditions of 130 ° C. for 1 hour, then 180 ° C. for 3 hours. The evaluation results are shown in Tables 3 and 4.
(1) Viscosity and Thickening Index Using an E-type viscometer (manufactured by Tokyo Keiki Co., Ltd.), the viscosity at 25 ° C. and 5 rpm (Pa · s) and the throttling index (viscosity at 1 rpm / 5 viscosity at 5 rpm) Ratio).
(2) Warpage A liquid epoxy resin composition was heat-cured to a thickness of about 180 μm by printing using a metal mask having an opening of 197 mmφ and a thickness of 300 μm on an 8-inch silicon wafer (thickness: about 730 μm). Subsequently, the cured product was ground to a thickness of 50 μm, and then the wafer was ground to a thickness of 230 μm. Then, the wafer was placed on a surface plate, and the maximum height that floated was measured.
(3) Elastic modulus The liquid epoxy resin composition was cured into a sheet having a thickness of 290 μm, and this sheet was cut into a strip of 4 mm × 34 mm (25 mm between samples) to obtain a test piece. And the elastic modulus (GPa) in frequency 10Hz and 25 degreeC was measured using the dynamic viscoelasticity measuring apparatus DVE type (made by Rheology Co., Ltd.).
(4) Die shear strength A liquid epoxy resin composition was cured in a cylindrical shape using a 1 mm thick silicone rubber sheet frame obtained by cutting out a 3 mmφ hole on an 8 mm square silicon wafer coated with polyimide. Then, using a bond tester series 4000 (manufactured by Daisy), the head position was measured from the substrate at 50 μm and the head speed was 50 μm / s, and the peel strength between the cured product and the polyimide interface or the fracture strength of the cured product was measured. Further, the same test was conducted after the test piece was treated for 300 hours under the conditions of 130 ° C. and 85% RH, and the peel strength after the humidification test or the breaking strength of the cured product was measured.
(5) Dicing property On a 8-inch silicon wafer (thickness of about 730 μm) coated with polyimide, using a metal mask with an opening of 197 mmφ and a thickness of 250 μm, the liquid epoxy resin composition is made to a thickness of about 160 μm by a printing molding method under reduced pressure. Heat cured. The produced silicon wafer is diced into 5 mm square by an auto-matching dicing saw DAD341 (manufactured by Disco), and the appearance of the cured product and the cross section of the wafer are observed with a microscope. Evaluation was performed by the number of pieces / number of measurement test pieces.
(6) Reflow resistance A silicon wafer produced in the same manner as in (5) above was cut into a 5 mm square size, and this test piece was subjected to saturated moisture absorption under the condition of 85 ° C./85% RH, and then subjected to 260 ° C. reflow treatment. I went twice. And the external appearance of the hardened | cured material and the wafer cross section were observed with the microscope, and it evaluated by the number of the test piece which the appearance defect (a crack, a crack, etc.) or peeling has produced / the number of the test piece.
(7) Temperature cycle resistance The test piece prepared in the same manner as in (6) above was processed at 1000 cycles with a heat cycle of -50 ° C / 150 ° C for 15 minutes each, and the appearance of the cured product and the microscopic observation of the wafer cross section were observed. It was evaluated by the number of test pieces / appearance defects (development, cracks, etc.) or peeling.
(8) Moisture resistance reliability A test element group (TEG) in which an electroplated Cu film was formed in a comb-like electrode shape with a line / space of 15 μm / 25 μm and a thickness of 5 μm on a polyimide-coated silicon wafer was produced. Next, a TEG in which the comb electrode part was cured and sealed with a liquid epoxy resin composition to a thickness of about 90 μm was subjected to a continuity test at 135 ° C. and 85% RH for 5 hours with 5 V applied. Evaluation was based on the number of measurement packages.



本発明における(C)コアシェルシリコーン重合体の微粒子を含まない比較例1、2では、反りが大きく、耐温度サイクル性に劣る。(C)コアシェルシリコーン重合体の微粒子の替わりに、粒径の大きいシリコーンゴム粒子、コアシェル型アクリルゴム粒子を添加した比較例3、4では、反りが大きくなる傾向があり、更に比較例4では、強度が弱くダイシング性や耐湿信頼性も低下する傾向がある。シリコーン変性エポキシ樹脂の配合量が多い比較例5、6では、低反り性に優れるが、強度が著しく弱く、ダイシング性及び耐湿信頼性に劣る。これに対して、本発明の実施例〜9は、いずれも反りが小さく、強度も強く、高温高湿処理後でも接着力、強度が維持され、ダイシング性、耐リフロー性、耐温度サイクル性及び耐湿信頼性にも優れる。
本発明の封止用液状エポキシ樹脂組成物は、実施例で示したように反りが小さく、強度も強く、高温高湿処理後でも接着力、強度が高く維持されるので、この液状エポキシ樹脂組成物を用いて封止すれば、ウエハーレベルチップサイズパッケージの製造において搬送、研削、検査、個片化等の各工程の要求を満たすことが可能で、かつ耐リフロー性、耐温度サイクル及び耐湿信頼性に優れるウエハーレベルチップサイズパッケージを得ることができるので、その工業的価値は大である。

In Comparative Examples 1 and 2 that do not contain fine particles of (C) core-shell silicone polymer in the present invention, warping is large and the temperature cycle resistance is poor. (C) In Comparative Examples 3 and 4 in which silicone rubber particles having a large particle diameter and core-shell type acrylic rubber particles are added instead of the fine particles of the core-shell silicone polymer, warpage tends to increase. The strength is weak and the dicing property and moisture resistance reliability tend to decrease. In Comparative Examples 5 and 6 in which the amount of the silicone-modified epoxy resin is large, the low warpage property is excellent, but the strength is extremely weak and the dicing property and moisture resistance reliability are inferior. On the other hand, Examples 2 to 9 of the present invention all have small warpage, high strength, and adhesion and strength are maintained even after high-temperature and high-humidity treatment, resulting in dicing properties, reflow resistance, and temperature cycle resistance. Also excellent in moisture resistance reliability.
The liquid epoxy resin composition for sealing of the present invention has a small warp as shown in the examples, a high strength, and a high adhesive strength and strength are maintained even after high temperature and high humidity treatment. If it is sealed with a product, it is possible to satisfy the requirements of each process such as transfer, grinding, inspection, and singulation in the manufacture of wafer level chip size package, and it also has reflow resistance, temperature cycle resistance and moisture resistance reliability. Since a wafer level chip size package with excellent properties can be obtained, its industrial value is great.

Claims (9)

(A)液状エポキシ樹脂、(B)芳香族アミン硬化剤、(C)固形シリコーン重合体のコアと有機重合体のシェルからなり平均1次粒子径が0.05〜1.0μmのコアシェルシリコーン重合体の微粒子、(D)無機充填剤、(E)有機溶剤を含有し、前記(A)液状エポキシ樹脂がシリコーン変性エポキシ樹脂を含み、前記(C)コアシェルシリコーン重合体の微粒子の配合割合が前記(A)成分及び前記(C)成分の合計量に対して10〜40質量%であり、前記(D)無機充填剤の配合割合が前記(A)成分、前記(B)成分、前記(C)成分及び前記(D)成分の合計量に対して81〜93質量%であり、前記(A)液状エポキシ樹脂成分の全量に対して、前記シリコーン変性エポキシ樹脂が5〜50質量%であり、前記シリコーン変性エポキシ樹脂成分と前記(C)コアシェルシリコーン重合体の微粒子との合計量に対して、前記シリコーン変性エポキシ樹脂が8〜80質量%である、電子部品装置の素子封止用液状エポキシ樹脂組成物。 (A) Liquid epoxy resin, (B) Aromatic amine curing agent, (C) Core-shell silicone weight comprising a solid silicone polymer core and an organic polymer shell and having an average primary particle size of 0.05 to 1.0 μm A fine particle of coalescence, (D) an inorganic filler, (E) an organic solvent, the (A) liquid epoxy resin contains a silicone-modified epoxy resin, and the blending ratio of the fine particles of the (C) core-shell silicone polymer is It is 10-40 mass% with respect to the total amount of (A) component and said (C) component, and the compounding ratio of said (D) inorganic filler is said (A) component, said (B) component, said (C ) Ri component and 81 to 93% by mass relative to the total amount of the component (D), relative to the total amount of the (a) liquid epoxy resin component, the silicone-modified epoxy resin is from 5 to 50 mass% The silicone With respect to the total amount of the fine particles of the the sexual epoxy resin component (C) core-shell silicone polymer, the silicone-modified epoxy resin is Ru 8-80% by mass, liquid epoxy resin composition for element encapsulation of the electronic component device object. (C)コアシェルシリコーン重合体の微粒子が、[RSiO3/2]及び/又は[SiO4/2]からなる単位を有する、[RR’SiO2/2]単位(ここで、Rは炭素数6以下のアルキル基、アリール基、又は末端に炭素二重結合を有する置換基であり、R’は炭素数6以下のアルキル基又はアリール基を表す)のシリコーン重合体のコアと、ビニル重合により得られる有機重合体のシェルからなるものである請求項1に記載の電子部品装置の素子封止用液状エポキシ樹脂組成物。 (C) [RR′SiO 2/2 ] units in which the fine particles of the core-shell silicone polymer have units consisting of [RSiO 3/2 ] and / or [SiO 4/2 ] (where R is a carbon number of 6 The following alkyl group, aryl group, or substituent having a carbon double bond at the terminal, R ′ represents an alkyl group or aryl group having 6 or less carbon atoms) and a silicone polymer core, and obtained by vinyl polymerization 2. The liquid epoxy resin composition for sealing an element of an electronic component device according to claim 1, comprising a shell of an organic polymer. (C)成分のビニル重合により得られる有機重合体が、アクリル樹脂又はアクリル樹脂の共重合体である請求項2に記載の電子部品装置の素子封止用液状エポキシ樹脂組成物。   The liquid epoxy resin composition for sealing an element of an electronic component device according to claim 2, wherein the organic polymer obtained by vinyl polymerization of the component (C) is an acrylic resin or a copolymer of an acrylic resin. (A)液状エポキシ樹脂が液状ビスフェノール型エポキシ樹脂を含む請求項1〜3のいずれか1項に記載の電子部品装置の素子封止用液状エポキシ樹脂組成物。 (A) liquid epoxy resin element encapsulation liquid epoxy resin composition of the electronic component device according to claim 1, comprising a liquid bisphenol type epoxy resin. (B)芳香族アミン硬化剤がジエチルトルエンジアミン又は3,3’−ジエチル−4,4’−ジアミノジフェニルメタンである請求項1〜4のいずれか1項に記載の電子部品装置の素子封止用液状エポキシ樹脂組成物。 (B) for element encapsulation of the electronic component device according to any one of claims 1 to 4 aromatic amine curing agent is a diethyl toluene diamine or 3,3'-diethyl-4,4'-diaminodiphenylmethane Liquid epoxy resin composition. 前記シリコーン変性エポキシ樹脂が、下記式(II)で表されるエポキシ樹脂とビスフェノール類との反応物である請求項1〜のいずれか1項に記載の電子部品装置の素子封止用液状エポキシ樹脂組成物。

〔式(II)中、Rは各々独立にアルキル基又はフェニル基を表し、nは1以上の整数である。〕
The silicone-modified epoxy resin, element encapsulation liquid epoxy electronic component device according to any one of claims 1 to 5 which is a reaction product of an epoxy resin and a bisphenol represented by the following formula (II) Resin composition.

[In formula (II), R represents an alkyl group or a phenyl group each independently, and n is an integer greater than or equal to 1. ]
請求項1〜のいずれか1項に記載の電子部品装置の素子封止用液状エポキシ樹脂組成物により封止された素子を備えた電子部品装置。 The electronic component apparatus provided with the element sealed with the liquid epoxy resin composition for element sealing of the electronic component apparatus of any one of Claims 1-6 . ウエハーレベルチップサイズパッケージの封止に用いられる請求項1〜のいずれか1項に記載の電子部品装置の素子封止用液状エポキシ樹脂組成物。 Element encapsulation liquid epoxy resin composition of the electronic component device according to any one of claims 1 to 6 used for sealing a wafer level chip size package. 請求項1〜のいずれか1項に記載の電子部品装置の素子封止用液状エポキシ樹脂組成物により封止された素子を備えたウエハーレベルチップサイズパッケージ。 A wafer level chip size package provided with the element sealed with the liquid epoxy resin composition for element sealing of the electronic component device of any one of Claims 1-6 .
JP2006342733A 2006-12-20 2006-12-20 Liquid epoxy resin composition for sealing, electronic component device and wafer level chip size package Active JP5374818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006342733A JP5374818B2 (en) 2006-12-20 2006-12-20 Liquid epoxy resin composition for sealing, electronic component device and wafer level chip size package

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006342733A JP5374818B2 (en) 2006-12-20 2006-12-20 Liquid epoxy resin composition for sealing, electronic component device and wafer level chip size package

Publications (2)

Publication Number Publication Date
JP2008150555A JP2008150555A (en) 2008-07-03
JP5374818B2 true JP5374818B2 (en) 2013-12-25

Family

ID=39653073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006342733A Active JP5374818B2 (en) 2006-12-20 2006-12-20 Liquid epoxy resin composition for sealing, electronic component device and wafer level chip size package

Country Status (1)

Country Link
JP (1) JP5374818B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009073933A (en) * 2007-09-20 2009-04-09 Toto Kasei Co Ltd Epoxy resin composition having thermal degradation resistance
KR101095136B1 (en) * 2009-04-23 2011-12-16 삼성전기주식회사 Resin composition for printed circuit board and printed circuit board using the same
CA2769176A1 (en) * 2009-07-31 2011-02-03 Sumitomo Bakelite Co., Ltd. Liquid resin composition and semiconductor device using the same
KR101679657B1 (en) * 2010-09-29 2016-11-25 삼성전자주식회사 Method for wafer level mold and wafer structure formed by the same
WO2018221682A1 (en) 2017-05-31 2018-12-06 日立化成株式会社 Liquid resin composition for compression molding and electronic component device
EP3620481B1 (en) 2017-05-31 2024-03-27 Resonac Corporation Liquid resin composition for sealing and electronic component apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3288185B2 (en) * 1994-10-07 2002-06-04 日立化成工業株式会社 Epoxy resin molding material for sealing electronic parts and semiconductor device using the same
JP4568940B2 (en) * 1999-04-13 2010-10-27 日立化成工業株式会社 Epoxy resin composition for sealing and electronic component device
JP2003055533A (en) * 2001-08-10 2003-02-26 Mitsubishi Rayon Co Ltd Epoxy resin composition for sealing
JP3953827B2 (en) * 2002-02-19 2007-08-08 住友ベークライト株式会社 Liquid resin composition, semiconductor device manufacturing method, and semiconductor element
JP2003238651A (en) * 2002-02-19 2003-08-27 Sumitomo Bakelite Co Ltd Liquid resin composition, manufacturing method of semiconductor device and the semiconductor device
JP2006104328A (en) * 2004-10-05 2006-04-20 Mitsubishi Rayon Co Ltd Thermosetting resin composition and its use
JP2006169395A (en) * 2004-12-16 2006-06-29 Nagase Chemtex Corp Underfill resin composition

Also Published As

Publication number Publication date
JP2008150555A (en) 2008-07-03

Similar Documents

Publication Publication Date Title
JP5217119B2 (en) Liquid epoxy resin composition for sealing, electronic component device and wafer level chip size package
JP2009097013A (en) Liquid resin composition for sealing, electronic component device and wafer level chip-size package
JP2009097014A (en) Liquid resin composition for sealing, electronic component device and wafer level chip size package
JP5154340B2 (en) Resin composition for optical semiconductor encapsulation
JP2010138384A (en) Encapsulating liquid epoxy resin composition, electronic component device including element encapsulated with the encapsulating liquid epoxy resin composition, and wafer level chip size package
JP4809355B2 (en) Epoxy resin composition and die-bonding agent containing the composition
JP5278457B2 (en) Epoxy resin composition, die attach method using the same, and semiconductor device having cured product of the composition
KR20020038532A (en) Liquid Epoxy Resin Compositions and Semiconductor Devices
JP2006306953A (en) Curable silicone composition and its cured product
JP5374818B2 (en) Liquid epoxy resin composition for sealing, electronic component device and wafer level chip size package
JP7343977B2 (en) Liquid epoxy resin composition for sealing and electronic component devices
JP2017105883A (en) Liquid resin composition, die attach method using the composition, and semiconductor device having cured product of the composition
JP2007302771A (en) Epoxy resin composition for sealing
JP2007146148A (en) Epoxy resin composition for sealing and electronic part device by using the same
JP2016037529A (en) Liquid epoxy resin composition and heat sink, and adhesive for stiffener
JP6286959B2 (en) Epoxy resin composition, electronic component device, and method of manufacturing electronic component device
JP2013064152A (en) Liquid resin composition for electronic component, and electronic component device using the same
JP2003128875A (en) Liquid epoxy resin composition and semiconductor device
JP4975514B2 (en) DIE BONDING AGENT AND SEMICONDUCTOR DEVICE USING THE SAME
JP2015054952A (en) Epoxy resin composition, electronic part device and production method of electronic part device
JP2017197698A (en) Particle having core-shell structure and method for producing the same
JP2017028050A (en) Underfill material and electronic component device using the same
JP2009132828A (en) Die bond agent composition and semiconductor device using the same
JP2020193293A (en) Sealing resin composition, cured product, and electronic component device
JP4618407B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120525

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130219

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130909

R151 Written notification of patent or utility model registration

Ref document number: 5374818

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350