JP5365312B2 - Steel plate for high-strength can and manufacturing method thereof - Google Patents

Steel plate for high-strength can and manufacturing method thereof Download PDF

Info

Publication number
JP5365312B2
JP5365312B2 JP2009089936A JP2009089936A JP5365312B2 JP 5365312 B2 JP5365312 B2 JP 5365312B2 JP 2009089936 A JP2009089936 A JP 2009089936A JP 2009089936 A JP2009089936 A JP 2009089936A JP 5365312 B2 JP5365312 B2 JP 5365312B2
Authority
JP
Japan
Prior art keywords
less
strength
rolling
steel plate
cans
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009089936A
Other languages
Japanese (ja)
Other versions
JP2009263788A (en
Inventor
誠 荒谷
寿勝 加藤
勝人 河村
田中  匠
克己 小島
覚 佐藤
成子 筋田
正樹 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009089936A priority Critical patent/JP5365312B2/en
Publication of JP2009263788A publication Critical patent/JP2009263788A/en
Application granted granted Critical
Publication of JP5365312B2 publication Critical patent/JP5365312B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/24Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
    • B21B1/26Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process by hot-rolling, e.g. Steckel hot mill
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0442Flattening; Dressing; Flexing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、溶接などの3ピース加工やDIなどの2ピース加工後に径形状の縮小や拡大加工を行う缶用素材として好適な高強度缶用鋼板およびその製造方法に関するものである。   The present invention relates to a steel plate for high-strength cans suitable as a material for cans that can be reduced or enlarged after three-piece processing such as welding or two-piece processing such as DI, and a method for manufacturing the same.

近年、コストの低減を目的として、また、利用資材の削減や環境負荷の軽減を目的として素材である鋼材(鋼板)の製品板厚を薄くするための製品開発が進められている。
また、製品板厚を薄くすると剛性が低下するので、この剛性の低下を補うため、鋼材の高強度化を図る必要もある。しかし、鋼材の高強度化を図った場合、硬質化するため、フランジ加工やネッキング加工で割れが生じる問題がある。
上記に対して、現在、種々の製造方法が考案されている。
2. Description of the Related Art In recent years, product development for reducing the product thickness of a steel material (steel plate), which is a material, has been promoted for the purpose of reducing costs and reducing the use of materials and the environmental load.
Further, since the rigidity is reduced when the product plate thickness is reduced, it is necessary to increase the strength of the steel material in order to compensate for this reduction in rigidity. However, when the strength of the steel material is increased, the steel material is hardened, so that there is a problem that cracking occurs in flange processing or necking processing.
In contrast, various manufacturing methods have been devised.

例えば、特許文献1には、鋼中成分を一定範囲に管理した上で、(Ar3変態点−30℃)以上で熱間圧延を施し、冷間圧延ののち、連続焼鈍を行う方法が提案されている。
しかしながら、特許文献1の方法では、フランジ加工性、ネック加工性および耐蝕性を劣化させないようにPを0.02wt%以下とし、さらに2次冷間圧延の圧下率を15〜30%とするため薄い製品を効率的に処理することは難しく生産しにくい、また外観不良が発生しやすいといった問題がある。また、安定的に製造することが難しく、改善が必要である。
For example, Patent Document 1 proposes a method in which components in steel are controlled within a certain range, hot rolling is performed at (Ar3 transformation point −30 ° C.) or more, and after cold rolling, continuous annealing is performed. ing.
However, in the method of Patent Document 1, P is set to 0.02 wt% or less so as not to deteriorate the flange workability, neck workability, and corrosion resistance, and further, the reduction ratio of the secondary cold rolling is set to 15 to 30%, so that it is thin. There is a problem that it is difficult to efficiently process the product, it is difficult to produce the product, and appearance defects are likely to occur. Moreover, it is difficult to produce stably, and improvement is required.

また、特許文献2には、鋼中成分および固溶Nを一定範囲に管理した上で、(Ar3変態点−30℃)以上で熱間圧延を施し、所定の冷却を行い、巻き取り、水冷をし、冷間圧延を行ったのち、所定のヒートパターンの連続焼鈍を行い、塗装焼付処理後の降伏応力:550MPa以上を有する缶用鋼板の製造方法が提案されている。
しかしながら、特許文献2の方法では、セミ極低炭材であり、かつ所定の固溶Nを確保するために連続焼鈍の温度を高くし、さらにヒートパターンを厳しく管理することが難しく、生産しにくいといった問題がある。また、単に鋼中Nの80%以上の固溶Nを確保するだけでは、鋼中N含有量のばらつきから所定の強度の鋼板を安定的に製造することが難しく、改善が必要である。また、特許文献2の方法では全伸びが小さくなり、加工性が劣化する。
Patent Document 2 discloses that steel components and solute N are controlled within a certain range, and then hot-rolled at (Ar3 transformation point -30 ° C) or more, subjected to predetermined cooling, winding, and water cooling. A method of manufacturing a steel plate for cans having a yield stress of 550 MPa or more after a paint baking process by performing continuous annealing with a predetermined heat pattern after cold rolling is proposed.
However, in the method of Patent Document 2, it is a semi-very low carbon material, and in order to secure a predetermined solid solution N, the temperature of continuous annealing is increased, and furthermore, it is difficult to strictly manage the heat pattern and it is difficult to produce. There is a problem. Further, simply securing solid solution N of 80% or more of N in steel makes it difficult to stably produce a steel plate having a predetermined strength due to variations in the N content in steel, and needs to be improved. Moreover, in the method of patent document 2, total elongation becomes small and workability deteriorates.

さらに、高強度な缶用鋼板の代表的な製造方法として、下記の方法が提案されており、焼鈍種類に応じて適宜選択し用いられている(例えば、非特許文献1)。
熱間圧延→酸洗→冷間圧延→箱型焼鈍(BAF)→2回目冷間圧延(圧下率:20〜50%)
熱間圧延→酸洗→冷間圧延→連続焼鈍(CAL)→2回目冷間圧延(圧下率:20〜50%)
しかしながら、上記の方法では、2回目の冷間圧延での圧下率が20〜50%と高く、圧延荷重が高いことにより操業能率は低くなる。また、圧延時の潤滑性を向上する目的で粘度の高い各種圧延油が用いられるため圧延油の濃度むらや部分的な油付着による、圧延後の外観不良の問題がある。さらに、圧延圧下率が高い場合、全伸びが小さくなり、加工性が劣化し、また、圧延により鋼板が伸ばされるため、素材の製造方向と加工方向に応じた幅方向と長さ方向の耐力差が大きくなる。
これに対して、2回目の冷間圧延での圧下率を低く抑える方法が考えられる。しかし、圧下率を低くした場合は、必要とする耐力を得ることが困難となる。
Furthermore, the following method has been proposed as a typical method for producing a high-strength steel plate for cans, and is appropriately selected and used according to the type of annealing (for example, Non-Patent Document 1).
Hot rolling->pickling-> cold rolling-> box annealing (BAF)-> second cold rolling (rolling ratio: 20-50%)
Hot rolling->pickling-> cold rolling-> continuous annealing (CAL)-> second cold rolling (rolling ratio: 20-50%)
However, in the above method, the rolling reduction in the second cold rolling is as high as 20 to 50%, and the operation efficiency is low due to the high rolling load. Moreover, since various rolling oils with high viscosity are used for the purpose of improving lubricity during rolling, there is a problem of poor appearance after rolling due to uneven concentration of the rolling oil or partial oil adhesion. Furthermore, when the rolling reduction ratio is high, the total elongation becomes small, the workability deteriorates, and the steel sheet is stretched by rolling, so the difference in yield strength between the width direction and length direction according to the production direction and processing direction of the material. Becomes larger.
On the other hand, a method of keeping the rolling reduction in the second cold rolling low can be considered. However, when the rolling reduction is lowered, it becomes difficult to obtain the required yield strength.

特許第3108615号公報Japanese Patent No. 3108615 特開2001-107187号公報JP 2001-107187

「わが国における缶用表面処理鋼板の技術史」日本鉄鋼協会 平成10年10月30日発行 p.188“Technological History of Steel Sheets for Cans in Japan” Issued on October 30, 1998, Japan Iron and Steel Institute p.188

このように、製品板厚の薄い缶用鋼板を得ようとする場合、強度と生産性を両立できる製造方法はなく、望まれているのが現状である。   Thus, when it is going to obtain the steel plate for cans with thin product board thickness, there is no manufacturing method which can make intensity | strength and productivity compatible, and the present condition is desired.

本発明は、かかる事情に鑑みなされたもので、塗装・焼付処理後の降伏応力YPが500MPa以上の強度を有する缶用鋼板およびその製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a steel plate for cans having a yield stress YP of 500 MPa or more after coating and baking, and a method for producing the same.

本発明者らは、上記課題を解決するために鋭意研究を行った。その結果、以下の知見を得た。   The inventors of the present invention have intensively studied to solve the above problems. As a result, the following knowledge was obtained.

成分組成として、低炭材とし、固溶N量の絶対量を一定以上確保し、製缶加工前に施される印刷工程あるいはフィルムラミネート工程、乾燥・焼付工程などで焼入れ時効および歪時効により硬化することで高強度の材質を確保できることを見出した。
以上のように、本発明では、上記知見に基づき成分を管理することで高強度缶用鋼板を完成するに至った。
Ingredient composition is low charcoal, and the absolute amount of solid solution N is ensured more than a certain level, and it is hardened by quenching aging and strain aging in printing process, film laminating process, drying / baking process, etc. before canning process It has been found that a high-strength material can be secured by doing so.
As described above, in the present invention, high strength steel sheets for cans have been completed by managing the components based on the above findings.

本発明は、以上の知見に基づきなされたもので、その要旨は以下のとおりである。
[1]質量%で、C:0.02%超0.10%以下、Si:0.10%以下、Mn:1.5%以下、P:0.20%以下、S:0.20%以下、Al:0.10%以下、N:0.0120〜0.0250 %を含有し、かつ該Nのうち固溶Nとして0.0100%以上を含み、残部がFeおよび不可避的不純物からなることを特徴とする高強度缶用鋼板。
[2]表面にめっき層を有することを特徴とする[1]に記載の高強度缶用鋼板。
[3]質量%で、C:0.02%超0.10%以下、Si:0.10%以下、Mn:1.5%以下、P:0.20%以下、S:0.20%以下、Al:0.10%以下、N:0.0120〜0.0250 %を含有し、残部がFeおよび不可避的不純物からなる鋼スラブを、スラブ抽出温度を1200℃以上とし、仕上げ圧延温度を(Ar3変態点温度-30)℃以上とする熱間圧延を施し、650℃以下で巻き取り、酸洗を施したのち、冷間圧延を施し、次いで、連続焼鈍を施すことを特徴とする高強度缶用鋼板の製造方法。
[4]前記連続焼鈍の後、圧下率を10%以上20%未満とする2回目の冷間圧延を施すことを特徴とする[3]に記載の高強度缶用鋼板の製造方法。
[5]前記連続焼鈍の均熱温度をAr1変態点温度以上とすることを特徴とする[3]または[4]に記載の高強度缶用鋼板の製造方法。
[6]前記連続焼鈍または前記2回目の冷間圧延の後、めっき処理を施すことを特徴とする[3]〜[5]のいずれかに記載の高強度缶用鋼板の製造方法。
なお、本明細書において、鋼の成分を示す%は、すべて質量%である。また、本発明において、「高強度缶用鋼板」とは、塗装・焼付処理後の降伏応力YPが500MPa以上の強度を有する缶用鋼板である。
また、本発明の高強度缶用鋼板は、缶用素材を対象とする。さらに、表面処理の有無は問わず、錫めっき、ニッケル錫めっき、クロムめっき(いわゆるティンフリーめっき)あるいは、さらに有機被覆などを施され、極めて広範囲な用途に適用可能である。
さらに、板厚については特に限定しないが、本発明を最大限に活かし効果を得る点からは板厚0.3mm以下、さらに0.2mm以下が好ましい。とくに好ましいのは0.170mm以下である。
The present invention has been made based on the above findings, and the gist thereof is as follows.
[1] By mass%, C: more than 0.02%, 0.10% or less, Si: 0.10% or less, Mn: 1.5% or less, P: 0.20% or less, S: 0.20% or less, Al: 0.10% or less, N: 0.0120 ~ A steel plate for high-strength cans containing 0.0250% and containing 0.0100% or more as solute N in the N, and the balance being Fe and inevitable impurities.
[2] The steel plate for high-strength cans according to [1], having a plating layer on the surface.
[3] By mass%, C: more than 0.02%, 0.10% or less, Si: 0.10% or less, Mn: 1.5% or less, P: 0.20% or less, S: 0.20% or less, Al: 0.10% or less, N: 0.0120 ~ A steel slab containing 0.0250%, the balance being Fe and inevitable impurities, hot-rolled with a slab extraction temperature of 1200 ° C or higher and a final rolling temperature of (Ar3 transformation point temperature -30) ° C or higher, A method for producing a steel plate for a high-strength can, which is wound at 650 ° C. or lower, pickled, cold-rolled, and then subjected to continuous annealing.
[4] The method for producing a steel plate for a high-strength can according to [3], wherein after the continuous annealing, a second cold rolling is performed with a rolling reduction of 10% or more and less than 20%.
[5] The method for producing a steel plate for a high-strength can according to [3] or [4], wherein the soaking temperature of the continuous annealing is set to an Ar1 transformation point temperature or higher.
[6] The method for producing a steel plate for a high-strength can according to any one of [3] to [5], wherein plating is performed after the continuous annealing or the second cold rolling.
In addition, in this specification,% which shows the component of steel is mass% altogether. In the present invention, the “high-strength steel plate for cans” is a steel plate for cans having a yield stress YP of 500 MPa or more after coating and baking.
Moreover, the steel plate for high-strength cans of this invention makes object for cans object. Furthermore, regardless of the presence or absence of surface treatment, tin plating, nickel tin plating, chromium plating (so-called tin-free plating), or further organic coating is applied, and it can be applied to an extremely wide range of applications.
Further, the plate thickness is not particularly limited, but from the viewpoint of obtaining the effect by making the most of the present invention, the plate thickness is preferably 0.3 mm or less, and more preferably 0.2 mm or less. Particularly preferred is 0.170 mm or less.

本発明によれば、塗装・焼付処理後の降伏応力YPが500MPa以上の強度を有する高強度缶用鋼板が得られる。
本発明では、低炭材とし、(1)成分として所定のN量を含有させ、(2)スラブ抽出温度を1200℃以上としてスラブ鋳造時に生じたAlNを分解させ、(3)熱延コイルを650℃以下で巻き取りAlNの析出を抑制させることにより、冷延鋼板の固溶N量の絶対量を一定以上確保し、さらに、塗装焼付処理後の時効硬化によって、2次冷間圧延することなく、あるいは低圧下率の2次冷間圧延を行うことにより、生産性を高くして缶用鋼板の高強度化が可能となる。
そして、本発明の2次冷間圧延することなしに、すなわち連続焼鈍後1%程度の調質圧延を施して得られる高強度缶用鋼板は、塗装・焼付処理後の全伸びElが20%以上有する。また、2次冷間圧延を行う高強度缶用鋼板では、2次冷間圧延圧下率を好適範囲である10%以上15%未満とすることで塗装・焼付処理後の全伸びElが10%超えとすることができる。
According to the present invention, a high-strength steel plate for cans having a yield stress YP of 500 MPa or more after coating and baking is obtained.
In the present invention, a low carbon material is used, (1) a predetermined amount of N is contained as a component, (2) AlN produced during slab casting is decomposed at a slab extraction temperature of 1200 ° C or higher, and (3) a hot rolled coil By controlling precipitation of AlN at 650 ° C or lower, the absolute amount of solute N in the cold-rolled steel sheet is secured above a certain level, and secondary cold rolling is performed by age hardening after paint baking. If the secondary cold rolling is performed at a low pressure, productivity can be increased and the strength of the steel plate for cans can be increased.
And, the steel sheet for high-strength cans obtained without subjecting the secondary cold rolling of the present invention, that is, by temper rolling of about 1% after continuous annealing, has a total elongation El after painting and baking treatment of 20%. Have more. In steel sheets for high-strength cans that perform secondary cold rolling, the total elongation El after painting and baking treatment is 10% by setting the secondary cold rolling reduction ratio to a suitable range of 10% or more and less than 15%. Can be exceeded.

以下、本発明を詳細に説明する。
本発明の缶用鋼板は、塗装・焼付処理後の降伏応力YPが500MPa以上の強度を有する高強度缶用鋼板である。そして、本発明では、低炭材とし、固溶N量の絶対量を一定以上確保し、さらに、塗装焼付処理後の時効硬化によって、2次冷間圧延することなく、あるいは低圧下率の2次冷間圧延を行うことにより、生産性を高くして缶用鋼板の生産性を高くして高強度化が可能となる。さらに、2次冷間圧延することなしに、すなわち連続焼鈍後1%程度の調質圧延を施して得られる缶用鋼板では塗装・焼付処理後の全伸びElが20%以上を有する。また、10%以上15%未満の圧下率で2次冷間圧延を行う缶用鋼板では塗装・焼付処理後の全伸びElが10%超えを有する。
Hereinafter, the present invention will be described in detail.
The steel plate for cans of the present invention is a high strength steel plate for cans having a yield stress YP of 500 MPa or more after painting and baking. And, in the present invention, it is a low carbon material, ensuring an absolute amount of solute N amount above a certain level, and further by age hardening after paint baking treatment, without secondary cold rolling, or at a low pressure reduction rate of 2 By performing the next cold rolling, the productivity can be increased, the productivity of the steel plate for cans can be increased, and the strength can be increased. Furthermore, in the steel sheet for cans obtained without secondary cold rolling, that is, by performing temper rolling of about 1% after continuous annealing, the total elongation El after coating and baking treatment has 20% or more. Further, in steel sheets for cans subjected to secondary cold rolling at a rolling reduction of 10% or more and less than 15%, the total elongation El after coating / baking treatment exceeds 10%.

本発明の容器用鋼板の成分組成について説明する。
C: 0.02%超0.10%以下
Cは、固溶強化により鋼の強度を増加させる有効な元素であるが、一方で炭化物を形成し、鋼板の延性、ひいては加工性を低下させる。C成分が多いと2次冷間圧延後の鋼板を硬質化させ、製缶性やネック加工性を劣化させる。また、溶接部の顕著な硬質化によりフランジ加工時にHAZ割れを生じさせる元素となる。Cが0.10%を超えると、これらの影響が顕著になるので、Cは0.10%以下とする。一方、C成分が極端に低くなると2次冷間圧延の圧下率を20%以上の強圧下としなければ強度を確保できないという問題があるためCは0.02%超とする。Cは0.03%以上0.05%以下とするのが好ましい。
The component composition of the steel plate for containers according to the present invention will be described.
C: More than 0.02% and less than 0.10%
C is an effective element that increases the strength of the steel by solid solution strengthening, but on the other hand, forms carbides and reduces the ductility of the steel sheet and thus the workability. If the C component is large, the steel sheet after the secondary cold rolling is hardened, and can manufacturing and neck workability are deteriorated. In addition, it becomes an element that causes HAZ cracking during flange processing due to remarkable hardening of the weld. When C exceeds 0.10%, these effects become significant, so C is set to 0.10% or less. On the other hand, if the C component is extremely low, C is over 0.02% because there is a problem that the strength cannot be secured unless the rolling reduction of secondary cold rolling is over 20%. C is preferably 0.03% or more and 0.05% or less.

Si:0.10 %以下
Siは、固溶強化により鋼の強度を増加させる元素であるが、多量の添加は表面処理性の劣化、耐食性の劣化等の問題を生じるため、Siは0.10%以下に限定する。なお、特に優れた耐食性が要求される場合は、Siは0.02%以下とするのが好ましい。
Si: 0.10% or less
Si is an element that increases the strength of the steel by solid solution strengthening. However, since addition of a large amount causes problems such as deterioration of surface treatment property and deterioration of corrosion resistance, Si is limited to 0.10% or less. When particularly excellent corrosion resistance is required, Si is preferably 0.02% or less.

Mn:1.5%以下
MnはSによる熱間割れを防止するのに有効な元素である。そして、S量に応じて適宜添加することにより、割れを防止する効果が得られる。これらの効果を発揮するためには、Mnは0.20 %以上の添加が好ましい。また、結晶粒を微細化する作用も有している。一方、多量に添加すると、耐食性が劣化する傾向を示すとともに鋼板を必要以上に硬質化させ、フランジ加工性、ネック加工性を劣化させるため、上限は1.5%とする。Mnは0.20%以上0.30%以下とするのが好ましい。
Mn: 1.5% or less
Mn is an element effective in preventing hot cracking due to S. And the effect which prevents a crack is acquired by adding suitably according to S amount. In order to exert these effects, Mn is preferably added in an amount of 0.20% or more. It also has the effect of refining crystal grains. On the other hand, if added in a large amount, the corrosion resistance tends to deteriorate and the steel plate is hardened more than necessary, and the flange workability and neck workability are deteriorated. Therefore, the upper limit is set to 1.5%. Mn is preferably 0.20% or more and 0.30% or less.

P:0.20%以下
Pは、鋼を著しく硬質化させるが、フランジ加工性やネック加工性を劣化させるとともに、耐食性を著しく劣化させる。このため、本発明では、Pは0.20%以下に限定する。Pは0.001%以上0.018%以下とするのが好ましい。
P: 0.20% or less P significantly hardens steel, but deteriorates flange workability and neck workability, and remarkably deteriorates corrosion resistance. For this reason, in the present invention, P is limited to 0.20% or less. P is preferably 0.001% or more and 0.018% or less.

S:0.20%以下
Sは鋼中で介在物として存在し、鋼板の延性を減少させさらに耐食性を劣化させる元素である。そのため、0.20%以下とする。Sは0.001%以上0.018%以下とするのが好ましい。
Al:0.10%以下
Alは、固溶Nと結合し、AlN を形成し、固溶N量を低減する効果を有する。また、Al含有量の増加は再結晶温度の上昇をもたらし、焼鈍温度を高温とする必要がある。高温焼鈍では、AlN 形成のため、固溶N量が低減し、時効硬化量が低減し、したがって鋼板強度の低下をもたらす。低炭材の場合、このような現象が顕著となるのは、Al含有量が0.10%を超える場合である。このようなことから、Alは0.10%以下に限定した。なお、鋼の溶製工程における安定操業の観点からは、Alは0.020 %以上とするのが望ましい。Alは0.020%以上0.060%以下とするのが好ましい。
S: 0.20% or less
S exists as an inclusion in steel, and is an element that decreases the ductility of the steel sheet and further deteriorates the corrosion resistance. Therefore, it is 0.20% or less. S is preferably 0.001% or more and 0.018% or less.
Al: 0.10% or less
Al combines with solid solution N to form AlN and has the effect of reducing the amount of solid solution N. Further, an increase in the Al content causes an increase in the recrystallization temperature, and it is necessary to increase the annealing temperature. In high temperature annealing, the amount of solute N is reduced due to the formation of AlN, the amount of age hardening is reduced, and thus the strength of the steel sheet is lowered. In the case of a low carbon material, such a phenomenon becomes remarkable when the Al content exceeds 0.10%. For these reasons, Al is limited to 0.10% or less. From the viewpoint of stable operation in the steel melting process, Al is preferably 0.020% or more. Al is preferably 0.020% or more and 0.060% or less.

N:0.0120〜0.0250%
Nは、時効硬化性を増加させる元素であり、本発明においては、積極的に含有させる。時効硬化性の顕著な増加は低炭材の場合0.0120%以上の含有で認められる。一方、0.0250%を超えて含有すると、圧延素材(スラブ)に割れ欠陥を発生する危険性が顕著に増大する。したがって、Nは0.0120%以上0.0250%以下に限定する。
N: 0.0120 ~ 0.0250%
N is an element that increases age hardenability and is positively incorporated in the present invention. A marked increase in age hardenability is observed at a content of 0.0120% or more in the case of low-carbon materials. On the other hand, if the content exceeds 0.0250%, the risk of generating cracking defects in the rolled material (slab) is significantly increased. Therefore, N is limited to 0.0120% or more and 0.0250% or less.

缶用鋼板(冷延鋼板)の固溶N:0.0100%以上
本発明の特徴である大きな時効硬化性を確保するためには、缶用鋼板(冷延鋼板)中の固溶N量を0.0100%以上とする必要がある。これは本発明において最も重要な要件である。本発明の冷延鋼板は、好ましくは、熱延板を酸洗したのち、冷間圧延し、連続焼鈍を行い、必要に応じて2回目の冷間圧延を行い製造されるが、この連続焼鈍工程でAIN は析出傾向にあるので、缶用鋼板(冷延鋼板)中の固溶N量が0.0100%未満とならないような工程を管理することが重要となる。なお、本発明では、通常実施されるブロムエステルによる溶解処理後の抽出分析によりAlN となっているN量を求め(以下、N as AlNと称す )、全N量からN as AlN を引いた値を固溶N量とする。
また、前記した固溶N量と固溶C量を合計で0.0150%以上とすることが好ましい。固溶C量は内耗による測定により、または鋼板から抽出した析出物中のC量を全C量から差し引いて求めることもできる。
Solid solution N of can steel sheet (cold rolled steel sheet): 0.0100% or more In order to ensure the large age hardening characteristic of the present invention, the solid solution N amount in can steel sheet (cold rolled steel sheet) is 0.0100%. It is necessary to do it above. This is the most important requirement in the present invention. The cold-rolled steel sheet of the present invention is preferably manufactured by pickling the hot-rolled sheet, then cold-rolling and continuous annealing, and if necessary, performing the second cold rolling. Since AIN tends to precipitate in the process, it is important to manage the process so that the amount of solute N in the steel plate for cans (cold rolled steel plate) does not become less than 0.0100%. In the present invention, the amount of N that is AlN is determined by extraction analysis after dissolution treatment with a bromoester that is usually performed (hereinafter referred to as N as AlN), and the value obtained by subtracting N as AlN from the total N amount. Is the solute N amount.
Moreover, it is preferable that the total amount of the solid solution N and the amount of the solid solution C is 0.0150% or more in total. The amount of solute C can also be determined by measurement by internal wear or by subtracting the amount of C in the precipitate extracted from the steel plate from the total amount of C.

残部はFeおよび不可避不純物とする。
上記した成分以外の残部は、Feおよび不可避的不純物である。なお、不可避的不純物としては、例えばSn:0.01%以下が許容できる。
The balance is Fe and inevitable impurities.
The balance other than the above components is Fe and inevitable impurities. As an inevitable impurity, for example, Sn: 0.01% or less is acceptable.

次に、本発明の高強度缶用鋼板の製造方法について説明する。
本発明の高強度缶用鋼板は、以下の方法により得られる。まず、上記した組成からなる溶鋼を転炉等を用いた通常公知の溶製方法により溶製し、連続鋳造法等の通常公知の鋳造方法で圧延素材(スラブ)とする。次いで、これら圧延素材を用い、熱間圧延により熱延板とする。この時、スラブ抽出温度は1200℃以上とし、仕上げ圧延温度は(Ar3変態点温度-30)℃以上(好適にはAr3変態点温度以上)とする。次いで、650℃以下で巻き取り、酸洗を施したのち、冷間圧延を施し、連続焼鈍を施す。さらに必要に応じて、圧下率を10%以上20%未満(好適には10%以上15%未満)とする2回目の冷間圧延を施す。また、めっき処理を施すことも可能である。
以下に、詳細に説明する。
Next, the manufacturing method of the steel plate for high strength cans of this invention is demonstrated.
The steel plate for high strength cans of the present invention is obtained by the following method. First, molten steel having the above composition is melted by a generally known melting method using a converter or the like, and is made into a rolled material (slab) by a generally known casting method such as a continuous casting method. Next, these rolled materials are used to form hot rolled sheets by hot rolling. At this time, the slab extraction temperature is 1200 ° C or higher, and the finish rolling temperature is (Ar3 transformation point temperature -30) ° C or higher (preferably Ar3 transformation point temperature or higher). Next, the film is wound at 650 ° C. or lower, pickled, and then cold-rolled and continuously annealed. Further, if necessary, a second cold rolling is performed at a reduction rate of 10% or more and less than 20% (preferably 10% or more and less than 15%). It is also possible to perform a plating process.
This will be described in detail below.

スラブ抽出温度:1200℃以上
缶用鋼板の固溶N量を0.0100%以上とするには、スラブを加熱炉に挿入して加熱し、加熱炉から抽出する温度を1200℃以上とする。AlNの分解を促進し、所定量の固溶N量を確保するためである。この温度に保持した加熱炉に挿入し加熱するのが好ましい。
Slab extraction temperature: 1200 ℃ or more
In order to set the solid solution N content of the steel plate for cans to 0.0100% or more, the slab is inserted into a heating furnace and heated, and the temperature extracted from the heating furnace is set to 1200 ° C. or more. This is for accelerating the decomposition of AlN and securing a predetermined amount of dissolved N. It is preferably inserted into a heating furnace maintained at this temperature and heated.

仕上げ圧延温度:(Ar3 変態点−30℃)以上
本発明では、AlN の析出を有効に抑制し、さらに異方性と加工性の劣化を生じさせないようにするため、熱間圧延における仕上げ圧延温度は(Ar3 変態点−30℃)以上とする。仕上げ圧延温度が(Ar3 変態点−30℃)未満では、AlN の析出が顕著となり、固溶Nが低減し、異方性と加工性の劣化を生じる。なお、好ましくはAr3 変態点以上である。
なお、仕上げ圧延の後、水冷により強制冷却するのが好ましい。これにより、AlN の析出を抑制できる。
Finishing rolling temperature: (Ar 3 transformation point -30 ° C) or more In the present invention, in order to effectively suppress precipitation of AlN and to prevent deterioration of anisotropy and workability, finishing rolling in hot rolling is performed. The temperature is (Ar 3 transformation point −30 ° C.) or higher. When the finish rolling temperature is less than (Ar 3 transformation point −30 ° C.), precipitation of AlN becomes remarkable, solute N is reduced, and anisotropy and workability are deteriorated. Incidentally, preferably Ar 3 transformation point or more.
In addition, it is preferable to perform forced cooling by water cooling after finish rolling. Thereby, precipitation of AlN can be suppressed.

巻取り温度:650 ℃以下
巻取り温度は、AlによるNの固定を抑制するため、650 ℃以下とする。巻取り温度が650 ℃を超えると、AlN 析出量が顕著に増加し固溶Nが減少する結果、目標とする時効硬化性を得ることができない。なお、高い時効硬化性を安定して得るためには、巻取り温度は600℃以下とするのがさらに好ましい。
なお、本発明では、巻取り後コイル状態で空冷または水冷することが好ましい。水冷の場合、生産性高くすることが可能となるが、鋼板の板幅方向および長手方向の材質の均一性のためには空冷することが好ましい。
Winding temperature: 650 ° C. or lower The winding temperature is 650 ° C. or lower in order to suppress the fixation of N by Al. When the coiling temperature exceeds 650 ° C., the precipitation amount of AlN is remarkably increased and the solid solution N is decreased. As a result, the target age hardening cannot be obtained. In order to stably obtain a high age-curing property, the winding temperature is more preferably 600 ° C. or lower.
In the present invention, it is preferable to perform air cooling or water cooling in a coil state after winding. In the case of water cooling, productivity can be increased, but air cooling is preferable for the uniformity of the material in the sheet width direction and the longitudinal direction of the steel sheet.

酸洗、冷間圧延
以上のようにして製造した熱延板に、酸洗、冷間圧延を施し、冷延板とする。酸洗は常法に従い、塩酸、硫酸等の酸で表面スケールを除去すればよい。冷間圧下率も常法に従うが、板厚が薄いほど高めとなる。
Pickling and cold rolling The hot rolled sheet manufactured as described above is subjected to pickling and cold rolling to obtain a cold rolled sheet. For pickling, the surface scale may be removed with an acid such as hydrochloric acid or sulfuric acid according to a conventional method. The cold rolling reduction follows the usual method, but the higher the plate thickness, the higher.

連続焼鈍の均熱温度:600 ℃以上(好適条件)
連続焼鈍工程では、600 ℃以上の温度範囲で均熱することが好ましい。均熱温度が600 ℃以上とすると、再結晶の進行が早く、冷間圧延で導入された加工歪が残留せず、延性が高く、プレス加工に適する。さらに、Ar1変態点以上で均熱すると、さらに強度を向上させることが可能となるので好ましい。Ar1変態点以上で均熱すると、部分的にパーライト組織となることが強度に寄与すると推察される。
また、この温度範囲内であれば、特に一定の温度に保持する必要はない。操業の安定性から10s以上の均熱相当時間があれば十分である。
連続焼鈍ののち、1%程度の調質圧延を施し、表面粗さと硬度の調整を行うことが好ましい。
以上の工程を経て得られた冷延鋼板は塗装・焼付処理後の全伸びElが20%以上となり加工性が極めて優れた缶用鋼板となる。
連続焼鈍の後、さらに、圧下率:10%以上20%未満の2回目の冷間圧延を施してもよい。この2回目の冷間圧延はさらなる高強度化が主目的である。10%以上とすることにより、さらなる高強度化が達成できる。20%未満とすることにより伸びを確保(塗装・焼付処理後の全伸びElが8%以上〜15%以下)して加工性を劣化させることがなく前記高強度化の効果が得られる。特に、2回目の冷間圧延の圧下率を10%以上15%未満とすることで、塗装・焼付処理後の全伸びEl:10%超えを確保することができる。
以上の工程を経て冷延鋼板が得られる。そして、製缶加工前(プレス加工前)の塗装・焼付処理により硬質材となっており、板厚が0.3 mm以下の極薄鋼板に適用された場合にその優位性がより有効に発揮される。また、上記した工程により製造される冷延鋼板は、固溶N量が0.0100%以上を有し、塗装・焼付処理後の降伏応力YP:500MPa以上を有する高強度缶用鋼板となる。さらに、本発明の缶用鋼板は大きい伸びを得ることができるので加工性に優れる。
本発明の缶用鋼板は、固溶Nにより大きな時効硬化性を得ている。そのため、塗装・焼付処理後の降伏応力YP:500 MPa 以上を有し鋼板の薄肉化を優位に進めることができる。また、本発明の冷延鋼板は、固溶Nの作用を有効に利用することにより、めっき後のリフロー処理後にも強度が増加し、また、プレス成形後の塗装焼付工程時にも顕著な時効硬化現象が起こり、缶体強度の飛躍的な増加をもたらすことができる。
本発明では、上記により得られた冷延鋼板の表面に(少なくとも片面)めっき層を形成し、めっき鋼板とすることができる。表面に形成されるめっき層は缶用鋼板に適用されるいずれのものも適用可能である。めっき層としては、錫めっき、クロムめっき、ニッケルめっき、ニッケル・クロムめっきが例示できる。また、これらのめっき処理後に塗装、有機樹脂フィルム等を貼ることもなんら問題ない。
Soaking temperature for continuous annealing: 600 ° C or higher (preferred conditions)
In the continuous annealing step, soaking is preferably performed in a temperature range of 600 ° C. or higher. When the soaking temperature is 600 ° C. or higher, the recrystallization proceeds quickly, the working strain introduced by cold rolling does not remain, the ductility is high, and it is suitable for press working. Furthermore, soaking at an Ar1 transformation point or higher is preferable because the strength can be further improved. When soaking above the Ar1 transformation point, it is assumed that a partial pearlite structure contributes to the strength.
Further, it is not necessary to keep the temperature constant within this temperature range. A soaking time equivalent to 10s or more is sufficient for the stability of operation.
After continuous annealing, temper rolling of about 1% is preferably performed to adjust the surface roughness and hardness.
The cold-rolled steel sheet obtained through the above steps has a total elongation El after coating and baking treatment of 20% or more and becomes a steel sheet for cans with extremely excellent workability.
After the continuous annealing, a second cold rolling with a rolling reduction of 10% or more and less than 20% may be further performed. The main purpose of the second cold rolling is to further increase the strength. By setting it to 10% or more, further increase in strength can be achieved. By making it less than 20%, the elongation is ensured (total elongation El after coating and baking treatment is 8% to 15% or less), and the effect of increasing the strength can be obtained without degrading workability. In particular, by setting the reduction ratio of the second cold rolling to 10% or more and less than 15%, the total elongation El after coating / baking treatment can be ensured to exceed 10%.
A cold-rolled steel sheet is obtained through the above steps. And it has become a hard material by painting and baking before canning (before pressing), and its superiority is more effectively demonstrated when applied to ultra-thin steel sheets with a thickness of 0.3 mm or less. . In addition, the cold-rolled steel sheet produced by the above-described process is a high-strength steel sheet for cans having a solid solution N content of 0.0100% or more and a yield stress YP: 500 MPa or more after coating and baking. Furthermore, since the steel plate for cans of this invention can obtain a big elongation, it is excellent in workability.
The steel plate for cans of the present invention has a large age hardenability due to solute N. Therefore, the yield stress YP after coating and baking treatment is YP: 500 MPa or more, and the steel sheet can be made thinner. In addition, the cold-rolled steel sheet of the present invention effectively increases the strength after reflow treatment after plating by effectively utilizing the action of solute N, and is also markedly age-hardened during the paint baking process after press forming. A phenomenon occurs, and can dramatically increase the strength of the can body.
In the present invention, a plated layer can be formed by forming a plated layer (at least on one side) on the surface of the cold-rolled steel sheet obtained as described above. Any plating layer applied to the steel plate for cans can be applied to the plating layer formed on the surface. Examples of the plating layer include tin plating, chromium plating, nickel plating, and nickel / chromium plating. Moreover, there is no problem in applying a coating, an organic resin film, etc. after these plating treatments.

表1に示す成分からなる鋼を転炉で溶製し、連続鋳造法でスラブとした。次いで、これらスラブを、表2に示す条件で熱間圧延し、板厚:2.0 mmの熱延板とした。次いで、上記により得られた熱延板に対して酸洗による脱スケール処理を施し、さらに冷間圧延を施し、表2に示す条件で連続焼鈍および一部は2次圧延を行い、最終仕上げ板厚:0.17 mmの冷延鋼板とした。   Steel composed of the components shown in Table 1 was melted in a converter and made into a slab by a continuous casting method. Next, these slabs were hot-rolled under the conditions shown in Table 2 to obtain hot-rolled sheets having a thickness of 2.0 mm. Next, the hot-rolled sheet obtained as described above is subjected to descaling treatment by pickling, further cold-rolled, continuously annealed and partially subjected to secondary rolling under the conditions shown in Table 2, and finally finished plate Thickness: 0.17 mm cold-rolled steel sheet.

Figure 0005365312
Figure 0005365312

Figure 0005365312
Figure 0005365312

このようにして得られた冷延鋼板について、固溶N量の測定ならびに焼付硬化試験の前後に引張試験を実施した。   The cold-rolled steel sheet thus obtained was subjected to a tensile test before and after the measurement of the solid solution N amount and the bake hardening test.

(i)固溶N量の分析
化学分析により冷延鋼板中のN量を分析し、また、ブロムエステルによる溶解処理後の抽出分析によりAlN として存在するN量を求めた。冷延鋼板中の固溶N量は、{(冷延鋼板中のN量)−(AlN として存在するN量)}の値を用いた。
(I) The amount of N in the cold-rolled steel sheet was analyzed by analytical chemical analysis of the amount of solid solution N, and the amount of N present as AlN was determined by extraction analysis after dissolution treatment with bromoester. As the amount of solute N in the cold-rolled steel sheet, a value of {(N amount in cold-rolled steel sheet) − (N amount present as AlN)} was used.

(ii)引張試験
これら冷延鋼板の幅方向の中央部から圧延方向に、JIS 13号-B引張試験片を採取し、歪速度クロスヘッド速度:10mm/s で引張試験を実施し、降伏応力YPと全伸びElを測定した。なお、引張試験は製品化後1日以内に実施した。引張試験片をJIS 13号-B試験片としたのは、標点外で破断する現象を極力低減するためである。
(Ii) Tensile test JIS No. 13-B tensile test specimens were collected in the rolling direction from the center in the width direction of these cold-rolled steel sheets, and subjected to a tensile test at a strain rate crosshead speed of 10 mm / s, yield stress. YP and total elongation El were measured. The tensile test was carried out within one day after commercialization. The reason why the tensile test piece is a JIS 13-B test piece is to reduce as much as possible the phenomenon of breaking outside the gauge.

(iii)焼付硬化性試験
これら冷延鋼板の幅方向の中央部から圧延方向に、JIS 13号-B引張試験片を採取し、2%の引張予歪を付加したのち一旦除荷し、210 ℃×20min の塗装焼付処理相当の熱処理を施した。この試験の前後で、(ii)に示す引張試験を行った。
これらの結果を表3に示す。
(Iii) Bake hardenability test JIS 13-B tensile test specimens were sampled in the rolling direction from the center in the width direction of these cold-rolled steel sheets, unloaded once after 2% tensile pre-strain was added, and 210 A heat treatment equivalent to a baking process at ℃ x 20 min was applied. Before and after this test, the tensile test shown in (ii) was performed.
These results are shown in Table 3.

Figure 0005365312
Figure 0005365312

表3より、本発明例であるNo.1、4、5および6は塗装・焼付け処理後に十分な降伏応力YPおよび全伸びElを有しており、例えば、3ピース加工に必要な強度と加工性を十分に達成している。
さらに、圧下率:10%で2次冷間圧延を行ったNo6の本発明例においては、2次冷間圧延を行ったにも拘わらず、塗装・焼付処理後の全伸びElが12%と10%超えを確保しているのがわかる。
一方、比較例のNo.2および3は、それぞれ、降伏応力YPが不足し、3ピース加工に必要な強度を有していないので、所定の加工を施すことができない。
From Table 3, No. 1, 4, 5 and 6 which are examples of the present invention have sufficient yield stress YP and total elongation El after painting and baking treatment, for example, strength and processing required for 3-piece processing Has achieved enough sex.
Furthermore, in the example No. 6 of the present invention in which secondary cold rolling was performed at a rolling reduction of 10%, the total elongation El after coating / baking treatment was 12% despite the secondary cold rolling. It can be seen that it exceeds 10%.
On the other hand, No. 2 and No. 3 in the comparative example each have insufficient yield stress YP and do not have the strength necessary for three-piece processing, and therefore cannot perform predetermined processing.

本発明の缶用鋼板は、成形後の塗装焼付処理により、降伏応力が大きく上昇し、それに伴い缶体強度が大きく上昇するため、鋼板の薄肉化に大きく寄与できる。   The steel sheet for cans of the present invention can greatly contribute to the thinning of the steel sheet because the yield stress is greatly increased by the paint baking process after forming and the strength of the can body is greatly increased accordingly.

Claims (6)

質量%で、C:0.02%超0.10%以下、Si:0.10%以下、Mn:1.5%以下、P:0.20%以下、S:0.20%以下、Al:0.10%以下、N:0.0120〜0.0250 %を含有し、かつ該Nのうち固溶Nとして0.0100%以上を含み、残部がFeおよび不可避的不純物からなることを特徴とする高強度缶用鋼板。   In mass%, C: more than 0.02%, 0.10% or less, Si: 0.10% or less, Mn: 1.5% or less, P: 0.20% or less, S: 0.20% or less, Al: 0.10% or less, N: 0.0120 to 0.0250% A steel plate for high-strength cans, containing 0.0100% or more as solute N in the N, and the balance comprising Fe and inevitable impurities. 表面にめっき層を有することを特徴とする請求項1に記載の高強度缶用鋼板。   The steel sheet for high-strength cans according to claim 1, which has a plating layer on the surface. 質量%で、C:0.02%超0.10%以下、Si:0.10%以下、Mn:1.5%以下、P:0.20%以下、S:0.20%以下、Al:0.10%以下、N:0.0120〜0.0250 %を含有し、残部がFeおよび不可避的不純物からなる鋼スラブを、スラブ抽出温度を1200℃以上とし、仕上げ圧延温度を(Ar3変態点温度-30)℃以上とする熱間圧延を施し、650℃以下で巻き取り、酸洗を施したのち、冷間圧延を施し、次いで、連続焼鈍を施すことを特徴とする高強度缶用鋼板の製造方法。   In mass%, C: more than 0.02%, 0.10% or less, Si: 0.10% or less, Mn: 1.5% or less, P: 0.20% or less, S: 0.20% or less, Al: 0.10% or less, N: 0.0120 to 0.0250% Steel slab containing Fe and the inevitable impurities in the balance is hot-rolled with a slab extraction temperature of 1200 ° C or higher and a final rolling temperature of (Ar3 transformation point temperature -30) ° C or higher, and 650 ° C or lower. A method for producing a steel plate for high-strength cans, characterized in that after rolling and pickling, cold rolling is performed, followed by continuous annealing. 前記連続焼鈍の後、圧下率を10%以上20%未満とする2回目の冷間圧延を施すことを特徴とする請求項3に記載の高強度缶用鋼板の製造方法。   The method for producing a steel plate for a high-strength can according to claim 3, wherein after the continuous annealing, a second cold rolling is performed at a rolling reduction of 10% or more and less than 20%. 前記連続焼鈍の均熱温度をAr1変態点温度以上とすることを特徴とする請求項3または4に記載の高強度缶用鋼板の製造方法。   The method for producing a steel sheet for a high-strength can according to claim 3 or 4, wherein a soaking temperature of the continuous annealing is set to an Ar1 transformation temperature or higher. 前記連続焼鈍または前記2回目の冷間圧延の後、めっき処理を施すことを特徴とする請求項3〜5のいずれか一項に記載の高強度缶用鋼板の製造方法。   The method for producing a steel plate for high-strength can according to any one of claims 3 to 5, wherein a plating treatment is performed after the continuous annealing or the second cold rolling.
JP2009089936A 2008-04-03 2009-04-02 Steel plate for high-strength can and manufacturing method thereof Active JP5365312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009089936A JP5365312B2 (en) 2008-04-03 2009-04-02 Steel plate for high-strength can and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008097011 2008-04-03
JP2008097011 2008-04-03
JP2009089936A JP5365312B2 (en) 2008-04-03 2009-04-02 Steel plate for high-strength can and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009263788A JP2009263788A (en) 2009-11-12
JP5365312B2 true JP5365312B2 (en) 2013-12-11

Family

ID=41135701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009089936A Active JP5365312B2 (en) 2008-04-03 2009-04-02 Steel plate for high-strength can and manufacturing method thereof

Country Status (7)

Country Link
US (2) US20110076177A1 (en)
JP (1) JP5365312B2 (en)
KR (2) KR20130045948A (en)
CN (2) CN101983251A (en)
BR (1) BRPI0911139B1 (en)
TW (1) TWI390052B (en)
WO (1) WO2009123356A1 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5434212B2 (en) * 2008-04-11 2014-03-05 Jfeスチール株式会社 Steel plate for high-strength container and manufacturing method thereof
EP2508641B1 (en) * 2009-12-02 2015-11-04 JFE Steel Corporation Steel sheet for cans and method for producing same
CA2818682C (en) * 2010-12-01 2016-03-29 Jfe Steel Corporation Steel sheet for can having high strength and high formability, and method for manufacturing the same
EP2650396B1 (en) 2010-12-06 2018-11-07 Nippon Steel & Sumitomo Metal Corporation Steel sheet for bottom covers of aerosol cans and method for producing same
JP5924044B2 (en) * 2011-03-17 2016-05-25 Jfeスチール株式会社 Steel plate for aerosol can bottom having high pressure strength and excellent workability, and method for producing the same
JP5794004B2 (en) * 2011-07-12 2015-10-14 Jfeスチール株式会社 Steel sheet for high strength can excellent in flange workability and manufacturing method thereof
JP5803510B2 (en) * 2011-09-29 2015-11-04 Jfeスチール株式会社 High-strength, high-formability steel plate for cans and method for producing the same
JP5803660B2 (en) * 2011-12-26 2015-11-04 Jfeスチール株式会社 High-strength, high-formability steel plate for cans and method for producing the same
JP5804195B2 (en) * 2012-04-06 2015-11-04 Jfeスチール株式会社 High-strength, high-workability steel sheet and manufacturing method
JP6019719B2 (en) * 2012-05-02 2016-11-02 Jfeスチール株式会社 Manufacturing method of high strength and high ductility steel sheet
IN2014MN02290A (en) * 2012-06-06 2015-08-07 Jfe Steel Corp
US10415111B2 (en) * 2014-04-30 2019-09-17 Jfe Steel Corporation High-strength steel sheet for containers and method for producing the same
EP3138936B1 (en) * 2014-04-30 2020-01-01 JFE Steel Corporation High-strength steel sheet and production method therefor
MY177004A (en) * 2014-08-29 2020-09-01 Jfe Steel Corp Steel sheets for cans and methods for manufacturing the same
WO2016067514A1 (en) * 2014-10-28 2016-05-06 Jfeスチール株式会社 Steel sheet for two-piece can and manufacturing method therefor
CN107429347B (en) * 2015-03-31 2019-06-07 杰富意钢铁株式会社 Cover steel plate and its manufacturing method
JP6028884B1 (en) * 2015-03-31 2016-11-24 Jfeスチール株式会社 Steel plate for cans and method for producing steel plate for cans
BR112018017156A2 (en) * 2016-02-29 2018-12-26 Jfe Steel Corporation steel sheet for cans and method of making it
CN106086643B (en) * 2016-06-23 2018-03-30 宝山钢铁股份有限公司 The uncoated tinplate base and its secondary cold-rolling method of a kind of high-strength high-elongation
EP3476964B1 (en) * 2016-09-29 2021-01-27 JFE Steel Corporation Steel sheet for crown caps, production method therefor, and crown cap
CN107177788B (en) * 2017-06-01 2019-05-24 首钢集团有限公司 A kind of secondary cold-rolling tin plate and its production method
JP6673525B2 (en) * 2017-11-27 2020-03-25 Jfeスチール株式会社 Steel plate and method for producing the same, and secondary cold rolling mill
DE102020106164A1 (en) 2020-03-06 2021-09-09 Thyssenkrupp Rasselstein Gmbh Cold rolled flat steel product for packaging
EP3875626A1 (en) * 2020-03-06 2021-09-08 ThyssenKrupp Rasselstein GmbH Packaging sheet product
DE102020126437A1 (en) 2020-10-08 2022-04-14 Thyssenkrupp Rasselstein Gmbh packaging sheet product

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS637336A (en) * 1986-06-27 1988-01-13 Nippon Steel Corp Production of extra-thin steel sheet for welded can having excellent flanging property
JP3573389B2 (en) * 1996-10-08 2004-10-06 新日本製鐵株式会社 Double cold rolled steel plate for weld can with easy flange forming and method of manufacturing the same
JP3534960B2 (en) * 1996-10-08 2004-06-07 新日本製鐵株式会社 Steel plate for welded can body having high yield strength and method for producing the same
CA2270916A1 (en) * 1997-09-04 1999-03-11 Kawasaki Steel Container, Co., Ltd. Steel plates for drum cans, method of manufacturing the same, and drum can
JP3727151B2 (en) * 1997-09-04 2005-12-14 Jfeスチール株式会社 Cold-rolled steel sheet for drums, method for producing the same, and steel high-strength drum
JP3931455B2 (en) * 1998-11-25 2007-06-13 Jfeスチール株式会社 Steel plate for can and manufacturing method thereof
JP4244486B2 (en) * 1999-08-05 2009-03-25 Jfeスチール株式会社 Steel plate for high-strength can and manufacturing method thereof
EP1191114B1 (en) * 2000-02-23 2006-12-06 JFE Steel Corporation High tensile hot-rolled steel sheet having excellent strain aging hardening properties and method for producing the same
EP1571230B1 (en) * 2000-02-29 2006-12-13 JFE Steel Corporation High tensile strength cold rolled steel sheet having excellent strain age hardening characteristics and the production thereof
TW500809B (en) * 2000-05-31 2002-09-01 Kawasaki Steel Co Cold-rolled steel sheets with superior strain-aging hardenability, and manufacturing method thereof
JP4839527B2 (en) * 2000-05-31 2011-12-21 Jfeスチール株式会社 Cold-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
KR100543956B1 (en) * 2000-09-21 2006-01-23 신닛뽄세이테쯔 카부시키카이샤 Steel plate excellent in shape freezing property and method for production thereof
JP4486414B2 (en) * 2004-06-11 2010-06-23 新日本製鐵株式会社 Thin steel plate for cans with strong can body strength and good press workability and method for producing the same
TW200827460A (en) * 2006-08-11 2008-07-01 Nippon Steel Corp DR steel sheet and manufacturing method thereof
JP4853325B2 (en) * 2007-02-23 2012-01-11 Jfeスチール株式会社 Thin wall cold-rolled steel sheet for drums and method for producing the same
JP5434212B2 (en) * 2008-04-11 2014-03-05 Jfeスチール株式会社 Steel plate for high-strength container and manufacturing method thereof

Also Published As

Publication number Publication date
BRPI0911139B1 (en) 2018-03-13
WO2009123356A1 (en) 2009-10-08
KR20100119821A (en) 2010-11-10
KR101302817B1 (en) 2013-09-02
TWI390052B (en) 2013-03-21
CN103205657A (en) 2013-07-17
CN101983251A (en) 2011-03-02
BRPI0911139A2 (en) 2015-10-06
US20110076177A1 (en) 2011-03-31
JP2009263788A (en) 2009-11-12
BRPI0911139A8 (en) 2018-01-30
US20140174609A1 (en) 2014-06-26
KR20130045948A (en) 2013-05-06
TW200948985A (en) 2009-12-01

Similar Documents

Publication Publication Date Title
JP5365312B2 (en) Steel plate for high-strength can and manufacturing method thereof
JP5453884B2 (en) Steel plate for high-strength container and manufacturing method thereof
JP5135868B2 (en) Steel plate for can and manufacturing method thereof
JP5549307B2 (en) Cold-rolled steel sheet excellent in aging and bake hardenability and method for producing the same
JP5434212B2 (en) Steel plate for high-strength container and manufacturing method thereof
KR101989712B1 (en) Steel sheet for two-piece can and manufacturing method therefor
JP5076544B2 (en) Manufacturing method of steel sheet for cans
JP5939368B1 (en) Steel plate for can and manufacturing method thereof
JP4244486B2 (en) Steel plate for high-strength can and manufacturing method thereof
JP4943244B2 (en) Steel sheet for ultra-thin containers
WO2010074308A1 (en) Method for manufacturing steel plate for can-making
JP4284815B2 (en) Steel plate for high-strength can and manufacturing method thereof
JP3726371B2 (en) Steel plate for cans with high age-hardening properties and excellent material stability and method for producing the same
JP5316036B2 (en) Mother board for high-strength ultrathin cold-rolled steel sheet and manufacturing method thereof
JP5397263B2 (en) High tensile cold-rolled steel sheet and method for producing the same
JPH01184229A (en) Production of steel sheet for di can having excellent stretch flanging property
JPH1060542A (en) Production of steel sheet for can
JP6210045B2 (en) High-strength cold-rolled steel sheet, high-strength plated steel sheet, and production methods thereof
JP5668361B2 (en) High tensile cold-rolled steel sheet and method for producing the same
JPS63286522A (en) Production of steel sheet for di can
JP2003138317A (en) Method of producing high tensile strength cold rolled steel sheet having excellent aging resistance and strain age hardening property

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120223

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130826

R150 Certificate of patent or registration of utility model

Ref document number: 5365312

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250