JP5359939B2 - Resin film, multilayer circuit board using the same, and manufacturing method thereof - Google Patents

Resin film, multilayer circuit board using the same, and manufacturing method thereof Download PDF

Info

Publication number
JP5359939B2
JP5359939B2 JP2010051097A JP2010051097A JP5359939B2 JP 5359939 B2 JP5359939 B2 JP 5359939B2 JP 2010051097 A JP2010051097 A JP 2010051097A JP 2010051097 A JP2010051097 A JP 2010051097A JP 5359939 B2 JP5359939 B2 JP 5359939B2
Authority
JP
Japan
Prior art keywords
base material
material layer
resin
circuit board
resin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010051097A
Other languages
Japanese (ja)
Other versions
JP2011187667A (en
Inventor
敏一 原田
宏司 近藤
敦資 坂井田
敏尚 谷口
栄二郎 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2010051097A priority Critical patent/JP5359939B2/en
Publication of JP2011187667A publication Critical patent/JP2011187667A/en
Application granted granted Critical
Publication of JP5359939B2 publication Critical patent/JP5359939B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide: a resin film which compatibly achieves both prevention against a position shift of a conductor pattern during sticking and securing of adhesive strength of a resin film during lamination of layers and with which a multilayer circuit board is easily manufactured at low cost; the multilayer circuit board using the same; and a method of manufacturing the same. <P>SOLUTION: The resin film 30 has the conductor pattern P formed on one surface for the multilayer circuit board manufactured by mutual sticking by heating and pressing, and includes a first base material layer 11 on the surface side where the conductor pattern P is formed, and a second base material layer 12 on a surface side where the conductor pattern P is not formed, wherein the first base material layer 11 and the second base material layer 12 are both made of thermoplastic resin, and the second base material layer 12 has a lower melting point than the first base material layer 11. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、加熱加圧により相互に貼り合わせて製造する多層回路基板用の片面に導体パターンが形成された樹脂フィルム、およびそれを用いた多層回路基板とその製造方法に関する。   The present invention relates to a resin film in which a conductor pattern is formed on one side of a multilayer circuit board manufactured by bonding together by heating and pressing, a multilayer circuit board using the resin film, and a method of manufacturing the same.

加熱加圧により相互に貼り合わせて製造する多層回路基板用の片面に導体パターンが形成された樹脂フィルム、およびそれを用いた多層回路基板とその製造方法が、例えば、特開2003−86948号公報(特許文献1)に開示されている。   A resin film in which a conductor pattern is formed on one side of a multilayer circuit board manufactured by bonding to each other by heating and pressing, and a multilayer circuit board using the resin film and a manufacturing method thereof are disclosed in, for example, Japanese Patent Application Laid-Open No. 2003-86948. (Patent Document 1).

図6は、上記特許文献1と同様の代表的な多層回路基板の製造方法を説明する図で、図6(a)〜(f)は、多層回路基板90の製造工程別の断面図である。   FIGS. 6A and 6B are diagrams for explaining a typical method for manufacturing a multilayer circuit board similar to Patent Document 1, and FIGS. 6A to 6F are cross-sectional views for each manufacturing process of the multilayer circuit board 90. .

図6(a)〜(f)に示す多層回路基板90の製造方法では、最初に、図6(a)に示すように、加熱プレスによって、熱可塑性樹脂からなる基材1の樹脂フィルム20の片面に、金属(銅)箔2を貼り合わせる。次に、図6(b)に示すように、エッチングによって、銅箔2を所定の導体パターンPに加工する。次に、図6(c)に示すように、樹脂フィルム20の所定の位置に、レーザ加工で導体パターンPを底とする底付穴Hを開ける。次に、図6(d)に示すように、底付穴Hに導電ペースト4を充填する。これによって、片面に導体パターンPが形成され、底付穴Hに導電ペースト4が充填された、熱可塑性樹脂からなる基材1の樹脂フィルム20が準備できる。   In the manufacturing method of the multilayer circuit board 90 shown in FIGS. 6A to 6F, first, as shown in FIG. 6A, the resin film 20 of the base material 1 made of a thermoplastic resin is formed by a hot press. A metal (copper) foil 2 is bonded to one side. Next, as shown in FIG. 6B, the copper foil 2 is processed into a predetermined conductor pattern P by etching. Next, as shown in FIG. 6C, a bottomed hole H with the conductor pattern P as a bottom is formed by laser processing at a predetermined position of the resin film 20. Next, as shown in FIG. 6 (d), the bottomed hole H is filled with the conductive paste 4. Thereby, the resin film 20 of the base material 1 made of a thermoplastic resin in which the conductor pattern P is formed on one surface and the bottomed hole H is filled with the conductive paste 4 can be prepared.

次に、図6(e)に示すように、上記と同様にして準備した樹脂フィルム20a〜20fを、図のように途中で反転させて積層する。最後に、上記積層体を熱プレス板により、融点直下の温度で加熱加圧して、樹脂フィルム20a〜20fの形状を保持したまま隣接する、樹脂フィルム20a〜20f同士を相互に貼り合わせる。これにより、図6(f)に示すように、隣接する熱可塑性樹脂からなる基材1の樹脂フィルム20a〜20fが相互に貼り合わされ一体化すると共に、底付穴H内に充填された導電ペースト4が焼結して接続導体4aとなり、各層の導体パターンP同士が電気的に接続される。   Next, as shown in FIG. 6E, the resin films 20a to 20f prepared in the same manner as described above are reversed and laminated in the middle as shown in the figure. Finally, the laminated body is heated and pressed by a hot press plate at a temperature just below the melting point, and the adjacent resin films 20a to 20f are bonded to each other while maintaining the shape of the resin films 20a to 20f. Thereby, as shown in FIG. 6 (f), the resin films 20a to 20f of the base material 1 made of the adjacent thermoplastic resin are bonded and integrated with each other, and the conductive paste filled in the bottomed hole H is obtained. 4 is sintered to become a connection conductor 4a, and the conductor patterns P of each layer are electrically connected to each other.

以上の工程によって、図6(f)に示す多層回路基板90が製造される。   Through the above steps, the multilayer circuit board 90 shown in FIG. 6F is manufactured.

上記多層回路基板90の製造方法によれば、加熱加圧により、積層した複数枚の樹脂フィルム20a〜20fが一括して接着され、また同時に導電ペースト4が焼結して接続導体4aとなり配線回路が形成されるため、各層を一層ずつ形成して多層化する多層回路基板の製造方法に較べて、多層化工程が短くて済む。   According to the manufacturing method of the multilayer circuit board 90, a plurality of laminated resin films 20a to 20f are bonded together by heating and pressing, and at the same time, the conductive paste 4 is sintered to form the connection conductor 4a. Therefore, the multilayering process can be shortened as compared with a method for manufacturing a multilayer circuit board in which each layer is formed one layer at a time.

特開2003−86948号公報JP 2003-86948 A

図6(e),(f)に示した樹脂フィルム20a〜20fの一括貼り合わせ工程では、樹脂フィルム20a〜20fにそれぞれ形成されている導体パターンPの相互の位置ずれ防止と、樹脂フィルム20a〜20fの相互の接着性とを、両立させる必要がある。このため、上記貼り合わせ工程では、熱可塑性樹脂からなる基材1の融点直下の軟化温度において、樹脂フィルム20a〜20fの積層体を加熱・加圧することにより相互に貼り合わせている。   In the batch bonding process of the resin films 20a to 20f shown in FIGS. 6E and 6F, the mutual displacement prevention of the conductor patterns P respectively formed on the resin films 20a to 20f and the resin films 20a to 20f are performed. It is necessary to make 20f mutually compatible. For this reason, in the said bonding process, it bonds together by heating and pressurizing the laminated body of resin film 20a-20f in the softening temperature just under melting | fusing point of the base material 1 which consists of thermoplastic resins.

しかしながら、上記導体パターンPの位置ずれ防止と樹脂フィルム20a〜20fの接着性は相反する特性であり、両立することは一般的に困難である。すなわち、導体パターンPの位置ずれ防止は、熱可塑性樹脂からなる基材1の耐熱強度に係る特性で、耐熱強度に優れる基材であるほど導体パターンPの位置ずれが発生し難い。一方、樹脂フィルム20a〜20fの接着性は、熱可塑性樹脂からなる基材1が高温で強度が下がり、基材1が柔らかくなるほど向上する。従って、導体パターンPの位置ずれ防止と樹脂フィルム20a〜20fの接着性を両立できる貼り合わせの温度範囲は、非常に狭い温度範囲となってしまう。このため、貼り合わせ時に樹脂フィルム20a〜20fの積層体の一部が所定の温度範囲からずれると、導体パターンPの位置ずれや、基材1による導体パターンP周りの段差埋め込み不良、および基材1同士の相互接着不良等が発生してしまう。   However, prevention of displacement of the conductor pattern P and adhesiveness of the resin films 20a to 20f are contradictory properties, and it is generally difficult to achieve both. That is, prevention of displacement of the conductor pattern P is a characteristic relating to the heat resistance strength of the base material 1 made of a thermoplastic resin, and the position displacement of the conductor pattern P is less likely to occur as the substrate has better heat resistance strength. On the other hand, the adhesiveness of the resin films 20a to 20f improves as the base material 1 made of a thermoplastic resin decreases in strength at a high temperature and becomes softer. Therefore, the temperature range of the bonding that can achieve both the prevention of the displacement of the conductor pattern P and the adhesiveness of the resin films 20a to 20f is a very narrow temperature range. For this reason, when a part of the laminated body of the resin films 20a to 20f is deviated from a predetermined temperature range at the time of bonding, the positional deviation of the conductor pattern P, the step embedding defect around the conductor pattern P by the substrate 1, and the substrate The mutual adhesion defect etc. of 1 will generate | occur | produce.

そこで本発明は、加熱加圧により相互に貼り合わせて製造する多層回路基板用の片面に導体パターンが形成された樹脂フィルム、およびそれを用いた多層回路基板とその製造方法であって、貼り合わせ時の導体パターンの位置ずれ防止と多層化時の樹脂フィルムの接着性確保を両立させることができ、多層回路基板を容易で安価に製造することのできる樹脂フィルムおよびそれを用いた多層回路基板とその製造方法を提供することを目的としている。   Therefore, the present invention relates to a resin film having a conductor pattern formed on one side of a multilayer circuit board manufactured by bonding together by heating and pressurization, a multilayer circuit board using the same, and a method of manufacturing the same. Resin film capable of achieving both prevention of misalignment of conductor pattern at the time and securing of adhesiveness of resin film at the time of multilayering, multilayer circuit board can be easily manufactured at low cost, and multilayer circuit board using the same It aims at providing the manufacturing method.

請求項1に記載の発明は、加熱加圧により相互に貼り合わせて製造する多層回路基板用の片面に導体パターンが形成された樹脂フィルムであって、前記樹脂フィルムが、前記導体パターンが形成される面(以下、第1面とする)側の第1基材層と、前記導体パターンが形成されない面(以下、第2面とする)側の第2基材層とからなり、前記第1基材層と第2基材層が、いずれも熱可塑性樹脂からなり、前記第2基材層の融点が、前記第1基材層の融点より低いことを特徴としている。   The invention according to claim 1 is a resin film in which a conductor pattern is formed on one side for a multilayer circuit board manufactured by bonding together by heating and pressing, and the resin film is formed with the conductor pattern. A first base material layer on the surface (hereinafter referred to as the first surface) side, and a second base material layer on the surface (hereinafter referred to as the second surface) side on which the conductive pattern is not formed. The base material layer and the second base material layer are both made of a thermoplastic resin, and the melting point of the second base material layer is lower than the melting point of the first base material layer.

上記樹脂フィルムは、従来の加熱加圧により相互に貼り合わせて製造する多層回路基板用の樹脂フィルムと異なり、配線層間の絶縁部材となる基材部が、第1基材層と第2基材層の2層構造となっている。また、第1基材層と第2基材層は、いずれも熱可塑性樹脂からなるが、第1基材層と第2基材層とでは、融点が異なっている。   The resin film is different from the conventional resin film for multilayer circuit boards manufactured by bonding together by heat and pressure, and the base material portion serving as an insulating member between the wiring layers is the first base material layer and the second base material. It has a two-layer structure of layers. The first base material layer and the second base material layer are both made of a thermoplastic resin, but the first base material layer and the second base material layer have different melting points.

上記樹脂フィルムを用いて多層回路基板を製造するには、該樹脂フィルムに形成されている導体パターンがそれぞれ多層回路基板の各層の回路パターンとなるように、複数枚の該樹脂フィルムを以下のように積層する。すなわち、最外層となる樹脂フィルムを除いて、内部に配置される任意の樹脂フィルムの第1基材層(従って、当該樹脂フィルムの導体パターン)と隣接する樹脂フィルムの第2基材層とが当接するように、各樹脂フィルムを積層する。そして、このように積層された各樹脂フィルムを、加熱加圧により、一括して相互に貼り合わせる。   To manufacture a multilayer circuit board using the resin film, a plurality of resin films are formed as follows so that the conductor pattern formed on the resin film becomes a circuit pattern of each layer of the multilayer circuit board. Laminate to. That is, except for the resin film that becomes the outermost layer, the first base layer of any resin film disposed inside (therefore, the conductive pattern of the resin film) and the second base layer of the adjacent resin film Each resin film is laminated so as to abut. And each resin film laminated | stacked in this way is mutually bonded together by heat-pressing.

ここで、熱可塑性樹脂の軟化温度は一般的に融点に比例するが、上記樹脂フィルムにおいては、導体パターンが形成される第1面側の第1基材層の融点は、導体パターンが形成されない第2面側の第2基材層の融点より高い構造となっている。従って、上記積層体の加熱加圧による一括貼り合わせ工程において、第2基材層が軟化し、第1基材層が軟化しない、貼り合わせ温度域を設定することができる。これによれば、融点の低い第2基材層の軟化する上記温度域で多層化プレスを行うことができるため、第2基材層を十分に軟化して柔らかくすることにより、樹脂フィルム同士の高い接着性および導体パターン周りの良好な段差埋め込み性を確保することができる。一方、上記温度域においては、融点の高い第1基材層は軟化することがない。このため、多層化時における導体パターン(および該導体パターンを底とする底付穴に充填された導電ペースト)の位置ずれを抑制することができ、導体パターンの高い位置精度を確保することができる。   Here, the softening temperature of the thermoplastic resin is generally proportional to the melting point, but in the resin film, the melting point of the first base material layer on the first surface side where the conductor pattern is formed does not form the conductor pattern. The structure is higher than the melting point of the second base material layer on the second surface side. Therefore, it is possible to set a bonding temperature range in which the second base material layer is softened and the first base material layer is not softened in the batch bonding step by heating and pressurizing the laminate. According to this, since the multi-layer press can be performed in the above temperature range where the second base material layer having a low melting point is softened, by sufficiently softening and softening the second base material layer, High adhesiveness and good step embedding property around the conductor pattern can be ensured. On the other hand, in the said temperature range, a 1st base material layer with high melting | fusing point does not soften. For this reason, it is possible to suppress the displacement of the conductor pattern (and the conductive paste filled in the bottomed hole with the conductor pattern as a bottom) at the time of multilayering, and to ensure high positional accuracy of the conductor pattern. .

以上のようにして、上記樹脂フィルムは、加熱加圧により相互に貼り合わせて製造する多層回路基板用の片面に導体パターンが形成された樹脂フィルムであって、貼り合わせ時の導体パターンの位置ずれ防止と多層化時の樹脂フィルムの接着性確保を両立させることができ、多層回路基板を容易で安価に製造することのできる樹脂フィルムとなっている。   As described above, the resin film is a resin film in which a conductor pattern is formed on one side for a multilayer circuit board manufactured by bonding to each other by heating and pressing, and the position of the conductor pattern at the time of bonding is shifted. It is possible to achieve both prevention and adhesion of the resin film at the time of multi-layering, and the multi-layer circuit board can be manufactured easily and inexpensively.

上記樹脂フィルムは、例えば請求項2に記載のように、前記第1基材層と第2基材層が、いずれも、ポリエーテルエーテルケトン樹脂と、該ポリエーテルエーテルケトン樹脂と完全相溶系をなすポリエーテルイミド樹脂とからなり、前記第2基材層におけるポリエーテルイミド樹脂の含有濃度が、前記第1基材層におけるポリエーテルイミド樹脂の含有濃度より大きい構成とする。   In the resin film, for example, as described in claim 2, the first base material layer and the second base material layer are both a polyether ether ketone resin and a completely compatible system with the polyether ether ketone resin. The polyetherimide resin is formed, and the content concentration of the polyetherimide resin in the second base material layer is larger than the content concentration of the polyetherimide resin in the first base material layer.

該樹脂フィルムは、電気的特性や耐薬品性等の基本特性に優れると共に、ポリエーテルエーテルケトン樹脂とポリエーテルイミド樹脂の含有濃度を変えるだけで、第1基材層と第2基材層の融点を適宜所望の値に設定することができる。   The resin film is excellent in basic characteristics such as electrical characteristics and chemical resistance, and only by changing the content concentration of the polyether ether ketone resin and the polyether imide resin, The melting point can be appropriately set to a desired value.

この場合、例えば請求項3に記載のように、前記第2基材層におけるポリエーテルイミド樹脂の含有濃度が、70重量%より大きく、前記第1基材層におけるポリエーテルイミド樹脂の含有濃度が、70重量%より小さいように設定する。この場合には、上記貼り合わせ温度域を310℃前後(±10℃程度)に設定することができ、該貼り合わせ温度域で樹脂フィルム同士の貼り合わせと導体パターン間の接続導体となる上記導電ペーストの焼結を、一括して行うことができる。   In this case, for example, as described in claim 3, the content concentration of the polyetherimide resin in the second base material layer is greater than 70% by weight, and the content concentration of the polyetherimide resin in the first base material layer is , 70% by weight or less. In this case, the bonding temperature range can be set to around 310 ° C. (about ± 10 ° C.), and the conductive film serving as a connection conductor between the resin films and the conductor pattern in the bonding temperature range. Paste sintering can be performed collectively.

上記樹脂フィルムは、例えば請求項4に記載のように、前記第1基材層の厚さが、40μm以上、50μm以下であり、前記第2基材層の厚さが、40μm以上、70μm以下であるように構成する。これにより、貼り合わせ時の導体パターンの位置ずれ防止と樹脂フィルムの接着性とを、適度に両立させることができる。   As for the said resin film, the thickness of the said 1st base material layer is 40 micrometers or more and 50 micrometers or less as described in Claim 4, for example, The thickness of the said 2nd base material layer is 40 micrometers or more and 70 micrometers or less The configuration is as follows. Thereby, the position shift prevention of the conductor pattern at the time of bonding and the adhesiveness of the resin film can be reconciled moderately.

また、上記樹脂フィルムは、請求項5に記載のように、前記第1基材層と第2基材層の境界に、ガラス繊維織布が埋め込まれてなる樹脂フィルムとする場合にも好適である。   Further, as described in claim 5, the resin film is also suitable for a resin film in which a glass fiber woven fabric is embedded at the boundary between the first base material layer and the second base material layer. is there.

従来の基材部が1層構造の樹脂フィルムについても、ガラス繊維織布が埋め込まれた樹脂フィルムとする場合には、基本的に、ガラス繊維織布を同じ組成の基材フィルムでサンドイッチして製造する。従って、ガラス繊維織布が埋め込まれた基材部が1層構造の従来の樹脂フィルムと同じコストで、ガラス繊維織布が埋め込まれた第1基材層と第2基材層からなる上記樹脂フィルムを製造することができる。   In the case of a conventional resin film having a single-layer structure of the base material portion, when the resin film in which the glass fiber woven fabric is embedded is basically sandwiched between the glass fiber woven fabric and the base material film having the same composition. To manufacture. Accordingly, the above-mentioned resin comprising the first base material layer and the second base material layer embedded with the glass fiber woven fabric at the same cost as the conventional resin film having the single layer structure of the base material portion embedded with the glass fiber woven fabric. A film can be produced.

請求項6〜10に記載の発明は、上記樹脂フィルムを用いた多層回路基板に関する発明である。該多層回路基板とその効果については、樹脂フィルムに関する上記請求項1〜5の発明において詳述したとおりであり、その説明は省略する。   The invention described in claims 6 to 10 is an invention relating to a multilayer circuit board using the resin film. The multilayer circuit board and the effects thereof are as described in detail in the inventions of claims 1 to 5 regarding the resin film, and the description thereof is omitted.

該多層回路基板についても、片面に導体パターンが形成された複数枚の上記樹脂フィルムを加熱加圧により相互に貼り合わせて製造する多層回路基板であって、貼り合わせ時の導体パターンの位置ずれ防止と上記樹脂フィルム同士の接着性が確保され、容易で安価に製造することのできる多層回路基板となっている。   The multi-layer circuit board is also a multi-layer circuit board manufactured by laminating a plurality of the resin films having a conductor pattern formed on one side thereof by heating and pressurization, and preventing the displacement of the conductor pattern at the time of bonding. In addition, the adhesiveness between the resin films is ensured, and the multilayer circuit board can be manufactured easily and inexpensively.

また、請求項11〜14に記載の発明は、上記多層回路基板の製造方法に関する発明である。該多層回路基板の製造方法の効果についても、上記したとおりで、詳細説明は省略する。   Moreover, invention of Claim 11-14 is invention regarding the manufacturing method of the said multilayer circuit board. The effects of the method of manufacturing the multilayer circuit board are also as described above, and detailed description thereof is omitted.

該多層回路基板の製造方法では、請求項11に記載のように、前記加熱加圧による複数枚の上記樹脂フィルムの貼り合わせを、前記第2基材層が軟化し、前記第1基材層が軟化しない温度で、一括して行うことにより、上記多層回路基板を安価に製造することができる。   In the manufacturing method of the multilayer circuit board, as described in claim 11, the second base material layer is softened and the first base material layer is bonded to the plurality of resin films by the heat and pressure. By performing collectively at a temperature at which the temperature does not soften, the multilayer circuit board can be manufactured at low cost.

特に、前記第1基材層と第2基材層が、いずれも、ポリエーテルエーテルケトン樹脂と、該ポリエーテルエーテルケトン樹脂と完全相溶系をなすポリエーテルイミド樹脂とからなり、前記第2基材層におけるポリエーテルイミド樹脂の含有濃度が、70重量%より大きく、前記第1基材層におけるポリエーテルイミド樹脂の含有濃度が、70重量%より小さい構成とした場合には、請求項14に記載のように、前記加熱加圧による複数枚の樹脂フィルムの貼り合わせ温度を、310℃以下とすることができる。   In particular, each of the first base layer and the second base layer is composed of a polyether ether ketone resin and a polyether imide resin that is completely compatible with the polyether ether ketone resin, and the second group. When the content concentration of the polyetherimide resin in the material layer is larger than 70% by weight and the content concentration of the polyetherimide resin in the first base material layer is smaller than 70% by weight, As described, the bonding temperature of the plurality of resin films by the heating and pressing can be 310 ° C. or lower.

以上のようにして、上記樹脂フィルム、およびそれを用いた多層回路基板とその製造方法は、加熱加圧により相互に貼り合わせて製造する多層回路基板用の片面に導体パターンが形成された樹脂フィルム、およびそれを用いた多層回路基板とその製造方法であって、貼り合わせ時の導体パターンの位置ずれ防止と多層化時の樹脂フィルムの接着性確保を両立させることができ、多層回路基板を容易で安価に製造することのできる樹脂フィルムおよびそれを用いた多層回路基板とその製造方法となっている。   As described above, the resin film, the multilayer circuit board using the resin film, and the manufacturing method thereof are manufactured by laminating each other by heat and pressure, and the resin film having a conductor pattern formed on one side thereof , And a multilayer circuit board using the same, and a method for manufacturing the same, which can simultaneously prevent misalignment of the conductor pattern at the time of bonding and ensure the adhesiveness of the resin film at the time of multilayering, and facilitate the multilayer circuit board The resin film can be manufactured inexpensively, and the multilayer circuit board using the resin film and the manufacturing method thereof are provided.

(a),(b)は、本発明に係る樹脂フィルムを模式的に示した図で、(a)は、樹脂フィルム30の断面図であり、(b)は、(a)の樹脂フィルム30において、導体パターンPを底とする底付穴Hを形成し、該底付穴H内に導電ペースト4を充填した状態を示した図である。(A), (b) is the figure which showed the resin film which concerns on this invention typically, (a) is sectional drawing of the resin film 30, (b) is the resin film 30 of (a). FIG. 3 is a view showing a state in which a bottomed hole H having a conductor pattern P as a bottom is formed and the conductive paste 4 is filled in the bottomed hole H. 図1の樹脂フィルム30を用いた多層回路基板の製造方法を示す図で、(a),(b)は、それぞれ、多層回路基板100の製造工程別の断面図である。FIGS. 2A and 2B are views showing a method for manufacturing a multilayer circuit board using the resin film 30 of FIG. 1, and FIGS. PEEKとPEIとからなる各樹脂フィルムについて、PEIの含有濃度をパラメータとして、動的弾性率の温度依存性を調べた結果である。It is the result of investigating the temperature dependence of a dynamic elastic modulus about each resin film which consists of PEEK and PEI using the content density | concentration of PEI as a parameter. 別の樹脂フィルム40を示した模式的な断面図である。6 is a schematic cross-sectional view showing another resin film 40. FIG. (a)〜(c)は、図4の樹脂フィルム40の製造方法を示す、製造工程別の模式的な断面図である。(A)-(c) is typical sectional drawing according to a manufacturing process which shows the manufacturing method of the resin film 40 of FIG. 代表的な多層回路基板の製造方法を説明する図で、(a)〜(f)は、多層回路基板90の製造工程別の断面図である。It is a figure explaining the manufacturing method of a typical multilayer circuit board, (a)-(f) is sectional drawing according to the manufacturing process of the multilayer circuit board 90. FIG.

以下、本発明を実施するための形態を、図に基づいて説明する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

図1(a),(b)は、本発明に係る樹脂フィルムを模式的に示した図で、図1(a)は、樹脂フィルム30の断面図であり、図1(b)は、図1(a)の樹脂フィルム30において、導体パターンPを底とする底付穴Hを形成し、該底付穴H内に導電ペースト4を充填した状態を示した図である。尚、図1に示す樹脂フィルム30において、図6に示した樹脂フィルム20と同様の部分については、同じ符号を付した。   1A and 1B are diagrams schematically showing a resin film according to the present invention. FIG. 1A is a cross-sectional view of a resin film 30, and FIG. 1A is a view showing a state in which a bottomed hole H having a conductor pattern P as a bottom is formed in a resin film 30 of 1 (a) and the conductive paste 4 is filled in the bottomed hole H. FIG. In addition, in the resin film 30 shown in FIG. 1, the same code | symbol was attached | subjected about the part similar to the resin film 20 shown in FIG.

図1に示す樹脂フィルム30は、加熱加圧により相互に貼り合わせて製造する多層回路基板用の樹脂フィルムで、片面に導体パターンPが形成された樹脂フィルムである。樹脂フィルム30は、導体パターンPが形成される面(以下、第1面とする)側の第1基材層11と、導体パターンPが形成されない面(以下、第2面とする)側の第2基材層12とからなる。第1基材層11と第2基材層12は、いずれも熱可塑性樹脂からなり、第2基材層12の融点が、第1基材層11の融点より低い構成となっている。   A resin film 30 shown in FIG. 1 is a resin film for a multilayer circuit board manufactured by bonding together by heating and pressing, and is a resin film having a conductor pattern P formed on one side. The resin film 30 includes a first base material layer 11 on a surface (hereinafter referred to as a first surface) side where the conductor pattern P is formed and a surface (hereinafter referred to as a second surface) side where the conductor pattern P is not formed. It consists of the second base material layer 12. The first base material layer 11 and the second base material layer 12 are both made of a thermoplastic resin, and the melting point of the second base material layer 12 is lower than the melting point of the first base material layer 11.

図1の樹脂フィルム30は、図6に示した従来の加熱加圧により相互に貼り合わせて製造する多層回路基板用の樹脂フィルム20と異なり、配線層間の絶縁部材となる基材部が、第1基材層11と第2基材層12の2層構造となっている。また、第1基材層11と第2基材層12は、いずれも熱可塑性樹脂からなるが、第1基材層11と第2基材層12とでは、融点が異なっている。   The resin film 30 of FIG. 1 is different from the resin film 20 for multilayer circuit boards manufactured by bonding together by the conventional heating and pressurization shown in FIG. It has a two-layer structure of one base material layer 11 and a second base material layer 12. The first base material layer 11 and the second base material layer 12 are both made of a thermoplastic resin, but the first base material layer 11 and the second base material layer 12 have different melting points.

図2は、図1の樹脂フィルム30を用いた多層回路基板の製造方法を示す図で、図2(a),(b)は、それぞれ、多層回路基板100の製造工程別の断面図である。   2 is a view showing a method for manufacturing a multilayer circuit board using the resin film 30 of FIG. 1, and FIGS. 2 (a) and 2 (b) are cross-sectional views for each manufacturing process of the multilayer circuit board 100. FIG. .

図2(a),(b)に示す多層回路基板100の製造工程は、図6(e),(f)に示した多層回路基板90の製造工程と同様である。すなわち、図2(a)に示すように、図1に示した樹脂フィルム30と同様の樹脂フィルム30a〜30dを準備し、図のように途中で反転させて積層する。次に、上記積層体を熱プレス板により加熱加圧して、隣接する樹脂フィルム30a〜30d同士を相互に貼り合わせる。これにより、図2(b)に示すように、樹脂フィルム30a〜30dが相互に貼り合わされ一体化すると共に、底付穴H内に充填された導電ペースト4が焼結して接続導体4aとなり、各層の導体パターンP同士が電気的に接続される。以上の工程によって、図2(b)に示す多層回路基板100が製造される。   The manufacturing process of the multilayer circuit board 100 shown in FIGS. 2A and 2B is the same as the manufacturing process of the multilayer circuit board 90 shown in FIGS. That is, as shown to Fig.2 (a), the resin films 30a-30d similar to the resin film 30 shown in FIG. 1 are prepared, and it is reversed and laminated | stacked on the way like a figure. Next, the laminated body is heated and pressed by a hot press plate, and the adjacent resin films 30a to 30d are bonded to each other. As a result, as shown in FIG. 2B, the resin films 30a to 30d are bonded and integrated with each other, and the conductive paste 4 filled in the bottomed hole H is sintered to become the connection conductor 4a. The conductor patterns P of each layer are electrically connected. Through the above steps, the multilayer circuit board 100 shown in FIG. 2B is manufactured.

以上のように、図2(a),(b)に示した多層回路基板100の製造工程は、図6(e),(f)に示した多層回路基板90の製造工程と同様のものである。しかしながら、基材部が2層構造の樹脂フィルム30a〜30dを用いる図2の多層回路基板100の製造工程は、次のような特徴がある。   As described above, the manufacturing process of the multilayer circuit board 100 shown in FIGS. 2 (a) and 2 (b) is the same as the manufacturing process of the multilayer circuit board 90 shown in FIGS. 6 (e) and 6 (f). is there. However, the manufacturing process of the multilayer circuit board 100 of FIG. 2 using the resin film 30a to 30d having a two-layer base material has the following characteristics.

図1に示した樹脂フィルム30と同様の樹脂フィルム30a〜30dを用いて多層回路基板100を製造するには、形成されている導体パターンPが各層の回路パターンとなるように、各樹脂フィルム30a〜30dを以下のように積層する。すなわち、図2(a)に示すように、最外層となる樹脂フィルム30a,30dを除いて、内部に配置される任意の樹脂フィルム30b,30cの第1基材層11(従って、当該樹脂フィルム30b,30cの導体パターンP)と隣接する樹脂フィルム30a,30dの第2基材層12とが当接するように、各樹脂フィルム30a〜30dを積層する。図2(a)では4枚の樹脂フィルム30a〜30dを積層する場合を例示しているが、図1に示した樹脂フィルム30と同様の3枚以上の樹脂フィルムを積層する場合にも、同様のことが成り立つ。そして、このように積層された各樹脂フィルムを加熱加圧して、図2(b)に示すように、一括して相互に貼り合わせる。   In order to manufacture the multilayer circuit board 100 using the resin films 30a to 30d similar to the resin film 30 shown in FIG. 1, each resin film 30a is formed so that the formed conductor pattern P becomes a circuit pattern of each layer. ˜30d are laminated as follows. That is, as shown in FIG. 2A, except for the resin films 30a and 30d which are the outermost layers, the first base material layer 11 of the arbitrary resin films 30b and 30c disposed inside (therefore, the resin film). The resin films 30a to 30d are laminated so that the conductor pattern P) of 30b and 30c and the second base material layer 12 of the adjacent resin films 30a and 30d are in contact with each other. FIG. 2A illustrates the case where four resin films 30a to 30d are laminated, but the same applies to the case where three or more resin films similar to the resin film 30 shown in FIG. 1 are laminated. That is true. And each resin film laminated | stacked in this way is heat-pressed, and as shown in FIG.2 (b), it bonds together mutually.

ここで、熱可塑性樹脂の軟化温度は一般的に融点に比例するが、図1の樹脂フィルム30においては、導体パターンPが形成される第1面側の第1基材層11の融点は、導体パターンPが形成されない第2面側の第2基材層12の融点より高い材料構成となっている。従って、図2に示した樹脂フィルム30a〜30dからなる積層体の加熱加圧による一括貼り合わせ工程において、第2基材層12が軟化し、第1基材層11が軟化しない、所定範囲の貼り合わせ温度域を設定することができる。この貼り合わせ温度域で加熱加圧すれば、融点の低い第2基材層12が軟化する該温度域で多層化プレスを行うため、第2基材層12を十分に軟化して柔らかくすることにより、樹脂フィルム30a〜30d同士の高い接着性および導体パターンP周りの良好な段差埋め込み性を確保することができる。一方、該温度域においては、融点の高い第1基材層11は軟化することがない。このため、多層化時における導体パターンP(および該導体パターンPを底とする底付穴Hに充填された導電ペースト4)の位置ずれを抑制することができ、導体パターンPの高い位置精度を確保することができる。また、図2の多層回路基板100の製造工程においても、従来と同様に、樹脂フィルム30a〜30dを一括して貼り合せると同時に、導電ペースト4を焼結して接続導体4aとする。従って、これにより、多層回路基板100を安価に製造することができる。   Here, the softening temperature of the thermoplastic resin is generally proportional to the melting point, but in the resin film 30 of FIG. 1, the melting point of the first base material layer 11 on the first surface side where the conductor pattern P is formed is The material configuration is higher than the melting point of the second base material layer 12 on the second surface side where the conductor pattern P is not formed. Therefore, in the batch bonding step by heating and pressurization of the laminate composed of the resin films 30a to 30d shown in FIG. 2, the second base material layer 12 is softened and the first base material layer 11 is not softened. The bonding temperature range can be set. If the pressure is applied in this bonding temperature range, the second base material layer 12 having a low melting point softens the second base material layer 12, so that the second base material layer 12 is sufficiently softened and softened. Thereby, the high adhesiveness of resin film 30a-30d and the favorable level | step difference embedding property around the conductor pattern P are securable. On the other hand, in the temperature range, the first base material layer 11 having a high melting point does not soften. For this reason, it is possible to suppress the displacement of the conductor pattern P (and the conductive paste 4 filled in the bottomed hole H with the conductor pattern P as a bottom) at the time of multilayering, and the conductor pattern P has high positional accuracy. Can be secured. Also in the manufacturing process of the multilayer circuit board 100 of FIG. 2, the resin films 30a to 30d are bonded together at the same time as in the prior art, and at the same time, the conductive paste 4 is sintered to form the connection conductor 4a. Therefore, this makes it possible to manufacture the multilayer circuit board 100 at a low cost.

以上のようにして、図1に示す樹脂フィルム30は、加熱加圧により相互に貼り合わせて製造する多層回路基板用の片面に導体パターンPが形成された樹脂フィルムであって、貼り合わせ時の導体パターンPの位置ずれ防止と多層化時の樹脂フィルム30の接着性確保を両立させることができ、図2に示す多層回路基板100を容易で安価に製造することのできる樹脂フィルムとなっている。   As described above, the resin film 30 shown in FIG. 1 is a resin film in which the conductor pattern P is formed on one side for a multilayer circuit board manufactured by bonding together by heating and pressurization. It is possible to achieve both prevention of displacement of the conductor pattern P and securing of the adhesiveness of the resin film 30 at the time of multilayering, and the resin film can be manufactured easily and inexpensively as shown in FIG. .

従って、図2の多層回路基板100についても、片面に導体パターンPが形成された複数枚の樹脂フィルム30a〜30dを加熱加圧により相互に貼り合わせて製造する多層回路基板であって、貼り合わせ時の導体パターンPの位置ずれ防止と樹脂フィルム30a〜30dの接着性が確保され、容易で安価に製造することのできる多層回路基板となっている。   Accordingly, the multilayer circuit board 100 of FIG. 2 is also a multilayer circuit board manufactured by laminating a plurality of resin films 30a to 30d having a conductor pattern P formed on one side thereof by heat and pressure. This prevents the positional deviation of the conductor pattern P and the adhesiveness of the resin films 30a to 30d, and is a multilayer circuit board that can be manufactured easily and inexpensively.

図1に示す樹脂フィルム30は、例えば、第1基材層11と第2基材層12が、いずれも、ポリエーテルエーテルケトン樹脂(PEEK)と、該ポリエーテルエーテルケトン樹脂と完全相溶系をなすポリエーテルイミド樹脂(PEI)とからなり、第2基材層12におけるPEIの含有濃度が、第1基材層11におけるPEIの含有濃度より大きい構成とすることができる。該樹脂フィルムは、電気的特性や耐薬品性等の基本特性に優れると共に、PEEKとPEIの含有濃度を変えるだけで、第1基材層11と第2基材層12の融点を適宜所望の値に設定することができる。   In the resin film 30 shown in FIG. 1, for example, the first base material layer 11 and the second base material layer 12 both have a polyether ether ketone resin (PEEK) and a completely compatible system with the polyether ether ketone resin. The PEI content concentration in the second base material layer 12 is greater than the PEI content concentration in the first base material layer 11. The resin film is excellent in basic characteristics such as electrical characteristics and chemical resistance, and the melting points of the first base material layer 11 and the second base material layer 12 are appropriately set as desired only by changing the concentration of PEEK and PEI. Can be set to a value.

図3は、上記PEEKとPEIとからなる各樹脂フィルムについて、PEIの含有濃度をパラメータとして、動的弾性率の温度依存性を調べた結果である。   FIG. 3 shows the results of examining the temperature dependence of the dynamic modulus of elasticity for each resin film composed of PEEK and PEI, using the PEI content concentration as a parameter.

図3に示すように、高温での貼り合わせ温度域における動的弾性率は、PEIの含有濃度が大きい樹脂フィルムほど低下する。また、動的弾性率が急激に低下する軟化点および溶融温度である融点についても、PEIの含有濃度が大きい樹脂フィルムほど低下する。例えば、重量%でPEEK/PEI=30/70の樹脂フィルムの軟化点は、314℃付近であり、重量%でPEEK/PEI=20/80の樹脂フィルムの軟化点は、304℃付近である。   As shown in FIG. 3, the dynamic elastic modulus in the bonding temperature range at high temperature decreases as the resin film having a higher PEI content concentration. In addition, the softening point at which the dynamic elastic modulus rapidly decreases and the melting point, which is the melting temperature, decrease as the resin film having a higher PEI content concentration. For example, the softening point of a resin film having PEEK / PEI = 30/70 in weight percent is around 314 ° C., and the softening point of a resin film having PEEK / PEI = 20/80 in weight percent is around 304 ° C.

従って、第1基材層11および第2基材層12としてPEEKとPEIとからなる熱可塑性樹脂を採用する場合には、例えば第2基材層12におけるPEIの含有濃度が70重量%より大きく、第1基材層11におけるPEIの含有濃度が70重量%より小さいように設定する。これによれば、図3からわかるように、例えば300〜315℃の温度範囲を、多層化時の樹脂フィルム30a〜30dの貼り合わせ温度域として設定することができる。これによって、樹脂フィルム30a〜30d同士の貼り合わせと導体パターンP間の接続導体4aとなる導電ペースト4の焼結を一括して行うと共に、導体パターンPの位置ずれ防止と樹脂フィルム30a〜30dの接着性確保を両立させることができる。   Therefore, when a thermoplastic resin composed of PEEK and PEI is used as the first base material layer 11 and the second base material layer 12, for example, the concentration of PEI in the second base material layer 12 is greater than 70% by weight. The PEI concentration in the first base material layer 11 is set to be smaller than 70% by weight. According to this, as can be seen from FIG. 3, for example, a temperature range of 300 to 315 ° C. can be set as a bonding temperature range of the resin films 30 a to 30 d during multilayering. Thus, the bonding of the resin films 30a to 30d and the sintering of the conductive paste 4 serving as the connection conductor 4a between the conductor patterns P are performed at the same time, and the positional deviation prevention of the conductor pattern P and the resin films 30a to 30d are performed. It is possible to achieve both ensuring adhesion.

具体例として、例えば、第1基材層11として重量%でPEEK/PEI=30/70の熱可塑性樹脂を採用し、第2基材層12として重量%でPEEK/PEI=20/80の熱可塑性樹脂を採用する。該第1基材層11および第2基材層12からなる樹脂フィルム30a〜30dを、300℃×5MPa×40分の条件で加熱加圧する。これにより、樹脂フィルム30a〜30d同士の貼り合わせと導電ペースト4の焼結を一括して行い、導体パターンPの位置ずれを防止すると共に、樹脂フィルム30a〜30dの接着性を確保することができる。   As a specific example, for example, a thermoplastic resin of PEEK / PEI = 30/70 by weight% is adopted as the first base material layer 11, and a heat of PEEK / PEI = 20/80 by weight% is used as the second base material layer 12. Adopt plastic resin. The resin films 30a to 30d made of the first base material layer 11 and the second base material layer 12 are heated and pressurized under the conditions of 300 ° C. × 5 MPa × 40 minutes. Thereby, the bonding of the resin films 30a to 30d and the sintering of the conductive paste 4 are collectively performed, the positional deviation of the conductor pattern P can be prevented, and the adhesiveness of the resin films 30a to 30d can be ensured. .

図1に示す樹脂フィルム30は、例えば、第1基材層11の厚さが、40μm以上、50μm以下であり、第2基材層12の厚さが、40μm以上、70μm以下であるように構成する。これにより、図2に示した多層化時の樹脂フィルム30a〜30dの貼り合わせ時の導体パターンPの位置ずれ防止と樹脂フィルム30a〜30dの接着性とを、適度に両立させることができる。   In the resin film 30 shown in FIG. 1, for example, the thickness of the first base material layer 11 is 40 μm or more and 50 μm or less, and the thickness of the second base material layer 12 is 40 μm or more and 70 μm or less. Configure. Thereby, the position shift prevention of the conductor pattern P and the adhesiveness of the resin films 30a to 30d at the time of bonding of the resin films 30a to 30d at the time of multilayering shown in FIG.

図4は、別の樹脂フィルム40を示した模式的な断面図である。また、図5(a)〜(c)は、図4の樹脂フィルム40の製造方法を示す、製造工程別の模式的な断面図である。尚、図4と図5に示す樹脂フィルム40において、図6および図1に示した樹脂フィルム20,30と同様の部分については、同じ符号を付した。   FIG. 4 is a schematic cross-sectional view showing another resin film 40. 5A to 5C are schematic cross-sectional views for each manufacturing process, showing a method for manufacturing the resin film 40 of FIG. In addition, in the resin film 40 shown in FIG. 4 and FIG. 5, the same code | symbol was attached | subjected about the part similar to the resin films 20 and 30 shown in FIG. 6 and FIG.

図4に示す樹脂フィルム40は、第1基材層11と第2基材層12の境界に、ガラス繊維織布13が埋め込まれてなる樹脂フィルムである。   A resin film 40 shown in FIG. 4 is a resin film in which a glass fiber woven fabric 13 is embedded at the boundary between the first base material layer 11 and the second base material layer 12.

図4の樹脂フィルム40は、図5(a)〜(c)の製造工程で製造する。   The resin film 40 of FIG. 4 is manufactured by the manufacturing process of FIGS.

すなわち、最初に、2種類の金属(銅)箔2,3、第1基材層となる第1基材フィルム11、第2基材層となる第2基材フィルム12およびガラス繊維織布13を準備し、図5(a)に示すように積層する。金属(銅)箔2は、最終的に導体パターンPとするもので、第1基材フィルム11と貼り合せる一方の面が、粗面化処理されている。また、金属(銅)箔3は、次工程における保護用の捨て金属(銅)箔で、両面共に光沢処理がなされている。   That is, first, two types of metal (copper) foils 2, 3, a first base film 11 serving as a first base layer, a second base film 12 serving as a second base layer, and a glass fiber woven fabric 13. Are prepared and laminated as shown in FIG. The metal (copper) foil 2 is finally formed into a conductor pattern P, and one surface to be bonded to the first base film 11 is roughened. Further, the metal (copper) foil 3 is a discarded metal (copper) foil for protection in the next step, and both sides are glossed.

次に、図5(b)に示すように、図5(a)の積層体を加熱加圧して、金属(銅)箔2、第1基材フィルム11、ガラス繊維織布13および第2基材フィルム12を貼り合せる。加熱加圧の条件は、例えば第1基材フィルム11として重量%でPEEK/PEI=30/70の樹脂フィルムを用い、第2基材フィルム12として重量%でPEEK/PEI=20/80の樹脂フィルムを用いる場合、融点より高い360℃×5MPa×40分の条件とする。   Next, as shown in FIG.5 (b), the laminated body of Fig.5 (a) is heat-pressed, metal (copper) foil 2, the 1st base film 11, the glass fiber woven fabric 13, and 2nd group | base. The material film 12 is bonded. The heating and pressing conditions are, for example, using a resin film of PEEK / PEI = 30/70 by weight% as the first base film 11, and a resin of PEEK / PEI = 20/80 by weight% as the second base film 12. When using a film, the conditions are set to 360 ° C. × 5 MPa × 40 minutes higher than the melting point.

次に、図5(c)に示すように、金属(銅)箔3を剥がした後、金属(銅)箔2をエッチング加工して導体パターンPとする。   Next, as shown in FIG. 5C, after the metal (copper) foil 3 is peeled off, the metal (copper) foil 2 is etched to form a conductor pattern P.

以上で、図4の樹脂フィルム40が製造される。尚、図1に示したガラス繊維織布13が埋め込まれていない樹脂フィルム30についても製造工程は図5と同様であり、図5においてガラス繊維織布13の配置を省略すれば図1の樹脂フィルム30を製造することができる。   Thus, the resin film 40 of FIG. 4 is manufactured. The manufacturing process for the resin film 30 in which the glass fiber woven fabric 13 shown in FIG. 1 is not embedded is the same as that in FIG. 5. If the arrangement of the glass fiber woven fabric 13 is omitted in FIG. The film 30 can be manufactured.

図6に示した従来の基材部が1層構造の樹脂フィルム20についても、ガラス繊維織布13が埋め込まれた樹脂フィルムとする場合には、基本的に図5に示した工程を用い、ガラス繊維織布13を同じ組成の基材フィルムでサンドイッチして製造する。従って、図4の樹脂フィルム40は、従来と同じコストで、第1基材層11と第2基材層12の境界にガラス繊維織布13が埋め込まれた該樹脂フィルム40を製造することができる。   For the resin film 20 having the single-layer structure of the conventional base material portion shown in FIG. 6, when the resin film embedded with the glass fiber woven fabric 13 is used, the process shown in FIG. 5 is basically used. The glass fiber woven fabric 13 is manufactured by sandwiching with a base film having the same composition. Therefore, the resin film 40 shown in FIG. 4 can be manufactured at the same cost as the prior art by manufacturing the resin film 40 in which the glass fiber woven fabric 13 is embedded at the boundary between the first base material layer 11 and the second base material layer 12. it can.

以上のようにして、上記樹脂フィルム、およびそれを用いた多層回路基板とその製造方法は、加熱加圧により相互に貼り合わせて製造する多層回路基板用の片面に導体パターンが形成された樹脂フィルム、およびそれを用いた多層回路基板とその製造方法であって、貼り合わせ時の導体パターンの位置ずれ防止と多層化時の樹脂フィルムの接着性確保を両立させることができ、多層回路基板を容易で安価に製造することのできる樹脂フィルムおよびそれを用いた多層回路基板とその製造方法となっている。   As described above, the resin film, the multilayer circuit board using the resin film, and the manufacturing method thereof are manufactured by laminating each other by heat and pressure, and the resin film having a conductor pattern formed on one side thereof , And a multilayer circuit board using the same, and a method for manufacturing the same, which can simultaneously prevent misalignment of the conductor pattern at the time of bonding and ensure the adhesiveness of the resin film at the time of multilayering, and facilitate the multilayer circuit board The resin film can be manufactured inexpensively, and the multilayer circuit board using the resin film and the manufacturing method thereof are provided.

90,100 多層回路基板
20,20a〜20f,30,30a〜30d,40 樹脂フィルム
1 熱可塑性樹脂からなる基材
11 第1基材層(第1基材フィルム)
12 第2基材層(第2基材フィルム)
2 金属(銅)箔
P 導体パターン
H 底付穴
4 導電ペースト
4a 接続導体
13 ガラス繊維織布
90, 100 Multilayer circuit board 20, 20a-20f, 30, 30a-30d, 40 Resin film 1 Base material made of thermoplastic resin 11 First base material layer (first base material film)
12 Second substrate layer (second substrate film)
2 Metal (copper) foil P Conductor pattern H Bottom hole 4 Conductive paste 4a Connecting conductor 13 Glass fiber woven fabric

Claims (14)

加熱加圧により相互に貼り合わせて製造する多層回路基板用の片面に導体パターンが形成された樹脂フィルムであって、
前記樹脂フィルムが、前記導体パターンが形成される面(以下、第1面とする)側の第1基材層と、前記導体パターンが形成されない面(以下、第2面とする)側の第2基材層とからなり、
前記第1基材層と第2基材層が、いずれも熱可塑性樹脂からなり、
前記第2基材層の融点が、前記第1基材層の融点より低いことを特徴とする樹脂フィルム。
A resin film in which a conductor pattern is formed on one side for a multilayer circuit board manufactured by bonding together by heating and pressing,
The resin film includes a first base material layer on a surface (hereinafter referred to as a first surface) side on which the conductive pattern is formed and a first base layer on a surface (hereinafter referred to as a second surface) side on which the conductive pattern is not formed. 2 substrate layers,
The first base material layer and the second base material layer are both made of a thermoplastic resin,
The resin film, wherein the melting point of the second substrate layer is lower than the melting point of the first substrate layer.
前記第1基材層と第2基材層が、いずれも、ポリエーテルエーテルケトン樹脂と、該ポリエーテルエーテルケトン樹脂と完全相溶系をなすポリエーテルイミド樹脂とからなり、
前記第2基材層におけるポリエーテルイミド樹脂の含有濃度が、前記第1基材層におけるポリエーテルイミド樹脂の含有濃度より大きいことを特徴とする請求項1に記載の樹脂フィルム。
Each of the first base material layer and the second base material layer is composed of a polyether ether ketone resin and a polyether imide resin that is completely compatible with the polyether ether ketone resin,
The resin film according to claim 1, wherein a content concentration of the polyetherimide resin in the second base material layer is higher than a content concentration of the polyetherimide resin in the first base material layer.
前記第2基材層におけるポリエーテルイミド樹脂の含有濃度が、70重量%より大きく、
前記第1基材層におけるポリエーテルイミド樹脂の含有濃度が、70重量%より小さいことを特徴とする請求項2に記載の樹脂フィルム。
The content of the polyetherimide resin in the second base material layer is greater than 70% by weight,
The resin film according to claim 2, wherein the content concentration of the polyetherimide resin in the first base material layer is less than 70% by weight.
前記第1基材層の厚さが、40μm以上、50μm以下であり、
前記第2基材層の厚さが、40μm以上、70μm以下であることを特徴とする請求項1乃至3のいずれか項に記載の樹脂フィルム。
The thickness of the first base material layer is 40 μm or more and 50 μm or less,
The thickness of the said 2nd base material layer is 40 micrometers or more and 70 micrometers or less, The resin film as described in any one of Claims 1 thru | or 3 characterized by the above-mentioned.
前記第1基材層と第2基材層の境界に、ガラス繊維織布が埋め込まれてなることを特徴とする請求項1乃至4のいずれか項に載の樹脂フィルム。 Wherein the first substrate layer and the second base layer boundary, the resin film of the mounting serial to any one of claims 1 to 4, characterized in that is embedded glass fiber woven fabric. 片面に導体パターンが形成された複数枚の樹脂フィルムを加熱加圧により相互に貼り合わせて製造する多層回路基板であって、
前記樹脂フィルムが、前記導体パターンが形成される面(以下、第1面とする)側の第1基材層と、前記導体パターンが形成されない面(以下、第2面とする)側の第2基材層とからなり、
前記第1基材層と第2基材層が、いずれも熱可塑性樹脂からなり、
前記第2基材層の融点が、前記第1基材層の融点より低いことを特徴とする多層回路基板。
A multilayer circuit board produced by bonding together a plurality of resin films having a conductor pattern formed on one side by heating and pressing,
The resin film includes a first base material layer on a surface (hereinafter referred to as a first surface) side on which the conductive pattern is formed and a first base layer on a surface (hereinafter referred to as a second surface) side on which the conductive pattern is not formed. 2 substrate layers,
The first base material layer and the second base material layer are both made of a thermoplastic resin,
The multilayer circuit board, wherein the melting point of the second base material layer is lower than the melting point of the first base material layer.
前記第1基材層と第2基材層が、いずれも、ポリエーテルエーテルケトン樹脂と、該ポリエーテルエーテルケトン樹脂と完全相溶系をなすポリエーテルイミド樹脂とからなり、
前記第2基材層におけるポリエーテルイミド樹脂の含有濃度が、前記第1基材層におけるポリエーテルイミド樹脂の含有濃度より大きいことを特徴とする請求項6に記載の多層回路基板。
Each of the first base material layer and the second base material layer is composed of a polyether ether ketone resin and a polyether imide resin that is completely compatible with the polyether ether ketone resin,
The multilayer circuit board according to claim 6, wherein a content concentration of the polyetherimide resin in the second base material layer is higher than a content concentration of the polyetherimide resin in the first base material layer.
前記第2基材層におけるポリエーテルイミド樹脂の含有濃度が、70重量%より大きく、
前記第1基材層におけるポリエーテルイミド樹脂の含有濃度が、70重量%より小さいことを特徴とする請求項7に記載の多層回路基板。
The content of the polyetherimide resin in the second base material layer is greater than 70% by weight,
The multilayer circuit board according to claim 7, wherein a content concentration of the polyetherimide resin in the first base material layer is less than 70% by weight.
前記第1基材層の厚さが、40μm以上、50μm以下であり、
前記第2基材層の厚さが、40μm以上、70μm以下であることを特徴とする請求項6乃至8のいずれか項に記載の多層回路基板。
The thickness of the first base material layer is 40 μm or more and 50 μm or less,
The multilayer circuit board according to any one of claims 6 to 8, wherein a thickness of the second base material layer is 40 µm or more and 70 µm or less.
前記第1基材層と第2基材層の境界に、ガラス繊維織布が埋め込まれてなることを特徴とする請求項6乃至9のいずれか項に載の多層回路基板。 Wherein the first substrate layer and the second base layer boundaries, multilayer circuit board mounting serial to any one of claims 6 to 9, characterized in that is embedded glass fiber woven fabric. 片面に導体パターンが形成された複数枚の樹脂フィルムを加熱加圧により相互に貼り合わせて製造する多層回路基板の製造方法であって、
前記樹脂フィルムが、前記導体パターンが形成される面(以下、第1面とする)側の第1基材層と、前記導体パターンが形成されない面(以下、第2面とする)側の第2基材層とからなり、
前記第1基材層と第2基材層が、いずれも熱可塑性樹脂からなり、
前記第2基材層の融点が、前記第1基材層の融点より低い樹脂フィルムであって、
前記加熱加圧による複数枚の樹脂フィルムの貼り合わせを、前記第2基材層が軟化し、前記第1基材層が軟化しない温度で、一括して行うことを特徴とする多層回路基板の製造方法。
A method for producing a multilayer circuit board, wherein a plurality of resin films having a conductor pattern formed on one side are bonded together by heating and pressing,
The resin film includes a first base material layer on a surface (hereinafter referred to as a first surface) side on which the conductive pattern is formed and a first base layer on a surface (hereinafter referred to as a second surface) side on which the conductive pattern is not formed. 2 substrate layers,
The first base material layer and the second base material layer are both made of a thermoplastic resin,
The melting point of the second base material layer is a resin film lower than the melting point of the first base material layer,
A multilayer circuit board characterized in that the bonding of a plurality of resin films by the heating and pressing is performed collectively at a temperature at which the second base material layer is softened and the first base material layer is not softened. Production method.
前記第1基材層と第2基材層が、いずれも、ポリエーテルエーテルケトン樹脂と、該ポリエーテルエーテルケトン樹脂と完全相溶系をなすポリエーテルイミド樹脂とからなり、
前記第2基材層におけるポリエーテルイミド樹脂の含有濃度が、前記第1基材層におけるポリエーテルイミド樹脂の含有濃度より大きいことを特徴とする請求項11に記載の多層回路基板の製造方法。
Each of the first base material layer and the second base material layer is composed of a polyether ether ketone resin and a polyether imide resin that is completely compatible with the polyether ether ketone resin,
The method for producing a multilayer circuit board according to claim 11, wherein the content concentration of the polyetherimide resin in the second base material layer is higher than the content concentration of the polyetherimide resin in the first base material layer.
前記第2基材層におけるポリエーテルイミド樹脂の含有濃度が、70重量%より大きく、
前記第1基材層におけるポリエーテルイミド樹脂の含有濃度が、70重量%より小さいことを特徴とする請求項12に記載の多層回路基板の製造方法。
The content of the polyetherimide resin in the second base material layer is greater than 70% by weight,
The method for producing a multilayer circuit board according to claim 12, wherein the content of the polyetherimide resin in the first base material layer is less than 70% by weight.
前記加熱加圧による複数枚の樹脂フィルムの貼り合わせ温度が、310℃以下であることを特徴とする請求項13に記載の多層回路基板の製造方法。   The method for producing a multilayer circuit board according to claim 13, wherein a bonding temperature of the plurality of resin films by the heat and pressure is 310 ° C. or less.
JP2010051097A 2010-03-08 2010-03-08 Resin film, multilayer circuit board using the same, and manufacturing method thereof Expired - Fee Related JP5359939B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010051097A JP5359939B2 (en) 2010-03-08 2010-03-08 Resin film, multilayer circuit board using the same, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010051097A JP5359939B2 (en) 2010-03-08 2010-03-08 Resin film, multilayer circuit board using the same, and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011187667A JP2011187667A (en) 2011-09-22
JP5359939B2 true JP5359939B2 (en) 2013-12-04

Family

ID=44793609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010051097A Expired - Fee Related JP5359939B2 (en) 2010-03-08 2010-03-08 Resin film, multilayer circuit board using the same, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5359939B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7119583B2 (en) * 2018-05-29 2022-08-17 Tdk株式会社 Printed wiring board and manufacturing method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198652A (en) * 1995-05-15 2002-07-12 Ibiden Co Ltd Multilayer printed wiring board, method of manufacturing the same and single-sided circuit board therefor
JP4605950B2 (en) * 2001-08-17 2011-01-05 三菱樹脂株式会社 POLYIMIDE LAMINATED FILM, METAL LAMINATE USING SAME, AND METHOD FOR PRODUCING METAL LAMINATE
CN1751547B (en) * 2003-02-13 2011-11-16 株式会社藤仓 Multilayer board and its manufacturing method
JP4075673B2 (en) * 2003-04-22 2008-04-16 松下電工株式会社 Copper-clad laminate for multilayer printed wiring board, multilayer printed wiring board, and method for manufacturing multilayer printed wiring board
JP2006198993A (en) * 2005-01-24 2006-08-03 Mitsubishi Plastics Ind Ltd Laminate of thermoplastic resin
JP4774215B2 (en) * 2005-01-24 2011-09-14 三菱樹脂株式会社 Multilayer printed circuit board
JP2007129017A (en) * 2005-11-02 2007-05-24 Fujikura Ltd Multilayer wiring board, substrate therefor, and method of manufacturing same
JP4899838B2 (en) * 2006-12-01 2012-03-21 株式会社デンソー Multilayer circuit board manufacturing method

Also Published As

Publication number Publication date
JP2011187667A (en) 2011-09-22

Similar Documents

Publication Publication Date Title
JP3407737B2 (en) Multilayer substrate manufacturing method and multilayer substrate formed by the manufacturing method
KR100962837B1 (en) Multilayer printed wiring board and process for producing the same
JP4341588B2 (en) Multilayer substrate and manufacturing method thereof
KR20070084635A (en) Multilayer printed wiring board and its manufacturing method
US20090151990A1 (en) Multilayer wiring board and method of making the same
JP2006073763A (en) Manufacturing method for multilayer board
JP2005045150A (en) Wiring base material for intermediate connection, multilayer wiring board, and manufacturing methods thereof
KR102047416B1 (en) Manufacturing Method of Printed Board
JP2011249745A (en) Multilayer substrate
JP4899838B2 (en) Multilayer circuit board manufacturing method
JP2005072187A (en) Multilayer circuit board, and its manufacturing method
JP5359939B2 (en) Resin film, multilayer circuit board using the same, and manufacturing method thereof
JP2011187854A (en) Multilayer printed wiring board and method of manufacturing the same
JP5749235B2 (en) Manufacturing method of circuit component built-in substrate
JP5358928B2 (en) 3D printed circuit board
JP4797742B2 (en) Multilayer wiring board and manufacturing method thereof
JP5359940B2 (en) Multilayer circuit board manufacturing method
TWI442844B (en) Embedded flex circuit board and method of fabricating the same
JP5593625B2 (en) Manufacturing method of multilayer wiring board
JP2007266165A (en) Manufacturing method of multilayer wiring board
JP5585035B2 (en) Circuit board manufacturing method
JP4892924B2 (en) Multilayer printed wiring board and manufacturing method thereof
JP2008235640A (en) Circuit board and circuit board manufacturing method
JP3817430B2 (en) Laminate for printed wiring boards
JP2012191101A (en) Manufacturing method of circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130819

R151 Written notification of patent or utility model registration

Ref document number: 5359939

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees