JP5372479B2 - Method and apparatus for measuring earthquake resistance or wind pressure strength of wooden houses - Google Patents

Method and apparatus for measuring earthquake resistance or wind pressure strength of wooden houses Download PDF

Info

Publication number
JP5372479B2
JP5372479B2 JP2008313618A JP2008313618A JP5372479B2 JP 5372479 B2 JP5372479 B2 JP 5372479B2 JP 2008313618 A JP2008313618 A JP 2008313618A JP 2008313618 A JP2008313618 A JP 2008313618A JP 5372479 B2 JP5372479 B2 JP 5372479B2
Authority
JP
Japan
Prior art keywords
measuring
window frame
support member
angle
needle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008313618A
Other languages
Japanese (ja)
Other versions
JP2010139271A (en
Inventor
博章 山口
Original Assignee
博章 山口
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 博章 山口 filed Critical 博章 山口
Priority to JP2008313618A priority Critical patent/JP5372479B2/en
Publication of JP2010139271A publication Critical patent/JP2010139271A/en
Application granted granted Critical
Publication of JP5372479B2 publication Critical patent/JP5372479B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for measuring the earthquake or wind-pressure resistance of a wooden house, capable of performing diagnosis concerning accurate earthquake or wind-pressure resistance in a continuous and inexpensive manner, without requiring expertise. <P>SOLUTION: This earthquake or wind-pressure resistance measuring device 8 includes an L-shaped member composed of a lateral support member 8a and a vertical support member 8b. The L-shaped member is provided with an interlayer-deformation-angle measuring means for directly measuring the interlayer deformation angle, at horizontal loading and displaying it. The interlayer-deformation-angle measuring means is provided with a measuring pin 25, a means (a first arm 24, a second arm 29, a third arm 30, and a projected object 31) for measuring the change in the separation distance, between the lateral support member 8a and an upper crosspiece 21, at the position of the measuring pin 25, and amplifying this change and converting it as an angle deformation amount; a first needle A and a second needle B, which indicate the angle deformation amount by rotating clockwise or counterclockwise around one fixed point; and a display section 33 for displaying the rotation angles of these needles A and B. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は一般に木造家屋の耐震又は風圧強度測定方法に関するものであり、より特定的には、専門技術を必要とせず、継続的に安価で正確な耐震診断を行なうことができる耐震又は風圧強度測定方法に関する。この発明はまた、そのような測定方法を実現できる木造家屋の耐震又は風圧強度測定装置に関する。   The present invention relates generally to a method for measuring seismic or wind pressure strength of a wooden house, and more specifically, seismic or wind pressure strength measurement that does not require specialized techniques and can be performed continuously at low cost and accurately. Regarding the method. The present invention also relates to a seismic or wind pressure intensity measuring device for a wooden house that can realize such a measuring method.

図9を参照して、例えば地震時の建物は、下の階に対して上の階が水平移動して変形する。この変形(移動)の量を階高で割った値を層間変形角という。例えば、階高3m(h=300)で10cm横移動(δ=10)すれば、θ=10/300=1/30 rad となる。一般の木造住宅は、層間変形角が1/30 radになれば非常に危険である。これは、台風などの風圧による水平荷重がかかる場合にも同様である。   Referring to FIG. 9, for example, a building at the time of an earthquake is deformed by the upper floor moving horizontally relative to the lower floor. A value obtained by dividing the amount of deformation (movement) by the floor height is called an interlayer deformation angle. For example, if the floor is moved 3 cm (h = 300) and moved 10 cm laterally (δ = 10), θ = 10/300 = 1/30 rad. A general wooden house is very dangerous if the interlayer deformation angle becomes 1/30 rad. The same applies to a case where a horizontal load due to wind pressure such as a typhoon is applied.

従来の木造住宅の耐震精密診断は、耐震知識を持つ専門技術者が現地調査を行い、平面計画、地盤、老朽度を考慮し、「木造住宅の耐震精密診断と補強方法」の指標に基く机上検討で、水平耐力を算出し、想定される地震に対する耐震強度を算出するものである。   The conventional seismic precision diagnosis of wooden houses is carried out by a field engineer who has seismic knowledge and considers the floor plan, the ground, and the degree of aging. In the study, the horizontal strength is calculated and the seismic strength against the assumed earthquake is calculated.

特許文献1には、地震時の加速度、構造変位を、加速度センサージャイロによる電子機器を用いて診断する方法が開示されている。この診断方法は、加速度センサーとジャイロセンサーとを備えた地震計を用い、加速度センサーの出力から、建築構造物の並進変位成分を求めると共に、ジャイロセンサーの出力から建築構造物のロッキング成分及び/又はねじれ成分を求め、上記並進変位成分からロッキング成分及び/又はねじれ成分の影響を除去して、上記建築構造物の歪みを評価するものである。   Patent Document 1 discloses a method of diagnosing acceleration and structural displacement during an earthquake using an electronic device using an acceleration sensor gyro. This diagnostic method uses a seismometer equipped with an acceleration sensor and a gyro sensor, obtains a translational displacement component of the building structure from the output of the acceleration sensor, and rocks the building structure and / or from the output of the gyro sensor. The torsional component is obtained, the influence of the rocking component and / or the torsional component is removed from the translational displacement component, and the distortion of the building structure is evaluated.

また、特許文献2は、処理装置と記憶装置を有するコンピュータにより実行される簡易耐震診断処理方法を開示する。これは、処理装置と記憶装置とを有するコンピュータにより実行される簡易耐震診断処理方法であって、前記処理装置により、評価階以上の床面積と壁長とから第1のパラメータを算出し、前記記憶装置に格納する第1パラメータ算出ステップと、前記処理装置により、整形性に関する指標値と辺長比に関する指標値と地下室に関する指標値と平面剛性に関する指標値とから形状指標値を特定し、前記記憶装置に格納する形状指標値特定ステップと、前記処理装置により、前記記憶装置に格納された前記第1のパラメータと、予め定められた少なくとも上限値関数と下限値関数とから、第2のパラメータの上限値及び下限値を算出し、前記記憶装置に格納するステップと、前記処理装置により、経年に関する指標値と前記記憶装置に格納された前記形状指標値及び前記第2のパラメータの上限値及び下限値とから、構造耐震指標の上限値及び下限値を算出し、前記記憶装置に格納する構造耐震指標算出ステップと、を含む簡易耐震診断処理方法を開示する。
特開2008−39507号公報 特開2006−275854号公報(特許請求の範囲)
Patent Document 2 discloses a simple earthquake-resistant diagnosis processing method executed by a computer having a processing device and a storage device. This is a simple seismic diagnosis processing method executed by a computer having a processing device and a storage device, wherein the processing device calculates a first parameter from a floor area and a wall length equal to or higher than an evaluation floor, A first parameter calculation step stored in a storage device, and a shape index value is identified from an index value related to shapeability, an index value related to a side length ratio, an index value related to a basement, and an index value related to plane rigidity by the processing device; From the shape index value specifying step to be stored in the storage device, the first parameter stored in the storage device by the processing device, and at least a predetermined upper limit value function and lower limit value function, the second parameter The upper limit value and the lower limit value are calculated and stored in the storage device, and the index value related to aging is stored in the storage device by the processing device. A simple seismic diagnosis comprising: calculating an upper limit value and a lower limit value of a structural seismic index from the shape index value and an upper limit value and a lower limit value of the second parameter, and storing them in the storage device A processing method is disclosed.
JP 2008-39507 A JP 2006-275854 A (Claims)

しかしながら、以上の従来技術による調査方法では、建物の施工性や積載状態、経年変化による劣化は考慮されず、簡易ではあるが建物使用状況に合致した正確な耐震診断が困難である。   However, the above-described conventional investigation methods do not consider deterioration due to building workability, loading conditions, and secular changes, and it is difficult to make an accurate seismic diagnosis that matches the building usage conditions, although it is simple.

また、電子機器による測定は、装置の取り付け、及び測定による数値の処理に専門的技術を要する。また地震時における電力の供給に対して脆弱であり、さらに設置に係る費用負担が大きい。   In addition, measurement by an electronic device requires specialized technology for device installation and processing of numerical values by measurement. In addition, it is vulnerable to power supply in the event of an earthquake, and the cost of installation is high.

同じくコンピュータを処理装置、記憶装置に利用した診断方法も前記同様高価であり、専門技術を要し且つ容易に確認できない。また電力に備える必要性が求められる。   Similarly, a diagnosis method using a computer as a processing device and a storage device is also expensive as described above, requires specialized techniques, and cannot be easily confirmed. In addition, it is necessary to prepare for electric power.

本発明は、このような問題点を解決するためになされたもので、専門技術を必要とせず、継続的に安価で正確な耐震又は風圧強度に関する診断を行なうことができる木造家屋の耐震又は風圧強度測定方法を提供することを目的とする。   The present invention has been made to solve such problems, and does not require specialized technology, and can be used for seismic or wind pressure of a wooden house that can continuously make a diagnosis on earthquake and wind pressure strength that is inexpensive and accurate. An object is to provide a strength measurement method.

この発明の他の目的は、そのような耐震又は風圧強度測定方法を実現できる、木造家屋の耐震又は風圧強度測定装置を提供することにある。   Another object of the present invention is to provide a seismic or wind pressure strength measuring device for a wooden house, which can realize such a seismic or wind pressure strength measuring method.

本発明に係る木造家屋の耐震強度又は風圧強度を測定する装置は、窓枠の 上桟と縦桟の交点に取付けられる、木造家屋の耐震強度又は風圧強度を測定する装置であって、横支持部材と、上記窓枠の上記 縦桟 に固定するための縦支持部材とが一体の連続的に連なったL字状部材と、上記L字状部材の上記横支持部材に取付けられ、水平荷重時における層間変形角を直接測定して表示する層間変形角測定手段と、を備える。上記層間変形角測定手段は、上記水平荷重時において、予め定められた位置における、上記L字状部材の横支持部材と上記窓枠の 上桟との離隔の距離の変化を測定する手段と、 上記L字状部材の横支持部材と上記窓枠の 上桟との離隔の距離の変化を増幅して角度の変形量として変換する手段と、上記角度の変形量の最大を、一点を固定点として、時計回り又は反時計回りに回転して示す第1の針と第2の針と、上記第1及び第2の針の回転角度を上記 層間変形角に換算して表示する表示部とを含む。 An apparatus for measuring the seismic strength or wind pressure strength of a wooden house according to the present invention is a device for measuring the seismic strength or wind pressure strength of a wooden house, which is attached to the intersection of the upper frame and the vertical beam of a window frame , and is laterally supported An L-shaped member in which a member and a vertical support member for fixing to the vertical rail of the window frame are continuously connected to each other, and the horizontal support member of the L-shaped member are attached to the horizontal support member at the time of horizontal load. And an interlayer deformation angle measuring means for directly measuring and displaying the interlayer deformation angle . The interlayer deformation angle measuring means is a means for measuring a change in the distance between the lateral support member of the L-shaped member and the upper frame of the window frame at a predetermined position during the horizontal load ; Means for amplifying a change in the distance between the lateral support member of the L-shaped member and the upper frame of the window frame and converting it as an angle deformation amount; and a maximum of the angle deformation amount as a fixed point. A first needle and a second needle that are shown to rotate clockwise or counterclockwise, and a display unit that displays the rotation angle of the first and second needles in terms of the interlayer deformation angle. Including.

この発明の好ましい実施態様によれば、上記表示部には、中央から時計回りに右方向注意ゾーン、右方向警戒ゾーン、右方向危険ゾーンが順に表示され、中央から反時計回りに左方向注意ゾーン、左方向警戒ゾーン、左方向危険ゾーンが順に表示されている。   According to a preferred embodiment of the present invention, the display unit displays a right caution zone, a right caution zone, and a right danger zone in order clockwise from the center, and a left caution zone counterclockwise from the center. The left-hand warning zone and the left-hand danger zone are displayed in this order.

上記第1及び第2の針に加えて、上記木造家屋の現状変形角を表示させる第3の針をさらに備えてもよい。   In addition to the first and second needles, a third needle for displaying the current deformation angle of the wooden house may be further provided.

さらに好ましくは、上記第1又は第2の針が、危険ゾーンに入った場合に、警告音を鳴らせる警告音発生手段をさらに備える。   More preferably, the first or second needle further includes a warning sound generating means for sounding a warning sound when entering the danger zone.

本発明の他の局面に従う発明は、木造家屋の耐震強度又は風圧強度の測定方法に係る。まず、上記特徴を有する装置を準備する工程と、上記L字状部材の上記縦支持部材を上記窓枠の 縦桟 に固定する工程とを備える。そして、水平荷重時に、予め定められた位置における、上記L字状部材の横支持部材と上記窓枠の 上桟との離隔の距離の変化を測定し、上記L字状部材の横支持部材と上記窓枠の 上桟との離隔の距離の変化を増幅して角度の変形量に変換し、上記角度の変形量の最大を、上記水平荷重時における層間変形角に換算して表示部に表示させる。 The invention according to another aspect of the present invention relates to a method for measuring seismic strength or wind pressure strength of a wooden house. First, a step of preparing an apparatus having the above characteristics and a step of fixing the vertical support member of the L-shaped member to the vertical beam of the window frame are provided. And measuring a change in the distance between the lateral support member of the L-shaped member and the upper frame of the window frame at a predetermined position during a horizontal load, and the lateral support member of the L-shaped member; Amplifies the change in the distance from the upper frame of the window frame and converts it into an angle deformation amount. The maximum angle deformation amount is converted into an interlayer deformation angle at the time of the horizontal load and displayed on the display unit. Let

この方法のさらに好ましい実施態様によれば、方角の一をX方向として、それに直交する方向をY方向としたとき、上記横架材の延びている方角がX方向の場所及び上記横架材の延びている方角がY方向の場所の少なくとも2つの場所において、それぞれ、上記測定方法を実行する。   According to a further preferred embodiment of this method, when one direction is the X direction and the direction perpendicular to the X direction is the Y direction, the direction in which the horizontal member extends is in the X direction and the horizontal member. The measurement method is executed in at least two places where the extending directions are in the Y direction.

さらに好ましくは、複数階を有する家屋では、各階で、それぞれ、上記測定方法を実行する。   More preferably, in a house having a plurality of floors, the measurement method is executed on each floor.

本発明に係る方法によれば、従来の机上検討では予測できなかった施工性、積載考慮、経年変化を含めた個々の建物の耐力が測定でき、適切な補強が可能となる。また層間変形角を測定することによって、水平移動による内部損傷の状態を知ることが可能となり、的確な耐震補強が可能となる。また、本発明によれば、専門知識を必要とせず、建物の微小な変位を測定でき、層間変形角から水平荷重に対する建物の耐震力を即時に知ることができる。   According to the method of the present invention, it is possible to measure the proof stress of each building including workability, loading consideration, and secular change, which could not be predicted by conventional desk studies, and appropriate reinforcement is possible. Also, by measuring the inter-layer deformation angle, it is possible to know the state of internal damage due to horizontal movement, and accurate seismic reinforcement is possible. Further, according to the present invention, it is possible to measure a minute displacement of a building without requiring specialized knowledge, and to immediately know the seismic force of the building against a horizontal load from an interlayer deformation angle.

また、本発明に係る木造家屋の耐震又は風圧強度測定装置によれば、既存建物にも簡単に取付ける事ができる。すなわち、取り付けから、測定、耐震診断まで専門家を必要としない。   Moreover, according to the seismic resistance or wind pressure intensity measuring apparatus for a wooden house according to the present invention, it can be easily attached to an existing building. In other words, no expert is required from installation to measurement and seismic diagnosis.

さらに、当該耐震又は風圧強度測定装置を場所を選んで、複数配置することにより、家屋の部分的な変形を測定することが可能となり、各部の変形の差により、建物の回転方向を知ることができ、倒壊方向の予測が可能となる。   Furthermore, it is possible to measure the partial deformation of the house by selecting a place and arranging a plurality of such earthquake-resistant or wind pressure intensity measuring devices, and knowing the rotation direction of the building from the difference in deformation of each part It is possible to predict the direction of collapse.

専門技術を必要とせず、継続的に安価で正確な耐震又は風圧強度に関する診断を行なうことができる耐震又は風圧強度測定方法を提供するという目的を、本発明に係る木造家屋の耐震強度又は風圧強度測定装置を、窓枠の上桟と縦桟の交差点に取付けることによって実現した。以下、この発明の実施の形態を、図を用いて説明する。   For the purpose of providing a seismic or wind pressure strength measuring method capable of making a diagnosis on seismic or wind pressure strength continuously and inexpensively without requiring specialized technology, the seismic strength or wind pressure strength of the wooden house according to the present invention is provided. The measuring device was realized by installing it at the intersection of the upper and vertical bars of the window frame. Embodiments of the present invention will be described below with reference to the drawings.

図1(A)を参照して、建物は鉛直面1,2と水平面3,4,5で構成されている。   Referring to FIG. 1 (A), the building is composed of vertical planes 1 and 2 and horizontal planes 3, 4 and 5.

図1(B)を参照して、地震又は風圧により、水平方向に荷重が加わったとき(水平荷重時という)、それに伴って、木造家屋の鉛直面1及び鉛直面2が傾く。水平荷重に直交する鉛直面1,2は変形し、家屋に付随する窓6,7も同様の変形が起こる。1階回転角度に対応して窓も図のように変形する。2階回転角度に対応して窓も図のように変形する。本発明では、窓6,7の変形を耐震又は風圧強度測定装置8で測定し、層間変形角を求めるのである。変形は、1階部分と2階部分で、それぞれ異なった値となり、また同一階でも互いに直交するX方向、Y方向(後述する)で異なる値となる。併せて測定位置によりX方向、Y方向の値も違ってくる。同一階のXn方向、Yn方向(Xn:東西南北、北東、北西等種々の方角を意味している)を変えて、層間変形角を求めると、建物の回転ベクトルが得られる。   Referring to FIG. 1B, when a load is applied in the horizontal direction due to an earthquake or wind pressure (referred to as horizontal load), the vertical plane 1 and the vertical plane 2 of the wooden house are inclined accordingly. The vertical planes 1 and 2 orthogonal to the horizontal load are deformed, and the windows 6 and 7 associated with the house are similarly deformed. The window is also deformed as shown in the figure corresponding to the first floor rotation angle. The window is also deformed as shown in the figure corresponding to the second floor rotation angle. In the present invention, the deformation of the windows 6 and 7 is measured by the earthquake resistance or wind pressure intensity measuring device 8 to determine the interlayer deformation angle. The deformation has different values for the first floor portion and the second floor portion, and also has different values in the X direction and Y direction (described later) on the same floor. In addition, the values in the X and Y directions vary depending on the measurement position. By changing the Xn direction and Yn direction on the same floor (Xn: various directions such as east, west, south, north, northeast, and northwest) and determining the interlayer deformation angle, a rotation vector of the building can be obtained.

図1(C)を参照して、各階の層間変形角と同階のイ、ロ層間変形角の差により、建物の水平回転角が求められる。   With reference to FIG. 1 (C), the horizontal rotation angle of a building is calculated | required by the difference of the interlayer deformation angle of each floor | floor and the b and b interlayer deformation angle of the same floor.

窓6,7は、ガラスをはめ込む枠である上桟と下桟と縦桟を有し、本発明に係る耐震強度又は風圧強度測定装置を取付ける、横架材と鉛直材の例として代表的なものである。   The windows 6 and 7 have an upper frame, a lower beam, and a vertical beam, which are frames into which glass is fitted, and are typical examples of horizontal members and vertical members to which the seismic strength or wind pressure strength measuring device according to the present invention is attached. Is.

図2(A)を参照して、実施の形態に係る耐震又は風圧強度測定装置8(その構成の一例を実施例1で詳述する)は、平常時に、窓枠の上桟21と縦桟22に接して取り付けられる。耐震又は風圧強度測定装置8は、横支持部材8aと縦支持部材8bとからなるL字状部材を含む。この取り付け操作は簡単であり、既存の建物の測定を容易にし、専門知識を要しない。実施例に係る耐震又は風圧強度測定装置8は、測定ピン25と表示部33を備え、水平荷重時に、予め定められた位置、すなわち測定ピン25の位置において、L字状部材の横支持部材8aと上桟21との離隔の距離の変化を測定する。詳細は後述するが、図2(B)に示すように、窓枠が地震時A方向に歪むと(回転角A)、L字状部材の横支持部材8aと上桟21との離隔の距離は図のように広がる。一方、図2(C)に示すように、窓枠が地震時B方向に歪むと(回転角B)、測定ピン25の位置において、L字状部材の横支持部材8aと上桟21との離隔の距離は図のように縮まる。   Referring to FIG. 2 (A), the seismic resistance or wind pressure intensity measuring device 8 (an example of the configuration thereof will be described in detail in Example 1) according to the embodiment, 22 is attached in contact with. The seismic or wind pressure strength measuring device 8 includes an L-shaped member composed of a lateral support member 8a and a longitudinal support member 8b. This installation operation is simple, facilitates the measurement of existing buildings and does not require specialized knowledge. The seismic or wind pressure intensity measuring device 8 according to the embodiment includes a measurement pin 25 and a display unit 33, and at the time of a horizontal load, at a predetermined position, that is, the position of the measurement pin 25, a lateral support member 8a of an L-shaped member. The change in the distance between the upper rail 21 and the upper rail 21 is measured. Although details will be described later, as shown in FIG. 2 (B), when the window frame is distorted in the direction A during the earthquake (rotation angle A), the distance between the L-shaped lateral support member 8a and the upper rail 21 Spreads as shown. On the other hand, as shown in FIG. 2C, when the window frame is distorted in the B direction at the time of the earthquake (rotation angle B), the L-shaped member horizontal support member 8a and the upper rail 21 are located at the position of the measurement pin 25. The distance of the separation is reduced as shown in the figure.

このL字状部材の横支持部材と前記横架材との離隔の距離の変化を増幅して角度の変形量に変換し、この角度の変形量の最大を、前記水平荷重時における層間変形角に換算して表示部33に表示させる。   A change in the distance between the lateral support member of the L-shaped member and the horizontal member is amplified and converted into an angular deformation amount, and the maximum deformation amount of the angle is determined as an interlayer deformation angle during the horizontal load. Is converted and displayed on the display unit 33.

すなわち、図2(B)に示すように、地震時A方向に回転角Aで窓枠が傾いた時、針Aが動いて、変形量が角度の変形量として表示される。針Aは、動いた位置に留まるように構成されており、変形量を履歴として目視できる。図2(C)に示すように、地震時B方向に回転角Bで窓枠が傾いた時、針Bが動いて、変形量が角度の変形量として表示される。針Bは、動いた位置に留まっており、変形量を履歴として目視できる。いずれの場合も、指針は最大変形角を表示し、建物の復元に追随しない。   That is, as shown in FIG. 2B, when the window frame is tilted at the rotation angle A in the A direction at the time of the earthquake, the needle A moves and the deformation amount is displayed as the angular deformation amount. The needle A is configured to remain in the moved position, and the deformation amount can be visually observed as a history. As shown in FIG. 2C, when the window frame is tilted at the rotation angle B in the B direction at the time of the earthquake, the needle B moves and the deformation amount is displayed as the angular deformation amount. The needle B remains in the moved position, and the deformation amount can be visually observed as a history. In either case, the pointer displays the maximum deformation angle and does not follow the restoration of the building.

図3は、表示部33の正面図である。表示部33には、指針の位置により層間変形の状態をわかりやすくするために、中央(平常時の針の位置)から時計回りに右方向注意ゾーン、右方向警戒ゾーン、右方向危険ゾーンが順に表示され、中央から反時計回りに左方向注意ゾーン、左方向警戒ゾーン、左方向危険ゾーンが順に表示されている。これらは、建物変位の計算から、層間変形角を求めたものを表示している。図中、1/240位置、1/120位置は、計算で求めた層間変形角を表している。すなわち、表示部33では、上記角度の変形量の最大が、水平荷重時における層間変形角に換算して表示される。   FIG. 3 is a front view of the display unit 33. In order to make it easy to understand the state of interlayer deformation depending on the position of the pointer, the display unit 33 includes a right caution zone, a right caution zone, and a right danger zone in order from the center (the position of the needle at normal times) in a clockwise direction. The left caution zone, the left caution zone, and the left danger zone are displayed in order counterclockwise from the center. These display the values obtained for the interlaminar deformation angles from the building displacement calculations. In the figure, the 1/240 position and the 1/120 position represent the interlayer deformation angles obtained by calculation. That is, the display unit 33 displays the maximum deformation amount of the angle in terms of the interlayer deformation angle at the time of horizontal load.

図4を参照して、方角の一をX方向として、それに直交する方向をY方向としたとき、横架材の延びている方角がX方向の場所及び横架材の延びている方角がY方向の場所の少なくとも2つの場所において、横架材と鉛直材の交差点付近に、横支持部材と縦支持部材とからなるL字状部材を取り付けて、それぞれ、上記測定方法を実行する。これにより、水平変位の大きな部分は、耐震力が小さく補強を必要とすることが容易に診断できる。各測定位置の水平変位の差により建物の回転角を導き出す。これにより、その回転方向に建物が倒壊することが診断できる。複数階を有する家屋では、各階でそれぞれ、上記測定方法を実行する。   Referring to FIG. 4, when one direction is the X direction and the direction orthogonal thereto is the Y direction, the direction in which the horizontal member extends is the X direction and the direction in which the horizontal member extends is Y. At least two locations in the direction, an L-shaped member composed of a lateral support member and a longitudinal support member is attached in the vicinity of the intersection between the horizontal member and the vertical member, and the above measurement method is executed. Thereby, it can be easily diagnosed that a portion having a large horizontal displacement has a small seismic force and requires reinforcement. The rotation angle of the building is derived from the difference in horizontal displacement at each measurement position. Thereby, it can be diagnosed that a building collapses in the rotation direction. In a house having a plurality of floors, the measurement method is executed on each floor.

耐震又は風圧強度測定装置8の取り付けは、横架材と鉛直材であれば、窓枠の上桟と縦桟の組み合わせ以外にも、土台、梁と柱の組み合わせでも可能である。   The seismic resistance or wind pressure strength measuring device 8 can be mounted by a combination of a base, a beam and a column in addition to a combination of an upper frame and a vertical beam of a window frame, as long as it is a horizontal member and a vertical member.

実施の形態に係る耐震又は風圧強度測定装置8の使用方法をさらに詳しく説明する。   The usage method of the earthquake-resistant or wind-pressure-strength measuring apparatus 8 which concerns on embodiment is demonstrated in detail.

図1,2,3を再び参照して、水平荷重時(地震や台風で建物が揺れた時)、まず、装置の表示部33の表示を確認する。これにより、即時に水平荷重による建物への影響が確認できる。危険ゾーンに針A,針Bが止まっていれば、次の水平荷重時に倒壊することの可能性が高く、建物外への非難を検討する。同針が警戒ゾーンや注意ゾーンに停止しても、わずかな水平荷重で針A又はBが動くならば、建物の耐力が小さく、耐震補強を必要とする。また、後述する図7で説明する針Cが中央に復帰しない場合は、水平荷重による影響が弾性変形を超える変形があったことが確認できる。災害後建物使用に関する調査が専門員によって行なわれるが、現地で確認できるのは災害後の層間変形角だけであるが、この装置の表示には災害時の最大層間変形角の記録が残り、より正確な使用測定が容易にできる。   Referring to FIGS. 1, 2 and 3 again, when a horizontal load is applied (when a building is shaken by an earthquake or a typhoon), first, the display on the display unit 33 of the apparatus is confirmed. Thereby, the influence on a building by a horizontal load can be confirmed immediately. If the needle A and needle B are stopped in the danger zone, there is a high possibility of collapsing during the next horizontal load. Even if the needle stops in the warning zone or the caution zone, if the needle A or B moves with a slight horizontal load, the strength of the building is small and seismic reinforcement is required. Moreover, when the needle | hook C demonstrated in FIG. 7 mentioned later does not return to a center, it can confirm that the influence by a horizontal load had the deformation | transformation exceeding elastic deformation. A survey on building use after a disaster is conducted by specialists, but only the interlayer deformation angle after the disaster can be confirmed on site, but the record of the maximum interlayer deformation angle at the time of the disaster remains on the display of this device, and more Accurate use measurement can be easily performed.

上記の測定により耐震補強を行なう場合、各部装置の針を読み取り、建物の脆弱な部分を想定する。大きく針が動いた方向に補強を要するのが安易に理解できる。また、各部の測定の値の比較で、建物の構造的バランスを導くのが容易である。また、目視できない部分の損傷も層間変形角と壁材との関係から容易に想定できる。例えば、モルタル塗りの外壁は層間変形角が1/30radを越えても、表面損傷が見受けられないが、下地は層間変形角が1/120radを超える変形で、すでに内部は損傷が始まっている。   When earthquake-proof reinforcement is performed by the above measurement, the needle of each part device is read and a weak part of the building is assumed. It can be easily understood that reinforcement is required in the direction in which the needle moved greatly. Moreover, it is easy to derive the structural balance of the building by comparing the measured values of each part. In addition, damage of a portion that cannot be visually observed can be easily assumed from the relationship between the interlayer deformation angle and the wall material. For example, even if the interlayer deformation angle exceeds 1/30 rad on the outer wall of the mortar coating, no surface damage is observed, but the underlying layer is a deformation whose interlayer deformation angle exceeds 1/120 rad, and the inside has already started to be damaged.

階別の層間変形角をもとに、階別の耐震補強が可能であり、的確な補強は工事費の低減につながる。また測定器の取り付け位置が自由なため、建物平面が複雑で水平構造面が複数存在する、又は不確定な建物の正確な耐震診断ができるのも、本耐震又は風圧強度測定装置の特徴である。   Seismic reinforcement for each floor is possible based on the interlayer deformation angles for each floor, and accurate reinforcement leads to a reduction in construction costs. In addition, because the installation position of the measuring instrument is free, it is also a feature of this earthquake resistance or wind pressure intensity measuring device that the building plane is complicated and there are multiple horizontal structure planes, or an accurate earthquake resistance diagnosis of an indeterminate building can be performed. .

なお、図4は、2階建ての建物の例示であるが、平屋建て、3階建て等の複数階を有する建物にも同じく使用することができる。また増築や複雑な平面を有する(例凹型)の構造的に一体と扱えない建物の測定も可能である。測定装置は横架材と鉛直材で挟まれる角度の変化を記録できるものであればよく、その一具体例を実施例1で説明する。   Although FIG. 4 is an example of a two-story building, it can also be used in a building having a plurality of floors such as a one-story building and a three-story building. In addition, it is possible to measure buildings that cannot be handled as a unitary structure, such as an extension or a complicated plane (eg, concave type). Any measuring device may be used as long as it can record a change in the angle between the horizontal member and the vertical member, and one specific example thereof will be described in the first embodiment.

図5(A)は、実施例1に係る耐震又は風圧強度測定装置8を窓枠の上桟21と縦桟22に接するように取付けたときの概念図である。図6は、実施例1に係る耐震又は風圧強度測定装置8の突起部31付近の拡大図である。   FIG. 5A is a conceptual diagram when the earthquake resistance or wind pressure intensity measuring device 8 according to the first embodiment is attached so as to contact the upper frame 21 and the vertical beam 22 of the window frame. FIG. 6 is an enlarged view of the vicinity of the protrusion 31 of the seismic or wind pressure strength measuring device 8 according to the first embodiment.

実施例1に係る耐震又は風圧強度測定装置8は、横支持部材8aと縦支持部材8bとからなるL字状部材を備える。L字状部材に、水平荷重時における層間変形角を直接測定して表示する層間変形角測定手段が設けられる。層間変形角測定手段は、測定ピン25と、測定ピン25の位置における、横支持部材8aと上桟21との離隔の距離の変化を測定し、これを増幅して角度の変形量として変換する手段(第1のアーム24,第2のアーム29,第3のアーム30,突起物31)と、上記角度の変形量を一点を固定点として、時計回り又は反時計回りに回転して示す第1の針Aと第2の針Bと、これらの針A,Bの回転角度を表示する表示部33を備える。表示部33は、第1及び第2の針A,Bの後方に設けられる。   The earthquake resistance or wind pressure intensity measuring device 8 according to the first embodiment includes an L-shaped member composed of a horizontal support member 8a and a vertical support member 8b. The L-shaped member is provided with interlayer deformation angle measuring means for directly measuring and displaying the interlayer deformation angle at the time of horizontal load. The interlayer deformation angle measuring means measures a change in the distance between the horizontal support member 8a and the upper rail 21 at the position of the measurement pin 25 and the measurement pin 25, amplifies this, and converts it as an angular deformation amount. Means (first arm 24, second arm 29, third arm 30, projection 31) and the amount of deformation of the angle shown by rotating clockwise or counterclockwise with one point as a fixed point The first needle A, the second needle B, and the display unit 33 that displays the rotation angles of the needles A and B are provided. The display unit 33 is provided behind the first and second hands A and B.

さらに詳細に説明すると、L字状部材の縦支持部材8bは、窓枠の縦桟22にビス28で固定される。第1のアーム24の一方端は、横支持部材8aに回動点24aで回動可能に取付けられている。第1のアーム24から枝分かれするように、ピン支持部材26が設けられている。ピン支持部材26には測定ピン25が回動可能に取付けられている。測定ピン25は窓枠が、水平荷重時に変形するとき、上桟21の上面を変位に追従し転動する。   More specifically, the L-shaped member vertical support member 8b is fixed to the vertical frame 22 of the window frame with screws 28. One end of the first arm 24 is attached to the lateral support member 8a so as to be rotatable at a rotation point 24a. A pin support member 26 is provided so as to branch from the first arm 24. A measurement pin 25 is rotatably attached to the pin support member 26. The measuring pin 25 rolls following the displacement of the upper surface of the upper rail 21 when the window frame is deformed during a horizontal load.

図5(A)と図6を参照して、第1のアーム24の他方端には、第2のアーム29の一方端が回動可能に取付けられている。第2のアーム29の他方端は、第3のアーム30の一方端に回動可能に取付けられている。第3のアーム30の他方端は、横支持部材8aに回動点30aで回動可能に取付けられている。   Referring to FIGS. 5A and 6, one end of second arm 29 is rotatably attached to the other end of first arm 24. The other end of the second arm 29 is rotatably attached to one end of the third arm 30. The other end of the third arm 30 is attached to the lateral support member 8a so as to be rotatable at a rotation point 30a.

第2のアーム29の他方端の近傍には、突起部31が設けられている。突起部31は、針Aの根元から側方に延びる針延長部aに下から接触し、かつ、針Bの根元から側方に延びる針延長部bに上から接触する。突起部31が回転すると、針A又はBを回転中心32を中心に回転させる。針A,Bの後方には表示部33が設けられている。表示部33には突起部31が通過する、円弧状の通路33aが、彫り抜かれている。突起部31が、円弧状の通路33aに沿って、反時計回りに移動すると、突起部31は、針Bの針延長部bを押し上げ、これにより針Bは回転中心32を中心にして、反時計方向に回転する。突起部31が、円弧状の通路33aに沿って、下方向(矢印)に移動すると、突起部31は、針Aの針延長部aを押し下げ、これにより針Aは、回転中心32を中心にして、時計方向に回転する。   A protrusion 31 is provided in the vicinity of the other end of the second arm 29. The protrusion 31 comes into contact with a needle extension a that extends laterally from the root of the needle A, and comes into contact with a needle extension b that extends laterally from the root of the needle B from above. When the protrusion 31 rotates, the needle A or B is rotated about the rotation center 32. A display unit 33 is provided behind the needles A and B. An arcuate passage 33a through which the protrusion 31 passes is carved out of the display unit 33. When the protruding portion 31 moves counterclockwise along the arc-shaped passage 33a, the protruding portion 31 pushes up the needle extension portion b of the needle B, whereby the needle B rotates counterclockwise around the rotation center 32. Rotate clockwise. When the protruding portion 31 moves downward (arrow) along the arc-shaped passage 33a, the protruding portion 31 pushes down the needle extension portion a of the needle A, whereby the needle A is centered on the rotation center 32. Rotate clockwise.

次に、水平荷重時に、予め定められた位置における、L字状部材の横支持部材と、窓の上桟との離隔の距離の変化を、角度の変形量に変換する動作について説明する。   Next, an operation for converting a change in the distance between the lateral support member of the L-shaped member and the upper rail of the window at a predetermined position into a deformation amount of an angle during a horizontal load will be described.

図5(A)、図6、図2(B)を参照して、地震時、窓枠がA方向に変形したとする。このとき、測定ピン25の位置において、L字状部材の横支持部材8aと窓枠の上桟21との離隔の距離は広がる。これにつれて、測定ピン25は窓枠の上桟21の上面を転動する。すると第1のアーム24の他方端は下方向に押し下げられ、第2アーム29の他方端は下方向に押し下げられ、突起部31は、通路33aに沿って下方向に移動し、針Aの針延長部aを押し下げ、これにより針Aは回転中心32を中心にして、時計方向に回転する。   Referring to FIGS. 5A, 6 and 2B, it is assumed that the window frame is deformed in the A direction during an earthquake. At this time, at the position of the measurement pin 25, the distance of the separation between the L-shaped lateral support member 8a and the upper frame 21 of the window frame increases. Accordingly, the measuring pin 25 rolls on the upper surface of the upper frame 21 of the window frame. Then, the other end of the first arm 24 is pushed down, the other end of the second arm 29 is pushed down, and the protruding portion 31 moves downward along the passage 33a. The extension a is pushed down, whereby the needle A rotates clockwise around the rotation center 32.

一方窓枠が、逆に変形した場合、即ち、窓枠がB方向に、すなわち図2(C)に示すように変形したとする。このとき、測定ピン25の位置において、L字状部材の横支持部材8aと窓枠の上桟21との離隔の距離は縮まり、測定ピン25は窓枠の上桟21の上面を転動する。すると第1のアーム24の他方端は上方向に押し上げられ、第2アーム29の他方端は上方向に押し上げられ、突起部31は、通路33aに沿って上方向に移動し、針Bの針延長部bを押し上げ、これにより針Bは回転中心32を中心にして、反時計方向に回転する。   On the other hand, it is assumed that the window frame is deformed in the opposite direction, that is, the window frame is deformed in the B direction, that is, as shown in FIG. At this time, at the position of the measurement pin 25, the distance between the lateral support member 8a of the L-shaped member and the upper frame 21 of the window frame is reduced, and the measurement pin 25 rolls on the upper surface of the upper frame 21 of the window frame. . Then, the other end of the first arm 24 is pushed upward, the other end of the second arm 29 is pushed upward, and the protrusion 31 moves upward along the passage 33a. The extension part b is pushed up, whereby the needle B rotates counterclockwise around the rotation center 32.

針A、針Bは、建物の復元に基いて窓枠の変形が復元しても、それに追随せず、動いた位置(最大変形角の位置)で留まっており、変形量を履歴として目視できる。   Even if the deformation of the window frame is restored based on the restoration of the building, the needle A and the needle B remain in the moved position (the position of the maximum deformation angle) and can visually check the deformation amount as a history. .

なお、図5(B)を参照して、第1アーム24のL1とL2の長さの比を調節することにより、テコの原理により、横支持部材と上桟との離隔の距離の変化を、角度の変形量に変換する際の、増幅度を調節することができる。   Referring to FIG. 5B, by adjusting the ratio of the lengths L1 and L2 of the first arm 24, the distance between the lateral support member and the upper rail can be changed according to the lever principle. It is possible to adjust the degree of amplification when converting into the amount of deformation of the angle.

図7を参照して、本実施例は、実施例1の変形例に係る。針A、針Bは、上述のとおり、動いた位置で留まっており、最大変形角を表示する。一方、家屋の変形はその後弾性力により回復するが、その回復後の状態の現状変形角は針A、針Bだけでは表示できない。そこで、実施例2では、図7に示すように、針A、針Bに加えて、現状変形角を表示させる針Cを設ける。針Cの針延長部cは2つに分枝し、突起物31を挟むようになっている。針A、針B、針Cのうち、針Cは最背位に配置させる。地震時、針Cは、突起物31の押圧により、針A又は針Bと同じ変位まで、回転する。さて、突起物31は、家屋の変形が弾性力によりある程度回復する(この回復した時の家屋の変形角を現状変形角という)と、現状変形角の位置まで戻る。すると針Cの延長部cは、延長部cが挟んでいる突起物31とともに、突起物31が戻る位置まで押し戻される。これによって、針Cは、現状変形角を表示することになる。   With reference to FIG. 7, the present embodiment relates to a modification of the first embodiment. As described above, the needle A and the needle B remain in the moved position and display the maximum deformation angle. On the other hand, the deformation of the house is then recovered by the elastic force, but the current deformation angle in the state after the recovery cannot be displayed only with the needle A and the needle B. Therefore, in Example 2, in addition to the needle A and the needle B, a needle C for displaying the current deformation angle is provided as shown in FIG. The needle extension portion c of the needle C is branched into two and sandwiches the protrusion 31. Of the needle A, the needle B, and the needle C, the needle C is disposed at the most back position. During an earthquake, the needle C rotates to the same displacement as the needle A or the needle B due to the pressing of the protrusion 31. The protrusion 31 returns to the position of the current deformation angle when the deformation of the house recovers to some extent by the elastic force (the deformation angle of the house at the time of recovery is referred to as the current deformation angle). Then, the extension portion c of the needle C is pushed back to the position where the projection 31 returns together with the projection 31 sandwiched by the extension c. As a result, the needle C displays the current deformation angle.

本実施例は、実施例1のさらなる変形例に係る。本実施例では、図6又は図7の構成に加えて、針A,Bが危険ゾーンに入ったときに警告音が鳴るように構成する。例えば針A,Bが危険ゾーンに入った時に、上記針延長部a,bが、例えばブザーのスイッチ(図示せず)を押す構成にすると、ブザーが鳴り続ける。これは、次回の地震時には倒壊することの警告となる。   The present embodiment relates to a further modification of the first embodiment. In this embodiment, in addition to the configuration of FIG. 6 or FIG. 7, a warning sound is generated when the hands A and B enter the danger zone. For example, when the needles A and B enter the danger zone, if the needle extensions a and b are configured to press a buzzer switch (not shown), for example, the buzzer continues to sound. This is a warning that the next earthquake will collapse.

本実施例は、実施例1のさらなる変形例に係る。図8(A)は、実施例4に係る、ラックアンドピニオン構造を有する耐震又は風圧強度測定装置を窓に取付けたときの概念図である。実施例4に係る、耐震又は風圧強度測定装置は、図5実施例と以下の点を除いて、同一であるので、同一又は相当する部分には同一の参照番号を付し、その説明を繰り返さない。図8(B)はラックアンドピニオン構造部を抜き出して示した分解図であり、図8(C)は表示部33を抜き出して、説明の便宜上拡大して示した分解図である。   The present embodiment relates to a further modification of the first embodiment. FIG. 8A is a conceptual diagram when an earthquake-proof or wind-pressure strength measuring device having a rack and pinion structure according to Example 4 is attached to a window. Since the seismic resistance or wind pressure intensity measuring apparatus according to the fourth embodiment is the same as the embodiment shown in FIG. 5 except for the following points, the same or corresponding parts are denoted by the same reference numerals, and the description thereof is repeated. Absent. FIG. 8B is an exploded view showing the rack and pinion structure part extracted, and FIG. 8C is an exploded view showing the display part 33 extracted and enlarged for convenience of explanation.

これらの図を参照して、実施例1と異なる点は、予め定められた位置における、L字状部材の横支持部材8aと窓枠の上桟21との離隔の距離の変化を増幅して角度の変形量として変換する機構が、ラックギア41とピニオンギア42を含むラックアンドピニオン構造で構成している点である。   Referring to these drawings, the difference from the first embodiment is that a change in the distance between the L-shaped lateral support member 8a and the upper frame 21 of the window frame at a predetermined position is amplified. The mechanism for converting the amount of deformation of the angle is a rack and pinion structure including a rack gear 41 and a pinion gear 42.

ピニオンギア42の回転中心42aと、突起物31がその他方端に固定されたアーム30の一方端は、回転中心30aで回動可能に、連結部材43で連結されている。アーム30が回転中心30aを中心に回転すると、突起部31は、円弧状の通路33aに沿って上下方向に動く。突起部31が、円弧状の通路33aに沿って、上方向に移動すると、突起部31は、針Bの針延長部bを押し上げ、これにより針Bは回転中心30aを中心にして、反時計方向に回転する。突起部31が、円弧状の通路33aに沿って、下方向(矢印)に移動すると、突起部31は、針Aの針延長部aを押し下げ、これにより針Aは、回転中心30aを中心にして、時計方向に回転する。   The rotation center 42a of the pinion gear 42 and one end of the arm 30 to which the protrusion 31 is fixed at the other end are connected by a connecting member 43 so as to be rotatable at the rotation center 30a. When the arm 30 rotates around the rotation center 30a, the protrusion 31 moves in the vertical direction along the arc-shaped passage 33a. When the protrusion 31 moves upward along the arc-shaped passage 33a, the protrusion 31 pushes up the needle extension b of the needle B, whereby the needle B is counterclockwise around the rotation center 30a. Rotate in the direction. When the protruding portion 31 moves downward (arrow) along the arc-shaped passage 33a, the protruding portion 31 pushes down the needle extension portion a of the needle A, whereby the needle A is centered on the rotation center 30a. Rotate clockwise.

次に動作について説明する。図8(A)(B)(C)と図2(B)を参照して、地震時、窓枠がA方向に、変形したとする。このとき、ラックギア41が存在する位置における、L字状部材の横支持部8aと窓枠の上桟21との離隔の距離は広がる。これにつれて、ラックギア41は下方向に降りる。するとピニオンギア42が回転中心42aを中心に時計方向に回転し、連結部材43が時計方向に回転する。すると、アーム30の他方端は下方向に押し下げられ、突起部31は、通路33aに沿って下方向に移動し、針Aの針延長部aを押し下げ、これにより針Aは回転中心30aを中心にして、時計方向に回転する。   Next, the operation will be described. Referring to FIGS. 8A, 8B, 8C and 2B, it is assumed that the window frame is deformed in the A direction during an earthquake. At this time, the distance between the L-shaped member lateral support portion 8a and the upper frame 21 of the window frame at the position where the rack gear 41 is present increases. As a result, the rack gear 41 descends downward. Then, the pinion gear 42 rotates clockwise around the rotation center 42a, and the connecting member 43 rotates clockwise. Then, the other end of the arm 30 is pushed downward, and the protrusion 31 moves downward along the passage 33a to push down the needle extension part a of the needle A, whereby the needle A is centered on the rotation center 30a. And rotate clockwise.

一方、図8(A)(B)(C)と図2(C)を参照して、地震時、窓枠が上とは逆方向に、変形したとする。このとき、L字状部材の横支持部材と窓枠の上桟21との離隔の距離は縮まる。これにつれて、ラックギア41は上方向に昇る。するとピニオンギア42が回転中心42aを中心に反時計方向に回転し、連結部材43が反時計方向に回転する。すると、アーム30の他方端は上方向に押し上げられ、突起部31は、通路33aに沿って上方向に移動し、針Bの針延長部bを押し上げ、これにより針Bは回転中心30aを中心にして反時計方向に回転する。   On the other hand, with reference to FIGS. 8 (A), (B), (C) and FIG. 2 (C), it is assumed that the window frame is deformed in the opposite direction to the top during an earthquake. At this time, the distance between the lateral support member of the L-shaped member and the upper frame 21 of the window frame is reduced. As a result, the rack gear 41 rises upward. Then, the pinion gear 42 rotates counterclockwise around the rotation center 42a, and the connecting member 43 rotates counterclockwise. Then, the other end of the arm 30 is pushed upward, the protrusion 31 moves upward along the passage 33a, pushes up the needle extension b of the needle B, and thereby the needle B is centered on the rotation center 30a. And rotate counterclockwise.

今回開示された実施例はすべての点で例示であって制限的なものではないと考えられるべきである。発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   It should be understood that the embodiments disclosed herein are illustrative and non-restrictive in every respect. The scope of the invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明によれば、専門技術を必要とせず、木造家屋の、継続的に安価で正確な耐震又は風圧強度に関する診断を行なうことができる。   ADVANTAGE OF THE INVENTION According to this invention, a specialized technique can be continuously diagnosed regarding a seismic resistance or wind pressure intensity | strength cheaply and accurately, without requiring a special technique.

(A) 平常時の木造家屋の状態を示す概念図である。 (B) 水平方向に荷重が加わった時の木造家屋の状態を示す概念図である。 (C) 1階と2階を上から見た概念図である。(A) It is a conceptual diagram which shows the state of the wooden house in normal times. (B) It is a conceptual diagram which shows the state of the wooden house when a load is applied to the horizontal direction. (C) It is the conceptual diagram which looked at the 1st floor and the 2nd floor from the top. (A) 平常時に、実施の形態に係る耐震又は風圧強度測定装置を窓枠に取付けた様子を示す概念図である。 (B) 窓枠がA方向に変形した時の概念図である。 (C) 窓枠がB方向に変形した時の概念図である。(A) It is a conceptual diagram which shows a mode that the earthquake resistance or wind-pressure-strength measuring apparatus which concerns on embodiment was attached to the window frame in normal time. (B) It is a conceptual diagram when a window frame deform | transforms into A direction. (C) It is a conceptual diagram when a window frame deform | transforms into the B direction. 表示部の正面図である。It is a front view of a display part. 複数の耐震又は風圧強度測定装置を取付ける様子を示した図である。It is the figure which showed a mode that several earthquake-proof or wind-pressure-strength measuring devices were attached. (A) 実施例1に係る耐震又は風圧強度測定装置を窓に取付けたときの概念図である。 (B) 増幅の原理を説明する図である。(A) It is a conceptual diagram when the earthquake-proof or wind-pressure-strength measuring apparatus which concerns on Example 1 is attached to the window. (B) It is a figure explaining the principle of amplification. 実施例1に係る耐震又は風圧強度測定装置の突起部付近の拡大図である。It is an enlarged view near the projection part of the earthquake resistance or wind pressure intensity measuring device concerning Example 1. FIG. 実施例2にかかる耐震又は風圧強度測定装置の部分拡大図である。It is the elements on larger scale of the earthquake-proof or wind-pressure-strength measuring apparatus concerning Example 2. FIG. (A) 実施例4に係る、耐震又は風圧強度測定装置を窓に取付けたときの概念図である。 (B) 実施例4に係る、耐震又は風圧強度測定装置のラックアンドピニオン構造部を抜き出し示した分解図である。 (C) 実施例4に係る、耐震又は風圧強度測定装置の表示部を抜き出して、拡大して示した分解図である。(A) It is a conceptual diagram when attaching the earthquake-proof or wind-pressure-strength measuring apparatus based on Example 4 to the window. (B) It is the exploded view which extracted and showed the rack and pinion structure part of the earthquake-proof or wind-pressure-strength measuring apparatus based on Example 4. FIG. (C) It is the exploded view which extracted and showed the display part of the earthquake-resistant or wind-pressure-strength measuring apparatus based on Example 4. FIG. 層間変形角を説明する図である。It is a figure explaining an interlayer deformation angle.

符号の説明Explanation of symbols

1,2 鉛直面
3,4,5 水平面
6,7 窓
8 木造家屋の耐震又は風圧強度測定装置
8a 横支持部材
8b 縦支持部材
21 窓の上桟
22 窓の縦桟
23 窓の下桟
24 第1のアーム
24a 回動点
25 測定ピン
26 ピン支持部材
28 ビス
29 第2のアーム
30 第3のアーム
30a 回動点
31 突起部
32 回転中心
33 表示部
33a 通路
41 ラックギア
42 ピニオンギア
43 連結部材
a 針Aの延長部
b 針Bの延長部
c 針Cの延長部
1, 2 Vertical plane 3, 4, 5 Horizontal plane 6, 7 Window 8 Seismic or wind pressure intensity measuring device for wooden house 8a Horizontal support member 8b Vertical support member 21 Upper frame of window 22 Vertical beam of window 23 Lower frame of window 24 1 arm 24a rotation point 25 measurement pin 26 pin support member 28 screw 29 second arm 30 third arm 30a rotation point 31 projection portion 32 rotation center 33 display portion 33a passage 41 rack gear 42 pinion gear 43 connecting member a Extension part of needle A b Extension part of needle B c Extension part of needle C

Claims (9)

窓枠の 上桟と縦桟の交点に取付けられ、木造家屋の耐震強度又は風圧強度を測定する装置であって、
横支持部材と、前記窓枠の前記 縦桟 に固定するための縦支持部材とが一体の連続的に連なったL字状部材と、
前記L字状部材の前記横支持部材に取付けられ、水平荷重時における層間変形角を直接測定して表示する層間変形角測定手段と、を備え、
前記層間変形角測定手段は、
前記水平荷重時において、予め定められた位置における、前記L字状部材の横支持部材と前記窓枠の 上桟との離隔の距離の変化を測定する手段と、
前記L字状部材の横支持部材と前記窓枠の 上桟との離隔の距離の変化を増幅して角度の変形量として変換する手段と、
前記角度の変形量の最大を、一点を固定点として、時計回り又は反時計回りに回転して示す第1の針と第2の針と、
前記第1及び第2の針の回転角度を前記 層間変形角に換算して表示する表示部とを含む、木造家屋の耐震強度又は風圧強度測定装置。
A device that is installed at the intersection of the upper frame and the vertical beam of the window frame and measures the seismic strength or wind pressure strength of the wooden house,
An L-shaped member in which a horizontal support member and a vertical support member for fixing to the vertical rail of the window frame are integrally connected ;
An interlayer deformation angle measuring means attached to the lateral support member of the L-shaped member and directly measuring and displaying the interlayer deformation angle at the time of horizontal load ;
The interlayer deformation angle measuring means includes
Means for measuring a change in a distance between a lateral support member of the L-shaped member and an upper rail of the window frame at a predetermined position during the horizontal load ;
Means for amplifying a change in the distance of the separation between the lateral support member of the L-shaped member and the upper frame of the window frame and converting it as an amount of deformation of the angle;
A first needle and a second needle showing the maximum amount of deformation of the angle by rotating clockwise or counterclockwise with one point as a fixed point;
An apparatus for measuring seismic strength or wind pressure strength of a wooden house, including a display unit that displays the rotation angle of the first and second needles in terms of the interlayer deformation angle .
前記表示部には、中央から時計回りに右方向注意ゾーン、右方向警戒ゾーン、右方向危険ゾーンが順に表示され、中央から反時計回りに左方向注意ゾーン、左方向警戒ゾーン、左方向危険ゾーンが順に表示されている、請求項に記載の木造家屋の耐震又は風圧強度測定装置。 The display unit displays a right caution zone, a right caution zone, and a right danger zone in order clockwise from the center, and a left caution zone, left warning zone, and left danger zone counterclockwise from the center. There are displayed in the order, earthquake or wind strength measuring device of the wooden house according to claim 1. 前記木造家屋の現状の層間変形角を表示させる第3の針をさらに備える、請求項1又は2に記載の木造家屋の耐震又は風圧強度測定装置。 The earthquake resistance or wind pressure intensity measuring apparatus for a wooden house according to claim 1 or 2 , further comprising a third needle for displaying a current interlayer deformation angle of the wooden house. 前記第1又は第2の針が、前記右方向又は左方向危険ゾーンに入った場合に、警告音を鳴らせる警告音発生手段をさらに備える、請求項に記載の木造家屋の耐震又は風圧強度測定装置。 The first or second needle, wherein when entering the right or left direction danger zone, further comprising a warning sound generating means Naraseru a warning sound, seismic or wind strength measurements wooden houses according to claim 1 apparatus. 請求項1に記載の装置を準備する工程と、
前記L字状部材の前記縦支持部材を前記窓枠の 縦桟 に固定する工程と、を備え、
水平荷重時に、予め定められた位置における、前記L字状部材の横支持部材と前記窓枠の 上桟との離隔の距離の変化を測定し、
前記L字状部材の横支持部材と前記窓枠の 上桟との離隔の距離の変化を増幅して角度の変形量に変換し、
前記角度の変形量の最大を、前記水平荷重時における層間変形角に換算して表示部に表示させることを特徴とする、木造家屋の耐震強度又は風圧強度の測定方法。
Preparing the apparatus of claim 1;
Fixing the vertical support member of the L-shaped member to the vertical rail of the window frame ,
When a horizontal load is applied, a change in the distance between the lateral support member of the L-shaped member and the upper frame of the window frame at a predetermined position is measured.
Amplifying the change in the distance between the lateral support member of the L-shaped member and the upper frame of the window frame to convert it into an angular deformation amount,
The method for measuring seismic strength or wind pressure strength of a wooden house, wherein the maximum deformation amount of the angle is converted into an interlayer deformation angle at the time of the horizontal load and displayed on a display unit.
記L字状部材を前記窓枠の上桟と縦桟に接するように取付けることを特徴とする、請求項に記載の木造家屋の耐震又は風圧強度測定装置の測定方法。 Method of measuring the front Symbol characterized by mounting the L-shaped member so as to contact the bar and the vertical bar on the window frame, earthquake or wind strength measuring device of the wooden house according to claim 5. 方角の一をX方向として、それに直交する方向をY方向としたとき、
前記窓枠の 上桟の延びている方角がX方向の場所及び前記窓枠の 上桟の延びている方角がY方向の場所の少なくとも2つの場所において、それぞれ、前記測定方法を実行することを特徴とする、請求項5又は6に記載の、木造家屋の耐震強度又は風圧強度の測定方法。
When one direction is the X direction and the direction perpendicular to it is the Y direction,
In at least two places of upper corner which direction extending crosspiece extends crosspiece on the X-direction location and the window frame in the Y direction location of the window frame, respectively, to perform the measurement method The method for measuring seismic strength or wind pressure strength of a wooden house according to claim 5 or 6 , characterized in that
複数階を有する家屋では、各階でそれぞれ、前記測定方法を実行することを特徴とする請求項5〜7のいずれか1項に記載の、木造家屋の耐震強度又は風圧強度の測定方法。 The method of measuring seismic strength or wind pressure strength of a wooden house according to any one of claims 5 to 7 , wherein the measurement method is executed on each floor in a house having a plurality of floors. 前記L字状部材の前記縦支持部材を前記窓枠のThe vertical support member of the L-shaped member is attached to the window frame. 縦桟Vertical cross に固定する工程は、前記L字状部材の前記縦支持部材を、前記窓枠のThe step of fixing to the window frame includes supporting the vertical support member of the L-shaped member on the window frame. 縦桟Vertical cross に、少なくとも2箇所、ビスで固定することにより行う、請求項5に記載の木造家屋の耐震強度又は風圧強度の測定方法。The method for measuring the seismic strength or wind pressure strength of a wooden house according to claim 5, wherein the method is performed by fixing at least two places with screws.
JP2008313618A 2008-12-09 2008-12-09 Method and apparatus for measuring earthquake resistance or wind pressure strength of wooden houses Expired - Fee Related JP5372479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008313618A JP5372479B2 (en) 2008-12-09 2008-12-09 Method and apparatus for measuring earthquake resistance or wind pressure strength of wooden houses

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008313618A JP5372479B2 (en) 2008-12-09 2008-12-09 Method and apparatus for measuring earthquake resistance or wind pressure strength of wooden houses

Publications (2)

Publication Number Publication Date
JP2010139271A JP2010139271A (en) 2010-06-24
JP5372479B2 true JP5372479B2 (en) 2013-12-18

Family

ID=42349537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008313618A Expired - Fee Related JP5372479B2 (en) 2008-12-09 2008-12-09 Method and apparatus for measuring earthquake resistance or wind pressure strength of wooden houses

Country Status (1)

Country Link
JP (1) JP5372479B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5912414B2 (en) * 2011-10-27 2016-04-27 ビイック株式会社 Seismometer and acceleration detection method using the same
JP5809174B2 (en) 2013-01-09 2015-11-10 株式会社Nttファシリティーズ Building safety verification system, building safety verification method and program
CN106092472B (en) * 2016-05-28 2018-05-22 太原理工大学 Ancient architecture gallows timber big displacement low cycling loads test loading synchronous device
CN107664490A (en) * 2017-10-30 2018-02-06 王成宇 A kind of real-time security on-line monitoring method of high-altitude plank road and its realization device
CN113554859B (en) * 2021-06-15 2023-02-10 深圳宸元网信科技有限公司 AI alarm system
CN115638948B (en) * 2022-12-23 2023-03-31 中冶检测认证有限公司 Building envelope comprehensive performance detection system and detection method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58177803U (en) * 1982-05-24 1983-11-28 株式会社東芝 Basic displacement detection device
JPH10185560A (en) * 1996-12-25 1998-07-14 Taiyo Kogyo Kk Apparatus for detecting relative angular change of plurality of objects
JP3968404B2 (en) * 1997-10-22 2007-08-29 株式会社フジタ Hysteretic damper cumulative displacement measurement mechanism, hysteresis damper vibration damping function degradation evaluation method, and hysteretic damper
JPH11325802A (en) * 1998-05-12 1999-11-26 Penta Ocean Constr Co Ltd Measuring apparatus for cumulative deformation amount of damper for structure
JPH11325807A (en) * 1998-05-12 1999-11-26 Penta Ocean Constr Co Ltd Measuring apparatus of cumulative deformation amount of damper for structure
JP4350834B2 (en) * 1999-04-26 2009-10-21 株式会社フジタ Hysteretic damper
JP3622618B2 (en) * 2000-01-31 2005-02-23 株式会社大林組 Displacement history confirmation sensor
JP3857555B2 (en) * 2001-09-20 2006-12-13 長野計器株式会社 Displacement meter
JP4062259B2 (en) * 2004-01-30 2008-03-19 東海ゴム工業株式会社 Displacement amplification type vibration control structure of detached house building
JP4878142B2 (en) * 2005-10-13 2012-02-15 ミサワホーム株式会社 Damping wall structure

Also Published As

Publication number Publication date
JP2010139271A (en) 2010-06-24

Similar Documents

Publication Publication Date Title
JP5372479B2 (en) Method and apparatus for measuring earthquake resistance or wind pressure strength of wooden houses
TWI507670B (en) Building safety verification system, building safety verification method and computer-readable recording medium
US20170363504A1 (en) System and method for determining the risk of failure of a structure
US10168245B2 (en) Optically-based interstory drift meter system for rapid assessment of the earthquake response of building structures
US20140012517A1 (en) Structural damage estimation based on measurements of rotations
JP2012037436A (en) Seismometer, mounting structure for seismometer and management system for building
JP2007064800A (en) Building diagnosis system
JP2016109611A (en) Displacement measuring device
JP5721235B2 (en) Seismometer mounting structure
JP4523904B2 (en) Water level measuring device and water level measuring system using this water level measuring device
JP3874741B2 (en) Tilt measuring instrument
JP2003042892A (en) Method of evaluating dynamic earthquake resistance of building
JP5912414B2 (en) Seismometer and acceleration detection method using the same
CN111608213A (en) Method and device for measuring horizontal displacement of foundation pit supporting pile
JP2010127764A (en) Method and apparatus for evaluating seismic capacity of building
KR101291451B1 (en) Level measurement staff having reflection apparatus
JP4849558B2 (en) Method and apparatus for measuring interlayer displacement of layered structure
JP5756051B2 (en) Earthquake indicator
JPH0886656A (en) Inclination measuring instrument
JP2019128216A (en) Method for measuring deformation amount of architectural structure
JP2016170037A (en) Method of estimating damaged portion of building
JP2577110B2 (en) Street accuracy measuring device and street accuracy measuring method at construction site
Littler The response of a tall building to wind loading
JP7374825B2 (en) Building history information storage system
KR102356132B1 (en) Multi-channel sensor-based ground displacement and ground measurement method and system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111130

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20111130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130918

R150 Certificate of patent or registration of utility model

Ref document number: 5372479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees