JP5362971B2 - Compost production method - Google Patents

Compost production method Download PDF

Info

Publication number
JP5362971B2
JP5362971B2 JP2007225484A JP2007225484A JP5362971B2 JP 5362971 B2 JP5362971 B2 JP 5362971B2 JP 2007225484 A JP2007225484 A JP 2007225484A JP 2007225484 A JP2007225484 A JP 2007225484A JP 5362971 B2 JP5362971 B2 JP 5362971B2
Authority
JP
Japan
Prior art keywords
electron acceptor
water
deposit
compost
nitrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007225484A
Other languages
Japanese (ja)
Other versions
JP2009057235A (en
JP2009057235A5 (en
Inventor
多美子 定家
さやか 崎尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAITAMA PREFECTURE
Original Assignee
SAITAMA PREFECTURE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAITAMA PREFECTURE filed Critical SAITAMA PREFECTURE
Priority to JP2007225484A priority Critical patent/JP5362971B2/en
Publication of JP2009057235A publication Critical patent/JP2009057235A/en
Publication of JP2009057235A5 publication Critical patent/JP2009057235A5/ja
Application granted granted Critical
Publication of JP5362971B2 publication Critical patent/JP5362971B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Activated Sludge Processes (AREA)
  • Treatment Of Sludge (AREA)
  • Fertilizers (AREA)

Description

本発明は、家畜糞尿等の有機廃棄物を堆肥化する過程で発生する臭気を低減させるようにした堆肥の製造方法に関するものである。   The present invention relates to a method for producing compost that reduces odor generated in the process of composting organic waste such as livestock manure.

有機廃棄物を堆肥化する過程でアンモニア、硫化水素、メチルメルカプタン等の悪臭成分が発生することが知られており、規制法の施行などに伴い、臭気対策は早急に解決しなければならない課題である。家畜糞尿由来の臭気低減対策としては、以下のような特許文献が開示されている。   It is known that malodorous components such as ammonia, hydrogen sulfide and methyl mercaptan are generated in the process of composting organic waste, and odor countermeasures are issues that must be solved as soon as the regulatory law is enforced. is there. The following patent documents are disclosed as measures for reducing odors derived from livestock manure.

(a)家畜糞尿に亜硫酸パルプの製造工程で得られるリグニンスルホン塩酸を散布する方法(特許文献1)。
(b)パルプを原料とした炭化パルプを家畜糞尿に添加する方法(特許文献2)。
(c)Bacillus sp.F0016、Bucillus sp.F0018、Bacillus subtilis JAM2001、Streptococcus themophilus D0013からなる群から選択される1種類以上の株菌を用いた培養液でボカシを作成し、このボカシを***物に添加して臭気発生の抑制堆肥の発酵を促進させる方法(特許文献3)。
(A) A method of spraying lignin sulfone hydrochloric acid obtained in the production process of sulfite pulp on livestock manure (Patent Document 1).
(B) A method of adding carbonized pulp made from pulp to livestock manure (Patent Document 2).
(C) Bokeh is prepared with a culture solution using one or more strains selected from the group consisting of Bacillus sp. F0016, Bucillus sp. F0018, Bacillus subtilis JAM2001, Streptococcus themophilus D0013, Method of adding to promote the suppression of odor generation and fermentation of compost (Patent Document 3).

特開2004−337533号公報JP 2004-337533 A 特開2007−135721号公報JP 2007-135721 A 特開2006−131431号公報JP 2006-131431 A

しかしながら、上記(a)(b)のように特定の化学物質を作成する方法は、作成工程が複雑であり、コスト的な負担も大きいという問題がある。また上記(c)のように、特定の株菌からボカシを作成する方法は、前述の問題に加えて菌群の維持管理が難しいという問題もある。   However, the method of creating a specific chemical substance as in the above (a) and (b) has a problem that the production process is complicated and the cost burden is large. Further, as described above (c), the method of creating blur from a specific strain has a problem that it is difficult to maintain the bacterial group in addition to the above-mentioned problems.

本発明はこのような現状に鑑みて提案されたものであり、家畜糞尿等の有機廃棄物を堆肥化する過程で発生する臭気の低減化を低コストで効率的に実現できるようにした堆肥の製造方法を提供することを目的とする。   The present invention has been proposed in view of such a situation, and it is possible to efficiently reduce the odor generated in the process of composting organic waste such as livestock manure at low cost. An object is to provide a manufacturing method.

上記課題を解決するため、本発明の堆肥の製造方法は、悪臭成分である揮発性硫黄化合物の発生の抑制に優れた堆肥の製造方法であって、
有機廃棄物の堆積物に、有機物を含む廃水を溶存酸素0〜3mg/L、酸化還元電位0〜300mVとなるように曝気した後、静置して得られる硝酸塩及び硫酸塩を含んだ上澄水を混合するとともに、
該堆積物に対して通気及び切り返しを行い、切り返しのときに前記上澄水を混合することを特徴とする。
In order to solve the above problems, the method for producing compost of the present invention is a method for producing compost excellent in suppressing the generation of volatile sulfur compounds that are malodorous components,
Supernatant water containing nitrate and sulfate obtained by aeration of wastewater containing organic matter to organic waste deposits so that dissolved oxygen is 0 to 3 mg / L and redox potential is 0 to 300 mV, and then left standing. As well as mixing
The deposit is aerated and turned over, and the supernatant water is mixed at the time of turning over.

また、本発明の堆肥の製造方法は、前記堆積物の通気と切り返しにより、堆積物を酸素量0〜3mg/Lの微好気状態に維持することを特徴とする。   The compost production method of the present invention is characterized in that the deposit is maintained in a slightly aerobic state with an oxygen amount of 0 to 3 mg / L by aeration and switching of the deposit.

また本発明の堆肥の製造方法は、前記上澄水は、硝酸塩5〜500mg/L、硫酸塩5〜700mg/Lを含んでいることを特徴とする。   The method for producing compost of the present invention is characterized in that the supernatant water contains 5-500 mg / L nitrate and 5-700 mg / L sulfate.

上述した本発明によれば、家畜糞尿等の有機廃棄物を堆肥化する過程で発生する臭気の低減化を低コストで効率的に実現できる。特に硫化水素、メチルメルカプタン等の揮発性硫黄化合物の発生が抑制できる。   According to the present invention described above, it is possible to efficiently reduce odor generated in the process of composting organic waste such as livestock manure at low cost. In particular, generation of volatile sulfur compounds such as hydrogen sulfide and methyl mercaptan can be suppressed.

本発明では、有機物を含む廃水を溶存酸素0〜3mg/L、酸化還元電位0〜300mVとなるように曝気した後、静置して得られる硝酸塩及び硫酸塩を含んだ上澄水を有機廃棄物の堆積物に混合するものである。有機廃棄物には、牛、豚、家禽等の家畜糞尿のほか、産業汚泥、生ゴミ等も含まれる。前記上澄水を、以下、電子受容体水として説明する。ここで電子受容体水とは、微生物がエネルギー源として消費する有機物の分解に伴って必要となる呼吸因子の硝酸塩、硫酸塩を含んだ無機溶液であり、そのほかにも鉄分、マンガン等の化学物質を含んでいる。電子受容体水には微量の酸素も含んでいる。   In the present invention, waste water containing organic matter is aerated so that the dissolved oxygen is 0 to 3 mg / L and the oxidation-reduction potential is 0 to 300 mV, and then the supernatant water containing nitrate and sulfate obtained by standing is used as organic waste. It is to be mixed with the sediment. Organic waste includes livestock manure such as cattle, pigs and poultry, as well as industrial sludge and garbage. Hereinafter, the supernatant water will be described as electron acceptor water. Here, the electron acceptor water is an inorganic solution containing nitrates and sulfates of respiratory factors that are required for the decomposition of organic substances consumed by microorganisms as energy sources, and other chemical substances such as iron and manganese. Is included. Electron acceptor water also contains trace amounts of oxygen.

微生物学的に処理するとは、微生物の代謝を利用して廃水に含まれる有機物、無機物を分解処理することであり、人為的な化学合成操作によって作成される液体は除かれる。本発明の代表的な微生物学的処理は、微好気(低曝気)処理である。   The microbiological treatment is to decompose organic substances and inorganic substances contained in the wastewater using the metabolism of microorganisms, and excludes liquids created by artificial chemical synthesis operations. A typical microbiological treatment of the present invention is a microaerobic (low aeration) treatment.

電子受容体水を有機廃棄物の堆積物に混合することにより、有機廃棄物中に生存する微生物群が、電子受容体水に含まれる硝酸塩、硫酸塩を主として消費しながら有機物を分解する。微生物群は、まず、酸素を好ましい呼吸因子として優先的に消費しはじめるが、酸素を消費し尽くすと、硝酸塩と硫酸塩を呼吸因子として消費する。順位的には酸化還元ポテンシャルの高い硝酸塩が消費され、つぎに硫酸塩が消費されるが、共生菌群全体では硝酸呼吸主動であり、これにより硫化水素やメチルメルカプタンなど揮発性硫黄化合物の発生が抑えられるものと思われる。   By mixing the electron acceptor water into the organic waste deposit, the microorganism group that survives in the organic waste decomposes the organic matter while mainly consuming the nitrate and sulfate contained in the electron acceptor water. The microorganism group begins to preferentially consume oxygen as a preferred respiratory factor, but when oxygen is exhausted, it consumes nitrate and sulfate as respiratory factors. Nitrate with high oxidation-reduction potential is consumed in order, and then sulfate is consumed, but the entire symbiotic fungus group is nitrate respiration, which causes the generation of volatile sulfur compounds such as hydrogen sulfide and methyl mercaptan. It seems to be suppressed.

電子受容体水の混合を効果あらしめるためには、有機廃棄物の堆積物を微好気状態(例えば酸素量0〜3mg/L、好ましくは0〜1mg/L)とするのが好ましい。有機廃棄物の堆積物は、切り返し直後は大気中の酸素を含んで好気状態となるが、堆積物内部は、しばらくすると微生物が酸素を消費するため微好気状態となる。しかし、必要であれば堆積物への送気量をコントロールするなどして微好気状態を維持してもよい。   In order to make the mixing of the electron acceptor water effective, it is preferable that the organic waste deposit is in a microaerobic state (for example, an oxygen amount of 0 to 3 mg / L, preferably 0 to 1 mg / L). The organic waste deposit immediately enters the aerobic state including oxygen in the atmosphere immediately after turning over, but the inside of the deposit becomes slightly aerobic because microorganisms consume oxygen after a while. However, if necessary, the microaerobic state may be maintained by controlling the amount of air supplied to the deposit.

電子受容体水の混合量は、特に限定されるものではなく、電子受容体水の硝酸塩、硫酸塩の濃度にもよるが、有機廃棄物の全量の0.5%〜10%が好ましい。0.5%以下では電子受容体水の効果が得られないが、10%以上では有機廃棄物中の水分量が多すぎるため切り返し作業、搬送作業等の取り扱いが困難になる。なお、本発明には堆積する前の有機廃棄物にあらかじめ電子受容体水を混合する方法も含まれる。   The amount of electron acceptor water mixed is not particularly limited, but is preferably 0.5% to 10% of the total amount of organic waste, although it depends on the concentration of nitrate and sulfate in the electron acceptor water. If the amount is 0.5% or less, the effect of electron acceptor water cannot be obtained. If the amount is 10% or more, the amount of water in the organic waste is too large, so that handling such as turning over and transporting operations becomes difficult. The present invention also includes a method of previously mixing the electron acceptor water with the organic waste before being deposited.

電子受容体水は、低曝気処理システムを採用している他所の汚泥処理設備等から搬送してもよいが、家畜糞尿等を回分式低曝気処理により簡単に作成することができる。この回分式低曝気処理は、一台の曝気槽に水で希釈した家畜糞尿を投入し、低曝気した後、静置することにより得られた上澄水を電子受容体水として利用する。回分式処理設備は、比較的簡単に安価に建設できるため、電子受容体水を畜産農家等が自前で作成することもできる。   The electron acceptor water may be transported from a sludge treatment facility or the like in another place where a low aeration treatment system is adopted, but livestock manure and the like can be easily created by batch-type low aeration treatment. In this batch type low aeration treatment, livestock manure diluted with water is introduced into one aeration tank, and after superaeration, the supernatant water obtained by standing is used as electron acceptor water. Since batch processing equipment can be constructed relatively easily and inexpensively, livestock farmers can create their own electron acceptor water.

電子受容体水を得るための低曝気処理は、溶存酸素0〜3mg/L、酸化還元電位0〜300mVの条件で曝気するのが好ましい。低曝気処理時の溶存酸素量は、微生物群が酸素を消費尽くしている状態を意味する0でもよいが(酸素をまったく供給しない嫌気処理とは相違する)、微生物群の最小限の呼吸因子として0.1mg/Lを超える酸素量が好ましい。しかし、3mg/Lを超えると、いわゆる活性汚泥処理法になり、好気性微生物群が増殖し、硝酸塩、硫酸塩に富んだ好ましい電子受容体水が得られない。なお、酸素量には、電子受容体としての使用目的以外に、ほかの菌体の酸化(例えば硝化菌による消化)に使用される分も含まれる。   The low aeration treatment for obtaining the electron acceptor water is preferably performed under the conditions of dissolved oxygen of 0 to 3 mg / L and an oxidation-reduction potential of 0 to 300 mV. The amount of dissolved oxygen at the time of low aeration treatment may be 0, which means that the microbial group is exhausting oxygen (unlike an anaerobic process in which no oxygen is supplied), but as a minimum respiratory factor of the microbial group An amount of oxygen exceeding 0.1 mg / L is preferred. However, if it exceeds 3 mg / L, it becomes a so-called activated sludge treatment method, the aerobic microorganism group grows, and a preferable electron acceptor water rich in nitrate and sulfate cannot be obtained. The amount of oxygen includes not only the purpose of use as an electron acceptor but also the amount used for oxidation of other cells (for example, digestion by nitrifying bacteria).

酸化還元電位は、硝酸塩、硫酸塩に富んだ電子受容体水に維持し、硝酸呼吸を主とした微生物群(共生菌群)を構成するための指標となるものである。酸化還元電位が0mV以下の場合は、電子受容体としての酸素が不足し、微生物群のバランスが硫黄化合物使用菌の方向に傾く。また、300mV以上では、電子受容体としての酸素が多くなるため、微生物群のバランスが酸素使用の方向に傾くことになる(活性汚泥となる)。   The oxidation-reduction potential is maintained as an electron acceptor water rich in nitrates and sulfates and serves as an index for constituting a microorganism group (symbiotic bacteria group) mainly composed of nitrate respiration. When the oxidation-reduction potential is 0 mV or less, oxygen as an electron acceptor is insufficient, and the balance of the microorganism group is inclined toward the sulfur compound-using bacteria. Moreover, since oxygen as an electron acceptor will increase at 300 mV or more, the balance of the microorganism group will be inclined in the direction of oxygen use (becomes activated sludge).

酸化還元電位は、必要とあれば、酸素供給量の調整、所定の電子受容体の投入、所定の酸化還元電位を有する緩衝液(廃水処理媒体等)の投入などにより調整することができる。   If necessary, the oxidation-reduction potential can be adjusted by adjusting the oxygen supply amount, introducing a predetermined electron acceptor, introducing a buffer solution having a predetermined oxidation-reduction potential (such as a wastewater treatment medium).

電子受容体は、硝酸塩5〜500mg/L、硫酸塩5〜700mg/Lを含んでいることが好ましい。硝酸塩と硫酸塩が5mg/L以下であると、微生物群による硝酸呼吸や硫酸呼吸が効率的に促進されない。逆に、硝酸塩が500mg/L以上、硫酸塩が700mg/L以上になると、微生物がこれらの物質により不活性化する。好ましくは、硝酸塩と硫酸塩は5〜100mg/Lに維持される。   The electron acceptor preferably contains nitrate 500 to 500 mg / L and sulfate 5 to 700 mg / L. When nitrate and sulfate are 5 mg / L or less, nitrate respiration and sulfate respiration by the microorganism group are not efficiently promoted. Conversely, when the nitrate is 500 mg / L or more and the sulfate is 700 mg / L or more, the microorganisms are inactivated by these substances. Preferably, nitrate and sulfate are maintained at 5-100 mg / L.

(1)希釈した豚舎廃水を、回分式処理設備で溶存酸素量0.3mg/Lの通気量、酸化還元電位150mVで2週間連続曝気し、1日間静置した上澄水を電子受容体水として使用した。この電子受容体水の性状実測値は表1に示すとおりである。   (1) Diluted piggery wastewater is aerated with a batch-type treatment facility with an aeration rate of 0.3 mg / L of dissolved oxygen and an oxidation-reduction potential of 150 mV for 2 weeks. used. The measured values of the properties of the electron acceptor water are as shown in Table 1.

(2)豚糞にモミガラを混ぜて水分調整(60%)したもの4.5Kgを堆肥化材料とし、試験区(本発明)には材料の1%の電子受容体水を混合し、対照区(比較例)には水を混合した。小型堆肥化実験装置を用い、材料を4週間堆肥化し、材料温度、臭気に及ぼす影響を調査した。材料1m当たり毎分50L通気し、1週間に1回切り返した。切り返し毎に、試験区には材料重量の1%の電子受容体水を、対照区には水を混合した。 (2) 4.5 kg of pork droppings mixed with rice bran and adjusted for moisture (60%) is used as composting material, and the test group (invention) is mixed with 1% electron acceptor water, and the control group (Comparative example) was mixed with water. Using a small-scale composting experimental device, the material was composted for 4 weeks and the effects on material temperature and odor were investigated. And per minute 50L ventilation per material 1m 3, it was crosscut once a week. At each turnover, the test group was mixed with 1% electron acceptor water of the material weight, and the control group was mixed with water.

その結果、材料温度は対照区が早くピークに達した(図1)。堆肥化中の水分率等の推移及び4週間後の堆肥成分値等は表2の通りであった。同表に示すように、試験区、対照区とも堆肥性状に大きな変化なかったが、試験区は堆肥量の減容化が認められた。   As a result, the material temperature reached its peak earlier in the control group (FIG. 1). Table 2 shows the transition of the moisture content during composting and the compost component values after 4 weeks. As shown in the table, there was no significant change in compost properties in the test plot and the control plot, but the test plot showed a reduction in compost volume.

A:試験区 B:対照区 A: Test zone B: Control zone

また排気中のアンモニアは温度のピークと一致して高濃度になった(図2)。硫化水素は、対照区が3日目に、試験区は5日目に同等のピークがあった。2週目、3週目には対照区は切り返し直後に高濃度になったが、試験区は8日目以降検出されなかった(図3)。メチルメルカプタンは、対照区が3日目に、試験区は5日目にピークがあった。2週目、3週目には対照区は切り返し直後に非常に高濃度になったが、試験区は切り返し後のピークはなく、週の後半に濃度が上昇した(図4)。酢酸は堆肥化1週目のみに検出され、試験区の方が高い濃度で推移した(図5)。   In addition, ammonia in the exhaust gas became highly concentrated in line with the temperature peak (FIG. 2). Hydrogen sulfide had the same peak on the third day in the control group and on the fifth day in the test group. In the 2nd and 3rd weeks, the control group became a high concentration immediately after switching, but the test group was not detected after the 8th day (FIG. 3). Methyl mercaptan had a peak on the third day in the control group and on the fifth day in the test group. In the second and third weeks, the control group had a very high concentration immediately after switching, but the test group had no peak after switching and the concentration increased in the second half of the week (FIG. 4). Acetic acid was detected only in the first week of composting, and the concentration in the test area was higher (FIG. 5).

以上の実施例から、豚糞に電子受容体水を混合すると、特に硫化水素とメチルメルカプタンの発生を低く抑えることがわかる。硫化水素とメチルメルカプタンは揮発性を有する主要な悪臭成分であるため、これらの成分の発生を抑制することで、全体として脱臭効果を高めることができる。   From the above examples, it can be seen that when electron acceptor water is mixed with swine feces, the generation of hydrogen sulfide and methyl mercaptan is particularly suppressed. Since hydrogen sulfide and methyl mercaptan are the main malodorous components having volatility, the deodorizing effect can be enhanced as a whole by suppressing the generation of these components.

また、上述の方法で製造された堆肥は、窒素、燐酸、カリウム等を豊富に含んでおり、農作物の肥料としても良質である。   In addition, the compost produced by the above-described method contains abundant nitrogen, phosphoric acid, potassium, and the like, and is good as a fertilizer for agricultural crops.

本発明の実施例における堆肥材料温度の推移を示すグラフである。It is a graph which shows transition of the compost material temperature in the Example of this invention. 同じくアンモニア濃度の推移を示すグラフである。It is a graph which similarly shows transition of ammonia concentration. 同じく硫化水素濃度の推移を示すグラフである。It is a graph which similarly shows transition of hydrogen sulfide concentration. 同じくメチルメルカプタン濃度の推移を示すグラフである。It is a graph which similarly shows transition of methyl mercaptan concentration. 同じく酢酸濃度の推移を示すグラフである。It is a graph which similarly shows transition of acetic acid concentration.

Claims (3)

悪臭成分である揮発性硫黄化合物の発生の抑制に優れた堆肥の製造方法であって、
有機廃棄物の堆積物に、有機物を含む廃水を溶存酸素0〜3mg/L、酸化還元電位0〜300mVとなるように曝気した後、静置して得られる硝酸塩及び硫酸塩を含んだ上澄水を混合するとともに、
該堆積物に対して通気及び切り返しを行い、切り返しのときに前記上澄水を混合することを特徴とする堆肥の製造方法。
A method for producing compost excellent in suppressing the generation of volatile sulfur compounds that are malodorous components,
Supernatant water containing nitrate and sulfate obtained by aeration of wastewater containing organic matter to organic waste deposits so that dissolved oxygen is 0 to 3 mg / L and redox potential is 0 to 300 mV, and then left standing. As well as mixing
A method for producing compost, wherein the deposit is aerated and turned over, and the supernatant water is mixed at the time of turning over.
前記堆積物の通気と切り返しにより、堆積物を酸素量0〜3mg/Lの微好気状態に維持することを特徴とする請求項1に記載の堆肥の製造方法。   The method for producing compost according to claim 1, wherein the deposit is maintained in a slightly aerobic state with an oxygen amount of 0 to 3 mg / L by aeration and switching of the deposit. 前記上澄水は、硝酸塩5〜500mg/L、硫酸塩5〜700mg/Lを含んでいることを特徴とする請求項1又は請求項2に記載の有機堆肥の製造方法。   The said supernatant water contains nitrate 5-500 mg / L and sulfate 5-700 mg / L, The manufacturing method of the organic compost of Claim 1 or Claim 2 characterized by the above-mentioned.
JP2007225484A 2007-08-31 2007-08-31 Compost production method Expired - Fee Related JP5362971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007225484A JP5362971B2 (en) 2007-08-31 2007-08-31 Compost production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007225484A JP5362971B2 (en) 2007-08-31 2007-08-31 Compost production method

Publications (3)

Publication Number Publication Date
JP2009057235A JP2009057235A (en) 2009-03-19
JP2009057235A5 JP2009057235A5 (en) 2010-10-14
JP5362971B2 true JP5362971B2 (en) 2013-12-11

Family

ID=40553324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007225484A Expired - Fee Related JP5362971B2 (en) 2007-08-31 2007-08-31 Compost production method

Country Status (1)

Country Link
JP (1) JP5362971B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108383555A (en) * 2018-05-03 2018-08-10 孙伟 A kind of novel environment friendly handles the method and device of harmful bacteria and worm's ovum in livestock and poultry feces

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5783399B2 (en) * 2010-08-16 2015-09-24 多美子 定家 Manufacturing method of liquid fertilizer
CN104843876B (en) * 2015-05-26 2017-01-18 中国电建集团中南勘测设计研究院有限公司 Microbial preparation for purifying water and improving water quality
JP7485272B2 (en) * 2019-03-04 2024-05-16 環境大善株式会社 Plant Growth Promoters
JP2021101639A (en) * 2019-12-25 2021-07-15 株式会社ミカサ Animal breeding method, compost production method, and control method for enzyme reaction
CN114920594B (en) * 2022-06-30 2023-04-25 北京科技大学 Co-composting method for kitchen waste and biogas residues and application thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61101483A (en) * 1984-10-24 1986-05-20 栗田工業株式会社 Manufacture of liquid fertilizer
JP2008303122A (en) * 2007-06-08 2008-12-18 Murata Kensetsu:Kk Soil, plant growth conditioning material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108383555A (en) * 2018-05-03 2018-08-10 孙伟 A kind of novel environment friendly handles the method and device of harmful bacteria and worm's ovum in livestock and poultry feces

Also Published As

Publication number Publication date
JP2009057235A (en) 2009-03-19

Similar Documents

Publication Publication Date Title
Manu et al. A review on nitrogen dynamics and mitigation strategies of food waste digestate composting
Cáceres et al. Nitrification within composting: A review
Shan et al. Additives for reducing nitrogen loss during composting: A review
Awasthi et al. Co-composting of gelatin industry sludge combined with organic fraction of municipal solid waste and poultry waste employing zeolite mixed with enriched nitrifying bacterial consortium
Ravindran et al. Co-composting of food waste and swine manure augmenting biochar and salts: Nutrient dynamics, gaseous emissions and microbial activity
Huang et al. Carbon and N conservation during composting: A review
Sánchez et al. Greenhouse gas emissions from organic waste composting
Zhao et al. Potential of biochar integrated manganese sulfate for promoting pig manure compost humification and its biological mechanism
Wong et al. Improving compost quality by controlling nitrogen loss during composting
JP5362971B2 (en) Compost production method
Insam et al. Control of GHG emission at the microbial community level
JP2004248618A (en) Bacterial group symbiotically living with fungus used for treating organic material and its application
Nie et al. Effects of lactic acid on modulating the ammonia emissions in co-composts of poultry litter with slaughter sludge
He et al. Insights into the effect of iron-carbon particle amendment on food waste composting: Physicochemical properties and the microbial community
KR20170003493A (en) The manufacture method of producing compost with reducing odour
Wang et al. Thermophilic semi-continuous composting of kitchen waste: Performance evaluation and microbial community characteristics
Liu et al. A global meta-analysis of greenhouse gas emissions and carbon and nitrogen losses during livestock manure composting: Influencing factors and mitigation strategies
Zeng et al. Nitrogen dynamic and microbiological evolution during aerobic treatment of digested sludge
JP2009057235A5 (en)
Younesian et al. Assessment of the differences between composting and anaerobic digestion of sludge
Xie et al. Nitrate-rich wastewater discharged from a bio-trickling filter can be reused as a moisture conditioning agent for organic waste composting
Xie et al. In-situ utilization of nitrogen-rich wastewater discharged from a biotrickling filter as a moisture conditioning agent for composting: Insights into nitrogen transformation behavior and microbial mechanism
Khandelwal et al. Simultaneous removal of sulfide and bicarbonate from synthetic wastewater using an algae-assisted microbial fuel cell
Wang et al. Greenhouse gas emission characteristics and influencing factors of agricultural waste composting process: A review
Ren et al. Role of bulking agents and additive on composting

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100827

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130905

R150 Certificate of patent or registration of utility model

Ref document number: 5362971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees