JP5354849B2 - Wind generator main shaft support structure - Google Patents

Wind generator main shaft support structure Download PDF

Info

Publication number
JP5354849B2
JP5354849B2 JP2006244396A JP2006244396A JP5354849B2 JP 5354849 B2 JP5354849 B2 JP 5354849B2 JP 2006244396 A JP2006244396 A JP 2006244396A JP 2006244396 A JP2006244396 A JP 2006244396A JP 5354849 B2 JP5354849 B2 JP 5354849B2
Authority
JP
Japan
Prior art keywords
tapered roller
main shaft
bearing
tapered
roller bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006244396A
Other languages
Japanese (ja)
Other versions
JP2008064244A (en
Inventor
達也 大本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2006244396A priority Critical patent/JP5354849B2/en
Application filed by NTN Corp filed Critical NTN Corp
Priority to PCT/JP2007/067199 priority patent/WO2008029796A1/en
Priority to US12/310,798 priority patent/US8764304B2/en
Priority to DK07806654.5T priority patent/DK2060806T3/en
Priority to DK12175578.9T priority patent/DK2511544T4/en
Priority to CN2007800333120A priority patent/CN101512169B/en
Priority to EP12175578.9A priority patent/EP2511544B2/en
Priority to ES12175578T priority patent/ES2455228T5/en
Priority to ES07806654.5T priority patent/ES2455015T3/en
Priority to EP07806654.5A priority patent/EP2060806B1/en
Publication of JP2008064244A publication Critical patent/JP2008064244A/en
Application granted granted Critical
Publication of JP5354849B2 publication Critical patent/JP5354849B2/en
Priority to US14/279,539 priority patent/US9810263B2/en
Priority to US14/692,840 priority patent/US9664231B2/en
Priority to US15/712,278 priority patent/US10408267B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Wind Motors (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Rolling Contact Bearings (AREA)

Description

この発明は、風力発電機の主軸支持構造に関するものである。   The present invention relates to a main shaft support structure for a wind power generator.

従来の風力発電機が、例えば、特開2005−207517号公報(特許文献1)に記載されている。同公報に記載されている風力発電機は、支持台と、支持台上に旋回座軸受を介して水平旋回自在に配置される主要部品を格納するナセルと、軸受ハウジングに固定された軸受によって回転自在に支持される主軸と、主軸の一方端側にブレードと、主軸の他方端側に増速機および発電機とを備える。   A conventional wind power generator is described in, for example, Japanese Patent Application Laid-Open No. 2005-207517 (Patent Document 1). The wind power generator described in the publication is rotated by a support base, a nacelle for storing main components arranged on the support base in a horizontally swingable manner via a swivel bearing, and a bearing fixed to the bearing housing. A main shaft freely supported, a blade on one end side of the main shaft, and a speed increaser and a generator on the other end side of the main shaft are provided.

上記構成の風力発電機は、風を受けて回転するブレードに伴って主軸が回転し、増速機によって主軸の回転が増速され、発電機で電力に変換される。この風力発電機の主軸は、ブレードが風を受けることによって生じるアキシアル荷重の他に、ブレードの自重によって生じるラジアル荷重やモーメント荷重を受ける。このため、主軸を支持する軸受には、ラジアル荷重、アキシアル荷重、およびモーメント荷重が同時に負荷される環境で使用可能な自動調心ころ軸受や円錐ころ軸受が使用される。
特開2005−207517号公報
In the wind power generator configured as described above, the main shaft rotates along with the blades that rotate by receiving wind, the rotation of the main shaft is increased by the speed increaser, and the electric power is converted by the generator. The main shaft of the wind power generator receives a radial load and a moment load caused by the weight of the blade in addition to an axial load caused by the blade receiving wind. For this reason, as the bearing that supports the main shaft, a self-aligning roller bearing or a tapered roller bearing that can be used in an environment in which a radial load, an axial load, and a moment load are simultaneously applied is used.
JP 2005-207517 A

近年、ブレードの大型化や風力発電機をより風の強い場所に設置する等、発電効率の向上を目的とした取り組みがなされており、これに伴って主軸を支持する軸受に負荷される荷重も大きくなっている。したがって、長寿命で高い信頼性が求められる主軸支持用軸受には、更なる負荷容量の向上が要求されている。   In recent years, efforts have been made to improve power generation efficiency, such as increasing the size of blades and installing wind power generators in windier locations, and as a result, the load applied to the bearing that supports the main shaft is also increased. It is getting bigger. Therefore, further improvement in load capacity is required for a spindle support bearing that requires a long life and high reliability.

また、風力発電機の主軸には回転時に所定の方向に偏った荷重が作用するので、その円周方向において、荷重が負荷される領域(以下、「負荷領域」という)と、荷重が負荷されない領域(以下、「非負荷領域」という)とに区分される。そのため、主軸を支持する軸受は、負荷領域に位置するころのみによって荷重を支持することとなる。したがって、このような環境で使用される軸受が現実に支持可能な荷重は、軸受全体として支持可能な荷重の一部でしかない。   In addition, since a load that is biased in a predetermined direction acts on the main shaft of the wind power generator, an area in which the load is applied (hereinafter referred to as “load area”) and a load are not applied in the circumferential direction. It is divided into areas (hereinafter referred to as “non-load areas”). Therefore, the bearing that supports the main shaft supports the load only with the rollers located in the load region. Therefore, the load that can be actually supported by the bearing used in such an environment is only a part of the load that can be supported by the entire bearing.

そこで、この発明の目的は、負荷容量をさらに増大させた円錐ころ軸受であって、軸受全体で荷重を支持することができる円錐ころ軸受を採用した風力発電機の主軸支持構造を提供することである。   Accordingly, an object of the present invention is to provide a main shaft support structure for a wind power generator that employs a tapered roller bearing that further increases the load capacity and that can support the load with the entire bearing. is there.

この発明に係る風力発電機の主軸支持構造は、風を受けるブレードと、その一端がブレードに固定されてブレードとともに回転する主軸と、主軸を回転自在に支持する円錐ころ軸受とを備える風力発電機の主軸支持構造である。円錐ころ軸受に注目すると、軌道面を有する内輪および外輪と、軌道面に接する転動面を有する複数の円錐ころとを備える。そして、この円錐ころ軸受は、隣接する円錐ころが互いに接触可能な位置に配置される総ころ形式の軸受である。   A main shaft support structure for a wind power generator according to the present invention includes a blade for receiving wind, a main shaft whose one end is fixed to the blade and rotates together with the blade, and a tapered roller bearing that rotatably supports the main shaft. This is a spindle support structure. When paying attention to the tapered roller bearing, it includes an inner ring and an outer ring having raceway surfaces, and a plurality of tapered rollers having rolling surfaces in contact with the raceway surfaces. The tapered roller bearing is a full-roller type bearing that is disposed at a position where adjacent tapered rollers can contact each other.

上記構成のように、風力発電機の主軸を支持する軸受として総ころ形式の円錐ころ軸受を採用することにより、保持器を有する同じサイズの円錐ころ軸受と比較して収容可能な円錐ころの本数を増やすことができる。その結果、軸受全体としての負荷容量が増加する。   By adopting a full roller type tapered roller bearing as a bearing that supports the main shaft of the wind power generator as in the above configuration, the number of tapered rollers that can be accommodated compared to a tapered roller bearing of the same size having a cage Can be increased. As a result, the load capacity of the entire bearing increases.

好ましくは、円錐ころ軸受の軸受回転中心線と、外輪の軌道面とのなす角θ(接触角)は、θ≧40°を満たす。風力発電機の主軸の主軸を支持する軸受には、ラジアル荷重だけでなくスラスト荷重やモーメント荷重も負荷されるので、これらの荷重を適切に支持するためには、接触角θを上記範囲内とするのが望ましい。   Preferably, the angle θ (contact angle) formed by the bearing rotation center line of the tapered roller bearing and the raceway surface of the outer ring satisfies θ ≧ 40 °. Bearings that support the main shaft of the wind power generator are loaded with not only radial loads but also thrust loads and moment loads.To properly support these loads, the contact angle θ should be within the above range. It is desirable to do.

好ましくは、円錐ころの転動面の任意の位置におけるころ径をD、円錐ころのころ径の測定位置における内輪および外輪の軌道面間距離をdとすると、全ての円錐ころそれぞれの転動面の少なくとも1箇所で、D>dを満たす。   Preferably, when the roller diameter at an arbitrary position of the rolling surface of the tapered roller is D, and the distance between the raceway surfaces of the inner ring and the outer ring at the measurement position of the tapered roller is d, the rolling surface of each of the tapered rollers. Satisfies D> d at at least one point.

上記構成のように、円錐ころ軸受の円周方向のいずれの位置においても軌道面間距離dをころ径Dより小さくする(以下、この関係を「負隙間」という)ことにより、全ての円錐ころに内外輪を介して荷重が負荷される。これにより、長寿命で信頼性の高い風力発電機の主軸支持構造を得ることができる。さらに、軌道面間距離を負隙間とすることによって円錐ころ横滑り等を防止することができるので、隣接する円錐ころの干渉等による回転不良を防止することが可能となる。   As in the above configuration, by reducing the distance d between the raceway surfaces from the roller diameter D at any position in the circumferential direction of the tapered roller bearing (hereinafter, this relationship is referred to as “negative gap”), all the tapered rollers are provided. A load is applied to the inner and outer rings. Thereby, the main shaft support structure of a wind power generator with a long life and high reliability can be obtained. Furthermore, since the distance between the raceway surfaces is set as a negative gap, it is possible to prevent the tapered rollers from slipping and the like, so that it is possible to prevent rotation failure due to interference between adjacent tapered rollers.

一実施形態として、円錐ころの転動面にはクラウニングが形成されており、円錐ころのクラウニングの頂上におけるころ径をD、円錐ころのクラウニングの頂上に対応する位置の軌道面間距離をdとすると、全ての円錐ころで、D>dを満たす。 As one embodiment, crowning is formed on the rolling surface of the tapered roller, the roller diameter at the top of the crowning of the tapered roller is D 1 , and the distance between the raceway surfaces at the position corresponding to the top of the crowning of the tapered roller is d. When 1, in all of the tapered rollers, satisfy D 1> d 1.

他の実施形態として、全ての円錐ころの転動面全域でD>dを満たす。   As another embodiment, D> d is satisfied in the entire rolling surface of all the tapered rollers.

転動面にクラウニングが形成されている円錐ころを使用する場合、軽荷重時には全ての円錐ころがクラウニングの頂上でのみ荷重を支持するので、D>dが成立する。一方、重荷重時には円錐ころが弾性変形して転動面全体で荷重を支持するので、全ての円錐ころの転動面全域で、D>dが成立する。 When using tapered rollers with a crowning formed on the rolling surface, since all the tapered rollers support the load only at the top of the crowning at a light load, D 1 > d 1 is satisfied. On the other hand, since the tapered roller is elastically deformed under heavy load and supports the load on the entire rolling surface, D> d is established in the entire rolling surface of all the tapered rollers.

この発明によれば、風力発電機の主軸を支持する軸受として総ころ形式の円錐ころ軸受を採用したことにより、保持器を有する同じサイズの円錐ころ軸受と比較して負荷容量が増加する。また、軌道面間距離を負隙間とすることにより、常に全てのころで荷重を支持することができるので、長寿命で信頼性の高い風力発電機の主軸支持構造を得ることができる。   According to the present invention, the use of the full roller type tapered roller bearing as the bearing for supporting the main shaft of the wind power generator increases the load capacity as compared with a tapered roller bearing of the same size having a cage. In addition, since the load can be supported by all the rollers at all times by setting the distance between the raceway surfaces to be a negative gap, a long-life and highly reliable main shaft support structure for a wind power generator can be obtained.

図1〜図7を参照して、この発明の一実施形態に係る主軸支持構造を採用した風力発電機11、円錐ころ軸受31、および円錐ころ軸受31を主軸16に組み込む方法を説明する。なお、図1および図2は風力発電機11の内部構造を示す図、図3および図4は風力発電機11の主軸16を支持する円錐ころ軸受31を示す図、図5〜図7は円錐ころ軸受31を主軸16に組み込む方法を示す図である。   With reference to FIGS. 1-7, the wind generator 11, the tapered roller bearing 31, and the method of incorporating the tapered roller bearing 31 which employ | adopted the main shaft support structure which concerns on one Embodiment of this invention are demonstrated in the main shaft 16. FIG. 1 and 2 are diagrams showing the internal structure of the wind power generator 11, FIGS. 3 and 4 are diagrams showing a tapered roller bearing 31 that supports the main shaft 16 of the wind power generator 11, and FIGS. 5 to 7 are cones. FIG. 3 is a view showing a method for incorporating the roller bearing 31 into the main shaft 16.

まず、図1および図2を参照して、風力発電機11は、支持台12と、旋回座軸受13と、ナセル14と、ブレード15と、主軸16と、増速機17と、発電機18と、軸受ハウジング19と、主軸支持用軸受としての円錐ころ軸受31と、旋回用モータ20と、減速機21とを備える。   First, referring to FIGS. 1 and 2, the wind power generator 11 includes a support 12, a swivel bearing 13, a nacelle 14, a blade 15, a main shaft 16, a speed increaser 17, and a generator 18. And a bearing housing 19, a tapered roller bearing 31 as a spindle support bearing, a turning motor 20, and a speed reducer 21.

ナセル14は、支持台12の上に旋回座軸受13を介して設置されており、旋回用モータ20および減速機21によって水平旋回自在となっている。また、風力発電機11の主要部品である主軸16、増速機17、発電機19、円錐ころ軸受31、旋回用モータ20、および減速機21等を収容するハウジングとして機能する。   The nacelle 14 is installed on the support 12 via a swivel bearing 13 and can be swiveled horizontally by a turning motor 20 and a speed reducer 21. Moreover, it functions as a housing that accommodates the main shaft 16, the speed increaser 17, the power generator 19, the tapered roller bearing 31, the turning motor 20, the speed reducer 21, and the like, which are main components of the wind power generator 11.

ブレード15は、主軸16の一端に固定されて風を受けて回転する。主軸16は、一端がブレード15に他端が増速機17それぞれに接続されて、ブレード15の回転を増速機17を介して発電機18に伝達する。また、軸受ハウジング19に組み込まれた円錐ころ軸受31によって、回転自在に支持されている。   The blade 15 is fixed to one end of the main shaft 16 and receives wind to rotate. One end of the main shaft 16 is connected to the blade 15 and the other end is connected to the speed increaser 17, and the rotation of the blade 15 is transmitted to the generator 18 via the speed increaser 17. Further, it is rotatably supported by a tapered roller bearing 31 incorporated in the bearing housing 19.

円錐ころ軸受31には、ブレード15が受ける風力等によって大きなアキシアル荷重が負荷されると共に、ブレード15の自重等によって大きなラジアル荷重および大きなモーメント荷重が負荷される。そこで、このような環境で使用される主軸支持用軸受として、図3に示すような、左右の内輪部材32a,32bを含む内輪32と、外輪33と、複数の円錐ころ34と、内輪間座35とを備える円錐ころ軸受31を採用する。   A large axial load is applied to the tapered roller bearing 31 by wind force received by the blade 15, and a large radial load and a large moment load are applied by the weight of the blade 15 and the like. Therefore, as main shaft support bearings used in such an environment, as shown in FIG. 3, an inner ring 32 including left and right inner ring members 32a and 32b, an outer ring 33, a plurality of tapered rollers 34, and an inner ring spacer. A tapered roller bearing 31 having 35 is employed.

内輪部材32aは、外径面に軌道面36aと、軌道面36aの一方側端部に小鍔37aと、他方側端部に大鍔38aと、大鍔38a側の端面に軸方向に延びる複数のボルト穴39aとを有する。内輪部材32bも同様の構成である。そして、この内輪部材32a,32bは、内輪間座35を挟んで互いの小鍔37a,37bを向かい合わせて配置することによって内輪32を構成する。外輪33は、内輪部材32a,32bの軌道面36a,36bに対応する複列の軌道面33a,33bと、軸方向に貫通する複数の貫通穴33cとを有する。   The inner ring member 32a has a raceway surface 36a on the outer diameter surface, a small collar 37a on one end of the raceway surface 36a, a large collar 38a on the other end, and a plurality of axially extending end faces on the large collar 38a side. Bolt holes 39a. The inner ring member 32b has the same configuration. The inner ring members 32a and 32b constitute the inner ring 32 by arranging the small collars 37a and 37b facing each other with the inner ring spacer 35 interposed therebetween. The outer ring 33 has double-row raceway surfaces 33a and 33b corresponding to the raceway surfaces 36a and 36b of the inner ring members 32a and 32b, and a plurality of through holes 33c penetrating in the axial direction.

図4を参照して、円錐ころ34は、小端面34aと、大端面34bと、転動面34cとを有し、小端面34aを内輪部材32a,32bの小鍔37a,37b側に向けて内輪32および外輪33の間に配置される。また、転動面34cにはクラウニングが形成されており、その頂上はころ長さの中央に位置する。なお、「転動面」とは、両端の面取り部を除いた部分の長さであって、軸受に組み込んだ時に内輪32および外輪33の軌道面36a,36b,33a,33bと接し得る面を指す。   Referring to FIG. 4, the tapered roller 34 has a small end surface 34a, a large end surface 34b, and a rolling surface 34c. The small end surface 34a faces the small collars 37a, 37b of the inner ring members 32a, 32b. Arranged between the inner ring 32 and the outer ring 33. Further, a crowning is formed on the rolling surface 34c, and the top thereof is located at the center of the roller length. The “rolling surface” is the length of the portion excluding the chamfered portions at both ends, and is a surface that can come into contact with the raceway surfaces 36a, 36b, 33a, 33b of the inner ring 32 and the outer ring 33 when incorporated in the bearing. Point to.

上記構成の円錐ころ軸受31は、円錐ころ34が軸方向に複列に配置されており、左右の列の円錐ころ34の小端面34a同士を突き合わせた背面組み合わせ軸受である。また、各軌道面においては、隣接する円錐ころ34が互いに接触可能な位置に配置される総ころ形式の軸受である。   The tapered roller bearing 31 having the above-described configuration is a back combination bearing in which the tapered rollers 34 are arranged in a double row in the axial direction and the small end surfaces 34a of the tapered rollers 34 in the left and right rows are butted together. Moreover, in each raceway surface, it is a full roller type bearing arrange | positioned in the position where the adjacent tapered rollers 34 can mutually contact.

さらに、円錐ころ34の転動面34cの任意の位置におけるころ径をD、円錐ころ34のころ径の測定位置における内輪32および外輪33の軌道面間距離をdとすると、全ての円錐ころ34それぞれの軌道面34cの少なくとも1箇所で、D>dを満たす。すなわち、軌道面間距離は負隙間となっている。   Further, when the roller diameter at an arbitrary position of the rolling surface 34c of the tapered roller 34 is D and the distance between the raceway surfaces of the inner ring 32 and the outer ring 33 at the measurement position of the roller diameter of the tapered roller 34 is d, all the tapered rollers 34 are provided. At least one location on each track surface 34c satisfies D> d. That is, the distance between the raceway surfaces is a negative gap.

具体的には、円錐ころ軸受31に負荷される荷重が小さい場合(軽荷重時)、軌道面36a,33aと転動面34cとはクラウニングの頂上でのみ接触する。すなわち、全ての円錐ころ34のクラウニングの頂上でのみ負隙間(D>d)となる。なお、dはクラウニングの頂上に対応する位置の軌道面間距離を指す。 Specifically, when the load applied to the tapered roller bearing 31 is small (light load), the raceway surfaces 36a and 33a and the rolling surface 34c contact only at the top of the crowning. That is, a negative clearance (D 1 > d 1 ) is obtained only at the top of the crowning of all the tapered rollers 34. Incidentally, d 1 refers to the raceway surface distance between the position corresponding to the top of the crowning.

一方、円錐ころ軸受31に負荷される荷重が大きい場合(重荷重時)、円錐ころ34の転動面34cが弾性変形して、軌道面36a,33aと転動面34cとの接触面積が増加する。そして、転動面34cの全域が軌道面36a,33aと接触したときに、全ての円錐ころ34の転動面34c全域で負隙間(D>d)となる。   On the other hand, when the load applied to the tapered roller bearing 31 is large (at the time of heavy load), the rolling surface 34c of the tapered roller 34 is elastically deformed, and the contact area between the raceway surfaces 36a and 33a and the rolling surface 34c increases. To do. When the entire area of the rolling surface 34c comes into contact with the raceway surfaces 36a and 33a, a negative gap (D> d) is formed in the entire area of the rolling surface 34c of all the tapered rollers 34.

上記構成のように総ころ形式の円錐ころ軸受31とすることにより、保持器を含む同じサイズの円錐ころ軸受と比較して収容可能な円錐ころ34の本数が増加する。その結果、軸受全体の負荷容量を大きくすることができる。また、軌道面間距離を負隙間とすることにより、全ての円錐ころ34に内外輪32,33を介して荷重が負荷される。その結果、負荷領域と非負荷領域とを含む環境で使用する場合でも大きな荷重を支持することが可能となると共に、円錐ころ軸受31の剛性が向上する。   By using the full roller type tapered roller bearing 31 as in the above configuration, the number of tapered rollers 34 that can be accommodated is increased compared to a tapered roller bearing of the same size including a cage. As a result, the load capacity of the entire bearing can be increased. Further, by setting the distance between the raceway surfaces as a negative gap, a load is applied to all the tapered rollers 34 via the inner and outer rings 32 and 33. As a result, even when used in an environment including a load area and a non-load area, a large load can be supported and the rigidity of the tapered roller bearing 31 is improved.

さらに、隣接する円錐ころ34の接触位置における自転方向は互いに逆向きとなるので、総ころ形式の円錐ころ軸受31においては、隣接する円錐ころ34の干渉による回転不良が問題となる。しかし、軌道面間距離を負隙間とすることで円錐ころ34の横滑り等を防止できるので、隣接する円錐ころ34同士の干渉による回転不良が抑制される。その結果、円錐ころ34の自転運動および公転運動がスムーズになる。   Further, since the rotation directions at the contact positions of the adjacent tapered rollers 34 are opposite to each other, in the full roller type tapered roller bearing 31, rotation failure due to interference of the adjacent tapered rollers 34 becomes a problem. However, by making the distance between the raceway surfaces a negative gap, it is possible to prevent the side rollers of the tapered rollers 34 from slipping or the like, so that rotation failure due to interference between adjacent tapered rollers 34 is suppressed. As a result, the rotation and revolution of the tapered roller 34 become smooth.

上記構成の円錐ころ軸受31を風力発電機11の主軸16を支持する軸受として使用することにより、長寿命で信頼性の高い風力発電機の主軸支持構造を得ることができる。   By using the tapered roller bearing 31 configured as described above as a bearing for supporting the main shaft 16 of the wind power generator 11, a long-life and highly reliable main shaft support structure of the wind power generator can be obtained.

なお、上記実施形態における円錐ころ34は、クラウニングの頂上が円錐ころ34のころ長さの中央に位置する例を示したが、これに限ることなく、任意の位置に設定することができる。また、転動面34cにクラウニングが形成されている例を示したが、この発明は、クラウニングが形成されていない円錐ころを採用した円錐ころ軸受にも適用することができる。   In addition, although the tapered roller 34 in the said embodiment showed the example in which the top of crowning is located in the center of the roller length of the tapered roller 34, it is not restricted to this but can be set to arbitrary positions. Moreover, although the example in which the crowning is formed on the rolling surface 34c has been shown, the present invention can also be applied to a tapered roller bearing that employs a tapered roller in which no crowning is formed.

また、上記実施形態における円錐ころ軸受31は複列の例を示したが、これに限ることなく、単列であってもよいし、軌道面が3列以上ある多列の軸受であってもよい。また、円錐ころ軸受31は、背面組み合わせの例を示したが、これに限ることなく、円錐ころ34の大端面34b同士を突き合わせた正面組み合わせの軸受であってもよい。   Moreover, although the tapered roller bearing 31 in the said embodiment showed the example of a double row, it may not be restricted to this, A single row may be sufficient, and even if it is a multi-row bearing with three or more rows of raceway surfaces. Good. Moreover, although the example of the back roller combination was shown for the tapered roller bearing 31, it is not restricted to this, The front combination bearing which faced | matched the large end surfaces 34b of the tapered roller 34 may be sufficient.

背面組み合わせとした場合には、軸受の回転中心線lと、左右の列の円錐ころ34および内外輪32,33の接触線l,lとの交点α,βの間の距離(以下「作用点間距離」という)が長くなるので、剛性が向上する。 In the case of the rear combination, the distance between the intersections α and β of the bearing rotation center line 10 and the contact lines l 1 and l 2 of the tapered rollers 34 and the inner and outer rings 32 and 33 in the left and right rows (hereinafter referred to as “rear combination”) ("Distance between action points") becomes longer, so that rigidity is improved.

次に、図5〜図7を参照して、円錐ころ軸受31を主軸16に組み込む方法を説明する。なお、図5および図6は円錐ころ軸受31を主軸16に組み込む前後の状態を示す図、図7は円錐ころ軸受31の一方の内輪部材32bを主軸16に組み込む主な工程を示すフロー図である。   Next, a method for incorporating the tapered roller bearing 31 into the main shaft 16 will be described with reference to FIGS. FIGS. 5 and 6 are views showing a state before and after the tapered roller bearing 31 is assembled to the main shaft 16, and FIG. 7 is a flowchart showing the main steps of incorporating one inner ring member 32 b of the tapered roller bearing 31 into the main shaft 16. is there.

大型の風力発電機11の主軸16に円錐ころ軸受31を組み込む場合、地上で主軸16を垂直に固定して作業を行う。まず、大鍔38a側を下に向けて内輪部材32aを主軸16に挿通する。次に、内輪部材32aの軌道面36aに円錐ころ34を組み込む。ここで、円錐ころ34の重心Gは大鍔38aの外径面より径方向内側に位置するので、円錐ころ34は軌道面36a上で拘束されていなくとも大鍔38aに引っ掛かって脱落することはない。さらに、内輪間座35を主軸16に挿通する。   When the tapered roller bearing 31 is incorporated into the main shaft 16 of the large-scale wind power generator 11, the operation is performed by fixing the main shaft 16 vertically on the ground. First, the inner ring member 32a is inserted through the main shaft 16 with the large flange 38a facing downward. Next, the tapered roller 34 is incorporated in the raceway surface 36a of the inner ring member 32a. Here, the center of gravity G of the tapered roller 34 is located radially inward from the outer diameter surface of the large collar 38a. Absent. Further, the inner ring spacer 35 is inserted through the main shaft 16.

風力発電機11の主軸16を支持する円錐ころ軸受31には、ブレード15が風を受けること等によって生じるスラスト荷重と、ブレード15の自重等によって生じるラジアル荷重およびモーメント荷重とが負荷される。そこで、これらの荷重を適切に支持するために、円錐ころ軸受31の回転中心線lと、外輪33の軌道面33aに接する位置における円錐ころ34の外径面、つまり外輪33の軌道面33aの仮想線lとのなす角θ(以下「接触角」という)をθ≧40°に設定する。なお、従来の一般的な円錐ころ軸受の接触角は10°〜35°程度である。 The tapered roller bearing 31 that supports the main shaft 16 of the wind power generator 11 is loaded with a thrust load generated when the blade 15 receives wind and the like, and a radial load and a moment load generated due to the weight of the blade 15 and the like. Therefore, in order to properly support these loads, the rotational center line l 3 of the tapered roller bearing 31, the raceway surface 33a of the outer diameter surface, i.e. the outer ring 33 of the tapered roller 34 at a position in contact with the raceway surface 33a of the outer ring 33 the angle between the virtual line l 4 of the theta (hereinafter referred to as "contact angle") is set to θ ≧ 40 °. The contact angle of the conventional general tapered roller bearing is about 10 ° to 35 °.

次に、図7を参照して、主軸16に組み込む前に内輪部材32bと外輪33とを組み立てる(S11)。具体的には、大鍔38a側を下に向けて内輪部材32bを載置する。次に、内輪部材32bの軌道面36bに円錐ころ34を組み込む。次に、外輪33の軌道面33bと円錐ころ34の転動面34cとが適切に接するように外輪33を組み込む。   Next, referring to FIG. 7, the inner ring member 32b and the outer ring 33 are assembled before being incorporated into the main shaft 16 (S11). Specifically, the inner ring member 32b is placed with the side of the large collar 38a facing downward. Next, the tapered roller 34 is incorporated in the raceway surface 36b of the inner ring member 32b. Next, the outer ring 33 is assembled so that the raceway surface 33b of the outer ring 33 and the rolling surface 34c of the tapered roller 34 are in proper contact.

次に、内輪部材32bと外輪33とを固定連結する(S12)。具体的には、L字型の固定冶具1の一端と内輪部材32bのボルト穴39bとをボルト2によって固定し、他端と外輪33の貫通穴33cを固定棒3によって固定する。これにより、円錐ころ34は軌道面36b,33bの間で拘束されているので脱落することはない。   Next, the inner ring member 32b and the outer ring 33 are fixedly connected (S12). Specifically, one end of the L-shaped fixing jig 1 and the bolt hole 39 b of the inner ring member 32 b are fixed by the bolt 2, and the other end and the through hole 33 c of the outer ring 33 are fixed by the fixing rod 3. Thereby, since the tapered roller 34 is restrained between the raceway surfaces 36b and 33b, it does not fall off.

次に、図5に示すように、固定連結された内輪部材32bと外輪33とを吊り上げて(S13)、外輪33の軌道面33aを下に向けて主軸16に組み込む(S14)。さらに、図6に示すように、外輪33の軌道面33aが内輪部材32aに組み込まれた円錐ころ34と適切に接触していることを確認して固定冶具1を外す。   Next, as shown in FIG. 5, the inner ring member 32b and the outer ring 33 that are fixedly connected are lifted (S13), and the raceway surface 33a of the outer ring 33 is directed downward and incorporated into the main shaft 16 (S14). Further, as shown in FIG. 6, it is confirmed that the raceway surface 33a of the outer ring 33 is in proper contact with the tapered roller 34 incorporated in the inner ring member 32a, and the fixing jig 1 is removed.

最後に、内輪32と外輪33との軌道面間距離dを調整する(S15)。具体的には、予め内輪間座35の幅寸法を調整しておき、内輪部材32a,32bの間に予圧を加えることによって軌道面間距離を所定値に設定する。さらに具体的には、全ての円錐ころ34のクラウニングの頂上で負隙間(D>d)となるようにする。 Finally, the raceway distance d between the inner ring 32 and the outer ring 33 is adjusted (S15). Specifically, the distance between the raceway surfaces is set to a predetermined value by adjusting the width dimension of the inner ring spacer 35 in advance and applying a preload between the inner ring members 32a and 32b. More specifically, a negative gap (D 1 > d 1 ) is set at the top of the crowning of all the tapered rollers 34.

なお、上記の組込み手順は一例であって、他の工程をさらに追加してもよいし、一部の工程の順序を入れ替える等してもよい。また、固定冶具1としては、内輪部材32bと外輪33とを固定連結することができるあらゆる構成のものを採用することができる。   Note that the above-described incorporation procedure is an example, and other steps may be further added, or the order of some steps may be changed. Further, as the fixing jig 1, any structure that can fix and connect the inner ring member 32b and the outer ring 33 can be adopted.

上記の組み込み手順とすることにより、総ころ形式の円錐ころ軸受31を主軸16に組み込む際に円錐ころ34が脱落するのを防止することができる。これにより、円錐ころ軸受31の主軸16への組込みが容易となる。   By adopting the above assembling procedure, it is possible to prevent the tapered roller 34 from dropping off when the full roller type tapered roller bearing 31 is incorporated into the main shaft 16. This facilitates the incorporation of the tapered roller bearing 31 into the main shaft 16.

また、この発明は他の形式の軸受、例えば、自動調心ころ軸受等に適用してもその効果を得ることができる。しかし、前述のように円錐ころ軸受は軌道面間距離の調整が容易であるので、この発明は、特に円錐ころ軸受に適しているといえる。   Further, the present invention can obtain the effect even when applied to other types of bearings, for example, self-aligning roller bearings. However, since the tapered roller bearing can easily adjust the distance between the raceway surfaces as described above, it can be said that the present invention is particularly suitable for the tapered roller bearing.

ここで、円錐ころ34の重心位置は、接触角θが大きくなるにつれて円錐ころ軸受31の径方向内側に移動する。したがって、上記の組み込み方法は、風力発電機11の主軸16を支持する円錐ころ軸受31のような接触角θの大きい軸受に適している。なお、円錐ころの重心位置を径方向内側に移動させる他の方法として、ころ角度を極端に小さくしたり、大鍔の外径を極端に大きくしたりすることも考えられる。しかし、これらは負荷容量が低下したり円錐ころの回転が不安定になったりするので、風力発電機11の主軸16を支持する軸受には適していない。   Here, the center of gravity of the tapered roller 34 moves radially inward of the tapered roller bearing 31 as the contact angle θ increases. Therefore, the above incorporation method is suitable for a bearing having a large contact angle θ such as a tapered roller bearing 31 that supports the main shaft 16 of the wind power generator 11. As other methods for moving the center of gravity of the tapered roller radially inward, it is conceivable to extremely reduce the roller angle or extremely increase the outer diameter of the large collar. However, these are not suitable for bearings that support the main shaft 16 of the wind power generator 11 because the load capacity decreases and the rotation of the tapered rollers becomes unstable.

さらに、汎用性の観点から内輪部材32a,32bの両方にボルト穴39a,39bを設けた例を示したが、組込み作業の観点からは小鍔37b側を下に向けて組み込む内輪部材32bにのみボルト穴39bを設ければ足りる。   Furthermore, from the viewpoint of versatility, the example in which the bolt holes 39a and 39b are provided in both the inner ring members 32a and 32b has been shown. It is sufficient to provide the bolt hole 39b.

以上、図面を参照してこの発明の実施形態を説明したが、この発明は、図示した実施形態のものに限定されない。図示した実施形態に対して、この発明と同一の範囲内において、あるいは均等の範囲内において、種々の修正や変形を加えることが可能である。   As mentioned above, although embodiment of this invention was described with reference to drawings, this invention is not limited to the thing of embodiment shown in figure. Various modifications and variations can be made to the illustrated embodiment within the same range or equivalent range as the present invention.

この発明は、風力発電機の主軸支持構造に有利に利用される。   The present invention is advantageously used for a main shaft support structure of a wind power generator.

この発明の一実施形態に係る主軸支持構造を採用した風力発電機を示す図である。It is a figure which shows the wind generator which employ | adopted the spindle support structure which concerns on one Embodiment of this invention. 図1に示す風力発電機の図解的側面図である。It is an illustration side view of the wind power generator shown in FIG. 図1に示す風力発電機の主軸を支持する円錐ころ軸受を示す図である。It is a figure which shows the tapered roller bearing which supports the main axis | shaft of the wind power generator shown in FIG. 図3に示す円錐ころの拡大図である。It is an enlarged view of the tapered roller shown in FIG. 円錐ころ軸受の内輪部材の一方を主軸に組み込む前の状態を示す図である。It is a figure which shows the state before incorporating one of the inner ring members of a tapered roller bearing in a main shaft. 円錐ころ軸受を主軸に組み込む後の状態を示す図である。It is a figure which shows the state after incorporating a tapered roller bearing in a main shaft. 円錐ころ軸受の内輪部材の一方を主軸に組み込む主な方法を示すフロー図である。It is a flowchart which shows the main method of incorporating one of the inner ring members of a tapered roller bearing into a main shaft.

符号の説明Explanation of symbols

1 固定冶具、2 ボルト、3 固定棒、11 風力発電機、12 支持台、13 旋回座軸受、14 ナセル、15 ブレード、16 主軸、17 増速機、18 発電機、19 軸受ハウジング、20 旋回モータ、21 減速機、31 円錐ころ軸受、32 内輪、32a,32b 内輪部材、33 外輪、33a,33b 外輪軌道面、33c 貫通穴、34 円錐ころ、34a 小端面、34b 大端面、34c 転動面、35 内輪間座、36a,36b 内輪軌道面、37a,37b 小鍔、38a,38b 大鍔、39a,39b ボルト穴。   DESCRIPTION OF SYMBOLS 1 Fixing jig, 2 volt | bolt, 3 fixing rod, 11 Wind power generator, 12 Support stand, 13 Turning seat bearing, 14 Nacelle, 15 Blade, 16 Spindle, 17 Speed up gear, 18 Generator, 19 Bearing housing, 20 Turning motor , 21 Reducer, 31 Conical roller bearing, 32 Inner ring, 32a, 32b Inner ring member, 33 Outer ring, 33a, 33b Outer ring raceway surface, 33c Through hole, 34 Conical roller, 34a Small end surface, 34b Large end surface, 34c Rolling surface, 35 Inner ring spacer, 36a, 36b Inner ring raceway surface, 37a, 37b Small rod, 38a, 38b Large rod, 39a, 39b Bolt hole.

Claims (2)

風を受けるブレードと、
その一端が前記ブレードに固定されてブレードとともに回転する主軸と、
前記ブレードおよび前記主軸から負荷されるアキシアル荷重、ラジアル荷重、およびモーメント荷重を受け、前記主軸を回転自在に支持する複列の円錐ころ軸受とを備える風力発電機の主軸支持構造であって、
複列の前記円錐ころ軸受は、軌道面を有する内輪および外輪と、前記軌道面に接する転動面を有する複数の円錐ころとを備え、
前記内輪は、外径面に設けられた軌道面と、前記軌道面の一方側端部に設けられた小鍔と、前記軌道面の他方側端部に設けられた大鍔とを含み、
前記円錐ころは、小端面を前記小鍔側に向けて配置され、
複列の前記円錐ころ軸受は、それぞれの前記円錐ころの小端面同士を突き合わせた背面組み合わせ軸受であり、
複列の前記円錐ころ軸受は、隣接する前記円錐ころが互いに接触可能な位置に配置される総ころ形式の軸受であり、
前記円錐ころ軸受の軸受回転中心線と、前記外輪の軌道面とのなす角θは、θ≧40°を満たし、
前記円錐ころの転動面の任意の位置におけるころ径をD、前記円錐ころのころ径の測定位置における前記内輪および前記外輪の軌道面間距離をdとすると、
全ての前記円錐ころの転動面全域で、D>dを満たす、風力発電機の主軸支持構造。
A blade that receives the wind,
A main shaft whose one end is fixed to the blade and rotates together with the blade;
A main shaft support structure of a wind power generator comprising a double row tapered roller bearing that receives an axial load, a radial load, and a moment load applied from the blade and the main shaft and rotatably supports the main shaft,
The double row tapered roller bearing includes an inner ring and an outer ring having raceway surfaces, and a plurality of tapered rollers having rolling surfaces in contact with the raceway surfaces,
The inner ring includes a raceway surface provided on an outer diameter surface, a gavel provided on one end portion of the raceway surface, and a large scissor provided on the other end portion of the raceway surface,
The tapered roller is arranged with a small end face directed toward the small side,
The double row tapered roller bearing is a back combination bearing in which the small end surfaces of the tapered rollers are butted together.
The double-row tapered roller bearing is a full-roller type bearing that is disposed at a position where adjacent tapered rollers can contact each other,
The angle θ formed between the bearing rotation center line of the tapered roller bearing and the raceway surface of the outer ring satisfies θ ≧ 40 °,
If the roller diameter at an arbitrary position of the rolling surface of the tapered roller is D, and the distance between the raceway surfaces of the inner ring and the outer ring at the measurement position of the roller diameter of the tapered roller is d,
A main shaft support structure of a wind power generator that satisfies D> d over the entire rolling surface of all the tapered rollers .
前記円錐ころの転動面には、クラウニングが形成されている請求項1に記載の風力発電機の主軸支持構造。 The main shaft support structure for a wind power generator according to claim 1 , wherein a crowning is formed on a rolling surface of the tapered roller.
JP2006244396A 2006-09-08 2006-09-08 Wind generator main shaft support structure Expired - Fee Related JP5354849B2 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP2006244396A JP5354849B2 (en) 2006-09-08 2006-09-08 Wind generator main shaft support structure
ES12175578T ES2455228T5 (en) 2006-09-08 2007-09-04 Roller Bearing Retaining Segment to Support Main Shaft of Wind Power Generator
DK07806654.5T DK2060806T3 (en) 2006-09-08 2007-09-04 Roll bearing and main shaft support structure for a wind turbine
DK12175578.9T DK2511544T4 (en) 2006-09-08 2007-09-04 Holding part for a roller bearing that can carry a main shaft in a wind turbine
CN2007800333120A CN101512169B (en) 2006-09-08 2007-09-04 Roller bearing, retainer segment for wind-power plant spindle supporting roller bearing, and spindle supporting structure of wind-power plant
EP12175578.9A EP2511544B2 (en) 2006-09-08 2007-09-04 Retainer segment of roller bearing for supporting main shaft of wind-power generator
PCT/JP2007/067199 WO2008029796A1 (en) 2006-09-08 2007-09-04 Roller bearing, retainer segment for wind-power plant spindle supporting roller bearing, and spindle supporting structure of wind-power plant
ES07806654.5T ES2455015T3 (en) 2006-09-08 2007-09-04 Roller bearing and main shaft support structure of wind power generator
EP07806654.5A EP2060806B1 (en) 2006-09-08 2007-09-04 Roller bearing and main shaft support structure of wind-power generator
US12/310,798 US8764304B2 (en) 2006-09-08 2007-09-04 Roller bearing, retainer segment of roller bearing for supporting main shaft of wind-power generator, and main shaft support structure of wind-power generator
US14/279,539 US9810263B2 (en) 2006-09-08 2014-05-16 Retainer segment for a roller bearing for supporting a main shaft of a wind-power generator
US14/692,840 US9664231B2 (en) 2006-09-08 2015-04-22 Roller bearing, retainer segment of roller bearing for supporting main shaft of wind-power generator
US15/712,278 US10408267B2 (en) 2006-09-08 2017-09-22 Tapered roller bearing and main shaft support structure of wind-power generator using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006244396A JP5354849B2 (en) 2006-09-08 2006-09-08 Wind generator main shaft support structure

Publications (2)

Publication Number Publication Date
JP2008064244A JP2008064244A (en) 2008-03-21
JP5354849B2 true JP5354849B2 (en) 2013-11-27

Family

ID=39287127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006244396A Expired - Fee Related JP5354849B2 (en) 2006-09-08 2006-09-08 Wind generator main shaft support structure

Country Status (1)

Country Link
JP (1) JP5354849B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017082945A (en) 2015-10-29 2017-05-18 Ntn株式会社 Double row tapered roller bearing, race ring and method of manufacturing double row tapered roller bearing
JP6721657B2 (en) * 2018-10-29 2020-07-15 三菱重工業株式会社 Double row bearing
CN113883022B (en) * 2021-10-29 2023-06-16 新疆金风科技股份有限公司 Shafting of wind generating set and wind generating set
CN113969876B (en) * 2021-10-29 2023-07-04 新疆金风科技股份有限公司 Wind generating set shafting and wind generating set

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54151752A (en) * 1978-05-20 1979-11-29 Ntn Toyo Bearing Co Ltd Steep tapered roller bearings
JP3510726B2 (en) * 1995-12-25 2004-03-29 Ntn株式会社 Roller bearing
JP2003074677A (en) * 2001-09-04 2003-03-12 Nsk Ltd Bearing structure for reduction gear
JP2004338584A (en) * 2003-05-16 2004-12-02 Ntn Corp Manufacturing method of bearing unit for driving wheel and drive unit for wheel
JP2005098418A (en) * 2003-09-25 2005-04-14 Koyo Seiko Co Ltd Method for assembling multiple row tapered roller bearing
JP2005147331A (en) * 2003-11-18 2005-06-09 Ntn Corp Double row rolling bearing
JP2005231428A (en) * 2004-02-18 2005-09-02 Ntn Corp Electric wheel driving device
JP2005265126A (en) * 2004-03-19 2005-09-29 Ntn Corp Full roller type tapered roller bearing
JP4951785B2 (en) * 2004-04-13 2012-06-13 鈴木油脂工業株式会社 Antibacterial fine particles, process for producing the same, and cosmetics or fungicides containing the antibacterial fine particles
JP2006125486A (en) * 2004-10-28 2006-05-18 Ntn Corp Roller with cage
JP2006177446A (en) * 2004-12-22 2006-07-06 Ntn Corp Tapered roller bearing with aligning ring
JP2006177447A (en) * 2004-12-22 2006-07-06 Ntn Corp Double-row rolling bearing
JP2006214545A (en) * 2005-02-04 2006-08-17 Ntn Corp Double-row rolling bearing and rotating shaft supporting structure of speed-increasing gear for wind power generator

Also Published As

Publication number Publication date
JP2008064244A (en) 2008-03-21

Similar Documents

Publication Publication Date Title
JP4937114B2 (en) Positioning bearing assembly for the shaft of a wind turbine transmission
JP4101844B2 (en) Bearing built-in jig, tapered roller bearing, method of assembling tapered roller bearing and main shaft support structure of wind power generator
EP3001850A1 (en) Roller bearing for wind turbines
WO2006033320A1 (en) Double-row self-aligning roller bearing and main shaft support structure for wind-turbine generator
JP4699827B2 (en) Main shaft support structure for tapered roller bearing and wind power generator
JP5354849B2 (en) Wind generator main shaft support structure
US10197093B2 (en) Bearing arrangement
US20180202489A1 (en) Double-row self-aligning roller bearing
JP4522266B2 (en) Double row roller bearing
JP5010353B2 (en) Roller bearings, roller bearing cage segments, and wind turbine main shaft support structure
CN113294443B (en) Bearing device and wind power generation equipment
JP2008032147A (en) Rotating shaft supporting structure of wind power generator
JP2006177446A (en) Tapered roller bearing with aligning ring
JP2009063101A (en) Rolling bearing
JP4616691B2 (en) Tapered roller bearing, pin type cage for tapered roller bearing and main shaft support structure of wind power generator
JP2009063099A (en) Raceway ring for rolling bearing, and self-aligning roller bearing
JP2009092189A (en) Raceway ring for rolling bearing
JP2006349032A (en) Double-row tapered roller bearing and spindle supporting structure of aerogenerator
JP2007024112A (en) Self-aligning roller bearing and planetary gear support structure
JP2006177447A (en) Double-row rolling bearing
JP4308234B2 (en) Conical roller bearing for main shaft support of wind power generator and main shaft support structure of wind power generator
JP2009063102A (en) Retainer for rolling bearing, tapered roller bearing, main shaft support structure for wind power generator, method for manufacturing retainer for rolling bearing, and method for assembling rolling bearing
JP2006207623A (en) Vertical shaft supporting structure
JP2008261357A (en) Rotating shaft supporting structure of wind generator
JP2006177445A (en) Double-row automatic aligned roller bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121016

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130627

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130627

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130827

R150 Certificate of patent or registration of utility model

Ref document number: 5354849

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees