JP5357557B2 - Parallel bridge - Google Patents

Parallel bridge Download PDF

Info

Publication number
JP5357557B2
JP5357557B2 JP2009024731A JP2009024731A JP5357557B2 JP 5357557 B2 JP5357557 B2 JP 5357557B2 JP 2009024731 A JP2009024731 A JP 2009024731A JP 2009024731 A JP2009024731 A JP 2009024731A JP 5357557 B2 JP5357557 B2 JP 5357557B2
Authority
JP
Japan
Prior art keywords
parallel
bridges
bridge
vibration
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009024731A
Other languages
Japanese (ja)
Other versions
JP2010180609A (en
Inventor
邦博 山内
秀作 上島
山田  均
弘 勝地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Yokohama National University NUC
Original Assignee
IHI Corp
Yokohama National University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp, Yokohama National University NUC filed Critical IHI Corp
Priority to JP2009024731A priority Critical patent/JP5357557B2/en
Publication of JP2010180609A publication Critical patent/JP2010180609A/en
Application granted granted Critical
Publication of JP5357557B2 publication Critical patent/JP5357557B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide parallel bridges suppressing deflection vibration and twist vibration of bridges to the minimum extent effectively while a distance between the centers of the parallel bridges is set to a large value. <P>SOLUTION: In these parallel bridges to be constructed by constructing the bridges 1, 5 in parallel, fairing 8 is installed at outer side width end on a side where the parallel bridges 1, 5 do not oppose to each other in the direction of width of the floor slab 3, respectively. When the distance being an interval between the centers in the direction of width of the bridges 1, 5 arranged in parallel is W and width of the floor slab 3 is B, the distance between the centers of the bridges 1, 5, W, is set as follows:W=1.5B-2.0B. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は並行して架設される並列橋に関する。   The present invention relates to a parallel bridge constructed in parallel.

近年、橋梁の建設にあたり、鋼2主桁橋(2主鈑桁橋)が合理化橋の1つとして広く採用されており、又近年では橋梁の支間長が増大する傾向にあり、このために橋梁における耐風性に関する研究が行われている。   In recent years, steel two main girder bridges (two main girder bridges) have been widely adopted as one of the rationalized bridges in the construction of bridges, and in recent years, the span length of bridges has been increasing. Studies on wind resistance are being conducted.

一方、並列橋に関する研究事例は少ないが、今後このような並列橋においても支間長が増大されることによって空力的な制振対策の適用を含めた耐風性の検討が必要となることが予想される。即ち、並列橋においては、風向きの上流側となる上流側の橋梁からの剥離流によって、上流側の橋梁の下流側に並列に架設される下流側の橋梁に風と直角方向に振動する鉛直たわみ振動等が発生することが知られている。   On the other hand, although there are few research examples on parallel bridges, it is expected that it will be necessary to examine wind resistance including the application of aerodynamic vibration control measures in the future as the span length increases even in such parallel bridges. The That is, in a parallel bridge, the vertical deflection that vibrates in the direction perpendicular to the wind on the downstream bridge installed in parallel downstream of the upstream bridge due to the separation flow from the upstream bridge, which is the upstream of the wind direction. It is known that vibration and the like occur.

このような並列橋特有の振動に対する対策としては、並列した高架橋の相互間をゴムダンパーで連結することにより振動低減を図るようにした並列橋の振動低減方法が特許文献1に示されており、又、並列した橋梁の上部構造における幅方向中心の相互間隔である中心間距離をW、前記上部構造の幅をB、橋梁の高さをDとしたとき、W/Bを1以上1.5以下とし、かつ、B/Dを2以上とすることによって、上流側の橋梁からの剥離流によるウェイクの中に下流側の橋梁が入ることとなって、下流側の橋梁に生じる風速限定的なたわみ振動の振幅が小さくなるようにした並列橋及びその設計方法が特許文献2に示されている。
特開2000−160510号公報 特開2008−184892号公報
As a countermeasure against such vibration peculiar to a parallel bridge, Patent Document 1 discloses a vibration reduction method for a parallel bridge in which vibration reduction is achieved by connecting rubber bridges between parallel viaducts. Further, when the center-to-center distance, which is the distance between the centers in the width direction in the superstructure of the bridges in parallel, is W, the width of the superstructure is B, and the height of the bridge is D, W / B is 1 or more and 1.5. By setting B / D to 2 or more, the downstream bridge enters the wake caused by the separation flow from the upstream bridge, and the wind speed generated in the downstream bridge is limited. Patent Document 2 discloses a parallel bridge and a design method thereof in which the amplitude of flexural vibration is reduced.
JP 2000-160510 A JP 2008-184892 A

しかし、前記特許文献1では、並列される橋梁同士を連結するためのゴムダンパーは大型になるという問題があり、特に橋梁が大きな中心間距離を有して架設される場合にはゴムダンパーは非常に大型となってしまい実際上適用が困難になるという問題がある。   However, in Patent Document 1, there is a problem that the rubber damper for connecting the bridges arranged in parallel is large, and particularly when the bridge is installed with a large center distance, the rubber damper is very However, there is a problem that it becomes difficult to apply in practice.

又、特許文献2では、上部構造の幅Bが橋梁の高さDの2倍以上である並列橋において、W/Bを1以上1.5以下とすることでたわみ振動を抑制するようにしている。ここで、橋梁同士が非常に近い間隔で架設された並列橋の場合には耐風性が問題にならないことが従来から知られている。従って、上記特許文献2は、W/Bが1(橋梁の間隔が0の場合)を含んだ状態からW/Bが1.5(橋梁の間隔が上部構造の幅Bの1/2の場合)までの、従来より耐風性が問題にならないことが知られている範囲を含んだ狭い範囲に限定されており、従って、特許文献2では中心間距離Wが1.5Bより大きい間隔の並列橋は建設できないという問題を有していた。   Further, in Patent Document 2, in a parallel bridge where the width B of the superstructure is at least twice the height D of the bridge, the flexural vibration is suppressed by setting W / B to 1 to 1.5. Yes. Here, it is conventionally known that wind resistance is not a problem in the case of parallel bridges in which bridges are installed at very close intervals. Therefore, in the above-mentioned patent document 2, W / B is 1.5 (when the bridge interval is 0), and W / B is 1.5 (the bridge interval is 1/2 of the width B of the superstructure). ) Until now, it is limited to a narrow range including a range in which wind resistance is not known to be a problem. Therefore, in Patent Document 2, a parallel bridge having a center-to-center distance W greater than 1.5B is limited. Had the problem of being unable to build.

又、並列橋においても今後支間長が増大することが考えられる。支間長が増大するとたわみ振動以外にねじれ振動も問題となる場合があるが、特許文献2ではたわみ振動を抑制しようとするものであって、ねじれ振動を抑制することについては全く考慮されていないため、ねじれ振動を生じるような並列橋には適用できないという問題がある。   Moreover, it is considered that the length of spans will increase in parallel bridges. When the span length increases, torsional vibration may also be a problem in addition to flexural vibration. However, Patent Document 2 attempts to suppress flexural vibration and does not consider at all to suppress torsional vibration. There is a problem that it cannot be applied to a parallel bridge that generates torsional vibration.

本発明は、上記問題を解決するためになされたもので、並列橋の中心間距離を大きく設定してもたわみ振動とねじれ振動を効果的に抑制できるようにした並列橋を提供することを目的とする。   The present invention was made to solve the above-described problem, and an object of the present invention is to provide a parallel bridge that can effectively suppress flexural vibration and torsional vibration even if the distance between the centers of the parallel bridges is set large. And

本発明は、橋梁が並列して架設される並列橋であって、並列する橋梁の上部構造における幅方向で互いに対向しない側の外側幅端縁にフェアリングを設置し、並列する橋梁の幅方向中心の相互間隔である中心間距離をW、上部構造の幅をBとしたとき、橋梁の中心間距離Wを
W=1.5B〜2.0B
とし
前記フェアリングは、高欄に沿って前記上部構造の外側幅端縁に設置される鉛直部と、該鉛直部の下部から幅方向外側へ延設した水平延設部と、該水平延設部の先端と前記鉛直部の上端とを結ぶ傾斜部とを有する三角フェアリングである
ことを特徴とする並列橋、に係るものである。
The present invention is a parallel bridge in which bridges are laid in parallel, and a fairing is installed at the outer width edge on the side not facing each other in the width direction in the upper structure of the parallel bridge, and the width direction of the parallel bridges When the center-to-center distance, which is the distance between the centers, is W and the width of the superstructure is B, the center-to-center distance W of the bridge is W = 1.5B to 2.0B.
And,
The fairing includes a vertical portion installed at an outer width edge of the upper structure along a rail, a horizontal extending portion extending outward in the width direction from a lower portion of the vertical portion, and a horizontal extending portion of the horizontal extending portion. The present invention relates to a parallel bridge characterized by a triangular fairing having an inclined portion connecting a tip and an upper end of the vertical portion .

上記並列橋において、並列する橋梁は鋼2主桁橋またはボックス桁橋であってもよい。   In the parallel bridge, the parallel bridge may be a steel 2-main girder bridge or a box girder bridge.

本発明の並列橋によれば、並列する橋梁の上部構造における幅方向で互いに対向しない側の外側幅端縁にフェアリングを設置することによって、並列する橋梁の幅方向中心の相互間隔である中心間距離をW、上部構造の幅をBとしたとき、橋梁の中心間距離WをW=1.5B〜2.0Bのように大きく設定しても、並列橋によるたわみ振動とねじれ振動を効果的に抑制できるという優れた効果を奏し得る。   According to the parallel bridge of the present invention, by installing a fairing at the outer width edge on the side that does not oppose each other in the width direction in the upper structure of the parallel bridge, the center that is the mutual interval between the width direction centers of the parallel bridges When the distance between the bridges is W and the width of the superstructure is B, even if the distance W between the centers of the bridges is set as large as W = 1.5B to 2.0B, the flexural vibration and torsional vibration due to the parallel bridge are effective. The effect that it can suppress automatically can be show | played.

以下、本発明の実施の形態を添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図4は本発明を適用する従来の並列橋の形状と寸法の一例を示したもので、橋梁1は水平方向に所要の間隔を有する2つの鉛直な主桁2の上部に床版3(上部構造)が設置された鋼2主桁橋を示しており、且つ、床版3の幅方向両端部には鉛直上方に立ち上がった高欄4が備えられている。前記橋梁1の側方には、上記橋梁1と全く同一の構成を有する橋梁5が同一の高さで架設されて並列橋が構成されている。尚、橋梁1,5としては、前記鋼2主桁橋以外にボックス桁橋であってもよい。   FIG. 4 shows an example of the shape and dimensions of a conventional parallel bridge to which the present invention is applied. The bridge 1 has a floor slab 3 (upper part) on two vertical main girders 2 having a required interval in the horizontal direction. The steel 2 main girder bridge with the structure) is shown, and the slabs 4 are provided with high columns 4 rising vertically upward at both ends in the width direction of the floor slab 3. On the side of the bridge 1, a bridge 5 having the same configuration as that of the bridge 1 is installed at the same height to form a parallel bridge. The bridges 1 and 5 may be box girder bridges in addition to the steel 2 main girder bridge.

図4の並列橋を構成している橋梁1,5の床版3(上部構造)の幅Bは9,000mm、橋梁1,5の高さDは4,373mm、橋梁1,5の幅方向中心の相互間隔である中心間距離Wは13,500mmであり、この場合はWが1.5Bであって、並列した橋梁1,5の上部構造3の相互間には4,500mmの間隔が形成されている。又、図4における各橋梁1,5の支間長は80メートルとした場合を示している。   The width B of the floor slab 3 (superstructure) of the bridges 1 and 5 constituting the parallel bridge of FIG. 4 is 9,000 mm, the height D of the bridges 1 and 5 is 4,373 mm, and the width direction of the bridges 1 and 5 The center-to-center distance W, which is the distance between the centers, is 13,500 mm. In this case, W is 1.5B, and there is a distance of 4,500 mm between the upper structures 3 of the bridges 1 and 5 in parallel. Is formed. 4 shows the case where the span length of each of the bridges 1 and 5 is 80 meters.

発明者らは図4の並列橋の耐風性を試験するために、図4に示した実物大の並列橋の寸法を50分の1の大きさに縮尺した並列橋モデルを製作した。尚、実際の並列橋と50分の1に縮尺した並列橋モデルとは同一の形状を有しているため、以下では図4は並列橋モデル6をも示しているものとして説明する。   In order to test the wind resistance of the parallel bridge of FIG. 4, the inventors manufactured a parallel bridge model in which the size of the full-size parallel bridge shown in FIG. 4 was reduced to 1/50. In addition, since an actual parallel bridge and the parallel bridge model reduced to 1/50 have the same shape, FIG. 4 will be described below assuming that the parallel bridge model 6 is also shown.

一方、発明者らは、前記従来の並列橋モデル6における高欄4の側面にフェアリングを備えた図1に示す本発明による制振モデル7を製作した。この制振モデル7は、並列する橋梁1,5の床版3(上部構造)における幅方向で互いに対向しない側の高欄4の外側幅端縁、即ち、橋梁1,5を1つの橋と看做したときにその両外側幅端縁に、フェアリング8を設置している。このフェアリング8は、高欄4と同じ高さを有する鉛直部9aと、該鉛直部9aと同じ幅で床版3(上部構造)の底面から幅方向外側に延設した水平延設部9bと、該水平延設部9bの先端と前記鉛直部9aの上端とを結ぶ傾斜部9cとを備えた二等辺三角の三角フェアリング9とした場合を示している。上記フェアリングは二等辺三角形以外の三角フェアリングであってもよい。   On the other hand, the inventors manufactured a vibration damping model 7 according to the present invention shown in FIG. 1 provided with a fairing on the side surface of the rail 4 in the conventional parallel bridge model 6. This vibration suppression model 7 regards the outer width edge of the rail 4 on the side of the floor slab 3 (upper structure) of the bridges 1 and 5 that are parallel to each other in the width direction, that is, the bridges 1 and 5 as one bridge. The fairing 8 is installed on the outer edges of the both sides when the heel is crushed. The fairing 8 includes a vertical portion 9a having the same height as the balustrade 4 and a horizontal extending portion 9b having the same width as the vertical portion 9a and extending outward from the bottom surface of the floor slab 3 (upper structure) in the width direction. The case where an isosceles triangular triangular fairing 9 having an inclined portion 9c connecting the tip of the horizontally extending portion 9b and the upper end of the vertical portion 9a is shown. The fairing may be a triangular fairing other than an isosceles triangle.

図4に示した従来の並列橋モデル6と図1に示した本発明による制振モデル7とを用いて、比較的低速の風に対して発現する限定振動に対しては特に注意を払うことなく、比較的高速の風によって発現し、しかも橋梁を崩壊させるような大きな振動を生じさせる発散振動について、たわみ・ねじれの2自由度に対してバネ支持したバネ支持風洞実験を実施し、水平風に対する振動応答性を調査した。   Special attention should be paid to the limited vibration that occurs in a relatively low speed wind using the conventional parallel bridge model 6 shown in FIG. 4 and the vibration suppression model 7 according to the present invention shown in FIG. However, we conducted a spring-supported wind tunnel experiment that supported springs with two degrees of freedom of deflection and torsion for divergent vibrations that are generated by relatively high-speed winds and that generate large vibrations that cause the bridge to collapse. The vibration responsiveness to was investigated.

図4に示した従来の並列橋モデル6、及び図1に示した本発明による制振モデル7において、橋梁1,5における床版3(上部構造)の幅Bに対し、橋梁1,5の幅方向中心の相互間隔である中心間距離Wを1.5B、2.0B、2.5B、3.0B、5.0B、10Bと変化させて設置した場合において、水平風によって発散振動が発現する風速を測定する試験を実施した。そして、図4に示した従来の並列橋モデル6における鉛直たわみ振動に対する結果を図5に、ねじれ振動に対する結果を図6に、夫々丸印(○)で示した。   In the conventional parallel bridge model 6 shown in FIG. 4 and the vibration suppression model 7 according to the present invention shown in FIG. 1, the bridges 1, 5 have the width B of the floor slab 3 (superstructure) in the bridges 1, 5. When the center-to-center distance W, which is the distance between the centers in the width direction, is changed to 1.5B, 2.0B, 2.5B, 3.0B, 5.0B, and 10B, divergent vibration is generated by the horizontal wind. A test was conducted to measure the wind speed. The results for vertical deflection vibration in the conventional parallel bridge model 6 shown in FIG. 4 are shown in FIG. 5, and the results for torsional vibration are shown in FIG.

又、図1に示した本発明による制振モデル7における鉛直たわみ振動に対する結果を図2に、ねじれ振動に対する結果を図3に、夫々三角印(△)で示した。尚、図2、図3には、従来の並列橋モデル6の場合と比較できるように、図5、図6のデータを併記した。   In addition, the result for vertical deflection vibration in the vibration suppression model 7 according to the present invention shown in FIG. 1 is shown in FIG. 2, and the result for torsional vibration is shown in FIG. In FIGS. 2 and 3, the data of FIGS. 5 and 6 are shown together so that they can be compared with the case of the conventional parallel bridge model 6.

図2、図3、図5、図6において横軸は上部構造3の幅Bを基準とした中心間距離Wを示し、又、図2、図5の縦軸は鉛直たわみ振動が発現する風速を無次元化した値を示し、又、図3、図6の縦軸はねじれ振動が発現する風速を無次元化した値を示している。   2, 3, 5, and 6, the horizontal axis indicates the center-to-center distance W with respect to the width B of the upper structure 3, and the vertical axes in FIGS. 2 and 5 indicate the wind speed at which vertical flexural vibration appears. , And the vertical axis in FIGS. 3 and 6 represents the value obtained by making the wind speed at which torsional vibrations appear dimensionless.

図4の並列橋モデル6による風洞実験においては、図5に鉛直たわみ振動の結果を白丸で示しているように、中心間距離Wが1.5B〜2.5Bにおいては、中心間距離Wが狭いほど発散振動の発現風速は高風速側へ移行し、中心間距離Wが1.5及び2.0の計測点では黒丸で示した単独橋の場合よりも僅かに高速側へ移行している。又、図6にねじれ振動の結果を白丸で示しているように、中心間距離Wが狭いほど発散振動の発現風速は高風速側へ移行しており、いずれの計測点においても黒丸で示した単独橋の場合よりも僅かに高速側となっている。   In the wind tunnel experiment using the parallel bridge model 6 of FIG. 4, the center distance W is 1.5B to 2.5B when the center distance W is 1.5B to 2.5B, as shown by white circles in FIG. The narrower the wind speed, the more divergent vibration appears, and the higher the wind speed, the more the center-to-center distance W is 1.5 and 2.0. . In addition, as shown by the white circle in FIG. 6, the result of the torsional vibration is indicated by white circles, and the wind speed at which the divergence vibration appears shifts to the higher wind speed as the center distance W becomes narrower. It is slightly faster than a single bridge.

しかし、図4に示した並列橋モデル6においては、図5に示した白丸の風速で鉛直たわみ振動が発現し、又、図6に示した白丸の風速ではねじれ振動が発現することになるため、比較的低い風速において振動が発生するという問題がある。   However, in the parallel bridge model 6 shown in FIG. 4, vertical deflection vibration is generated at the wind speed of the white circle shown in FIG. 5, and torsional vibration is generated at the wind speed of the white circle shown in FIG. There is a problem that vibration occurs at a relatively low wind speed.

これに対し、図1に示すようにフェアリング8を備えた制振モデル7による風洞実験においては、鉛直たわみ振動の結果を図2に白三角で示しているように、前記白丸で示した振動発現の風速の全てが矢印で示すように、実験で確認された最も高い風速よりも更に高い側に移行しており、これによって鉛直たわみ振動が発生され難くなるという効果が確認された。   On the other hand, in the wind tunnel experiment using the vibration suppression model 7 having the fairing 8 as shown in FIG. 1, the result of the vertical deflection vibration is shown by the white triangle in FIG. As shown by the arrows, all the wind speeds of the onset were shifted to a higher side than the highest wind speed confirmed in the experiment, thereby confirming the effect that it is difficult to generate vertical deflection vibration.

又、ねじれ振動の結果を図3に白三角で示しているように、中心間距離Wが1.5Bと2.0Bの計測点では前記白丸で示した振動発現の風速が矢印で示すように実験で確認された最高値6の値よりも更に高い側に移行しており、中心間距離Wが1.5B〜2.0Bの範囲ではねじり振動が発生し難くなっている。一方、その他の中心間距離Wである2.5B、3.0B、5.0B、10Bにおいては前記白丸と同等の風速においてねじれ振動が発現している。   In addition, as shown by the white triangle in FIG. 3, the torsional vibration results are as indicated by the arrows indicating the vibration speed indicated by the white circles at the measurement points where the center distance W is 1.5B and 2.0B. It has shifted to a higher side than the value of the maximum value 6 confirmed in the experiment, and torsional vibration hardly occurs when the center distance W is in the range of 1.5B to 2.0B. On the other hand, at other center distances W of 2.5B, 3.0B, 5.0B, and 10B, torsional vibration appears at the same wind speed as the white circle.

従って、前記鉛直たわみ振動とねじれ振動のいずれもが風速の高い側に移行して振動が発現し難くなる中心間距離Wが1.5B〜2.0Bの範囲を、本発明の並列橋における橋梁1,5の中心間距離として設定した。これにより、橋梁1,5の相互間隔を、床版3(上部構造)の幅Bの1/2の距離から床版3(上部構造)の幅Bと同じ距離までの広い範囲に広げることが可能になった。   Therefore, the bridge in the parallel bridge of the present invention has a center-to-center distance W in the range of 1.5B to 2.0B in which both the vertical deflection vibration and the torsional vibration are shifted to the higher wind speed side and the vibration is hardly generated. A distance between centers of 1 and 5 was set. Thereby, the mutual space | interval of the bridges 1 and 5 can be extended to the wide range from the distance 1/2 of the width B of the floor slab 3 (upper structure) to the same distance as the width B of the floor slab 3 (upper structure). It became possible.

上記したように、並列する橋梁1,5の床版3(上部構造)における幅方向で互いに対向しない側の外側幅端縁にフェアリング8を設置することによって、並列する橋梁1,5の幅方向中心の相互間隔である中心間距離をW、床版3(上部構造)の幅をBとしたとき、橋梁1,5の中心間距離WをW=1.5B〜2.0Bのように大きく設定しても、並列橋によるたわみ振動とねじれ振動の両方を効果的に抑制することができた。更に、並列橋を構成する橋梁1,5の架設間隔を従来に比して広げることができるため、並列橋を設計・架設する際の自由度が拡大できる効果がある。   As described above, the width of the parallel bridges 1, 5 is determined by installing the fairing 8 on the outer width edge of the side of the floor slab 3 (upper structure) of the parallel bridges 1, 5 that is not opposed to each other in the width direction. When the center-to-center distance, which is the distance between the centers of the directions, is W and the width of the floor slab 3 (upper structure) is B, the center-to-center distance W of the bridges 1 and 5 is W = 1.5B to 2.0B. Even with a large setting, both flexural vibration and torsional vibration due to the parallel bridge could be effectively suppressed. Furthermore, since the erection interval of the bridges 1 and 5 constituting the parallel bridge can be increased as compared with the prior art, there is an effect that the degree of freedom in designing and erection of the parallel bridge can be increased.

なお、本発明は上記形態にのみ限定されるものではなく、フェアリングの形状は種々変更し得ること、種々の断面形状の橋梁からなる並列橋に適用できること、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   Note that the present invention is not limited to the above embodiment, and the fairing shape can be variously changed, can be applied to a parallel bridge made of bridges having various cross-sectional shapes, and does not depart from the gist of the present invention. Of course, various changes can be made within the range.

本発明を実施する形態の一例を示す制振モデルの正面図である。It is a front view of the vibration suppression model which shows an example of the form which implements the present invention. 図1に示す本発明による制振モデルにより風洞実験を行った際の鉛直たわみ振動の結果を示すグラフである。It is a graph which shows the result of the vertical deflection vibration at the time of conducting a wind tunnel experiment by the vibration suppression model by this invention shown in FIG. 図1に示す本発明による制振モデルにより風洞実験を行った際のねじれ振動の結果を示すグラフである。It is a graph which shows the result of the torsional vibration at the time of conducting a wind tunnel experiment by the vibration suppression model by this invention shown in FIG. 従来の並列橋の寸法を記載し縮小して示した並列橋モデルの正面図である。It is a front view of the parallel bridge model which described and reduced the dimension of the conventional parallel bridge. 図4に示す従来の並列橋モデルによる風洞実験を行った際の鉛直たわみ振動の結果を示すグラフである。It is a graph which shows the result of the vertical deflection vibration at the time of conducting the wind tunnel experiment by the conventional parallel bridge model shown in FIG. 図4に示す従来の並列橋モデルによる風洞実験を行った際のねじれ振動の結果を示すグラフである。It is a graph which shows the result of the torsional vibration at the time of conducting the wind tunnel experiment by the conventional parallel bridge model shown in FIG.

1 橋梁
3 床版(上部構造)
5 橋梁
8 フェアリング
9 三角フェアリング
B 上部構造の幅
W 中心間距離
1 Bridge 3 Floor slab (superstructure)
5 Bridge 8 Fairing 9 Triangular fairing B Superstructure width W Center-to-center distance

Claims (2)

橋梁が並列して架設される並列橋であって、並列する橋梁の上部構造における幅方向で互いに対向しない側の外側幅端縁にフェアリングを設置し、並列する橋梁の幅方向中心の相互間隔である中心間距離をW、上部構造の幅をBとしたとき、橋梁の中心間距離Wを
W=1.5B〜2.0B
とし
前記フェアリングは、高欄に沿って前記上部構造の外側幅端縁に設置される鉛直部と、該鉛直部の下部から幅方向外側へ延設した水平延設部と、該水平延設部の先端と前記鉛直部の上端とを結ぶ傾斜部とを有する三角フェアリングである
ことを特徴とする並列橋。
A parallel bridge in which bridges are laid in parallel, and a fairing is installed at the outer width edge on the side that is not opposite to each other in the width direction in the superstructure of the parallel bridge, and the mutual distance between the width direction centers of the parallel bridges When the distance between the centers is W and the width of the superstructure is B, the distance W between the centers of the bridges is W = 1.5B to 2.0B.
And,
The fairing includes a vertical portion installed at an outer width edge of the upper structure along a rail, a horizontal extending portion extending outward in the width direction from a lower portion of the vertical portion, and a horizontal extending portion of the horizontal extending portion. A parallel bridge characterized in that it is a triangular fairing having an inclined portion connecting a tip and an upper end of the vertical portion .
並列する橋梁は鋼2主桁橋またはボックス桁橋である請求項1に記載の並列橋。   The parallel bridge according to claim 1, wherein the parallel bridge is a steel 2 main girder bridge or a box girder bridge.
JP2009024731A 2009-02-05 2009-02-05 Parallel bridge Expired - Fee Related JP5357557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009024731A JP5357557B2 (en) 2009-02-05 2009-02-05 Parallel bridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009024731A JP5357557B2 (en) 2009-02-05 2009-02-05 Parallel bridge

Publications (2)

Publication Number Publication Date
JP2010180609A JP2010180609A (en) 2010-08-19
JP5357557B2 true JP5357557B2 (en) 2013-12-04

Family

ID=42762316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009024731A Expired - Fee Related JP5357557B2 (en) 2009-02-05 2009-02-05 Parallel bridge

Country Status (1)

Country Link
JP (1) JP5357557B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101028571B1 (en) 2010-11-09 2011-04-11 (주)신흥이앤지 A prefabricated girder with fairings
JP5619594B2 (en) * 2010-12-21 2014-11-05 三菱重工業株式会社 Damping structure of parallel bridge

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6047405B2 (en) * 1979-11-12 1985-10-22 日本鋼管株式会社 Vibration prevention method for parallel bridges
JP3377602B2 (en) * 1994-07-06 2003-02-17 三菱重工業株式会社 Stiffening girder of long bridge
JP3663700B2 (en) * 1995-11-29 2005-06-22 石川島播磨重工業株式会社 Wind resistant structure
JP2001172912A (en) * 1999-12-15 2001-06-26 Seiji Fukuoka Parallel bridge-damping device
JP2004285753A (en) * 2003-03-24 2004-10-14 Public Works Research Institute Bridge
JP2008184892A (en) * 2007-01-05 2008-08-14 Mitsubishi Heavy Ind Ltd Parallel bridge and its design method

Also Published As

Publication number Publication date
JP2010180609A (en) 2010-08-19

Similar Documents

Publication Publication Date Title
Irwin Bluff body aerodynamics in wind engineering
KR20150050510A (en) Device for damping vibrations in cables of a suspension system of a civil engineering structure
JP5357557B2 (en) Parallel bridge
Xin et al. Control of vortex-induced vibration of a long-span bridge by inclined railings
JP2000008326A (en) Bridge girder structure
CN103590323B (en) The square bridge tower wind-induced vibration of chamfering suppresses structure
JP5271497B2 (en) Bridge
CN103952974A (en) Wind-induced vibration suppression structure of square chamfered bridge tower
JP4709554B2 (en) Bridge main tower and bridge equipped with the same
CN105821753A (en) Novel railway curve leaning tower cable-stayed bridge
JP5619594B2 (en) Damping structure of parallel bridge
JP5291784B2 (en) Bridge design method
JP2015137526A (en) long structure
JP4939593B2 (en) Bridge main tower and bridge equipped with the same
Katsuchi et al. Improvement of aerodynamic stability of suspension bridges with H-shaped simplified stiffening girder
JP2003027414A (en) Wind resisting bridge
CN104775362B (en) Bluff body cross section bridge tower wind-induced vibration suppresses structure
JP6187974B2 (en) Damping mechanism of columnar structures
JP2001288711A (en) Wind resistant-vibration control structure for suspension bridge with no reinforcing steels
JP2008184892A (en) Parallel bridge and its design method
JPH01214608A (en) Damping method for vortex excitation caused in bridge main tower
CN112853937B (en) Wind vibration suppression device for large-span straight web steel box girder bridge
CN203684092U (en) Wind-induced vibration suppression structure for chamfered square bridge tower
JP5653578B2 (en) Girder bridge that is supported by the fulcrum of the pier and does not have an opening that penetrates in the vertical direction at the center in the width direction of the floor slab, and its installation method
JP2001172912A (en) Parallel bridge-damping device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130830

R150 Certificate of patent or registration of utility model

Ref document number: 5357557

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees