JP5360523B2 - Hybrid carbon fiber reinforced composite material - Google Patents

Hybrid carbon fiber reinforced composite material Download PDF

Info

Publication number
JP5360523B2
JP5360523B2 JP2007268781A JP2007268781A JP5360523B2 JP 5360523 B2 JP5360523 B2 JP 5360523B2 JP 2007268781 A JP2007268781 A JP 2007268781A JP 2007268781 A JP2007268781 A JP 2007268781A JP 5360523 B2 JP5360523 B2 JP 5360523B2
Authority
JP
Japan
Prior art keywords
carbon fiber
composite material
reinforced composite
fiber reinforced
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007268781A
Other languages
Japanese (ja)
Other versions
JP2009096859A (en
Inventor
公喜 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2007268781A priority Critical patent/JP5360523B2/en
Publication of JP2009096859A publication Critical patent/JP2009096859A/en
Application granted granted Critical
Publication of JP5360523B2 publication Critical patent/JP5360523B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbon fiber-reinforced composite material which is useful for a structure that has the safety of people in its keeping, such as aircraft, an automobile, a ship or a building or for such a structure that breakdown of a part of materials thereof causes sudden destruction of the whole to do an extensive damage. <P>SOLUTION: The hybrid carbon fiber-reinforced composite material 1 comprises carbon fibers of different properties, wherein it comprises a high-modulus carbon fiber 3 and a high-strength carbon fiber 4 and at least one layer each of the two fibers is laminated with its orientation aligned in the same direction. The elastic modulus of the high-modulus carbon fiber is at least 500 GPa and the tensile strength of the high-strength carbon fiber is at least 5 GPa. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

この発明は、例えば、航空機、自動車、船舶、建造構造物等のように、人命を預かる多くの産業分野の構造物や材料の一部が破壊したことにより全体が突然破壊を起こし、多大な損害を与えるような構造物に用いる炭素繊維強化複合材料に関するものである。   The present invention, for example, causes sudden destruction due to the destruction of some of the structures and materials in many industrial fields that save lives, such as aircraft, automobiles, ships, and building structures. The present invention relates to a carbon fiber reinforced composite material for use in a structure that imparts.

第9図(a)〜(c)は従来の炭素繊維強化複合材料の一般的な層構成の例を示したものである。
図において、従来の炭素繊維強化複合材料(12)は、1種類の炭素繊維(13)を負荷方向(2)に対してある繊維配向を持って多層に積層し、樹脂(5)で覆われて構成されている。
FIGS. 9 (a) to 9 (c) show examples of a general layer structure of a conventional carbon fiber reinforced composite material.
In the figure, a conventional carbon fiber reinforced composite material (12) is formed by laminating one type of carbon fiber (13) in multiple layers with a certain fiber orientation with respect to the load direction (2) and covering with a resin (5). Configured.

第10図は従来の炭素繊維強化複合材料(12)の引張負荷時の応力−ひずみ曲線の例を示したものである。負荷(応力)の増加にほぼ比例して変形(ひずみ)が増加する直線的な挙動(6)を示し、その後、最終的な破壊(11)に至っている。従来の炭素繊維強化複合材料(12)では、負荷により一層の炭素繊維(13)が破損あるいは破壊した場合、その他の層で負荷を受け持つことができず、その他の層が瞬時に破壊する不安定な破壊を生じる問題があった。   FIG. 10 shows an example of a stress-strain curve when a conventional carbon fiber reinforced composite material (12) is subjected to a tensile load. It shows a linear behavior (6) in which the deformation (strain) increases almost in proportion to the increase in load (stress), and then reaches the final fracture (11). In the conventional carbon fiber reinforced composite material (12), when one layer of carbon fiber (13) is damaged or broken due to a load, the other layer cannot take over the load, and the other layer breaks instantly. There was a problem that caused serious destruction.

また、負荷による破損を可視的に確認することが困難であった。   In addition, it is difficult to visually confirm the damage due to the load.

本発明は、このような実情に鑑み、突然破壊を生じないようにすることを目的とする。   The present invention has been made in view of such a situation, and an object thereof is to prevent sudden destruction.

発明1の異なる性質の炭素繊維からなるハイブリッド炭素繊維強化複合材料は、高弾性炭素繊維と高強度炭素繊維からなり、少なくとも両繊維の各一層の配向方向が同一方向に揃えられて積層されており、前記高弾性炭素繊維の弾性率が935GPa、前記高弾性炭素繊維の引張強度が3.7GPa、高強度炭素繊維の引張強度が5GPa以上であり、前記高弾性炭素繊維と高強度炭素繊維の含有割合が体積率で次の関係式:

0<(高弾性炭素繊維)/(高強度炭素繊維)≦(1.2×B)/(2×A×0.8) (1)
(A:高弾性炭素繊維の引張強度、B:高強度炭素繊維の引張強度)を充足することを特徴とする。

The hybrid carbon fiber reinforced composite material composed of carbon fibers having different properties of the invention 1 is composed of a high elastic carbon fiber and a high strength carbon fiber, and is laminated so that the orientation directions of at least one layer of both fibers are aligned in the same direction. The elastic modulus of the high elastic carbon fiber is 935 GPa , the tensile strength of the high elastic carbon fiber is 3.7 GPa, the tensile strength of the high strength carbon fiber is 5 GPa or more, and the high elastic carbon fiber and the high strength carbon fiber are contained. The proportion is volume ratio and the following relation:

0 <(high elastic carbon fiber) / (high strength carbon fiber) ≦ (1.2 × B) / (2 × A × 0.8) (1)
(A: tensile strength of high-elasticity carbon fiber, B: tensile strength of high-strength carbon fiber) is satisfied.

発明は、発明のハイブリッド炭素繊維強化複合材料において、高弾性炭素繊維と高強度炭素繊維の含有割合が体積率で1:1とすることを特徴とする。

Invention 2 is characterized in that, in the hybrid carbon fiber reinforced composite material of Invention 1 , the content ratio of the high elastic carbon fiber and the high strength carbon fiber is 1: 1 by volume.

発明は、発明1又は2のハイブリッド炭素繊維強化複合材料において、両繊維の配向方向が同一方向に揃えられて積層されてなる一組のハイブリッド層が複数組、互いに繊維の配向方向を異ならせて積層された多層構造を有していることを特徴とする。

Invention 3 is the hybrid carbon fiber reinforced composite material of Invention 1 or 2 , wherein a plurality of sets of hybrid layers in which the orientation directions of both fibers are aligned in the same direction are laminated, and the orientation directions of the fibers are different from each other. It has the multilayer structure laminated | stacked by the above.

発明は、発明1からのいずれかのハイブリッド炭素繊維強化複合材料において、最外層に高弾性炭素繊維層が配置されていることを特徴とする。

Invention 4 is characterized in that, in the hybrid carbon fiber reinforced composite material of any one of Inventions 1 to 3 , a high-elasticity carbon fiber layer is disposed as an outermost layer.

この発明では、単独でフェイルセーフ機能を持ち材料の一層が破壊しても引き続き力を負担でき、1つの材料としては機能を保持し、安全を確保することができる構造用炭素繊維強化複合材料を実現できる。   According to the present invention, a structural carbon fiber reinforced composite material that has a fail-safe function alone and can continue to bear force even if one of the materials breaks down, and can maintain the function and secure safety as one material. realizable.

また、発明では、材料の破損あるいは損傷状態を可視化でき、様々なセンサを用いなくとも材料の機能を確認でき、安全を確保することができる構造用炭素繊維強化複合材料を実現できる。
Moreover, in invention 4 , the structural carbon fiber reinforced composite material which can visualize the failure | damage or damage state of material, can confirm the function of material, and can ensure safety, without using various sensors is realizable.

第1図はこの発明によるハイブリッド炭素繊維強化複合材料(1)の例を示している。
高弾性炭素繊維(3)と高強度炭素繊維(4)からなり、少なくとも両繊維の各一層の配向方向が同一方向に揃えられて積層されている。
FIG. 1 shows an example of a hybrid carbon fiber reinforced composite material (1) according to the present invention.
It consists of a highly elastic carbon fiber (3) and a high-strength carbon fiber (4), and at least the orientation directions of each layer of both fibers are aligned in the same direction and laminated.

前記高弾性炭素繊維(3)の弾性率が5×10GPa以上、高強度炭素繊維(4)の引張強度が5GPa以上であることが望ましく、これ以下であると、ハイブリッド炭素繊維強化複合材料(1)の弾性率が高弾性繊維(3)の利点を生かせない。また、ハイブリッド炭素繊維強化複合材料(1)の最終的な強度が高強度繊維(4)の利点を生かせず、フェイルセーフ機能を示す破壊挙動が生じない可能性がある。 The elastic modulus of the high elastic carbon fiber (3) is desirably 5 × 10 2 GPa or more, and the tensile strength of the high strength carbon fiber (4) is desirably 5 GPa or more. The elastic modulus of (1) cannot take advantage of the high elastic fiber (3). Further, the final strength of the hybrid carbon fiber reinforced composite material (1) may not make use of the advantages of the high strength fiber (4), and there is a possibility that the fracture behavior showing the fail safe function does not occur.

前記ハイブリッド炭素繊維強化複合材料(1)において、高弾性炭素繊維(3)と高強度炭素繊維(4)の含有範囲が体積率で次の関係式1とするのが望ましい。
(式1)
0<(高弾性炭素繊維)/(高強度炭素繊維)≦(1.2×B)/(2×A×0.8) (1)
(A:高弾性炭素繊維の引張強度、B:高強度炭素繊維の引張強度)
この範囲を超えると、ハイブリッド炭素繊維強化複合材料(1)の弾性率や最終的な強度が高弾性繊維(3)や高強度繊維(4)の利点を生かせず、フェイルセーフ機能を示す破壊挙動が生じない可能性がある。
In the hybrid carbon fiber reinforced composite material (1), it is desirable that the content range of the high elastic carbon fiber (3) and the high strength carbon fiber (4) is expressed by the following relational expression 1 in terms of volume ratio.
(Formula 1)
0 <(high elastic carbon fiber) / (high strength carbon fiber) ≦ (1.2 × B) / (2 × A × 0.8) (1)
(A: Tensile strength of high-elasticity carbon fiber, B: Tensile strength of high-strength carbon fiber)
Beyond this range, the elastic modulus and final strength of the hybrid carbon fiber reinforced composite material (1) does not take advantage of the high elastic fiber (3) and high strength fiber (4), and exhibits a fail-safe function. May not occur.

高弾性炭素繊維(3)と高強度炭素繊維(4)の含有割合は体積率で1:1とするのが望ましい。
この割合は前記ハイブリッド炭素繊維強化複合材料(1)の特殊例であり、製作の容易性を加味したものである。
The content ratio of the high elastic carbon fiber (3) and the high strength carbon fiber (4) is preferably 1: 1 by volume ratio.
This ratio is a special example of the hybrid carbon fiber reinforced composite material (1), and takes into account the ease of manufacture.

両繊維の配向方向が同一方向に揃えられて積層されてなる一組のハイブリッド層が複数組、互いに繊維の配向方向を異ならせて積層された多層構造にすることにより、多方向の負荷に対しても同様な対応することができる。   By creating a multi-layered structure in which a set of hybrid layers in which the orientation directions of both fibers are aligned in the same direction are laminated and the orientation directions of the fibers are different from each other, a multi-layered load can be handled. However, a similar response can be made.

最外層に高弾性炭素繊維(3)が配置することにより、材料の破損あるいは損傷状態を可視化(8)できる機能を持たすことができる。   By disposing the highly elastic carbon fiber (3) in the outermost layer, it is possible to have a function of visualizing (8) the breakage or damage state of the material.

第2図はこの発明によるハイブリッド炭素繊維強化複合材料(1)の引張あるいは圧縮負荷時の応力−ひずみ曲線を示している。負荷初期段階で高弾性繊維(3)の効果により高い弾性率を有する直線的な挙動(6)を示す。負荷の多くは最外層に負荷方向(2)と平行に繊維配向させた高弾性繊維(3)を含む高弾性繊維(3)に分担され、まず、高弾性繊維(3)が損傷あるいは破損(7)する。最外層に高弾性繊維(3)が配置されており、この損傷あるいは破損が可視的(8)に確認できる。また、高強度繊維(4)の効果により材料全体が破壊することはなく、負荷に保持(9)できる。段階的な損傷挙動(10)を示しながら高い強度を持って最終破壊(11)を示す。この発明により材料自体が単独でフェイルセーフ機能と損傷を可視化できる機能を持ち、材料の一層が破壊しても引き続き力を負担でき、1つの材料としては機械的機能を保持し、安全を確保することができる構造用ハイブリッド炭素繊維強化複合材料(1)を実現できる。   FIG. 2 shows a stress-strain curve of the hybrid carbon fiber reinforced composite material (1) according to the present invention under a tensile or compression load. A linear behavior (6) having a high elastic modulus is shown by the effect of the high elastic fiber (3) in the initial stage of loading. Most of the load is shared by the high elastic fiber (3) including the high elastic fiber (3) fiber-oriented in the outermost layer in parallel with the load direction (2). First, the high elastic fiber (3) is damaged or broken ( 7) Yes. The highly elastic fiber (3) is arranged in the outermost layer, and this damage or breakage can be visually confirmed (8). Moreover, the whole material is not destroyed by the effect of the high-strength fiber (4), and can be held (9) under load. The final fracture (11) is shown with high strength while showing a gradual damage behavior (10). By this invention, the material itself has a fail-safe function and a function capable of visualizing damage, and even if one of the materials breaks down, it can continue to bear the force, and one material retains its mechanical function and ensures safety. A structural hybrid carbon fiber reinforced composite material (1) can be realized.

第3図はこの発明によるハイブリッド炭素繊維強化複合材料(1)の実施例を示す図である。図において、弾性率935GPaの高弾性炭素繊維(K13D:三菱化学産資)(3)と引張強度5.79GPaの高強度炭素繊維(IM600:東邦テナックス)(4)が180度硬化タイプのエポキシ樹脂(5)で覆われ、負荷方向(2)に平行にほぼ1:1の割合で計8層(高弾性繊維(3)が4層、高強度繊維(4)が4層)積層され、ハイブリッド炭素繊維強化複合材料(1)が構成されている。   FIG. 3 is a view showing an embodiment of a hybrid carbon fiber reinforced composite material (1) according to the present invention. In the figure, a high-elasticity carbon fiber (K13D: Mitsubishi Chemical Corporation) (3) with an elastic modulus of 935 GPa and a high-strength carbon fiber (IM600: Toho Tenax) (4) with a tensile strength of 5.79 GPa are 180-degree-curable epoxy resins. (5), 8 layers in total (4 layers of high-elasticity fibers (3) and 4 layers of high-strength fibers (4)) are laminated in a ratio of approximately 1: 1 parallel to the load direction (2). A carbon fiber reinforced composite material (1) is formed.

第4図は実施例1のハイブリッド炭素繊維強化複合材料(1)の引張負荷時の応力−ひずみ曲線を示している。負荷初期段階で高弾性繊維(3)の効果により弾性率が346GPa(体積含有率Vf=60%換算)の高い弾性率を有する直線的な挙動(6)を示す。負荷の多くは高弾性繊維(3)に分担され、まず、高弾性繊維(3)が損傷あるいは破損(7)する。しかし、高強度繊維(4)の効果により材料全体が破壊することはなく、負荷を保持(9)できる。段階的な損傷挙動(10)を示しながら引張強度が1.29GPa(体積含有率Vf=60%換算)の高い強度を持って最終破壊(11)を示す。圧縮負荷時においても数値は異なるが同様な段階的な損傷挙動を示す。この発明の実施により、材料自体が単独でフェイルセーフ機能を持ち、材料の一層が破壊しても引き続き力を負担でき、1つの材料としては機械的機能を保持し、安全を確保することができる構造用ハイブリッド炭素繊維強化複合材料(1)を実現できた。   FIG. 4 shows a stress-strain curve of the hybrid carbon fiber reinforced composite material (1) of Example 1 under a tensile load. A linear behavior (6) having a high elastic modulus of 346 GPa (volume content Vf = 60% conversion) due to the effect of the high elastic fiber (3) at the initial stage of loading is shown. Most of the load is shared by the highly elastic fiber (3). First, the highly elastic fiber (3) is damaged or broken (7). However, the entire material is not destroyed by the effect of the high-strength fiber (4), and the load can be maintained (9). The final fracture (11) is shown with a high strength of 1.29 GPa (volume content Vf = 60% conversion) while showing stepwise damage behavior (10). Even under compression load, the numerical values are different but show similar gradual damage behavior. By implementing this invention, the material itself has a fail-safe function alone, and even if one of the materials breaks down, it can continue to bear the force, and as one material, it can maintain the mechanical function and ensure safety. The structural hybrid carbon fiber reinforced composite material (1) was realized.

第5図はこの発明によるハイブリッド炭素繊維強化複合材料(1)の別の実施例を示す図である。図において、最外層に負荷方向(2)と平行に繊維配向した弾性率935GPaの高弾性炭素繊維(K13D:三菱化学産資)(3)を含む高弾性炭素繊維(3)と引張強度6.37GPaの高強度炭素繊維(T1000GB:東レ)(4)が耐熱性熱硬化ポリイミド樹脂(I.S.T.社製のスカイボンド703)(5)で覆われ、負荷方向(2)に平行にほぼ1:1の割合で計8層(高弾性繊維(3)が4層、高強度繊維(4)が4層)積層されて、ハイブリッド炭素繊維強化複合材料(1)が構成されている。   FIG. 5 is a view showing another embodiment of the hybrid carbon fiber reinforced composite material (1) according to the present invention. In the figure, a high-elasticity carbon fiber (3) including a high-elasticity carbon fiber (K13D: Mitsubishi Chemical Corporation) (3) having a modulus of elasticity of 935 GPa and oriented in parallel with the loading direction (2) in the outermost layer and a tensile strength of 6. A 37 GPa high-strength carbon fiber (T1000GB: Toray) (4) is covered with a heat-resistant thermosetting polyimide resin (I.S. Sky Bond 703) (5) and parallel to the load direction (2) A total of 8 layers (4 layers of high elastic fibers (3) and 4 layers of high strength fibers (4)) are laminated at a ratio of approximately 1: 1 to constitute a hybrid carbon fiber reinforced composite material (1).

第6図は実施例2のハイブリッド炭素繊維強化複合材料(1)の引張負荷時の応力−ひずみ曲線を示している。負荷初期段階で高弾性繊維(3)の効果により弾性率が373GPa(体積含有率Vf=60%換算)の高い弾性率を有する直線的な挙動(6)を示す。負荷の多くは最外層に負荷方向(2)と平行に繊維配向させた高弾性繊維(3)を含む高弾性炭素繊維(3)に分担され、まず、高弾性繊維(3)が損傷あるいは破損(7)する。最外層に高弾性繊維(3)が配置されており、第7図および第8図に示すように、この損傷あるいは破損が可視的(8)に確認できる。また、高強度繊維(4)の効果により材料全体が破壊することはなく、負荷に保持(9)できる。段階的な損傷挙動(10)を示しながら引張強度が1.45GPa(体積含有率Vf=60%換算)の高い強度を持って最終破壊(11)を示す。圧縮負荷時においても数値は異なるが同様な段階的な損傷挙動を示す。この発明の実施により、材料自体が単独でフェイルセーフ機能と損傷を可視化(8)できる機能を持ち、材料の一層が破壊しても引き続き力を負担でき、1つの材料としては機械的機能を保持し、安全を確保することができる構造用ハイブリッド炭素繊維強化複合材料(1)を実現できた。   FIG. 6 shows a stress-strain curve of the hybrid carbon fiber reinforced composite material (1) of Example 2 under tensile load. A linear behavior (6) having a high elastic modulus with an elastic modulus of 373 GPa (volume content Vf = 60% conversion) due to the effect of the high elastic fiber (3) at the initial stage of loading is shown. Most of the load is shared with the high elastic carbon fiber (3) including the high elastic fiber (3) whose fiber orientation is parallel to the load direction (2) in the outermost layer. First, the high elastic fiber (3) is damaged or broken. (7) Highly elastic fibers (3) are arranged in the outermost layer, and this damage or breakage can be visually confirmed (8) as shown in FIGS. Moreover, the whole material is not destroyed by the effect of the high-strength fiber (4), and can be held (9) under load. The final fracture (11) is shown with a high strength of 1.45 GPa (volume content Vf = 60% conversion) while showing stepwise damage behavior (10). Even under compression load, the numerical values are different but show similar gradual damage behavior. By implementing this invention, the material itself has the fail-safe function and the ability to visualize damage (8), and even if one layer of material breaks down, it can continue to bear force, and one material retains its mechanical function In addition, a structural hybrid carbon fiber reinforced composite material (1) capable of ensuring safety could be realized.

この発明によるハイブリッド炭素繊維強化複合材料の積層構造を示す模式図Schematic diagram showing the laminated structure of the hybrid carbon fiber reinforced composite material according to the present invention この発明のハイブリッド炭素繊維強化複合材料の引張負荷時の応力−ひずみ曲線の模式図と可視化した最外層の炭素繊維の損傷あるいは破損の模式図Schematic diagram of stress-strain curve during tensile loading of hybrid carbon fiber reinforced composite material of this invention and schematic diagram of damage or breakage of carbon fiber in outermost layer visualized 実施例1のハイブリッド炭素繊維強化複合材料の積層構造を示す模式図とその実体の上面から見た写真The schematic diagram which shows the laminated structure of the hybrid carbon fiber reinforced composite material of Example 1, and the photograph seen from the upper surface of the substance 実施例1のハイブリッド炭素繊維強化複合材料の引張負荷時の応力−ひずみ曲線Stress-strain curve during tensile loading of the hybrid carbon fiber reinforced composite material of Example 1 実施例2のハイブリッド炭素繊維強化複合材料の積層構造を示す模式図とその実体の上面から見た写真および積層状態を示す断面写真The schematic diagram which shows the laminated structure of the hybrid carbon fiber reinforced composite material of Example 2, the photograph seen from the upper surface of the substance, and the cross-sectional photograph which shows a lamination | stacking state 実施例2のハイブリッド炭素繊維強化複合材料の引張負荷時の応力−ひずみ曲線Stress-strain curve during tensile loading of the hybrid carbon fiber reinforced composite material of Example 2 実施例2のハイブリッド炭素繊維強化複合材料の最外層の高弾性繊維の損傷あるいは破損状態を浸透探傷法により可視化した写真The photograph which visualized the damage or broken state of the high elastic fiber of the outermost layer of the hybrid carbon fiber reinforced composite material of Example 2 by the penetration flaw detection method 実施例2のハイブリッド炭素繊維強化複合材料の最外層の高弾性繊維の損傷あるいは破損状態を拡大鏡により可視化した写真A photograph in which the damage or breakage state of the high-elasticity fiber in the outermost layer of the hybrid carbon fiber reinforced composite material of Example 2 is visualized with a magnifier 従来の炭素繊維強化複合材料の一般的な層構成の例Example of typical layer structure of conventional carbon fiber reinforced composite material 従来の炭素繊維強化複合材料の引張負荷時の応力−ひずみ曲線の例を示すAn example of a stress-strain curve during tensile loading of a conventional carbon fiber reinforced composite material is shown.

符号の説明Explanation of symbols

(1) ハイブリッド炭素繊維強化複合材料
(2) 負荷方向
(3) 高弾性炭素繊維
(4) 高強度炭素繊維
(5) 樹脂
(6) 直線的な挙動
(7) 高弾性繊維が損傷・破損
(8) 損傷・破損が可視
(9) 負荷に保持
(10) 段階的な損傷挙動
(11) 最終破壊
(12) 従来の炭素繊維強化複合材料
(13) 炭素繊維
なお、各図中同一符号は同一又は相当部分を示す。
(1) Hybrid carbon fiber reinforced composite material (2) Loading direction (3) High elastic carbon fiber (4) High strength carbon fiber (5) Resin (6) Linear behavior (7) High elastic fiber is damaged or broken ( 8) Damage / breakage is visible (9) Hold on load (10) Stepwise damage behavior (11) Final fracture (12) Conventional carbon fiber reinforced composite material (13) Carbon fiber Or an equivalent part is shown.

Claims (4)


異なる性質の炭素繊維からなるハイブリッド炭素繊維強化複合材料であって、高弾性炭素繊維と高強度炭素繊維からなり、少なくとも両繊維の各一層の配向方向が同一方向に揃えられて積層されており、
前記高弾性炭素繊維の弾性率が935GPa、前記高弾性炭素繊維の引張強度が3.7GPa、前記高強度炭素繊維の引張強度が5GPa以上であり、
前記高弾性炭素繊維と高強度炭素繊維の含有割合が体積率で次の関係式:
0<(高弾性炭素繊維)/(高強度炭素繊維)≦(1.2×B)/(2×A×0.8) (1)
(A:高弾性炭素繊維の引張強度、B:高強度炭素繊維の引張強度)
を充足することを特徴とするハイブリッド炭素繊維強化複合材料。

It is a hybrid carbon fiber reinforced composite material composed of carbon fibers of different properties, consisting of high elastic carbon fibers and high strength carbon fibers, and at least the orientation directions of each layer of both fibers are aligned in the same direction and laminated.
The elastic modulus of the high elastic carbon fiber is 935 GPa , the tensile strength of the high elastic carbon fiber is 3.7 GPa, and the tensile strength of the high strength carbon fiber is 5 GPa or more,
The content ratio of the high-elasticity carbon fiber and the high-strength carbon fiber is a volume ratio and the following relational expression:
0 <(high elastic carbon fiber) / (high strength carbon fiber) ≦ (1.2 × B) / (2 × A × 0.8) (1)
(A: Tensile strength of high-elasticity carbon fiber, B: Tensile strength of high-strength carbon fiber)
A hybrid carbon fiber reinforced composite material characterized by satisfying
請求項1に記載のハイブリッド炭素繊維強化複合材料において、高弾性炭素繊維と高強度炭素繊維の含有割合が体積率で1:1とすることを特徴とするハイブリッド炭素繊維強化複合材料。   The hybrid carbon fiber reinforced composite material according to claim 1, wherein the content ratio of the high elastic carbon fiber and the high strength carbon fiber is 1: 1 by volume. 請求項1又は2に記載のハイブリッド炭素繊維強化複合材料において、両繊維の配向方向が同一方向に揃えられて積層されてなる一組のハイブリッド層が複数組、互いに繊維の配向方向を異ならせて積層された多層構造を有していることを特徴とするハイブリッド炭素繊維強化複合材料。   The hybrid carbon fiber reinforced composite material according to claim 1 or 2, wherein a plurality of sets of hybrid layers in which the orientation directions of both fibers are aligned in the same direction are laminated, and the orientation directions of the fibers are different from each other. A hybrid carbon fiber reinforced composite material characterized by having a multi-layer structure laminated. 請求項1から3のいずれかに記載のハイブリッド炭素繊維強化複合材料において、最外層に高弾性炭素繊維層が配置されていることを特徴とするハイブリッド炭素繊維強化複合材料。
The hybrid carbon fiber reinforced composite material according to any one of claims 1 to 3, wherein a high elastic carbon fiber layer is disposed as an outermost layer.
JP2007268781A 2007-10-16 2007-10-16 Hybrid carbon fiber reinforced composite material Expired - Fee Related JP5360523B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007268781A JP5360523B2 (en) 2007-10-16 2007-10-16 Hybrid carbon fiber reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007268781A JP5360523B2 (en) 2007-10-16 2007-10-16 Hybrid carbon fiber reinforced composite material

Publications (2)

Publication Number Publication Date
JP2009096859A JP2009096859A (en) 2009-05-07
JP5360523B2 true JP5360523B2 (en) 2013-12-04

Family

ID=40700174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007268781A Expired - Fee Related JP5360523B2 (en) 2007-10-16 2007-10-16 Hybrid carbon fiber reinforced composite material

Country Status (1)

Country Link
JP (1) JP5360523B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2966117B1 (en) 2013-03-07 2019-01-02 Mitsubishi Chemical Corporation Carbon-fiber-reinforced thermoplastic-resin composite material and molded body using same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH084646B2 (en) * 1991-08-26 1996-01-24 ソマール株式会社 Golf club shaft
JP2554821B2 (en) * 1992-02-19 1996-11-20 新日本製鐵株式会社 Carbon fiber reinforced resin composite material and method for producing the same
JPH07144371A (en) * 1993-11-24 1995-06-06 Nippon Steel Chem Co Ltd Carbon fiber reinforced resin composite material having high damping capacity

Also Published As

Publication number Publication date
JP2009096859A (en) 2009-05-07

Similar Documents

Publication Publication Date Title
US20140292357A1 (en) Smart multi-layer composites
US5227216A (en) Fiber/metal laminate
CN104853911A (en) Split resistant composite laminate
JP5406275B2 (en) Composite laminate with self-healing layer
JP5172983B2 (en) Bonding structure between fiber reinforced resin and metal, and bonding method between fiber reinforced resin and metal
EP2627505B1 (en) Aircraft wing and fiber metal laminate forming part of such an aircraft wing
EP2943336B1 (en) Triaxial fiber-reinforced composite laminate
US8561829B1 (en) Composite pressure vessel including crack arresting barrier
CN1948816A (en) High pressure nitrogen storage bottle made of PBO fiber and carbon fiber composite material and its preparation method
KR101956131B1 (en) Composite material for reinforcement and articles comprising the same
US8722201B2 (en) Connections between a monolithic metal component and a continuous-fiber reinforced laminate component, and method for production of the same
US20180066797A1 (en) Fiber reinforced polymer matrix composite structure and high pressure container, and method of manufacturing the same
JP2012035442A (en) Fiber-reinforced resin member, and fastening structure
WO2013129122A1 (en) Composite material structural body, aircraft wing and aircraft body provided with same, and method of manufacturing composite material structural body
JP5360523B2 (en) Hybrid carbon fiber reinforced composite material
WO2016035694A1 (en) Energy-absorbing member
Zulkafli et al. Quasi and dynamic impact performance of hybrid cross-ply banana/glass fibre reinforced polypropylene composites
JP5412008B1 (en) Shock absorbing member, protective clothing, and method of manufacturing shock absorbing member
JP2009243486A (en) Laminated support
US10596779B2 (en) Composite material structure
CN103032434A (en) Fail-safe safety pin
CN202401393U (en) Composite bridge floor
US20070104933A1 (en) Reinforced structural member and method of forming
RU2547484C2 (en) Sandwiched armour barrier
JP7365847B2 (en) Composite material with reinforced fiber bundles and bolted structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130822

R150 Certificate of patent or registration of utility model

Ref document number: 5360523

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees