JP5358516B2 - Construction method of reactor containment vessel - Google Patents

Construction method of reactor containment vessel Download PDF

Info

Publication number
JP5358516B2
JP5358516B2 JP2010129527A JP2010129527A JP5358516B2 JP 5358516 B2 JP5358516 B2 JP 5358516B2 JP 2010129527 A JP2010129527 A JP 2010129527A JP 2010129527 A JP2010129527 A JP 2010129527A JP 5358516 B2 JP5358516 B2 JP 5358516B2
Authority
JP
Japan
Prior art keywords
steel plate
pressure suppression
suppression pool
containment vessel
floor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010129527A
Other languages
Japanese (ja)
Other versions
JP2010223970A (en
JP2010223970A5 (en
Inventor
静 平子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2010129527A priority Critical patent/JP5358516B2/en
Publication of JP2010223970A publication Critical patent/JP2010223970A/en
Publication of JP2010223970A5 publication Critical patent/JP2010223970A5/ja
Application granted granted Critical
Publication of JP5358516B2 publication Critical patent/JP5358516B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Description

本発明は、原子炉格納容器に係り、特に沸騰水型原子炉の原子炉圧力容器,ドライウェル,圧力抑制プールを収納するウェットウェルおよびドライウェルと圧力抑制プールとを連絡するベント管を内包する一次原子炉格納容器および一次原子炉格納容器を収容する二次原子炉格納容器にて構成される原子炉格納容器に関する。   The present invention relates to a reactor containment vessel, and particularly includes a reactor pressure vessel, a dry well, a wet well that houses a pressure suppression pool, and a vent pipe that connects the dry well and the pressure suppression pool. The present invention relates to a primary containment vessel and a secondary containment vessel configured by a secondary reactor containment vessel that houses the primary reactor containment vessel.

従来の沸騰水型原子炉(以下BWR)の原子炉格納容器の型式として改良型BWR(以下ABWR)および最新のものに、基本的な形状はABWRと同じであるが圧力抑制プールの下部に機器室を設けた自然循環型の沸騰水型原子炉であるESBWRが知られている。   The conventional BWR (hereinafter referred to as BWR) reactor containment vessel is the improved BWR (hereinafter referred to as ABWR) and the latest model. The basic shape is the same as ABWR, but the equipment is located under the pressure suppression pool. ESBWR which is a natural circulation boiling water reactor provided with a chamber is known.

ESBWRの原子炉格納容器はシステム上の要求から、圧力抑制プールを基礎版の上部に設置している。即ち圧力抑制プールの下部に基礎版とは別に圧力抑制プール床を設置し、この圧力抑制プール床と基礎版との間の空間を原子炉系の機器室として利用している。   ESBWR's reactor containment vessel has a pressure suppression pool installed at the top of the base plate because of system requirements. That is, a pressure suppression pool floor is installed in the lower part of the pressure suppression pool separately from the basic version, and the space between the pressure suppression pool floor and the basic version is used as a reactor system equipment room.

IAEA−TECDOC−1391,Status of advanced light water reactor designs 2004,IAEA,May 2004,P223-225IAEA-TECDOC-1391, Status of advanced light water reactor designs 2004, IAEA, May 2004, P223-225

原子力発電所施設の建設には建設中利子が発生するため、建設期間を短縮することが建設コストの低減に極めて有効である。   Since construction of nuclear power plant facilities incurs interest during construction, shortening the construction period is extremely effective in reducing construction costs.

原子力発電所施設の建設の中で原子炉格納容器は原子炉建屋建設工程のクリティカルパスを構成しているため、原子炉格納容器の建設工程を短縮することにより、建屋の建設工期をも短縮することが可能になる。このような背景から建設工程短縮策として種々の検討が加えられてきているが、ESBWRでは圧力抑制プールの下部に機器室を設置しているため、建設ステップがABWRより複雑かつステップ数が増加している。   Since the containment vessel constitutes a critical path for the reactor building construction process in the construction of nuclear power plant facilities, shortening the construction period of the building by shortening the construction process of the reactor containment vessel It becomes possible. Various investigations have been added as a measure for shortening the construction process from such a background. However, ESBWR has an equipment room under the pressure suppression pool, so the construction steps are more complicated and the number of steps increases than ABWR. ing.

ABWRとESBWRとの建設シーケンスを下記に示す。
<ABWR建設シーケンス>
基礎版建設

圧力抑制プール部分円筒壁建設

ダイアフラムフロア建設

ドライウェル部分円筒壁建設

トップスラブ(格納容器天井部分)建設

格納容器上部燃料貯蔵プール建設

原子炉建屋運転床建設
<ESBWR建設シーケンス>
基礎版建設

圧力抑制プール下部円筒壁

圧力抑制プール床建設

圧力抑制プール部分円筒壁建設

ダイアフラムフロア建設

ドライウェル部分円筒壁建設

トップスラブ(格納容器天井部分)建設

格納容器上部プール建設

原子炉建屋運転床建設
上記の建設シーケンスに示すように、ESBWR建設シーケンスはABWRのそれに比較して圧力抑制プール下部円筒壁建設および圧力抑制プール床建設の2ステップが増加しており、原子炉建屋一階層分の工期増加となる。原子炉建屋の一階層分の建設工期は一般に3ヶ月程度とされており、ESBWRはABWRより3ヶ月程度の建設工期の延長要因を有している。
The construction sequence of ABWR and ESBWR is shown below.
<ABWR construction sequence>
Foundation version construction

Pressure suppression pool partial cylindrical wall construction

Diaphragm floor construction

Drywell partial cylindrical wall construction

Top slab construction (container ceiling)

Containment upper fuel storage pool construction

Reactor building operation floor construction <ESBWR construction sequence>
Foundation version construction

Pressure suppression pool lower cylindrical wall

Pressure suppression pool floor construction

Pressure suppression pool partial cylindrical wall construction

Diaphragm floor construction

Drywell partial cylindrical wall construction

Top slab construction (container ceiling)

Containment pool upper pool construction

Reactor building operation floor construction As shown in the above construction sequence, ESBWR construction sequence has two steps of construction of pressure suppression pool lower cylindrical wall construction and pressure suppression pool floor construction compared to that of ABWR. The construction period for one floor will be increased. The construction period for one layer of the reactor building is generally about 3 months, and ESBWR has an extension factor of the construction period of about 3 months from ABWR.

また、ESBWRは機器室の上部が圧力抑制プールになっているため、床建設後の上階からの機器搬入は不可能であり、圧力抑制プール壁開口により、機器を搬入し、閉ざされた空間での機器据付け工事となる。   In addition, ESBWR has a pressure suppression pool at the top of the equipment room, so it is impossible to carry in equipment from the upper floor after floor construction. It will be equipment installation work.

本発明の目的は、ESBWRに用いる原子炉格納容器の建設工程の短縮と共に機器据付け性向上を可能とする原子炉格納容器を提供することにある。   An object of the present invention is to provide a reactor containment vessel that can shorten the construction process of the reactor containment vessel used for the ESBWR and improve the equipment installability.

上記に示した課題を解決するために、本発明では基礎を建設し、一次原子炉格納容器の内側で機器室の一部を構成する圧力抑制プール下部円筒壁のうち内側壁、外側壁および圧力抑制プール床の底部となる天井を構成し、機器室下側に開口を有し、ウェットウェルに面する部分は鋼板のライナーであり、それ以外の鋼板はスタッドを有する鋼板のボックスを前記基礎へ搬入し、前記鋼板のボックスを設定後にコンクリートを注入して鋼板コンクリート構造とした圧力抑制プール下部円筒壁と圧力抑制プール床を建設し、次に、圧力抑制プールの一部である外側壁において内側は鋼板のライナーであり、外側はスタッドを有する鋼板とし、圧力抑制プールの一部である内側壁において内側と外側は鋼板のライナーである圧力抑制プール部分円筒壁を建設し、次に、前記圧力抑制プール部分円筒壁へダイアフラムフロアを建設し、次に、内側は鋼板のライナーであり、外側はスタッドを有する鋼板としたドライウェル部分円筒壁を建設し、次に、前記ドライウェル部分円筒壁へドライウェルに接する内側は鋼板のライナーであり外側はスタッドを有する鋼板とした格納容器天井部分を建設し、次に、前記格納容器天井部分へ格納容器上部プールを建設し、次に、前記格納容器上部プールへ原子炉建屋運転床を建設する。
In order to solve the above-described problems, in the present invention, an inner wall, an outer wall, and a pressure are constructed in the lower cylindrical wall of the pressure suppression pool that constructs the foundation and forms a part of the equipment room inside the primary reactor containment vessel. Consists of a ceiling that forms the bottom of the restraint pool floor, has an opening on the lower side of the equipment room, the portion facing the wet well is a steel plate liner, and the other steel plates are steel plate boxes with studs to the foundation. After carrying in and setting the steel plate box, concrete is poured into the steel plate concrete structure to construct the pressure suppression pool lower cylindrical wall and pressure suppression pool floor, and then inside the outer wall that is part of the pressure suppression pool Is a steel plate liner, the outer side is a steel plate with studs, the inner side wall which is part of the pressure suppression pool, the inner side and the outer side are pressure suppression pool partial cylinders which are steel plate liners Next, a diaphragm floor is constructed on the pressure suppression pool partial cylindrical wall, and then a dry well partial cylindrical wall having a steel plate liner on the inside and a steel plate with studs on the outside is constructed. In addition, a storage container ceiling portion in which the dry well portion cylindrical wall is in contact with the dry well on the inside is a steel plate liner and the outside is a steel plate having a stud, and then the storage container upper pool is formed on the storage container ceiling portion. Next, the operation floor of the reactor building is constructed in the upper containment pool .

本発明によれば、建設工程短縮に寄与できる原子炉格納容器が提供でき、これにより原子力発電所設備の経済性向上が期待できる。   According to the present invention, it is possible to provide a reactor containment vessel that can contribute to shortening the construction process, and thus it is expected to improve the economic efficiency of nuclear power plant facilities.

本発明の請求項1による原子炉格納容器の実施例を示す断面図。Sectional drawing which shows the Example of the nuclear reactor containment vessel by Claim 1 of this invention. 本発明の原子炉格納容器の建設ステップを示す図。The figure which shows the construction step of the reactor containment vessel of this invention. 本発明の原子炉格納容器の建設シーケンスを示す図。The figure which shows the construction sequence of the reactor containment vessel of this invention. 本発明の請求項2による原子炉格納容器の実施例を示す平面図。The top view which shows the Example of the reactor containment vessel by Claim 2 of this invention. 本発明の請求項3による原子炉格納容器の実施例を示す断面図。Sectional drawing which shows the Example of the nuclear reactor containment vessel by Claim 3 of this invention. 従来の原子炉格納容器の建設ステップを示す図。The figure which shows the construction step of the conventional nuclear reactor containment vessel. 従来の原子炉格納容器の建設シーケンスを示す図。The figure which shows the construction sequence of the conventional nuclear reactor containment vessel.

本発明を実施するための最良の形態は次のようなものである。
(1)原子炉格納容器の外側円筒壁の基礎版までと圧力抑制プール下部の機器室の側壁と天井を鋼板コンクリート構造とする。
(2)圧力抑制プールの床下部に鋼板コンクリートの壁を設置する。
(3)圧力抑制プール下部に鋼板コンクリートの床を設置する。
The best mode for carrying out the present invention is as follows.
(1) The side walls and ceiling of the equipment room under the pressure suppression pool are made into a steel plate concrete structure up to the base plate of the outer cylindrical wall of the reactor containment vessel.
(2) Install a steel concrete wall under the floor of the pressure suppression pool.
(3) Install a steel plate concrete floor under the pressure suppression pool.

本発明による原子炉建屋の実施例の一例について、図1により説明する。   An example of an embodiment of a reactor building according to the present invention will be described with reference to FIG.

図1は請求項1による原子炉格納容器の実施例の一例を示す縦断面図である。図1で原子炉圧力容器1を内包したドライウェル2および圧力抑制プール3を内包したウェットウェル4を一次原子炉格納容器6内に設置する。このドライウェル2およびウェットウェル4はベント管5およびダイアフラムフロア14にて区画して設置している。これにより、想定事故時にドライウェル2に噴出した高温・高圧の蒸気をベント管5を経由して圧力抑制プール3に導き、圧力抑制プール3の水で凝縮することによりドライウェル2内の圧力・温度を設計圧力・設計温度内に維持し、安全系のシステムの作動と相まって放射性物質を安全に封じ込める設計としている。また、上記圧力抑制プール3は圧力抑制プール3内の水を原子炉圧力容器に注入するためのシステム上の要求から一次原子炉格納容器6の上部に設置するために、基礎版9の上部に圧力抑制プール床13の上の圧力抑制プール3を設置している。この基礎版9と圧力抑制プール床13の間の空間を機器室12として使用する構成としている。   FIG. 1 is a longitudinal sectional view showing an example of an embodiment of a containment vessel according to claim 1. In FIG. 1, a dry well 2 containing a reactor pressure vessel 1 and a wet well 4 containing a pressure suppression pool 3 are installed in a primary reactor containment vessel 6. The dry well 2 and the wet well 4 are divided and installed by a vent pipe 5 and a diaphragm floor 14. As a result, the high-temperature and high-pressure steam jetted to the dry well 2 at the time of the accident is led to the pressure suppression pool 3 through the vent pipe 5 and condensed with the water in the pressure suppression pool 3 to The temperature is kept within the design pressure and design temperature, and it is designed to contain radioactive materials safely in combination with the operation of the safety system. In addition, the pressure suppression pool 3 is installed in the upper part of the base plate 9 in order to install it in the upper part of the primary reactor containment vessel 6 because of the system requirement for injecting the water in the pressure suppression pool 3 into the reactor pressure vessel. The pressure suppression pool 3 is installed on the pressure suppression pool floor 13. The space between the base plate 9 and the pressure suppression pool floor 13 is used as the equipment room 12.

本発明では、上記で示した一次原子炉格納容器6の円筒壁16の外側を基礎版9までと、トップスラブ15の上部と、機器室12の内側とを表面に20mm程度の厚さを有した鋼板22と鋼板22をコンクリートに定着するためのスタッド23からなる鋼板コンクリート10とした構成としている。   In the present invention, the outside of the cylindrical wall 16 of the primary reactor containment vessel 6 shown above is up to the base plate 9, the top of the top slab 15, and the inside of the equipment chamber 12 are about 20 mm thick. It is set as the steel plate concrete 10 which consists of the stud 23 for fixing the steel plate 22 and the steel plate 22 to concrete.

一方、一次原子炉格納容器6の内側即ち原子炉圧力容器1を収納するドライウェル2,圧力抑制プール3を収納するウェットウェル4,ドライウェル2と圧力抑制プール3とを連絡するベント管5を設置する区画は高温・高圧の雰囲気として設計されるため、熱による過大な変形を防止するため、従来の一次原子炉格納容器6の当該区画と同様に円筒壁16の内側表面に厚さ6mm程度の鋼板のライナーと円筒壁16内に鉄筋を設置したABWRコンクリート格納容器と同じ構成としている。なお、一次原子炉格納容器6の円筒壁16の内、圧力抑制プール床13から基礎版9までは内側が機器室12を構成しているため、円筒壁16内側の面を鋼板とスタッドからなる鋼板コンクリート10とすることができる。
On the other hand, the inside of the primary reactor containment vessel 6, that is, the dry well 2 that houses the reactor pressure vessel 1, the wet well 4 that houses the pressure suppression pool 3, and the vent pipe 5 that connects the dry well 2 and the pressure suppression pool 3. Since the section to be installed is designed as an atmosphere of high temperature and high pressure, in order to prevent excessive deformation due to heat, the inner wall of the cylindrical wall 16 has a thickness of about 6 mm as in the section of the conventional primary reactor containment vessel 6. The structure is the same as that of the ABWR concrete containment vessel in which the steel plate liner and the rebar are installed in the cylindrical wall 16. The inner wall of the cylindrical wall 16 of the primary reactor containment vessel 6 from the pressure suppression pool floor 13 to the base plate 9 constitutes the equipment chamber 12, and therefore the inner surface of the cylindrical wall 16 is made of steel plate and stud. Steel plate concrete 10 can be used.

本発明による建設ステップを図2に示すとともに建設シーケンスを図3に示す。また、本発明を適用しないESBWR一次原子炉格納容器の建設ステップを図6に示し、建設シーケンスを図7に示す。   The construction steps according to the invention are shown in FIG. 2 and the construction sequence is shown in FIG. FIG. 6 shows a construction step of the ESBWR primary reactor containment vessel to which the present invention is not applied, and FIG. 7 shows a construction sequence.

図2で一次原子炉格納容器6の円筒壁16の外側は基礎版9までが鋼板コンクリート10であるため、両面鋼板の一体搬入が可能となる。また、機器室12は内側外側壁および天井が同様に鋼板コンクリート10であるため、機器室12の壁と床を下側に開口を有した鋼板のボックスとして搬入できる。さらに、機器室12天井の鋼板は圧力抑制プール床13の底部にもなっており、圧力抑制プール床13を施工するための天井型枠としての役割も果たしている。
Because the outer cylindrical wall 16 in Figure 2 primary containment vessel 6 will in foundation plate 9 until it is steel concrete 10, it is possible to integrally carry the duplex steel. Moreover, since the inner side outer wall and the ceiling of the equipment room 12 are the steel plate concrete 10 similarly, the wall and floor of the equipment room 12 can be carried in as a steel plate box having an opening on the lower side. Furthermore, the steel plate in the ceiling of the equipment room 12 is also the bottom of the pressure suppression pool floor 13 and also serves as a ceiling formwork for constructing the pressure suppression pool floor 13.

鋼板コンクリート構造の採用により、鋼板が建築型枠および鉄筋の役割を果たすため、鋼板の設定後はコンクリートの注入のみにて壁・床の施工が完了する。   By adopting the steel plate concrete structure, the steel plate plays the role of building formwork and rebar, so after the setting of the steel plate, the construction of walls and floors is completed only by pouring concrete.

本発明では上記に示したように、一次原子炉格納容器6の円筒壁16の外側は基礎版9までと圧力抑制プール床13の底部が鋼板コンクリート10となっているため、それぞれ円筒壁16と圧力抑制プール床13の型枠が一度に施工が可能となるとともに、このコンクリート工事の同時並進化が可能となる。   In the present invention, as described above, since the outside of the cylindrical wall 16 of the primary reactor containment vessel 6 is up to the base plate 9 and the bottom of the pressure suppression pool floor 13 is the steel plate concrete 10, The formwork of the pressure suppression pool floor 13 can be constructed at the same time, and the concrete work can be simultaneously evolved.

一方、図6の本発明を適用しないESBWR一次原子炉格納容器の建設シーケンスでは、基礎版施工の後に、一次原子炉格納容器6の円筒壁16の外側は圧力抑制プール床13までの施工を完了しその後に圧力抑制プール床13の施工を開始する。圧力抑制プール床13の施工に際しては、床の型枠を保持するための支保工20を機器室12内に設置する必要があるため、圧力抑制プール床13の施工完了まで、機器室12内の原子炉系機器17の据付け工事が完了せず、したがって配管工事他の関連工事が完了しない。圧力抑制プール床13より上部の建設シーケンスは本発明による一次原子炉格納容器と本発明を適用しない一次原子炉格納容器ともに同様である。   On the other hand, in the construction sequence of the ESBWR primary reactor containment vessel to which the present invention of FIG. 6 is not applied, the construction up to the pressure suppression pool floor 13 is completed outside the cylindrical wall 16 of the primary reactor containment vessel 6 after the foundation plate construction. Then, construction of the pressure suppression pool floor 13 is started. When constructing the pressure suppression pool floor 13, it is necessary to install a support 20 for holding the floor formwork in the equipment room 12. The installation work of the reactor system equipment 17 is not completed, and therefore the piping work and other related works are not completed. The construction sequence above the pressure suppression pool floor 13 is the same for both the primary reactor containment vessel according to the present invention and the primary reactor containment vessel to which the present invention is not applied.

このように図3と図7を対比すると、図3の本発明による建設シーケンスでは一次原子炉格納容器6の円筒壁16の基礎版9までの部位と圧力抑制プール床13が同時に施工できるため、図7に示す本発明を適用しない一次原子炉格納容器より建設工期は約3ヶ月程度短縮可能となるとともに一次原子炉格納容器6の円筒壁16の基礎版9までの部位は両面が鋼板であるため、円筒壁16の両側に鋼板コンクリート11の適用が可能となり、型枠および鉄筋工事の削減により施工スピードが向上し、結果として3ヶ月以上の工期の短縮が可能となる。   3 and FIG. 7 are compared with each other, in the construction sequence according to the present invention of FIG. 3, the portion up to the base plate 9 of the cylindrical wall 16 of the primary reactor containment vessel 6 and the pressure suppression pool floor 13 can be simultaneously constructed. The construction period can be shortened by about 3 months from the primary reactor containment vessel to which the present invention shown in FIG. 7 is not applied, and both sides of the portion up to the base plate 9 of the cylindrical wall 16 of the primary reactor containment vessel 6 are steel plates. Therefore, the steel plate concrete 11 can be applied to both sides of the cylindrical wall 16, and the construction speed is improved by reducing the formwork and the reinforcing bar work. As a result, the construction period can be shortened by 3 months or more.

本発明による原子炉建屋の実施例の一例について、図4を用いて説明する。   An example of an embodiment of a reactor building according to the present invention will be described with reference to FIG.

図4は本発明の請求項2による原子炉格納容器の実施例の内、基礎版上部の平面図である。   FIG. 4 is a plan view of the upper part of the basic plate in an embodiment of a reactor containment vessel according to claim 2 of the present invention.

基礎版9上には円筒壁16と原子炉系機器17およびこの原子炉系機器17を区画するために内側から円筒壁16に向けて放射状に設置した仕切り壁11を設ける。   On the base plate 9, a cylindrical wall 16, a reactor system device 17, and a partition wall 11 installed radially from the inside toward the cylindrical wall 16 in order to partition this reactor system device 17 are provided.

この仕切り壁11は鋼板コンクリート10とし、同様に鋼板コンクリート10からなる円筒壁16内側の鋼板同士を一体構造としている。また、この機器室12の上部は図4に示すように圧力抑制プール床13となっている。   The partition wall 11 is a steel plate concrete 10, and the steel plates inside the cylindrical wall 16 made of the steel plate concrete 10 are similarly integrated. The upper part of the equipment room 12 is a pressure suppression pool floor 13 as shown in FIG.

建設時には円筒壁16内外の鋼板と仕切り壁11の鋼板および機器室内側鋼板を一体搬入を可能としている。このため、仕切り壁11の設置に伴う新たな工事シーケンスは発生しない。一方、仕切り壁11は圧力抑制プール床13を下部からささえる壁として利用できるため、圧力抑制プール床13施工時のコンクリート注入による過大な鉛直方向の荷重に対しても特別な仮設の支持構造物を設置することなく圧力抑制プール床13の施工を可能とし、これによる仮設構造物の低減を可能としている。また、仕切り壁11によって圧力抑制プール床13のコンクリート施工時の過大な鉛直方向の荷重にも耐えるため施工時には圧力抑制プール床13を下部から支える支保工は必要としない。このため、機器室12に予め設定した原子炉系機器17の配管・ケーブル・空調ダクトの施工が平行して可能となる。更に機器室12は内外及び天井の表面が鋼板となっているため、この鋼板に予め、配管・ケーブル・空調ダクトを直接溶接設定して搬入することにより、機器室12内の現場での工事を大幅に低減できる。   At the time of construction, the steel plates inside and outside the cylindrical wall 16, the steel plates of the partition wall 11, and the equipment indoor side steel plates can be carried in integrally. For this reason, a new construction sequence accompanying the installation of the partition wall 11 does not occur. On the other hand, since the partition wall 11 can be used as a wall that supports the pressure suppression pool floor 13 from the lower part, a special temporary support structure is also provided for an excessive vertical load caused by concrete injection during the construction of the pressure suppression pool floor 13. The construction of the pressure suppression pool floor 13 is enabled without installation, and the temporary structure can be reduced by this. Further, since the partition wall 11 can withstand an excessive vertical load at the time of concrete construction of the pressure suppression pool floor 13, no support work for supporting the pressure suppression pool floor 13 from below is required at the time of construction. For this reason, construction of piping, cables, and air conditioning ducts of the reactor system equipment 17 set in advance in the equipment room 12 becomes possible in parallel. Furthermore, since the inside and outside of the equipment room 12 and the surface of the ceiling are made of steel plates, pipes, cables, and air conditioning ducts are directly welded to the steel sheets in advance to carry in construction in the equipment room 12 on site. It can be greatly reduced.

円筒壁16内外の鋼板と仕切り壁11の鋼板および機器室内側鋼板を一体搬入の平面的な広がりは建設時にこれらのブロックを搬入する揚重機の容量によって決まるが、原子炉系機器17およびこれに伴う仕切り壁11の配置によって、適切な分割が可能となる。また、円筒壁16内外の鋼板と仕切り壁11の鋼板および機器室内側鋼板は閉じられた空間的となるため、このブロックを搬入後には、ブロック内に設置する原子炉系機器17の配管接続工事は周辺の環境と切り離された条件下で天候に左右されずに容易に可能である。   The planar spread of carrying in the steel plate inside and outside the cylindrical wall 16 and the steel plate of the partition wall 11 and the steel plate inside the equipment room is determined by the capacity of the hoist to carry in these blocks during construction. Appropriate division becomes possible by the arrangement of the accompanying partition wall 11. In addition, since the steel plates inside and outside the cylindrical wall 16 and the steel plates of the partition wall 11 and the steel plate inside the equipment room are closed, the pipe connection work of the reactor system equipment 17 installed in the block after loading this block. Is easily possible without being influenced by the weather under conditions separated from the surrounding environment.

本発明による原子炉建屋の実施例の一例について、図5を用いて説明する。   An example of an embodiment of a reactor building according to the present invention will be described with reference to FIG.

図5は本発明の請求項3による原子炉格納容器の実施例の一例を示す縦断面図である。本図は一次原子炉格納容器6の下部の機器室12を原子炉系機器17のシステム上の要求により、多層階に分割した場合を示している。本図では機器室12を機器室床21にて上下2層に分割した場合を示している。また、この機器室床21は鋼板コンクリート10としている。   FIG. 5 is a longitudinal sectional view showing an example of an embodiment of a reactor containment vessel according to claim 3 of the present invention. This figure shows a case where the equipment room 12 below the primary reactor containment vessel 6 is divided into multiple floors according to the system requirements of the reactor system equipment 17. In this figure, the case where the equipment room 12 is divided into two upper and lower layers on the equipment room floor 21 is shown. The equipment room floor 21 is made of steel plate concrete 10.

この機器室床21の設置により、建設時に予め機器室床21上に原子炉系機器17及び関連する配管・ケーブル・空調ダクトを設置することにより、円筒壁16内外の鋼板と仕切り壁11の鋼板および機器室内側鋼板によるブロックと原子炉系機器17及び配管・ケーブル・空調ダクトが一体のモジュールとして建設が可能となり、施工性の更なる向上が期待できる。また、機器室床21は円筒壁16内外の鋼板と仕切り壁11の鋼板および機器室内側鋼板によるブロックの水平方向の撓み防止のための構造材としての役割を果たすため、原子炉系機器17のブロック一体化による撓み防止用仮設材の低減に寄与するものとなる。   By installing the equipment room floor 21, the reactor system equipment 17 and related pipes, cables, and air conditioning ducts are installed on the equipment room floor 21 in advance during construction, so that the steel plates inside and outside the cylindrical wall 16 and the steel plates of the partition wall 11 are installed. In addition, it is possible to construct a block made of steel plate on the equipment room side, reactor system equipment 17 and piping / cable / air-conditioning duct as an integrated module, and further improvement in workability can be expected. The equipment room floor 21 serves as a structural material for preventing horizontal deflection of the block by the steel plates inside and outside the cylindrical wall 16 and the steel plates of the partition wall 11 and the equipment room side steel plates. It contributes to the reduction of the temporary material for prevention of bending by block integration.

1…原子炉圧力容器、2…ドライウェル、3…圧力抑制プール、4…ウェットウェル、5…ベント管、6…一次原子炉格納容器、7…二次原子炉格納容器、8…原子炉建屋、9…基礎版、10…鋼板コンクリート、11…仕切り壁、12…機器室、13…圧力抑制プール床、14…ダイアフラムフロア、15…トップスラブ、16…円筒壁、17…原子炉系機器、18…上部プール、19…原子炉建屋運転床、20…支保工、21…機器室床、22…鋼板、23…スタッド。   DESCRIPTION OF SYMBOLS 1 ... Reactor pressure vessel, 2 ... Dry well, 3 ... Pressure suppression pool, 4 ... Wet well, 5 ... Vent pipe, 6 ... Primary reactor containment vessel, 7 ... Secondary reactor containment vessel, 8 ... Reactor building , 9 ... Foundation plate, 10 ... Steel plate concrete, 11 ... Partition wall, 12 ... Equipment room, 13 ... Pressure suppression pool floor, 14 ... Diaphragm floor, 15 ... Top slab, 16 ... Cylindrical wall, 17 ... Reactor system equipment, 18 ... Upper pool, 19 ... Reactor building operation floor, 20 ... Supporting work, 21 ... Equipment room floor, 22 ... Steel plate, 23 ... Stud.

Claims (3)

基礎を建設し、
一次原子炉格納容器の内側で機器室の一部を構成する圧力抑制プール下部円筒壁のうち内側壁、外側壁および圧力抑制プール床の底部となる天井を構成し、機器室下側に開口を有し、ウェットウェルに面する部分は鋼板のライナーであり、それ以外の鋼板はスタッドを有する鋼板のボックスを前記基礎へ搬入し、
前記鋼板のボックスを設定後にコンクリートを注入して鋼板コンクリート構造とし圧力抑制プール下部円筒壁と圧力抑制プール床を建設し、
次に、圧力抑制プールの一部である外側壁において内側は鋼板のライナーであり、外側はスタッドを有する鋼板とし、圧力抑制プールの一部である内側壁において内側と外側は鋼板のライナーである圧力抑制プール部分円筒壁を建設し、
次に、前記圧力抑制プール部分円筒壁へダイアフラムフロアを建設し、
次に、内側は鋼板のライナーであり、外側はスタッドを有する鋼板としたドライウェル部分円筒壁を建設し、
次に、前記ドライウェル部分円筒壁へドライウェルに接する内側は鋼板のライナーであり外側はスタッドを有する鋼板とした格納容器天井部分を建設し、
次に、前記格納容器天井部分へ格納容器上部プールを建設し、
次に、前記格納容器上部プールへ原子炉建屋運転床を建設する原子炉格納容器の建設方法。
Build the foundation,
Out in the side wall of the pressure suppression pool lower cylindrical wall constituting a part of the equipment room at the inside of the primary containment vessel, constitutes a ceiling comprising an outer wall and pressure suppression pool bottom floor, equipment room lower a has an opening, the portion facing the wet wells are liner steel, steel other than it carried the box of steel sheet having a stud to said base,
After setting the steel plate box , concrete is poured into the steel plate concrete structure to construct a pressure suppression pool lower cylindrical wall and a pressure suppression pool floor,
Next, on the outer wall that is part of the pressure suppression pool, the inside is a steel plate liner, the outside is a steel plate with studs, and on the inner wall that is part of the pressure suppression pool, the inside and outside are steel plate liners. Construct pressure suppression pool part cylindrical wall ,
Next, construct a diaphragm floor on the pressure suppression pool partial cylindrical wall ,
Next, construct a dry well partial cylindrical wall with a steel plate liner on the inside and a steel plate with studs on the outside ,
Next, the inside of the dry well part cylindrical wall contacting the dry well is a steel plate liner and the outside is a steel plate having a stud, and a storage container ceiling part is constructed.
Next, construct a containment upper pool on the containment ceiling ,
Next, a reactor containment vessel construction method for constructing a reactor building operation floor in the containment vessel upper pool .
請求項1における原子炉格納容器の建設方法において、前記圧力抑制プール下部に床にて仕切りされ、内側側壁と天井内側を鋼板コンクリート構造とした機器室を、鋼板コンクリートからなる複数の壁で区画することを特徴とする原子炉格納容器の建設方法。   2. The reactor containment vessel construction method according to claim 1, wherein an equipment room partitioned by a floor at the lower part of the pressure suppression pool and having a steel plate concrete structure on an inner side wall and a ceiling inner side is partitioned by a plurality of walls made of steel plate concrete. A method for constructing a containment vessel characterized by that. 請求項1または請求項2における原子炉格納容器の建設方法において、前記複数の壁で区画した機器室を鋼板コンクリートの床にて区画することを特徴とする原子炉格納容器の建設方法。   The method for constructing a containment vessel according to claim 1 or 2, wherein the equipment room partitioned by the plurality of walls is partitioned by a steel plate concrete floor.
JP2010129527A 2010-06-07 2010-06-07 Construction method of reactor containment vessel Active JP5358516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010129527A JP5358516B2 (en) 2010-06-07 2010-06-07 Construction method of reactor containment vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010129527A JP5358516B2 (en) 2010-06-07 2010-06-07 Construction method of reactor containment vessel

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006051473A Division JP2007232420A (en) 2006-02-28 2006-02-28 Nuclear reactor containment

Publications (3)

Publication Number Publication Date
JP2010223970A JP2010223970A (en) 2010-10-07
JP2010223970A5 JP2010223970A5 (en) 2011-02-17
JP5358516B2 true JP5358516B2 (en) 2013-12-04

Family

ID=43041275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010129527A Active JP5358516B2 (en) 2010-06-07 2010-06-07 Construction method of reactor containment vessel

Country Status (1)

Country Link
JP (1) JP5358516B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10535436B2 (en) 2014-01-14 2020-01-14 Ge-Hitachi Nuclear Energy Americas Llc Nuclear reactor chimney and method of improving core inlet enthalpy using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112863707B (en) * 2021-01-13 2022-10-25 同济大学 Sandwich type containment structure suitable for serious safety accident

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5786785A (en) * 1980-11-20 1982-05-29 Hitachi Ltd Method of constructing atomic power plant building
JPH0746152B2 (en) * 1986-06-12 1995-05-17 株式会社東芝 Structure of containment vessel wall
JPH0699959B2 (en) * 1986-07-29 1994-12-12 株式会社日立製作所 Nuclear power plant building construction method
JP2513102B2 (en) * 1992-03-26 1996-07-03 鹿島建設株式会社 Steel plate reinforced concrete reactor containment vessel and its manufacturing method
JPH09236684A (en) * 1996-02-29 1997-09-09 Ishikawajima Harima Heavy Ind Co Ltd Double steel sheet reactor container
JPH10282285A (en) * 1997-04-10 1998-10-23 Toshiba Corp Reactor building
JP2001296381A (en) * 2000-04-17 2001-10-26 Toshiba Corp Reactor containment and its construction method
JP4479088B2 (en) * 2000-10-24 2010-06-09 株式会社Ihi Containment
JP2004144493A (en) * 2002-10-22 2004-05-20 Toshiba Corp Neuclear reactor building, reactor containment vessel, and method of installing reactor containment vessel
JP2007232420A (en) * 2006-02-28 2007-09-13 Hitachi Ltd Nuclear reactor containment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10535436B2 (en) 2014-01-14 2020-01-14 Ge-Hitachi Nuclear Energy Americas Llc Nuclear reactor chimney and method of improving core inlet enthalpy using the same

Also Published As

Publication number Publication date
JP2010223970A (en) 2010-10-07

Similar Documents

Publication Publication Date Title
JP2007232420A (en) Nuclear reactor containment
KR101211550B1 (en) The steel plate concrete structure of nuclear reactor containment facilities, nuclear reactor containment vessel using the same, and nuclear reactor containment facility internal structure
JP5358516B2 (en) Construction method of reactor containment vessel
US20160336081A1 (en) Operating floor confinement and nuclear plant
US20120288054A1 (en) Foundation for building in nuclear facility and nuclear facility
JP2011043439A (en) Construction of nuclear power plant building, and construction method thereof
CN102758525A (en) Benzene hydrogenation engineering formwork installing method
JP3462911B2 (en) Reactor building
JP3658510B2 (en) Primary containment vessel
JP3601999B2 (en) Construction method of reactor containment vessel and its diaphragm floor
JP4643599B2 (en) Steel plate concrete condenser-integrated turbine building and its construction method
JP4352071B2 (en) Construction method of reactor containment vessel
CN220984183U (en) Water tank device of nuclear reactor containment and nuclear reactor containment equipment
JP4436797B2 (en) Reactor facility
JP2018193674A (en) Method for installing mechano-electric appliance in tunnel
JPH08179076A (en) Reactor container
JP2003279683A (en) Method of installing reactor container and deformation preventing fixture for thin steel plate liner
JP2001343478A (en) Floor structure for reactor building
Byrne et al. ACR-1000® Constructability and Modularization
JP2014066675A (en) Construction method of reactor pressure vessel pedestal
JPH10239477A (en) Nuclear power plant
Fushiki et al. HCU room module supplied to the chugoku electric power co., inc. shimane nuclear power plant unit no. 3
Southwood Concrete vessel technology
JPS63284493A (en) Frame for supporting reactor pressure vessel
Alberro et al. Structural analysis of the reactor pool for the RRRP

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130902

R150 Certificate of patent or registration of utility model

Ref document number: 5358516

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150