JP5353032B2 - Stacked battery - Google Patents

Stacked battery Download PDF

Info

Publication number
JP5353032B2
JP5353032B2 JP2008064318A JP2008064318A JP5353032B2 JP 5353032 B2 JP5353032 B2 JP 5353032B2 JP 2008064318 A JP2008064318 A JP 2008064318A JP 2008064318 A JP2008064318 A JP 2008064318A JP 5353032 B2 JP5353032 B2 JP 5353032B2
Authority
JP
Japan
Prior art keywords
multilayer structure
conductive plate
current collector
conductive
electronic conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008064318A
Other languages
Japanese (ja)
Other versions
JP2009038004A (en
Inventor
裕一郎 山村
英明 堀江
修 嶋村
康宏 柳原
一希 宮竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2008064318A priority Critical patent/JP5353032B2/en
Priority to US12/165,905 priority patent/US8734986B2/en
Priority to DE602008000179T priority patent/DE602008000179D1/en
Priority to EP08012315A priority patent/EP2026402B1/en
Priority to KR1020080066892A priority patent/KR101001841B1/en
Priority to CN2010102763108A priority patent/CN101916841B/en
Priority to CN2008101323300A priority patent/CN101345322B/en
Publication of JP2009038004A publication Critical patent/JP2009038004A/en
Application granted granted Critical
Publication of JP5353032B2 publication Critical patent/JP5353032B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/54Connection of several leads or tabs of plate-like electrode stacks, e.g. electrode pole straps or bridges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、積層型電池に関し、特に、電池容量および耐久性を向上させるための改良に関する。   The present invention relates to a stacked battery, and more particularly to an improvement for improving battery capacity and durability.

近年、自動車業界では、電気自動車(EV)やハイブリッド電気自動車(HEV)用の大型のリチウムイオン二次電池の開発が盛んに行われており、電池の高エネルギ密度化および高出力化が図られている。エネルギ密度を向上させるためには、電池を構成する部材である集電体を薄くすることが有効であり、金属よりも比重の軽い樹脂層の両面に電子導電体の層を配置し、金属のみの集電体よりも薄く形成された集電体が知られている(例えば、特許文献1参照)。
特開平11−102711号公報 特開2001−297795号公報
In recent years, in the automobile industry, large-sized lithium ion secondary batteries for electric vehicles (EV) and hybrid electric vehicles (HEV) have been actively developed, and the energy density and output of the batteries have been increased. ing. In order to improve the energy density, it is effective to make the current collector, which is a component of the battery, thinner, and the electronic conductor layers are arranged on both sides of the resin layer having a specific gravity lighter than that of the metal, and only the metal A current collector formed thinner than the current collector is known (for example, see Patent Document 1).
JP-A-11-102711 Japanese Patent Application Laid-Open No. 2001-299795

しかしながら、樹脂層の両面に電子導電体の層を配置すると、電池の外部に電流を取り出すための電極端子に集電体を接続する際に、電子導電体の層同士の十分な接触が確保できず、接触抵抗が増加して電池容量が低下する虞がある。   However, when the electronic conductor layers are arranged on both sides of the resin layer, sufficient contact between the electronic conductor layers can be secured when the current collector is connected to the electrode terminal for taking out the current to the outside of the battery. However, the contact resistance may increase and the battery capacity may decrease.

そこで本発明は、電池の体積エネルギ密度の低下を招くことなく、電池容量に優れた積層型電池を提供することを目的とする。   Accordingly, an object of the present invention is to provide a stacked battery having an excellent battery capacity without causing a decrease in volume energy density of the battery.

上記目的を達成する本発明に係る積層型電池は、絶縁層を2つの導電層で挟んだ多層構造部と、電池の外部に電流を取り出すための電極端子と電気的に接続する導電部とを備えた多層構造集電体の両面に、活物質層を設けた電極を発電要素として含んでいる。導電部は、多層構造部の2つの導電層に接続するとともに、絶縁層が設けられる部位の側端よりも側方へ延在する導電材料により形成されている。本発明に係る積層型電池は、導電部が多層構造部と別部材の電子導電板であり、電子導電板の一端が電極端子と電気的に接続し、電子導電板の他端が、2つの導電層の各表面と面接触しつつ接続し、電子導電板および多層構造部の少なくとも一方に、表裏が反転して対向する折り返し部が形成され、当該折り返し部にて面接触している。また、本発明に係る他の積層型電池は、導電部が多層構造部と別部材の電子導電板であり、電子導電板の一端が電極端子と電気的に接続し、電子導電板の他端が、2つの導電層の各表面と面接触しつつ接続し、電子導電板および多層構造部の少なくとも一方に、側端から切り込まれた切り込み部が形成され、当該切り込み部に電子導電板または多層構造部が挟まるとともに電子導電板および多層構造部が面接触している。また、本発明に係る他の積層型電池は、導電部が多層構造部と別部材の電子導電板であり、電子導電板の一端が電極端子と電気的に接続し、電子導電板の他端が、2つの導電層の各表面と面接触しつつ接続し、電子導電板および多層構造部の少なくとも一方に、切り込まれて貫通する切り込み孔が形成され、当該切り込み孔に、電子導電板および多層構造部の他方に形成される挿入片が挿入されるとともに、電子導電板および多層構造部が面接触している。また、本発明に係る他の積層型電池は、導電部の一端を絶縁層の側端よりも側方へ設けて電極端子と電気的に接続し、導電部の他端を多層構造部における2つの導電層と一体的に形成している。 The multilayer battery according to the present invention that achieves the above object includes a multilayer structure portion in which an insulating layer is sandwiched between two conductive layers, and a conductive portion that is electrically connected to an electrode terminal for taking out current to the outside of the battery. An electrode having an active material layer provided on both surfaces of the provided multilayer structure current collector is included as a power generation element. The conductive portion is formed of a conductive material that is connected to the two conductive layers of the multilayer structure portion and extends laterally from the side end of the portion where the insulating layer is provided. In the stacked battery according to the present invention, the conductive portion is an electronic conductive plate that is a separate member from the multilayer structure portion, one end of the electronic conductive plate is electrically connected to the electrode terminal, and the other end of the electronic conductive plate is two The surface of the conductive layer is connected while being in surface contact with each other, and at least one of the electronic conductive plate and the multilayer structure portion is formed with a folded portion that is turned upside down and is opposed to the surface, and is in surface contact with the folded portion. In another stacked battery according to the present invention, the conductive portion is an electronic conductive plate that is a separate member from the multilayer structure portion, one end of the electronic conductive plate is electrically connected to the electrode terminal, and the other end of the electronic conductive plate Are connected in surface contact with the surfaces of the two conductive layers, and at least one of the electronic conductive plate and the multilayer structure portion is formed with a cut portion cut from a side end, and the electronic conductive plate or While the multilayer structure is sandwiched, the electronic conductive plate and the multilayer structure are in surface contact. In another stacked battery according to the present invention, the conductive portion is an electronic conductive plate that is a separate member from the multilayer structure portion, one end of the electronic conductive plate is electrically connected to the electrode terminal, and the other end of the electronic conductive plate Are connected in surface contact with the surfaces of the two conductive layers, and at least one of the electronic conductive plate and the multilayer structure is formed with a cut hole penetrating through, and the electronic conductive plate and the cut hole are formed in the cut hole. An insertion piece formed on the other side of the multilayer structure is inserted, and the electronic conductive plate and the multilayer structure are in surface contact. Further, in another stacked battery according to the present invention, one end of the conductive portion is provided laterally from the side end of the insulating layer to be electrically connected to the electrode terminal, and the other end of the conductive portion is connected to the 2 in the multilayer structure portion. It is integrally formed with two conductive layers.

本発明によれば、軽量な導電層を有する多層構造集電体が適用されるために電池の体積エネルギ密度の低下を招くことがなく、かつ2つの導電層と接続した導電部が電極端子と電気的に接続されているために十分な接触を確保でき、接触抵抗を低減させて優れた電池容量を構築できる。   According to the present invention, since a multilayer structure current collector having a lightweight conductive layer is applied, the volume energy density of the battery is not reduced, and the conductive portion connected to the two conductive layers is connected to the electrode terminal. Since it is electrically connected, sufficient contact can be secured, and excellent battery capacity can be constructed by reducing contact resistance.

以下、図面を参照しながら、本発明の実施形態を説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. In addition, the dimensional ratios in the drawings are exaggerated for convenience of explanation, and may be different from the actual ratios.

<第1実施形態>
図1は、第1実施形態に係るリチウムイオン二次電池の電池要素を示す概略断面図、図2は、第1実施形態に係るリチウムイオン二次電池を構成する、互いに接合される負極および電子導電板の1つを示し、(A)は接合前の斜視図、(B)は接合後の斜視図である。
<First Embodiment>
FIG. 1 is a schematic cross-sectional view showing a battery element of a lithium ion secondary battery according to the first embodiment. FIG. 2 is a diagram illustrating a lithium ion secondary battery according to the first embodiment. One of the conductive plates is shown, (A) is a perspective view before joining, (B) is a perspective view after joining.

図1に示すように、第1実施形態の積層型電池は、例えばリチウムイオン二次電池1であり、実際に充放電反応が進行する電池要素2が、外装であるアルミラミネートシート3の内部に封入されてなる構造を有する。電池要素2は、正極集電体4の表面に正極活物質を含む正極活物質層5が形成されてなる正極6(電極)、電解質を含む電解質層7、および負極集電体8の表面に負極活物質を含む負極活物質層9が形成されてなる負極10(電極)がこの順に積層されてなる単電池11を含む。また、電解質層7は、電解液を保持するためのセパレータに電解液が保持されてなる構成を有する。そして、電池要素2の正極集電体4は、電流を外部に取り出すための正極端子12(電極端子)に電気的に接続され、負極集電体8は、板形状の電子導電板13(導電部)を介して、電流を外部に取り出すための負極端子14(電極端子)に電気的に接続されている。正極端子12および負極端子14は、それぞれ正極集電体4および電子導電板13に対して、超音波接合される。なお、図1に示す形態において、電池要素2は4個の単電池11から構成されている。また、本形態では電池要素2の両最外層に負極10が配置されていることから、負極集電体8は3枚存在し、正極集電体4は2枚存在する。なお、図1の形態は、3層の負極集電体8と2層の正極集電体4が積層されているが、これは図示および説明の便宜のためであり、本実施形態は、実際には7層の負極集電体8と7層の正極集電体4が積層されている。電池サイズは、210mm×95mm×5mmの扁平な矩形形状となっている。ただし、電池要素2を構成する単電池11の個数は特に制限されず、所望の電池容量および電池出力などを考慮して適宜決定されうる。   As shown in FIG. 1, the laminated battery of the first embodiment is, for example, a lithium ion secondary battery 1, and a battery element 2 in which a charge / discharge reaction actually proceeds is placed inside an aluminum laminate sheet 3 that is an exterior. It has an encapsulated structure. The battery element 2 has a positive electrode 6 (electrode) formed by forming a positive electrode active material layer 5 containing a positive electrode active material on the surface of a positive electrode current collector 4, an electrolyte layer 7 containing an electrolyte, and a surface of a negative electrode current collector 8. A unit cell 11 in which a negative electrode 10 (electrode) in which a negative electrode active material layer 9 including a negative electrode active material is formed is laminated in this order is included. The electrolyte layer 7 has a configuration in which the electrolytic solution is held by a separator for holding the electrolytic solution. The positive electrode current collector 4 of the battery element 2 is electrically connected to a positive electrode terminal 12 (electrode terminal) for taking out current to the outside, and the negative electrode current collector 8 is connected to a plate-shaped electronic conductive plate 13 (conductive). Part) is electrically connected to a negative electrode terminal 14 (electrode terminal) for taking out current to the outside. The positive electrode terminal 12 and the negative electrode terminal 14 are ultrasonically bonded to the positive electrode current collector 4 and the electronic conductive plate 13, respectively. In the form shown in FIG. 1, the battery element 2 is composed of four unit cells 11. In the present embodiment, since the negative electrodes 10 are disposed on both outermost layers of the battery element 2, there are three negative electrode current collectors 8 and two positive electrode current collectors 4. In the embodiment shown in FIG. 1, a three-layer negative electrode current collector 8 and a two-layer positive electrode current collector 4 are laminated, but this is for convenience of illustration and explanation. 7 layers of the negative electrode current collector 8 and the seven layers of the positive electrode current collector 4 are laminated. The battery size is a flat rectangular shape of 210 mm × 95 mm × 5 mm. However, the number of the single cells 11 constituting the battery element 2 is not particularly limited, and can be appropriately determined in consideration of a desired battery capacity and battery output.

本実施形態に係るリチウムイオン二次電池1の負極集電体8(多層構造部)は、絶縁材料からなる絶縁層15の両面を、導電材料からなる第1導電層16Aおよび第2導電層16Bで挟んだ多層構造で形成される。負極集電体8には、電子導電板13と接する側端に、表裏が反転するように隙間を有して折り返された集電体折り返し部17が形成されている。また、電子導電板13においても、負極集電体8と接する側端に、表裏が反転するように隙間を有して折り返された導電体折り返し部18が形成されている。集電体折り返し部17および導電体折り返し部18は、折り返されて形成されるそれぞれの隙間に、互いに挟まるようにして表面が接する。これにより、電子導電板13の表面が、負極集電体8の第1導電層16Aおよび第2導電層16Bの両面と面接触し、第1導電層16Aと第2導電層16Bが電子導電板13を介して電気的に導通することとなる。さらに、この面接触する部位において、電子導電板13および負極集電体8を超音波接合することにより、接合部19が形成される。本実施形態では、電子導電板13(導電部)および負極集電体8(多層構造部)を接合することで、1つの多層構造集電体が構成される。   In the negative electrode current collector 8 (multilayer structure) of the lithium ion secondary battery 1 according to the present embodiment, the first conductive layer 16A and the second conductive layer 16B made of a conductive material are provided on both surfaces of the insulating layer 15 made of an insulating material. It is formed with a multilayer structure sandwiched between. In the negative electrode current collector 8, a current collector folded portion 17 is formed at the side end in contact with the electronic conductive plate 13 and folded back with a gap so that the front and back surfaces are reversed. Also in the electronic conductive plate 13, a conductor folded portion 18 is formed at the side end in contact with the negative electrode current collector 8 so as to be folded back with a gap so that the front and back are reversed. The surfaces of the current collector folded portion 17 and the conductor folded portion 18 are in contact with each other so as to be sandwiched between the respective folded gaps. Thereby, the surface of the electronic conductive plate 13 is in surface contact with both surfaces of the first conductive layer 16A and the second conductive layer 16B of the negative electrode current collector 8, and the first conductive layer 16A and the second conductive layer 16B are in contact with the electronic conductive plate. Thus, electrical connection is made through 13. Further, the joining portion 19 is formed by ultrasonically joining the electronic conductive plate 13 and the negative electrode current collector 8 at the surface contact portion. In the present embodiment, one multilayer structure current collector is configured by bonding the electronic conductive plate 13 (conductive part) and the negative electrode current collector 8 (multilayer structure part).

電子導電板13と負極集電体8を接合する際には、図2(A)に示すように、負極集電体8および電子導電板13に集電体折り返し部17および導電体折り返し部18を形成した後、集電体折り返し部17および導電体折り返し部18のそれぞれの隙間に、互いに挟まるようにして重ね合わせる。この後、互いに重なり合う部位に面方向から超音波ホーンを当接させて、加圧しつつ超音波振動を付与して超音波接合し、図2(B)のように接合部19を形成する。接合部19は、本実施形態では3つに分けて形成されているが、数に限定はなく、接合幅d、接合長さLを有して形成される。なお、接合方法は超音波接合に限定されず、レーザ溶接や抵抗溶接等により接合してもよい。面接触する部位、すなわち本実施形態における電子導電板13と負極集電体8の面接触する部位間の抵抗値は、低いほど電池容量に優れた電池を構築でき、望ましくは0.5mΩ以下である。   When the electronic conductive plate 13 and the negative electrode current collector 8 are joined, as shown in FIG. 2A, the current collector folded portion 17 and the conductor folded portion 18 are formed on the negative electrode current collector 8 and the electronic conductive plate 13. After being formed, they are overlapped with each other in the gaps between the current collector folded portion 17 and the conductor folded portion 18. Thereafter, the ultrasonic horn is brought into contact with the overlapping portions from the surface direction, and ultrasonic bonding is performed by applying ultrasonic vibration while applying pressure, thereby forming the bonding portion 19 as shown in FIG. In the present embodiment, the joint portion 19 is divided into three parts, but the number is not limited, and the joint part 19 is formed having a joint width d and a joint length L. The joining method is not limited to ultrasonic joining, and may be joined by laser welding, resistance welding, or the like. The lower the resistance value between the parts in surface contact, that is, the part in surface contact between the electronic conductive plate 13 and the negative electrode current collector 8 in this embodiment, the battery can be constructed with better battery capacity, and preferably 0.5 mΩ or less. is there.

正極集電体4には、厚さ15μmのアルミニウム箔が用いられ、負極集電体8の第1導電層16Aおよび第2導電層16Bには、厚さ3μmの銅箔が用いられている。また、負極集電体8を構成する第1導電層16A、絶縁層15および第2導電層16Bの3層構造の全体の厚さは、本実施形態では31μmとなっている。なお、集電体(4,8)の導電材料は特に限定さえず、アルミニウム箔、銅箔、ステンレス(SUS)箔など、導電性の材料を用いることができる。第1導電層16Aおよび第2導電層16Bが薄いほど、電池容量に優れた電池を構築でき、第1導電層16Aおよび第2導電層16Bの厚さは、好ましくは0.1〜5μmである。   An aluminum foil having a thickness of 15 μm is used for the positive electrode current collector 4, and a copper foil having a thickness of 3 μm is used for the first conductive layer 16 </ b> A and the second conductive layer 16 </ b> B of the negative electrode current collector 8. The total thickness of the three-layer structure of the first conductive layer 16A, the insulating layer 15 and the second conductive layer 16B constituting the negative electrode current collector 8 is 31 μm in this embodiment. Note that the conductive material of the current collector (4, 8) is not particularly limited, and a conductive material such as an aluminum foil, a copper foil, or a stainless steel (SUS) foil can be used. The thinner the first conductive layer 16A and the second conductive layer 16B, the better the battery capacity can be constructed. The thickness of the first conductive layer 16A and the second conductive layer 16B is preferably 0.1 to 5 μm. .

負極集電体8の絶縁層15としては、厚さ25μmのポリイミドが用いられている。なお、絶縁層15としては耐熱性に優れるポリイミドが好ましいが、他の樹脂等の絶縁材料を用いてもよい。絶縁層15が厚いほど、耐久性、耐震性に優れた電池を構築できるため、絶縁層15の厚さは、好ましくは5μm以上であることが好ましい。   As the insulating layer 15 of the negative electrode current collector 8, polyimide having a thickness of 25 μm is used. The insulating layer 15 is preferably made of polyimide having excellent heat resistance, but other insulating materials such as resins may be used. As the insulating layer 15 is thicker, a battery having excellent durability and earthquake resistance can be constructed. Therefore, the thickness of the insulating layer 15 is preferably 5 μm or more.

電子導電板13には、銅箔が用いられているが、アルミニウム箔、ステンレス(SUS)箔など、他の導電性の材料を用いることもできる。   The electronic conductive plate 13 is made of copper foil, but other conductive materials such as aluminum foil and stainless steel (SUS) foil can also be used.

以下、本実施形態のリチウムイオン二次電池1を構成する他の部材について簡単に説明するが、下記の形態のみに制限されることはなく、従来公知の形態が同様に採用されうる。   Hereinafter, although the other member which comprises the lithium ion secondary battery 1 of this embodiment is demonstrated easily, it is not restrict | limited only to the following form, A conventionally well-known form can be employ | adopted similarly.

[活物質層]
活物質層は活物質を含み、必要に応じてその他の添加剤をさらに含む。
[Active material layer]
The active material layer contains an active material, and further contains other additives as necessary.

正極活物質層5は、正極活物質を含む。正極活物質としては、LiMnが70μmの厚さで設けられている。なお、正極活物質の材料はLiMnに限定されず、例えば、LiNiO等のリチウム−遷移金属酸化物、リチウム−遷移金属リン酸化合物、リチウム−遷移金属硫酸化合物などが適用できる。場合によっては、2種以上の正極活物質が併用されてもよい。なお、上記以外の正極活物質が用いられてもよいことは勿論である。 The positive electrode active material layer 5 contains a positive electrode active material. As the positive electrode active material, LiMn 2 O 4 is provided with a thickness of 70 μm. The material of the positive electrode active material is not limited to LiMn 2 O 4 , and for example, a lithium-transition metal oxide such as LiNiO 2 , a lithium-transition metal phosphate compound, a lithium-transition metal sulfate compound, and the like can be applied. In some cases, two or more positive electrode active materials may be used in combination. Of course, positive electrode active materials other than those described above may be used.

負極活物質層9は、負極活物質を含む。負極活物質としては、グラファイトが12μmの厚さで設けられている。なお、負極活物質の材料はグラファイトに限定されず、例えば、グラファイト、ソフトカーボン、ハードカーボン等の炭素材料、上述したようなリチウム−遷移金属化合物、金属材料、リチウム−金属合金材料などが適用できる。場合によっては、2種以上の負極活物質が併用されてもよい。なお、上記以外の負極活物質が用いられてもよいことは勿論である。   The negative electrode active material layer 9 includes a negative electrode active material. As the negative electrode active material, graphite is provided with a thickness of 12 μm. The material of the negative electrode active material is not limited to graphite, and for example, carbon materials such as graphite, soft carbon, and hard carbon, the above-described lithium-transition metal compounds, metal materials, lithium-metal alloy materials, and the like can be applied. . In some cases, two or more negative electrode active materials may be used in combination. Of course, negative electrode active materials other than those described above may be used.

各活物質層(5、9)に含まれるそれぞれの活物質の平均粒子径は特に制限されないが、通常は0.1〜100μm程度であり、好ましくは1〜20μmである。ただし、この範囲を外れる形態が採用されても、勿論よい。   The average particle diameter of each active material contained in each active material layer (5, 9) is not particularly limited, but is usually about 0.1 to 100 μm, preferably 1 to 20 μm. However, it goes without saying that a form outside this range may be adopted.

正極活物質層5および負極活物質層9に含まれうる添加剤としては、例えば、バインダ、導電助剤、電解質塩(リチウム塩)等が挙げられる。   Examples of the additive that can be included in the positive electrode active material layer 5 and the negative electrode active material layer 9 include a binder, a conductive additive, and an electrolyte salt (lithium salt).

バインダとしては、ポリフッ化ビニリデン(PVdF)、合成ゴム系バインダ等が挙げられる。   Examples of the binder include polyvinylidene fluoride (PVdF) and a synthetic rubber binder.

導電助剤とは、正極活物質層5または負極活物質層9の導電性を向上させるために配合される添加物をいう。導電助剤としては、グラファイト、気相成長炭素繊維などの炭素材料が挙げられる。   The conductive auxiliary agent is an additive that is blended in order to improve the conductivity of the positive electrode active material layer 5 or the negative electrode active material layer 9. Examples of the conductive aid include carbon materials such as graphite and vapor grown carbon fiber.

電解質塩(リチウム塩)としては、Li(CSON)、LiPF、LiBF、LiClO、LiAsF、LiCFSO等が挙げられる。 Examples of the electrolyte salt (lithium salt) include Li (C 2 F 5 SO 2 ) 2 N), LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 and the like.

イオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド(PEO)系およびポリプロピレンオキシド(PPO)系のポリマーが挙げられる。   Examples of the ion conductive polymer include polyethylene oxide (PEO) -based and polypropylene oxide (PPO) -based polymers.

正極活物質層5および負極活物質層9中に含まれる成分の配合比は、特に限定されない。配合比は、非水電解質二次電池についての公知の知見を適宜参照することにより、調整されうる。   The compounding ratio of the components contained in the positive electrode active material layer 5 and the negative electrode active material layer 9 is not particularly limited. The blending ratio can be adjusted by appropriately referring to known knowledge about the nonaqueous electrolyte secondary battery.

[電解質層]
本実施形態のリチウムイオン二次電池1において、電解質層7は、上述したように、セパレータと、前記セパレータ中に注入された電解質とから構成されている。
[Electrolyte layer]
In the lithium ion secondary battery 1 of the present embodiment, the electrolyte layer 7 includes the separator and the electrolyte injected into the separator as described above.

セパレータは、正負の活物質層を分離し、これらの間の短絡を防止する機能を有する。セパレータは、例えば、ポリエチレンやポリプロピレン等のポリオレフィンから構成される微多孔膜からなる。場合によっては、同様の材料から構成される不織布や粒子によって、セパレータを形成してもよい。   The separator has a function of separating the positive and negative active material layers and preventing a short circuit therebetween. A separator consists of a microporous film comprised from polyolefin, such as polyethylene and a polypropylene, for example. Depending on the case, you may form a separator with the nonwoven fabric and particle | grains which are comprised from the same material.

セパレータの厚さについて特に制限はなく、所望の電池性能等を考慮して適宜設定されうる。具体的には、セパレータの厚さは、好ましくは20μm以下であり、より好ましくは10μm以下であり、さらに好ましくは5μm以下である。一方、セパレータの厚さの下限についても特に制限はないが、正負の活物質層間の短絡を有効に防止するという観点から、セパレータの厚さは、好ましくは0.1μm以上であり、より好ましくは0.5μm以上であり、さらに好ましくは1μm以上である。ただし、場合によっては、これらの範囲を外れる厚さのセパレータが用いられてもよい。   There is no restriction | limiting in particular about the thickness of a separator, In consideration of desired battery performance etc., it can set suitably. Specifically, the thickness of the separator is preferably 20 μm or less, more preferably 10 μm or less, and even more preferably 5 μm or less. On the other hand, the lower limit of the thickness of the separator is not particularly limited, but from the viewpoint of effectively preventing a short circuit between the positive and negative active material layers, the thickness of the separator is preferably 0.1 μm or more, more preferably. It is 0.5 μm or more, more preferably 1 μm or more. However, in some cases, a separator having a thickness outside these ranges may be used.

さらに、セパレータは、電解質を保持する機能も有する。本発明のリチウムイオン二次電池1において、セパレータ中に保持される電解質としては、液体電解質およびゲル電解質が挙げられる。   Furthermore, the separator also has a function of holding the electrolyte. In the lithium ion secondary battery 1 of the present invention, examples of the electrolyte retained in the separator include a liquid electrolyte and a gel electrolyte.

液体電解質は、可塑剤である非水系溶媒(有機溶媒)に支持塩であるリチウム塩が溶解した形態を有する。非水系溶媒およびリチウム塩としては、例えば、エチレンカーボネート(EC)やプロピレンカーボネート(PC)等のカーボネート類、および、LiBFなどの、電極の活物質層に添加されうる化合物が同様に用いられうる。 The liquid electrolyte has a form in which a lithium salt as a supporting salt is dissolved in a non-aqueous solvent (organic solvent) as a plasticizer. As the non-aqueous solvent and the lithium salt, for example, carbonates such as ethylene carbonate (EC) and propylene carbonate (PC), and compounds that can be added to the active material layer of the electrode such as LiBF 4 can be similarly used. .

ゲル電解質は、イオン伝導性ポリマーからなるマトリックスポリマーに、上記の液体電解質が注入されてなる構成を有する。マトリックスポリマーとして用いられるイオン伝導性ポリマーとしても同様に、ポリエチレンオキシド(PEO)やポリプロピレンオキシド(PPO)などの、電極の活物質層に添加されうるポリマーが用いられうる。   The gel electrolyte has a configuration in which the above liquid electrolyte is injected into a matrix polymer made of an ion conductive polymer. Similarly, a polymer that can be added to the active material layer of the electrode, such as polyethylene oxide (PEO) or polypropylene oxide (PPO), can be used as the ion conductive polymer used as the matrix polymer.

なお、ゲル電解質のマトリックスポリマーは、架橋構造を形成することによって、優れた機械的強度を発現しうる。架橋構造を形成させるには、適当な重合開始剤を用い、当該重合開始剤の作用要因に応じて、マトリックスポリマー(例えば、PEOやPPO)に対して熱重合、紫外線重合、放射線重合、電子線重合等の重合処理を施せばよい。   In addition, the matrix polymer of gel electrolyte can express the outstanding mechanical strength by forming a crosslinked structure. In order to form a crosslinked structure, an appropriate polymerization initiator is used, and thermal polymerization, ultraviolet polymerization, radiation polymerization, electron beam is applied to a matrix polymer (for example, PEO or PPO) according to the action factor of the polymerization initiator. A polymerization process such as polymerization may be performed.

以上、セパレータに電解質が保持されてなる電解質層について詳細に説明したが、本発明のリチウムイオン二次電池1の電池要素2の電解質層7を構成する電解質は、ポリマー電解質であってもよい。ポリマー電解質はセパレータを必要とせず、イオン伝導性ポリマーからなるマトリックスポリマーに、電解質塩であるリチウム塩が溶解してなる構成を有する。ポリマー電解質を構成するマトリックスポリマーおよびリチウム塩の具体的な形態については、上述した形態が同様に採用されうるため、ここでは説明を省略する。   The electrolyte layer in which the electrolyte is held by the separator has been described in detail above. However, the electrolyte constituting the electrolyte layer 7 of the battery element 2 of the lithium ion secondary battery 1 of the present invention may be a polymer electrolyte. The polymer electrolyte does not require a separator, and has a configuration in which a lithium salt that is an electrolyte salt is dissolved in a matrix polymer made of an ion conductive polymer. About the specific form of the matrix polymer and lithium salt which comprise a polymer electrolyte, since the form mentioned above can be employ | adopted similarly, description is abbreviate | omitted here.

[電極端子]
リチウムイオン二次電池1においては、電池外部に電流を取り出す目的で、電極端子(正極端子12および負極端子14)がラミネートシート3の外部に取り出される。
[Electrode terminal]
In the lithium ion secondary battery 1, the electrode terminals (the positive electrode terminal 12 and the negative electrode terminal 14) are taken out of the laminate sheet 3 for the purpose of taking out current from the battery.

電極端子(正極端子12および負極端子14)を構成する材料は特に制限されず、電池用の電極端子として従来用いられている公知の材料が用いられうる。電極端子の構成材料としては、例えば、アルミニウム、銅、チタン、ニッケル、ステンレス鋼(SUS)、これらの合金等が例示される。なお、正極端子12と負極端子14とでは、同一の材質が用いられてもよいし、異なる材質が用いられてもよい。   The material which comprises an electrode terminal (the positive electrode terminal 12 and the negative electrode terminal 14) is not restrict | limited in particular, The well-known material conventionally used as an electrode terminal for batteries can be used. Examples of the constituent material of the electrode terminal include aluminum, copper, titanium, nickel, stainless steel (SUS), and alloys thereof. In addition, the same material may be used for the positive electrode terminal 12 and the negative electrode terminal 14, and different materials may be used.

[外装]
リチウムイオン二次電池1においては、使用時の外部からの衝撃や環境劣化を防止するために、電池要素2は、ラミネートシートなどの外装内に収容されることが好ましい。外装としては特に制限されず、従来公知の外装が用いられうる。自動車の熱源から効率よく熱を伝え、電池内部を迅速に電池動作温度まで加熱しうる点で、好ましくは、熱伝導性に優れた高分子−金属複合ラミネートシート等が用いられうる。
[Exterior]
In the lithium ion secondary battery 1, the battery element 2 is preferably housed in an exterior such as a laminate sheet in order to prevent external impact and environmental degradation during use. The exterior is not particularly limited, and a conventionally known exterior can be used. A polymer-metal composite laminate sheet or the like excellent in thermal conductivity can be preferably used in that heat can be efficiently transferred from a heat source of an automobile and the inside of the battery can be rapidly heated to the battery operating temperature.

以上、図面を参照しながら本発明のリチウムイオン二次電池1の好ましい実施形態について詳細に説明したが、本発明の技術的範囲は上述した形態のみに限定されることはない。   As mentioned above, although preferred embodiment of the lithium ion secondary battery 1 of this invention was described in detail, referring drawings, the technical scope of this invention is not limited only to the form mentioned above.

第1実施形態に係るリチウムイオン二次電池1によれば、電子導電板13が、負極集電体8の第1導電層16Aおよび第2導電層16Bの両方と面接触する。このため、電子導電板13と第1導電層16Aの間の接触面積が十分に確保されるとともに、電子導電板13と第2導電層16Bの間の接触面積も十分に確保される。したがって、第1導電層16Aと第2導電層16Bの間の電気的導通を広い接触面積で十分に確保しつつ多層構造の薄型集電体を実現できるため、電池の体積エネルギ密度の低下を招くことなしに、接触抵抗を低減させて優れた電池容量を構築できる。   According to the lithium ion secondary battery 1 according to the first embodiment, the electronic conductive plate 13 is in surface contact with both the first conductive layer 16 </ b> A and the second conductive layer 16 </ b> B of the negative electrode current collector 8. For this reason, the contact area between the electronic conductive plate 13 and the first conductive layer 16A is sufficiently ensured, and the contact area between the electronic conductive plate 13 and the second conductive layer 16B is also sufficiently ensured. Accordingly, a thin current collector having a multilayer structure can be realized while sufficiently ensuring a large electrical contact between the first conductive layer 16A and the second conductive layer 16B, resulting in a decrease in the volume energy density of the battery. It is possible to construct an excellent battery capacity by reducing the contact resistance.

また、面接触する折り返し部(17,18)に接合部19が設けられるため、面接触をより確実に確保することができる。   Moreover, since the junction part 19 is provided in the folding | returning part (17, 18) which carries out surface contact, surface contact can be ensured more reliably.

また、負極端子14と負極集電体8の間に、他の部材である電子導電板13が設けられるため、負極端子14から負極集電体8へ伝わる振動を吸収でき、耐久性、耐震性を向上させることができる。特に、本実施形態では、集電体折り返し部17および導電体折り返し部18が、それぞれの隙間に互いに挟まるようにして重なっているため、強度的信頼性に優れている。   In addition, since the electronic conductive plate 13 which is another member is provided between the negative electrode terminal 14 and the negative electrode current collector 8, vibration transmitted from the negative electrode terminal 14 to the negative electrode current collector 8 can be absorbed, and durability and earthquake resistance. Can be improved. In particular, in the present embodiment, the current collector folded portion 17 and the conductor folded portion 18 overlap each other so as to be sandwiched between the respective gaps, so that the strength reliability is excellent.

また、本実施形態では、負極集電体を、絶縁材料からなる絶縁層の両面を導電材料からなる第1導電層および第2導電層で挟んだ多層構造としているが、正極集電体を同様な構造としてもよい。   In this embodiment, the negative electrode current collector has a multilayer structure in which both surfaces of an insulating layer made of an insulating material are sandwiched between a first conductive layer and a second conductive layer made of a conductive material. It is good also as a simple structure.

<第2実施形態>
図3は、第2実施形態に係るリチウムイオン二次電池を構成する、互いに接合される負極および電子導電板の1つを示し、(A)は接合前の斜視図、(B)は接合後の斜視図である。
Second Embodiment
3A and 3B show one of a negative electrode and an electronic conductive plate that are joined to each other, which constitute the lithium ion secondary battery according to the second embodiment, where FIG. 3A is a perspective view before joining, and FIG. 3B is after joining. FIG.

第2実施形態に係るリチウムイオン二次電池は、第1実施形態と異なり、電子導電板21が全体に亘って2層になるように導電体折り返し部22が形成される。すなわち、図3(A)に示すように、電子導電板21の素材となる箔を中央部で折り返し、折り返されて表裏が反転した2側端を、負極集電体8と接する側において隙間を有して対向させる。負極集電体8は、その側端部が、図3(B)に示すように、対向する導電体折り返し部22の隙間に挟まるようにして接する。これにより、電子導電板21の対向する表面が、負極集電体8の第1導電層16Aおよび第2導電層16Bの両面と面接触し、第1導電層16Aと第2導電層16Bが、電子導電板21を介して電気的に導通することとなる。さらに、この面接触する導電体折り返し部22において、電子導電板21および負極集電体8を面方向から第1実施形態と同様に超音波接合することにより、接合部23が形成される。本実施形態では、電子導電板21(導電部)および負極集電体8(多層構造部)を接合することで、1つの多層構造集電体が構成される。   Unlike the first embodiment, the lithium ion secondary battery according to the second embodiment is formed with the conductor folded portion 22 so that the electronic conductive plate 21 has two layers throughout. That is, as shown in FIG. 3A, the foil as the material of the electronic conductive plate 21 is folded at the center, and the two side ends that are folded back and turned upside down are separated from each other on the side in contact with the negative electrode current collector 8. Have it opposite. As shown in FIG. 3B, the negative electrode current collector 8 comes into contact with the gap between the opposing conductor folded portions 22 as shown in FIG. Thus, the opposing surfaces of the electronic conductive plate 21 are in surface contact with both surfaces of the first conductive layer 16A and the second conductive layer 16B of the negative electrode current collector 8, and the first conductive layer 16A and the second conductive layer 16B are Electrical conduction is made through the electronic conductive plate 21. Further, in the conductor folded portion 22 in surface contact, the electronic conductive plate 21 and the negative electrode current collector 8 are ultrasonically bonded from the surface direction in the same manner as in the first embodiment, thereby forming the bonding portion 23. In the present embodiment, one multilayer structure current collector is configured by joining the electronic conductive plate 21 (conductive part) and the negative electrode current collector 8 (multilayer structure part).

なお、本実施形態に係るリチウムイオン二次電池の他の構造は、第1実施形態と同様であるので、説明を省略する。   In addition, since the other structure of the lithium ion secondary battery which concerns on this embodiment is the same as that of 1st Embodiment, description is abbreviate | omitted.

第2実施形態に係るリチウムイオン二次電池によっても、第1実施形態と同様に、電池の体積エネルギ密度の低下を招くことなしに接触抵抗を低減させて優れた電池容量を構築できるとともに、電子導電板21によって負極端子14から伝わる振動を吸収でき、耐久性、耐震性を向上させることができる。   Even with the lithium ion secondary battery according to the second embodiment, as in the first embodiment, it is possible to construct an excellent battery capacity by reducing the contact resistance without causing a decrease in the volume energy density of the battery, Vibration transmitted from the negative electrode terminal 14 can be absorbed by the conductive plate 21, and durability and earthquake resistance can be improved.

また、面接触する導電体折り返し部22に接合部23が設けられるため、面接触をより確実に確保することができる。   Moreover, since the junction part 23 is provided in the conductor folding | turning part 22 which carries out surface contact, surface contact can be ensured more reliably.

<第3実施形態>
図4は、第3実施形態に係るリチウムイオン二次電池を構成する、互いに接合される負極および電子導電板の1つを示し、(A)は接合前の斜視図、(B)は接合後の斜視図である。
<Third Embodiment>
FIG. 4 shows one of a negative electrode and an electronic conductive plate that are joined to each other, constituting the lithium ion secondary battery according to the third embodiment, (A) is a perspective view before joining, and (B) is after joining. FIG.

第3実施形態に係るリチウムイオン二次電池は、第2実施形態と略同様であるが、図4(A)に示すように、負極集電体8に開口部32が設けられる点で異なる。開口部32は接合部33に対応して形成され、したがって、接合部33は、折り返されて対向する電子導電板31同士が接合して形成される。本実施形態では、電子導電板31(導電部)および負極集電体8(多層構造部)を接合することで、1つの多層構造集電体が構成される。このような構造であっても、電子導電板31の表面が、導電体折り返し部34において第1導電層16Aおよび第2導電層16Bの両方と面接触し、第1導電層16Aと第2導電層16Bが、電子導電板31を介して電気的に導通することとなる。   The lithium ion secondary battery according to the third embodiment is substantially the same as that of the second embodiment, but differs in that an opening 32 is provided in the negative electrode current collector 8 as shown in FIG. The opening portion 32 is formed corresponding to the joint portion 33, and therefore, the joint portion 33 is formed by joining the electronic conductive plates 31 that are folded back to face each other. In the present embodiment, one multilayer structure current collector is configured by joining the electronic conductive plate 31 (conductive part) and the negative electrode current collector 8 (multilayer structure part). Even in such a structure, the surface of the electronic conductive plate 31 is in surface contact with both the first conductive layer 16A and the second conductive layer 16B in the conductor folded portion 34, and the first conductive layer 16A and the second conductive layer 16 are in contact with each other. The layer 16 </ b> B is electrically connected via the electronic conductive plate 31.

なお、本実施形態に係るリチウムイオン二次電池の他の構造は、第1実施形態と同様であるので、説明を省略する。   In addition, since the other structure of the lithium ion secondary battery which concerns on this embodiment is the same as that of 1st Embodiment, description is abbreviate | omitted.

第3実施形態に係るリチウムイオン二次電池によっても、第1実施形態と同様に、電池の体積エネルギ密度の低下を招くことなしに接触抵抗を低減させて優れた電池容量を構築できるとともに、電子導電板31によって負極端子14から伝わる振動を吸収でき、耐久性、耐震性を向上させることができる。   Even with the lithium ion secondary battery according to the third embodiment, as in the first embodiment, an excellent battery capacity can be constructed by reducing the contact resistance without causing a decrease in the volumetric energy density of the battery. The vibration transmitted from the negative electrode terminal 14 can be absorbed by the conductive plate 31, and the durability and the earthquake resistance can be improved.

また、面接触する導電体折り返し部34に接合部33が設けられるため、面接触をより確実に確保することができる。   Moreover, since the junction part 33 is provided in the conductor folding | turning part 34 which carries out surface contact, surface contact can be ensured more reliably.

<第4実施形態>
図5は、第4実施形態に係るリチウムイオン二次電池を構成する、互いに接合される負極および電子導電板の1つを示し、(A)は接合前の斜視図、(B)は接合後の斜視図である。
<Fourth embodiment>
FIGS. 5A and 5B show one of a negative electrode and an electronic conductive plate that are bonded to each other, constituting the lithium ion secondary battery according to the fourth embodiment. FIG. 5A is a perspective view before bonding, and FIG. 5B is after bonding. FIG.

第4実施形態に係るリチウムイオン二次電池は、負極集電体8の側端に、折り返されて対向する面同士が接触する集電体折り返し部42が形成される。また、電子導電板41には、第1実施形態のような導電体折り返し部は形成されず、その一方面(図5中の下面)が、負極集電体8の集電体折り返し部42が形成される面に接する。さらに、電子導電板41は、集電体折り返し部42のみでなく、集電体折り返し部42よりも活物質層9が設けられる側の内側接触面43とも接する。これにより、電子導電板41の一方面が、負極集電体8の第1導電層16Aおよび第2導電層16Bの両面と面接触し、第1導電層16Aと第2導電層16Bが、電子導電板41を介して電気的に導通することとなる。さらに、集電体折り返し部42において、電子導電板41および負極集電体8を超音波接合することにより、第1接合部44が形成される。また、内側接触面43において、電子導電板41および負極集電体8を超音波接合することにより、第2接合部45が形成される。本実施形態では、電子導電板41(導電部)および負極集電体8(多層構造部)を接合することで、1つの多層構造集電体が構成される。   In the lithium ion secondary battery according to the fourth embodiment, a current collector folded portion 42 is formed at the side end of the negative electrode current collector 8 so that the surfaces that are folded and face each other are in contact with each other. Further, the electronic conductor plate 41 is not formed with the conductor folded portion as in the first embodiment, and the one surface (the lower surface in FIG. 5) is the current collector folded portion 42 of the negative electrode current collector 8. Touch the surface to be formed. Furthermore, the electronic conductive plate 41 is in contact with not only the current collector folded portion 42 but also the inner contact surface 43 on the side where the active material layer 9 is provided with respect to the current collector folded portion 42. Thereby, one surface of the electronic conductive plate 41 is in surface contact with both surfaces of the first conductive layer 16A and the second conductive layer 16B of the negative electrode current collector 8, and the first conductive layer 16A and the second conductive layer 16B are Electrical conduction is made through the conductive plate 41. Furthermore, the first joined portion 44 is formed by ultrasonically joining the electronic conductive plate 41 and the negative electrode current collector 8 at the current collector folded portion 42. In addition, the second bonding portion 45 is formed by ultrasonically bonding the electronic conductive plate 41 and the negative electrode current collector 8 on the inner contact surface 43. In the present embodiment, one multilayer structure current collector is configured by joining the electronic conductive plate 41 (conductive part) and the negative electrode current collector 8 (multilayer structure part).

なお、本実施形態に係るリチウムイオン二次電池の他の構造は、第1実施形態と同様であるので、説明を省略する。   In addition, since the other structure of the lithium ion secondary battery which concerns on this embodiment is the same as that of 1st Embodiment, description is abbreviate | omitted.

第4実施形態に係るリチウムイオン二次電池によっても、第1実施形態と同様に、電池の体積エネルギ密度の低下を招くことなしに接触抵抗を低減させて優れた電池容量を構築できるとともに、電子導電板41によって負極端子14から伝わる振動を吸収でき、耐久性、耐震性を向上させることができる。   According to the lithium ion secondary battery according to the fourth embodiment, as in the first embodiment, it is possible to construct an excellent battery capacity by reducing the contact resistance without causing a decrease in the volume energy density of the battery. The vibration transmitted from the negative electrode terminal 14 can be absorbed by the conductive plate 41, and durability and earthquake resistance can be improved.

また、面接触する集電体折り返し部42および内側接触面43に接合部(44,45)が設けられるため、面接触をより確実に確保することができる。   Moreover, since the junction part (44, 45) is provided in the collector folding | returning part 42 and the inner side contact surface 43 which are in surface contact, surface contact can be ensured more reliably.

<第5実施形態>
図6は、第5実施形態に係るリチウムイオン二次電池を構成する、互いに接合される負極および電子導電板の1つを示し、(A)は接合前の斜視図、(B)は接合後の斜視図である。
<Fifth Embodiment>
6A and 6B show one of a negative electrode and an electronic conductive plate that are joined to each other, which constitute a lithium ion secondary battery according to a fifth embodiment. FIG. 6A is a perspective view before joining, and FIG. 6B is after joining. FIG.

第5実施形態に係るリチウムイオン二次電池は、図6(A)に示すように、電子導電板51の負極集電体8と接する側端に、側端側から切り込まれた導電体切り込み部52が形成される。また、電子導電板51には、折り返しや切り込みは形成されない。電子導電板51は、図6(B)に示すように、導電体切り込み部52が設けられる側端において導電体切り込み部52を挟んで一方側(図6中の手前側)が、負極集電体8の一方面(図6中の上面)と面接触し、他方側(図6中の奥側)が、負極集電体8の他方面(図6中の下面)と面接触する。これにより、負極集電体8と電子導電板51が重なる重畳部53が設けられる。したがって、電子導電板51が、負極集電体8の第1導電層16Aおよび第2導電層16Bの両面と面接触し、第1導電層16Aと第2導電層16Bが、電子導電板51を介して電気的に導通することとなる。さらに、この面接触する重畳部53において、電子導電板51および負極集電体8を面方向から第1実施形態と同様に超音波接合することにより、接合部54が形成される。本実施形態では、電子導電板51(導電部)および負極集電体8(多層構造部)を接合することで、1つの多層構造集電体が構成される。   As shown in FIG. 6A, the lithium ion secondary battery according to the fifth embodiment has a conductor cut cut from the side end side at the side end in contact with the negative electrode current collector 8 of the electronic conductive plate 51. Part 52 is formed. Further, the electronic conductive plate 51 is not folded or cut. As shown in FIG. 6B, the electronic conductive plate 51 has a negative electrode current collector on one side (the front side in FIG. 6) sandwiching the conductor cut portion 52 at the side end where the conductor cut portion 52 is provided. One surface (upper surface in FIG. 6) of the body 8 is in surface contact, and the other side (back side in FIG. 6) is in surface contact with the other surface (lower surface in FIG. 6) of the negative electrode current collector 8. Thereby, the overlapping portion 53 where the negative electrode current collector 8 and the electronic conductive plate 51 overlap is provided. Therefore, the electronic conductive plate 51 is in surface contact with both surfaces of the first conductive layer 16A and the second conductive layer 16B of the negative electrode current collector 8, and the first conductive layer 16A and the second conductive layer 16B are connected to the electronic conductive plate 51. It will be electrically connected through. Furthermore, in this overlapping portion 53 in surface contact, the bonding portion 54 is formed by ultrasonically bonding the electronic conductive plate 51 and the negative electrode current collector 8 from the surface direction in the same manner as in the first embodiment. In the present embodiment, one multilayer structure current collector is configured by bonding the electronic conductive plate 51 (conductive part) and the negative electrode current collector 8 (multilayer structure part).

なお、本実施形態に係るリチウムイオン二次電池の他の構造は、第1実施形態と同様であるので、説明を省略する。   In addition, since the other structure of the lithium ion secondary battery which concerns on this embodiment is the same as that of 1st Embodiment, description is abbreviate | omitted.

第5実施形態に係るリチウムイオン二次電池によっても、第1実施形態と同様に、電池の体積エネルギ密度の低下を招くことなしに接触抵抗を低減させて優れた電池容量を構築できるとともに、電子導電板51によって負極端子14から伝わる振動を吸収でき、耐久性、耐震性を向上させることができる。   The lithium ion secondary battery according to the fifth embodiment can construct an excellent battery capacity by reducing the contact resistance without causing a decrease in the volume energy density of the battery, as in the first embodiment. The vibration transmitted from the negative electrode terminal 14 can be absorbed by the conductive plate 51, and durability and earthquake resistance can be improved.

また、負極端子14と負極集電体8の間に、他の部材である電子導電板51が設けられるため、負極端子14から伝わる振動を吸収でき、耐久性、耐震性を向上させることができる。   Moreover, since the electronic conductive plate 51 which is another member is provided between the negative electrode terminal 14 and the negative electrode collector 8, the vibration transmitted from the negative electrode terminal 14 can be absorbed, and durability and earthquake resistance can be improved. .

<第6実施形態>
図7は、第6実施形態に係るリチウムイオン二次電池を構成する、互いに接合される負極および電子導電板の1つを示し、(A)は接合前の斜視図、(B)は接合後の斜視図である。
<Sixth Embodiment>
FIG. 7 shows one of a negative electrode and an electronic conductive plate that are joined to each other, constituting the lithium ion secondary battery according to the sixth embodiment, (A) is a perspective view before joining, and (B) is after joining. FIG.

第6実施形態に係るリチウムイオン二次電池は、図7(A)に示すように、負極集電体8の電子導電板61と接する側端に、側端側から切り込まれた集電体切り込み部62が形成される。また、電子導電板61には、折り返しや切り込みは形成されない。負極集電体8は、図7(B)に示すように、集電体切り込み部62が設けられる側端において集電体切り込み部62を挟んで一方側(図7中の手前側)が、電子導電板61の一方面(図7中の上面)と面接触し、他方側(図7中の奥側)が、電子導電板61の他方面(図7中の下面)と面接触する。これにより、負極集電体8と電子導電板61が重なる重畳部63が設けられる。したがって、電子導電板61が、負極集電体8の第1導電層16Aおよび第2導電層16Bの両面と面接触し、第1導電層16Aと第2導電層16Bが、電子導電板61を介して電気的に導通することとなる。さらに、この面接触する重畳部63において、電子導電板61および負極集電体8を面方向から第1実施形態と同様に超音波接合することにより、接合部64が形成される。本実施形態では、電子導電板61(導電部)および負極集電体8(多層構造部)を接合することで、1つの多層構造集電体が構成される。   As shown in FIG. 7A, the lithium ion secondary battery according to the sixth embodiment is a current collector cut from the side end side at the side end in contact with the electronic conductive plate 61 of the negative electrode current collector 8. A notch 62 is formed. Further, the electronic conductive plate 61 is not folded or cut. As shown in FIG. 7B, the negative electrode current collector 8 has one side (the front side in FIG. 7) sandwiching the current collector cut portion 62 at the side end where the current collector cut portion 62 is provided. One surface (upper surface in FIG. 7) of the electronic conductive plate 61 is in surface contact, and the other side (back side in FIG. 7) is in surface contact with the other surface (lower surface in FIG. 7). Thereby, the overlapping part 63 where the negative electrode current collector 8 and the electronic conductive plate 61 overlap is provided. Accordingly, the electronic conductive plate 61 is in surface contact with both surfaces of the first conductive layer 16A and the second conductive layer 16B of the negative electrode current collector 8, and the first conductive layer 16A and the second conductive layer 16B are connected to the electronic conductive plate 61. It will be electrically connected through. Furthermore, in this overlapping portion 63 in surface contact, the electronic conductive plate 61 and the negative electrode current collector 8 are ultrasonically bonded from the surface direction in the same manner as in the first embodiment, thereby forming the bonding portion 64. In the present embodiment, one multilayer structure current collector is configured by bonding the electronic conductive plate 61 (conductive part) and the negative electrode current collector 8 (multilayer structure part).

なお、本実施形態に係るリチウムイオン二次電池の他の構造は、第1実施形態と同様であるので、説明を省略する。   In addition, since the other structure of the lithium ion secondary battery which concerns on this embodiment is the same as that of 1st Embodiment, description is abbreviate | omitted.

第6実施形態に係るリチウムイオン二次電池によっても、第1実施形態と同様に、電池の体積エネルギ密度の低下を招くことなしに接触抵抗を低減させて優れた電池容量を構築できるとともに、電子導電板61によって負極端子14から伝わる振動を吸収でき、耐久性、耐震性を向上させることができる。   Even with the lithium ion secondary battery according to the sixth embodiment, as in the first embodiment, it is possible to construct an excellent battery capacity by reducing the contact resistance without causing a decrease in the volumetric energy density of the battery. The vibration transmitted from the negative electrode terminal 14 can be absorbed by the conductive plate 61, and durability and earthquake resistance can be improved.

また、面接触する重畳部63に接合部64が設けられるため、面接触をより確実に確保することができる。   In addition, since the joining portion 64 is provided in the overlapping portion 63 that is in surface contact, the surface contact can be more reliably ensured.

<第7実施形態>
図8は、第7実施形態に係るリチウムイオン二次電池を構成する、互いに接合される負極および電子導電板の1つを示し、(A)は接合前の斜視図、(B)は接合後の斜視図である。
<Seventh embodiment>
8A and 8B show one of a negative electrode and an electronic conductive plate that are joined to each other, constituting the lithium ion secondary battery according to the seventh embodiment, where FIG. 8A is a perspective view before joining, and FIG. 8B is after joining. FIG.

第7実施形態に係るリチウムイオン二次電池は、図8(A)に示すように、電子導電板71の負極集電体8と接する側端に、側端側から切り込まれた2つの導電体切り込み部72が形成される。これにより、2つの導電体切り込み部72の間には、側端に向かって延びる導電体挿入片73が設けられ、その両側には、導電体側端片74が設けられる。また、負極集電体8には、電子導電板71と接する側端に、側辺に沿って延びる切り込み孔である集電体挿入孔75が設けられる。導電体挿入片73は、図8(B)に示すように、集電体挿入孔75に一方面(図8中の上面)側から挿入される。これにより、導電体側端片74は負極集電体8の一方面(図8中の上面)と面接触し、導電体挿入片73は負極集電体8の他方面(図8中の下面)と面接触する。これにより、負極集電体8と電子導電板71が重なる重畳部76が設けられる。したがって、電子導電板71が、負極集電体8の第1導電層16Aおよび第2導電層16Bの両面と面接触し、第1導電層16Aと第2導電層16Bが、電子導電板71を介して電気的に導通することとなる。さらに、この面接触する重畳部76において、電子導電板71および負極集電体8を面方向から第1実施形態と同様に超音波接合することにより、接合部77が形成される。本実施形態では、電子導電板71(導電部)および負極集電体8(多層構造部)を接合することで、1つの多層構造集電体が構成される。   As shown in FIG. 8A, the lithium ion secondary battery according to the seventh embodiment has two conductive layers cut from the side end side at the side end in contact with the negative electrode current collector 8 of the electronic conductive plate 71. A body cutout 72 is formed. Thus, a conductor insertion piece 73 extending toward the side end is provided between the two conductor cut portions 72, and a conductor side end piece 74 is provided on both sides thereof. Further, the negative electrode current collector 8 is provided with a current collector insertion hole 75 that is a cut hole extending along the side edge at a side end in contact with the electronic conductive plate 71. As shown in FIG. 8B, the conductor insertion piece 73 is inserted into the current collector insertion hole 75 from the one surface (upper surface in FIG. 8) side. Thus, the conductor-side end piece 74 is in surface contact with one surface (the upper surface in FIG. 8) of the negative electrode current collector 8, and the conductor insertion piece 73 is the other surface (the lower surface in FIG. 8) of the negative electrode current collector 8. In surface contact. Thereby, the overlapping portion 76 where the negative electrode current collector 8 and the electronic conductive plate 71 overlap is provided. Therefore, the electronic conductive plate 71 is in surface contact with both surfaces of the first conductive layer 16A and the second conductive layer 16B of the negative electrode current collector 8, and the first conductive layer 16A and the second conductive layer 16B connect the electronic conductive plate 71 to each other. It will be electrically connected through. Further, in the overlapping portion 76 that is in surface contact, the electronic conductive plate 71 and the negative electrode current collector 8 are ultrasonically bonded from the surface direction in the same manner as in the first embodiment, thereby forming the bonding portion 77. In the present embodiment, one multilayer structure current collector is configured by bonding the electronic conductive plate 71 (conductive part) and the negative electrode current collector 8 (multilayer structure part).

なお、本実施形態に係るリチウムイオン二次電池の他の構造は、第1実施形態と同様であるので、説明を省略する。   In addition, since the other structure of the lithium ion secondary battery which concerns on this embodiment is the same as that of 1st Embodiment, description is abbreviate | omitted.

第7実施形態に係るリチウムイオン二次電池によっても、第1実施形態と同様に、電池の体積エネルギ密度の低下を招くことなしに接触抵抗を低減させて優れた電池容量を構築できるとともに、電子導電板71によって負極端子14から伝わる振動を吸収でき、耐久性、耐震性を向上させることができる。   Even with the lithium ion secondary battery according to the seventh embodiment, as in the first embodiment, it is possible to construct an excellent battery capacity by reducing the contact resistance without causing a decrease in the volumetric energy density of the battery. The vibration transmitted from the negative electrode terminal 14 can be absorbed by the conductive plate 71, and durability and earthquake resistance can be improved.

また、面接触する重畳部76に接合部77が設けられるため、面接触をより確実に確保することができる。   Further, since the joining portion 77 is provided in the overlapping portion 76 that is in surface contact, the surface contact can be ensured more reliably.

<第8実施形態>
図9は、第8実施形態に係るリチウムイオン二次電池を構成する、互いに接合される負極および電子導電板の1つを示し、(A)は接合前の斜視図、(B)は接合後の斜視図である。
<Eighth Embodiment>
FIG. 9 shows one of a negative electrode and an electronic conductive plate that are joined to each other, which constitute a lithium ion secondary battery according to an eighth embodiment, (A) is a perspective view before joining, and (B) is after joining. FIG.

第8実施形態に係るリチウムイオン二次電池は、図9(A)に示すように、負極集電体8の電子導電板81と接する側端に、側端側から切り込まれた2つの集電体切り込み部82が形成される。2つの集電体切り込み部82の間には、側端に向かって延びる集電体挿入片83が設けられ、その両側には、集電体側端片84が設けられる。また、電子導電板81には、負極集電体8と接する側端に、側辺に沿って延びる切り込み孔である導電体挿入孔85が設けられる。集電体挿入片83は、図9(B)に示すように、電子導電板81の導電体挿入孔85に一方面(図9中の上面)側から挿入される。これにより、電子導電板81は、集電体側端片84の一方面(図9中の上面)と面接触するとともに、集電体挿入片83の他方面(図9中の下面)と面接触する。これにより、負極集電体8と電子導電板81が重なる重畳部86が設けられる。したがって、電子導電板81が、負極集電体8の第1導電層16Aおよび第2導電層16Bの両面と面接触し、第1導電層16Aと第2導電層16Bが、電子導電板81を介して電気的に導通することとなる。さらに、この面接触する重畳部86において、電子導電板81および負極集電体8を面方向から第1実施形態と同様に超音波接合することにより、接合部87が形成される。本実施形態では、電子導電板81(導電部)および負極集電体8(多層構造部)を接合することで、1つの多層構造集電体が構成される。   As shown in FIG. 9A, the lithium ion secondary battery according to the eighth embodiment includes two collectors cut from the side end side at the side end in contact with the electron conductive plate 81 of the negative electrode current collector 8. An electric body cut portion 82 is formed. A current collector insertion piece 83 extending toward the side end is provided between the two current collector cut portions 82, and a current collector side end piece 84 is provided on both sides thereof. Further, the electronic conductive plate 81 is provided with a conductor insertion hole 85 that is a cut hole extending along the side edge at a side end in contact with the negative electrode current collector 8. The current collector insertion piece 83 is inserted into the conductor insertion hole 85 of the electronic conductive plate 81 from one side (upper surface in FIG. 9) side, as shown in FIG. 9B. Thus, the electronic conductive plate 81 is in surface contact with one surface (the upper surface in FIG. 9) of the current collector side end piece 84 and is in surface contact with the other surface (the lower surface in FIG. 9) of the current collector insertion piece 83. To do. Thereby, the overlapping portion 86 where the negative electrode current collector 8 and the electronic conductive plate 81 overlap is provided. Therefore, the electronic conductive plate 81 is in surface contact with both surfaces of the first conductive layer 16A and the second conductive layer 16B of the negative electrode current collector 8, and the first conductive layer 16A and the second conductive layer 16B connect the electronic conductive plate 81 to each other. It will be electrically connected through. Further, in the overlapping portion 86 in surface contact, the electronic conductive plate 81 and the negative electrode current collector 8 are ultrasonically bonded from the surface direction in the same manner as in the first embodiment, thereby forming the bonding portion 87. In the present embodiment, one multilayer structure current collector is configured by joining the electronic conductive plate 81 (conductive section) and the negative electrode current collector 8 (multilayer structure section).

なお、本実施形態に係るリチウムイオン二次電池の他の構造は、第1実施形態と同様であるので、説明を省略する。   In addition, since the other structure of the lithium ion secondary battery which concerns on this embodiment is the same as that of 1st Embodiment, description is abbreviate | omitted.

第8実施形態に係るリチウムイオン二次電池によっても、第1実施形態と同様に、電池の体積エネルギ密度の低下を招くことなしに接触抵抗を低減させて優れた電池容量を構築できるとともに、電子導電板81によって負極端子14から伝わる振動を吸収でき、耐久性、耐震性を向上させることができる。   Even with the lithium ion secondary battery according to the eighth embodiment, as in the first embodiment, it is possible to construct an excellent battery capacity by reducing the contact resistance without causing a decrease in the volume energy density of the battery, The vibration transmitted from the negative electrode terminal 14 can be absorbed by the conductive plate 81, and durability and earthquake resistance can be improved.

また、面接触する重畳部86に接合部87が設けられるため、面接触をより確実に確保することができる。   Further, since the joining portion 87 is provided in the overlapping portion 86 that is in surface contact, the surface contact can be more reliably ensured.

<第9実施形態>
図10は、第9実施形態に係るリチウムイオン二次電池の電池要素を示す概略断面図である。
<Ninth Embodiment>
FIG. 10 is a schematic cross-sectional view showing a battery element of the lithium ion secondary battery according to the ninth embodiment.

第9実施形態に係るリチウムイオン二次電池101は、図10に示すように、負極集電体102が、第1導電層103A、絶縁層104および第2導電層103Bの3層構造で形成される積層構造部105と、導電部106とを有している。導電部106は、負極集電体102の側端において、絶縁層104の側端よりも側方へ設けられ、第1導電層103Aおよび第2導電層103Bと一体的に形成された導電材料のみにより形成される。すなわち、本実施形態では、第1〜第8実施形態と異なり、別部材としての電子導電板(導電部)が設けられずに、導電部106が負極集電体102の一部に形成されている。したがって、第1〜第8実施形態では、別部材である負極集電体8および電子導電板を接合することで、1つの多層構造集電体を構成しているが、第9実施形態では、負極集電体102に積層構造部105および導電部106を一体的に形成することで、負極集電体102自体が多層構造集電体となっている。   As shown in FIG. 10, in the lithium ion secondary battery 101 according to the ninth embodiment, the negative electrode current collector 102 is formed with a three-layer structure of a first conductive layer 103A, an insulating layer 104, and a second conductive layer 103B. A laminated structure portion 105 and a conductive portion 106. The conductive portion 106 is provided at the side end of the negative electrode current collector 102 more laterally than the side end of the insulating layer 104, and only the conductive material formed integrally with the first conductive layer 103A and the second conductive layer 103B. It is formed by. That is, in this embodiment, unlike the first to eighth embodiments, the conductive portion 106 is formed on a part of the negative electrode current collector 102 without providing an electronic conductive plate (conductive portion) as a separate member. Yes. Therefore, in the first to eighth embodiments, a single multilayer structure current collector is configured by joining the negative electrode current collector 8 and the electronic conductive plate, which are separate members, but in the ninth embodiment, By integrally forming the laminated structure portion 105 and the conductive portion 106 on the negative electrode current collector 102, the negative electrode current collector 102 itself is a multilayer structure current collector.

負極集電体102の少なくとも1つには、負極端子14に接続するために、側端において屈曲部107が形成されている。絶縁層104は、屈曲部107よりも内側(電池要素を構成する側)に設けられている。それぞれの導電部106は、互いに積層されて、負極端子14に接続される。または、導電部106の各々が、積層されることなく個別に負極端子14に接続されてもよい。   At least one of the negative electrode current collectors 102 is formed with a bent portion 107 at a side end in order to connect to the negative electrode terminal 14. The insulating layer 104 is provided on the inner side (the side constituting the battery element) than the bent portion 107. The conductive portions 106 are stacked on each other and connected to the negative terminal 14. Alternatively, each of the conductive portions 106 may be individually connected to the negative electrode terminal 14 without being stacked.

なお、導電部106は、第1導電層103Aおよび第2導電層103Bの両方と一体的に形成されるのではなく、例えば、第1導電層103Aと一体的に形成される部位と、第2導電層103Bと一体的に形成される部位とが、互いに面接触する2層構造であってもよい。   The conductive portion 106 is not formed integrally with both the first conductive layer 103A and the second conductive layer 103B, but, for example, a portion formed integrally with the first conductive layer 103A, A two-layer structure in which the portion formed integrally with the conductive layer 103B is in surface contact with each other may be employed.

第9実施形態に係るリチウムイオン二次電池101によれば、絶縁層104が設けられない導電部106が、第1導電層103Aおよび第2導電層103Bと一体的に形成されているため、実施形態1〜8の様な電子導電板との接続が不要であるので接触抵抗の増加がなく、第1導電層103Aと第2導電層103Bの間の導通を十分に確保しつつ、負極端子14と接続できる。さらに、多層構造の薄型の集電体を実現でき、電池の体積エネルギ密度の低下を招くことなしに、接触抵抗を低減させて優れた電池容量を構築できる。   According to the lithium ion secondary battery 101 according to the ninth embodiment, the conductive portion 106 without the insulating layer 104 is formed integrally with the first conductive layer 103A and the second conductive layer 103B. Since the connection with the electronic conductive plate as in Embodiments 1 to 8 is unnecessary, there is no increase in contact resistance, and the negative electrode terminal 14 is secured while ensuring sufficient conduction between the first conductive layer 103A and the second conductive layer 103B. Can be connected. Furthermore, a thin current collector having a multilayer structure can be realized, and an excellent battery capacity can be constructed by reducing the contact resistance without causing a decrease in the volumetric energy density of the battery.

<第10実施形態>
図11は、第10実施形態に係るリチウムイオン二次電池の電池要素を示す概略断面図である。
<Tenth Embodiment>
FIG. 11 is a schematic cross-sectional view showing a battery element of the lithium ion secondary battery according to the tenth embodiment.

第10実施形態に係るリチウムイオン二次電池111は、上述した第9実施形態と略同様の構造を有しているが、絶縁層112が、屈曲部113よりも側端側に至るまで形成されている点でのみ、第9実施形態と異なる。   The lithium ion secondary battery 111 according to the tenth embodiment has substantially the same structure as that of the ninth embodiment described above, but the insulating layer 112 is formed to reach the side end side from the bent portion 113. This is different from the ninth embodiment only in that

第10実施形態に係るリチウムイオン二次電池111によれば、第9実施形態と同様の効果を奏するとともに、さらに、絶縁層112が屈曲部113においても形成されているため、屈曲部113における強度が向上し、耐久性、耐震性を向上させることができる。   According to the lithium ion secondary battery 111 according to the tenth embodiment, the same effect as that of the ninth embodiment is achieved, and furthermore, since the insulating layer 112 is also formed at the bent portion 113, the strength at the bent portion 113 is increased. Can improve durability and earthquake resistance.

<参考形態>
図12は、参考形態に係るリチウムイオン二次電池の負極の1つを示す斜視図である。
<Reference form>
FIG. 12 is a perspective view showing one of the negative electrodes of the lithium ion secondary battery according to the reference embodiment.

参考形態に係るリチウムイオン二次電池は、図12に示すように、負極集電体8の側端に、同一回転方向へ2回折り返されて3重に重なる集電体折り返し部91が形成される。これにより、負極集電体8の第1導電層16Aおよび第2導電層16Bが直接的に面接触する。すなわち、集電体折り返し部91における第1導電層16Aおよび第2導電層16B自体が導電部として機能し、第1導電層16Aと第2導電層16Bが電気的に導通することとなる。さらに、この面接触する集電体折り返し部91において、負極集電体8を面方向から第1実施形態と同様に超音波接合することにより、接合部92が形成される。   As shown in FIG. 12, the lithium ion secondary battery according to the reference form has a current collector folded portion 91 that is folded twice in the same rotation direction and overlapped in the same direction at the side end of the negative electrode current collector 8. The Thereby, the first conductive layer 16A and the second conductive layer 16B of the negative electrode current collector 8 are in direct surface contact. That is, the first conductive layer 16A and the second conductive layer 16B themselves in the current collector folded portion 91 function as a conductive portion, and the first conductive layer 16A and the second conductive layer 16B are electrically connected. Further, in the current collector folded portion 91 in surface contact, the negative electrode current collector 8 is ultrasonically bonded from the surface direction in the same manner as in the first embodiment, thereby forming the bonding portion 92.

参考形態に係るリチウムイオン二次電池によれば、負極集電体8の第1導電層16Aおよび第2導電層16Bが直接的に面接触し、第1導電層16Aと第2導電層16Bの間の接触面積が十分に確保される。したがって、第1導電層16Aと第2導電層16Bの間の導通を広い接触面積で十分に確保しつつ、多層構造の薄型の集電体を実現できるため、電池の体積エネルギ密度の低下を招くことなしに、接触抵抗を低減させて優れた電池容量を構築できる。   According to the lithium ion secondary battery according to the reference embodiment, the first conductive layer 16A and the second conductive layer 16B of the negative electrode current collector 8 are in direct surface contact, and the first conductive layer 16A and the second conductive layer 16B are in contact with each other. A sufficient contact area is ensured. Accordingly, a thin current collector having a multilayer structure can be realized while sufficiently securing a conduction between the first conductive layer 16A and the second conductive layer 16B with a wide contact area, thereby causing a decrease in volume energy density of the battery. It is possible to construct an excellent battery capacity by reducing the contact resistance.

また、面接触する集電体折り返し部91に接合部92が設けられるため、面接触をより確実に確保することができる。   Moreover, since the junction part 92 is provided in the collector folding | returning part 91 in surface contact, surface contact can be ensured more reliably.

また、負極端子14と負極集電体8の間に、集電体折り返し部91が設けられるため、負極端子14から伝わる振動を吸収でき、耐久性、耐震性を向上させることができる。   In addition, since the current collector folded portion 91 is provided between the negative electrode terminal 14 and the negative electrode current collector 8, vibration transmitted from the negative electrode terminal 14 can be absorbed, and durability and earthquake resistance can be improved.

<試験例>
上述した第1実施形態〜第8実施形態および参考形態に対応して試験体1〜9を作成し、引張り試験および減衰比測定試験を実施した。試験体1〜8は、図2(B)〜図9(B)に示すように、第1実施形態〜第8実施形態に係るリチウムイオン二次電池を構成する、互いに接合される負極および電子導電板の1つを取り出した構造を有しており、試験体9は、図12に示すように、側端を3重に折り返して接合した負極の1つを取り出した構造を有している。試験体1〜9のいずれも、負極集電体8は、絶縁層15にポリイミドを用い、第1導電層16A,第2導電層16Bに銅箔を用いた多層構造集電箔(多層構造集電体)であり、試験体1〜8の電子導電板(13,21,31,41,51,61,71,81)は、銅箔である。超音波接合では、いずれも超音波ホーンを13〜15psiの加圧力で圧接し、周波数20kHz、出力70〜80Jの超音波を0.5〜0.7秒間印加して、接合幅d=4mm、接合長さL=40mmの接合部(19,23,33,44,45,54,64,77,87,92)を形成した。
<Test example>
Test bodies 1 to 9 were prepared corresponding to the first to eighth embodiments and the reference embodiment described above, and a tensile test and a damping ratio measurement test were performed. As shown in FIGS. 2 (B) to 9 (B), the test bodies 1 to 8 constitute the lithium ion secondary batteries according to the first embodiment to the eighth embodiment, and are bonded to each other. The test body 9 has a structure in which one of the conductive plates is taken out, and the test body 9 has a structure in which one of the negative electrodes joined by folding the side ends in triplicate is taken out as shown in FIG. . In any of the test bodies 1 to 9, the negative electrode current collector 8 is a multilayer current collector foil (multilayer structure current collector) using polyimide for the insulating layer 15 and copper foil for the first conductive layer 16A and the second conductive layer 16B. The electronic conductive plates (13, 21, 31, 41, 51, 61, 71, 81) of the test bodies 1 to 8 are copper foils. In ultrasonic bonding, an ultrasonic horn is pressed with an applied pressure of 13 to 15 psi, an ultrasonic wave with a frequency of 20 kHz and an output of 70 to 80 J is applied for 0.5 to 0.7 seconds, and a bonding width d = 4 mm, Joining portions (19, 23, 33, 44, 45, 54, 64, 77, 87, 92) having a joining length L = 40 mm were formed.

引張り試験では、試験体1〜8では電子導電板(13,21,31,41,51,61,71,81)を、試験体9では負極10の集電体折り返し部91が設けられる端部を、負極10から引き離す方向(図2〜10中の左方向)へ引張り速度10mm/分で引張り、ストロークに対する加重を計測した。結果を、表1に示す。   In the tensile test, the electronic conductive plates (13, 21, 31, 41, 51, 61, 71, 81) are provided in the test bodies 1 to 8, and the end portion of the test body 9 where the current collector folded portion 91 of the negative electrode 10 is provided. Was pulled at a pulling speed of 10 mm / min in the direction of separating from the negative electrode 10 (left direction in FIGS. 2 to 10), and the load on the stroke was measured. The results are shown in Table 1.

Figure 0005353032
Figure 0005353032

減衰比測定試験では、負極10に、負極10の面に垂直方向の加速度を計測できるように加速度センサを設置し、試験体1〜8では電子導電板(13,21,31,41,51,61,71,81)を、試験体9では負極10の集電体折り返し部91が設けられる端部を、インパルスハンマにより面に垂直な方向に加振した。このときの加振信号と応答信号をインパルスハンマおよび加速度センサから取得し、2つの信号をFFTアナライザに入力することにより、周波数応答関数を算出した。さらに、周波数応答関数から減衰比を算出した。結果を、表2に示す。   In the attenuation ratio measurement test, an acceleration sensor is installed on the negative electrode 10 so that acceleration in the direction perpendicular to the surface of the negative electrode 10 can be measured. In the test bodies 1 to 8, the electronic conductive plates (13, 21, 31, 41, 51, 61, 71, 81), the end of the test body 9 where the current collector folded portion 91 of the negative electrode 10 was provided was vibrated in a direction perpendicular to the surface by an impulse hammer. The vibration signal and the response signal at this time were acquired from the impulse hammer and the acceleration sensor, and the two signals were input to the FFT analyzer to calculate the frequency response function. Furthermore, the attenuation ratio was calculated from the frequency response function. The results are shown in Table 2.

Figure 0005353032
Figure 0005353032

表1に示す引張り試験の結果より、いずれの試験体においても、十分に高い接合強度が得られることが確認できた。また、表2に示す減衰比測定試験の結果より、いずれの試験体においても十分に高い減衰比が得られ、高い耐久性、耐震性を有することが確認できた。また、これらの中でも、特に、第1実施形態〜第3実施形態に対応する試験体1〜3において高い接合強度、耐久性および耐震性を実現できることが確認できた。   From the results of the tensile test shown in Table 1, it was confirmed that a sufficiently high bonding strength was obtained in any of the specimens. In addition, from the results of the attenuation ratio measurement test shown in Table 2, it was confirmed that a sufficiently high attenuation ratio was obtained in any of the test specimens, and that it had high durability and earthquake resistance. Moreover, among these, it has confirmed that high joint strength, durability, and earthquake resistance were realizable especially in the test bodies 1-3 corresponding to 1st Embodiment-3rd Embodiment.

なお、本発明は上述した実施の形態に限定されるものではなく、特許請求の範囲の範囲内で種々改変することができる。例えば、多層構造集電体を正極集電体4に適用してもよい。また、第9実施形態では、集電体折り返し部91が同一回転方向へ2回以上折り返されていればよく、例えば4層以上に重なって形成されてもよい。また、積層型電池は、リチウムイオン二次電池に限定されない。   The present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the claims. For example, a multilayer structure current collector may be applied to the positive electrode current collector 4. Moreover, in 9th Embodiment, the collector folding | returning part 91 should just be folded back twice or more to the same rotation direction, for example, may overlap and form four or more layers. The stacked battery is not limited to a lithium ion secondary battery.

第1実施形態に係るリチウムイオン二次電池の電池要素を示す概略断面図である。It is a schematic sectional drawing which shows the battery element of the lithium ion secondary battery which concerns on 1st Embodiment. 第1実施形態に係るリチウムイオン二次電池を構成する、互いに接合される負極および電子導電板の1つを示し、(A)は接合前の斜視図、(B)は接合後の斜視図である。The lithium ion secondary battery which concerns on 1st Embodiment is shown, and the negative electrode and electronic conductive plate which are mutually joined are shown, (A) is the perspective view before joining, (B) is the perspective view after joining. is there. 第2実施形態に係るリチウムイオン二次電池を構成する、互いに接合される負極および電子導電板の1つを示し、(A)は接合前の斜視図、(B)は接合後の斜視図である。The lithium ion secondary battery which concerns on 2nd Embodiment, and shows one of the negative electrode and electronic conductive plate which are mutually joined, (A) is a perspective view before joining, (B) is a perspective view after joining. is there. 第3実施形態に係るリチウムイオン二次電池を構成する、互いに接合される負極および電子導電板の1つを示し、(A)は接合前の斜視図、(B)は接合後の斜視図である。The lithium ion secondary battery which concerns on 3rd Embodiment which shows one of the negative electrode and electronic conductive board which are mutually joined, (A) is a perspective view before joining, (B) is a perspective view after joining. is there. 第4実施形態に係るリチウムイオン二次電池を構成する、互いに接合される負極および電子導電板の1つを示し、(A)は接合前の斜視図、(B)は接合後の斜視図である。The lithium ion secondary battery which concerns on 4th Embodiment, and shows one of the negative electrode and electronic conductive plate which are mutually joined, (A) is a perspective view before joining, (B) is a perspective view after joining. is there. 第5実施形態に係るリチウムイオン二次電池を構成する、互いに接合される負極および電子導電板の1つを示し、(A)は接合前の斜視図、(B)は接合後の斜視図である。The lithium ion secondary battery which concerns on 5th Embodiment which shows one of the negative electrode and electronic conductive board which are joined mutually is shown, (A) is the perspective view before joining, (B) is the perspective view after joining. is there. 第6実施形態に係るリチウムイオン二次電池を構成する、互いに接合される負極および電子導電板の1つを示し、(A)は接合前の斜視図、(B)は接合後の斜視図である。The lithium ion secondary battery which concerns on 6th Embodiment is comprised, and the negative electrode and one which are mutually joined are shown, (A) is the perspective view before joining, (B) is the perspective view after joining. is there. 第7実施形態に係るリチウムイオン二次電池を構成する、互いに接合される負極および電子導電板の1つを示し、(A)は接合前の斜視図、(B)は接合後の斜視図である。The lithium ion secondary battery which concerns on 7th Embodiment shows one of the negative electrode and electronic conductive board which are mutually joined, (A) is a perspective view before joining, (B) is a perspective view after joining. is there. 第8実施形態に係るリチウムイオン二次電池を構成する、互いに接合される負極および電子導電板の1つを示し、(A)は接合前の斜視図、(B)は接合後の斜視図である。The lithium ion secondary battery which concerns on 8th Embodiment is comprised, and the negative electrode and electronic conductive board which are joined mutually are shown, (A) is the perspective view before joining, (B) is the perspective view after joining. is there. 第9実施形態に係るリチウムイオン二次電池の電池要素を示す概略断面図である。It is a schematic sectional drawing which shows the battery element of the lithium ion secondary battery which concerns on 9th Embodiment. 第10実施形態に係るリチウムイオン二次電池の電池要素を示す概略断面図である。It is a schematic sectional drawing which shows the battery element of the lithium ion secondary battery which concerns on 10th Embodiment. 参考形態に係るリチウムイオン二次電池の負極の1つを示す斜視図である。It is a perspective view which shows one of the negative electrodes of the lithium ion secondary battery which concerns on a reference form.

符号の説明Explanation of symbols

1,101,111 リチウムイオン二次電池、
4 正極集電体、
5 正極活物質層、
6 正極、
8,102 負極集電体(多層構造部)、
9 負極活物質層、
10 負極、
13,21,31,41,51,61,71,81 電子導電板(導電部)、
15,104,112 絶縁層、
16A,16B,103A,103B 導電層、
17,42 集電体折り返し部、
18,22,34 導電体折り返し部、
19,23,33,54,64,77,87,92 接合部、
32 開口部、
43 内側接触面、
44 第1接合部、
45 第2接合部、
52 導電体切り込み部、
72 導電体切り込み部、
53,63,76,86 重畳部、
62,82 集電体折り込み部、
73 導電体挿入片、
75 集電体挿入孔(切り込み孔)、
83 集電体挿入片、
85 導電体挿入孔(切り込み孔)、
91 集電体折り返し部、
105 多層構造部、
106 導電部、
107,113 屈曲部、
d 接合幅、
L 接合長さ。
1,101,111 lithium ion secondary battery,
4 positive current collector,
5 positive electrode active material layer,
6 positive electrode,
8,102 negative electrode current collector (multilayer structure),
9 negative electrode active material layer,
10 negative electrode,
13, 21, 31, 41, 51, 61, 71, 81 Electronic conductive plate (conductive portion),
15, 104, 112 insulating layer,
16A, 16B, 103A, 103B conductive layer,
17, 42 Current collector folding part,
18, 22, 34 Conductor folding part,
19, 23, 33, 54, 64, 77, 87, 92 joints,
32 opening,
43 inner contact surface,
44 first joint,
45 second joint,
52 conductor notch,
72 Conductor notch,
53, 63, 76, 86 Superimposition part,
62,82 current collector folding part,
73 conductor insertion piece,
75 Current collector insertion hole (cut hole),
83 Current collector insertion piece,
85 Conductor insertion hole (cut hole),
91 Current collector folding part,
105 multilayer structure,
106 conductive part,
107, 113 bent part,
d Junction width,
L Bond length.

Claims (14)

絶縁層を2つの導電層で挟んだ多層構造部と、
前記2つの導電層に接続するとともに前記絶縁層が設けられる部位の側端よりも側方へ延在する導電材料からなり、電池の外部に電流を取り出すための電極端子と電気的に接続する導電部と、
を備えた多層構造集電体の両面に、活物質層を設けた電極を発電要素として含み、
前記導電部は前記多層構造部と別部材の電子導電板であり、
前記電子導電板の一端が前記電極端子と電気的に接続し、
前記電子導電板の他端が、前記2つの導電層の各表面と面接触しつつ接続し、
前記電子導電板および多層構造部の少なくとも一方に、表裏が反転して対向する折り返し部が形成され、当該折り返し部にて面接触する積層型電池。
A multilayer structure having an insulating layer sandwiched between two conductive layers;
A conductive material that is connected to the two conductive layers and extends laterally from the side end of the portion where the insulating layer is provided, and is electrically connected to an electrode terminal for taking out current to the outside of the battery. And
On both surfaces of the multilayered collector body having a saw including an electrode provided with an active material layer as a power generating element,
The conductive part is an electronic conductive plate that is a separate member from the multilayer structure part,
One end of the electronic conductive plate is electrically connected to the electrode terminal,
The other end of the electronic conductive plate is connected in surface contact with each surface of the two conductive layers,
A laminated battery in which at least one of the electronic conductive plate and the multilayer structure part is formed with a folded part facing upside down and facing each other at the folded part .
絶縁層を2つの導電層で挟んだ多層構造部と、
前記2つの導電層に接続するとともに前記絶縁層が設けられる部位の側端よりも側方へ延在する導電材料からなり、電池の外部に電流を取り出すための電極端子と電気的に接続する導電部と、
を備えた多層構造集電体の両面に、活物質層を設けた電極を発電要素として含み、
前記導電部は前記多層構造部と別部材の電子導電板であり、
前記電子導電板の一端が前記電極端子と電気的に接続し、
前記電子導電板の他端が、前記2つの導電層の各表面と面接触しつつ接続し
前記電子導電板および多層構造部の少なくとも一方に、側端から切り込まれた切り込み部が形成され、当該切り込み部に前記電子導電板または多層構造部が挟まるとともに電子導電板および多層構造部が面接触する積層型電池。
A multilayer structure having an insulating layer sandwiched between two conductive layers;
A conductive material that is connected to the two conductive layers and extends laterally from the side end of the portion where the insulating layer is provided, and is electrically connected to an electrode terminal for taking out current to the outside of the battery. And
Including an electrode provided with an active material layer on both sides of a multilayer structure current collector provided with
The conductive part is an electronic conductive plate that is a separate member from the multilayer structure part,
One end of the electronic conductive plate is electrically connected to the electrode terminal,
The other end of the electronic conductive plate is connected in surface contact with each surface of the two conductive layers ,
At least one of the electronic conductive plate and the multilayer structure portion is formed with a cut portion cut from a side end. The electronic conductive plate or the multilayer structure portion is sandwiched between the cut portion, and the electronic conductive plate and the multilayer structure portion face each other. Stacked battery in contact .
絶縁層を2つの導電層で挟んだ多層構造部と、
前記2つの導電層に接続するとともに前記絶縁層が設けられる部位の側端よりも側方へ延在する導電材料からなり、電池の外部に電流を取り出すための電極端子と電気的に接続する導電部と、
を備えた多層構造集電体の両面に、活物質層を設けた電極を発電要素として含み、
前記導電部は前記多層構造部と別部材の電子導電板であり、
前記電子導電板の一端が前記電極端子と電気的に接続し、
前記電子導電板の他端が、前記2つの導電層の各表面と面接触しつつ接続し、
前記電子導電板および多層構造部の少なくとも一方に、切り込まれて貫通する切り込み孔が形成され、当該切り込み孔に、前記電子導電板および多層構造部の他方に形成される挿入片が挿入されるとともに、前記電子導電板および多層構造部が面接触する積層型電池。
A multilayer structure having an insulating layer sandwiched between two conductive layers;
A conductive material that is connected to the two conductive layers and extends laterally from the side end of the portion where the insulating layer is provided, and is electrically connected to an electrode terminal for taking out current to the outside of the battery. And
Including an electrode provided with an active material layer on both sides of a multilayer structure current collector provided with
The conductive part is an electronic conductive plate that is a separate member from the multilayer structure part,
One end of the electronic conductive plate is electrically connected to the electrode terminal,
The other end of the electronic conductive plate is connected in surface contact with each surface of the two conductive layers,
A cut hole that is cut and penetrated is formed in at least one of the electronic conductive plate and the multilayer structure portion, and an insertion piece formed in the other of the electronic conductive plate and the multilayer structure portion is inserted into the cut hole. A stacked battery in which the electronic conductive plate and the multilayer structure are in surface contact .
絶縁層を2つの導電層で挟んだ多層構造部と、
前記2つの導電層に接続するとともに前記絶縁層が設けられる部位の側端よりも側方へ延在する導電材料からなり、電池の外部に電流を取り出すための電極端子と電気的に接続する導電部と、
を備えた多層構造集電体の両面に、活物質層を設けた電極を発電要素として含み、
前記導電部の一端を前記絶縁層の側端よりも側方へ設けて前記電極端子と電気的に接続し、
前記導電部の他端を前記多層構造部における前記2つの導電層と一体的に形成した積層型電池。
A multilayer structure having an insulating layer sandwiched between two conductive layers;
A conductive material that is connected to the two conductive layers and extends laterally from the side end of the portion where the insulating layer is provided, and is electrically connected to an electrode terminal for taking out current to the outside of the battery. And
Including an electrode provided with an active material layer on both sides of a multilayer structure current collector provided with
One end of the conductive portion is provided to the side than the side end of the insulating layer and electrically connected to the electrode terminal,
A stacked battery in which the other end of the conductive portion is integrally formed with the two conductive layers in the multilayer structure portion .
前記電子導電板および多層構造部の互いに重なる部位に、前記電子導電板および導電層が接合される接合部が形成された請求項1〜3のいずれか1項に記載の積層型電池。 The stacked battery according to any one of claims 1 to 3 , wherein a joint portion where the electronic conductive plate and the conductive layer are joined is formed at a portion where the electronic conductive plate and the multilayer structure portion overlap each other. 前記電子導電板および多層構造部の両方に前記折り返し部が形成され、当該2つの折り返し部は、いずれも表裏が反転して対向する面に隙間を有し、当該2つの折り返し部が、互いの隙間に挟まって面接触する請求項に記載の積層型電池。 The folded portion is formed on both the electronic conductive plate and the multilayer structure portion, and the two folded portions have a gap in the opposite surface with the front and back reversed, and the two folded portions are The stacked battery according to claim 1 , wherein the battery is in surface contact with the gap. 前記電子導電板に前記折り返し部が形成され、当該折り返し部は、表裏が反転して対向する面に隙間を有し、当該折り返し部の隙間に、前記多層構造部が挟まって面接触する請求項に記載の積層型電池。 The folded portion is formed on the electronic conductive plate, and the folded portion has a gap in a surface that is opposite to the front and back, and the multilayer structure portion is in surface contact with the gap between the folded portions. 2. The laminated battery according to 1. 前記多層構造部は、前記接合部に対応する位置に、開口部を有する請求項に記載の積層型電池。 The multilayer battery according to claim 7 , wherein the multilayer structure portion has an opening at a position corresponding to the joint portion. 前記多層構造部に前記折り返し部が形成され、当該折り返し部は、対向する面が接するように折り返して形成され、前記電子導電板の一方面が、前記多層構造集電体の折り返し部および当該折り返し部と異なる部位の両方に面接触する請求項に記載の積層型電池。 The folded portion is formed in the multilayer structure portion, and the folded portion is formed by folding so that opposing surfaces are in contact with each other, and one surface of the electronic conductive plate is formed between the folded portion of the multilayer structure current collector and the folded portion. The stacked battery according to claim 1 , wherein both the surface and the different part are in surface contact. 前記挿入片は、前記電子導電板または多層構造部の側端を切り込んで形成される請求項に記載の積層型電池。 The stacked battery according to claim 3 , wherein the insertion piece is formed by cutting a side end of the electronic conductive plate or the multilayer structure. 前記多層構造集電体において前記活物質層が設けられた部位を越えて前記電極端子と接続する端部までの間に屈曲部が形成され、前記絶縁層は、前記活物質層が設けられた部位から前記屈曲部を超えて前記電極端子と接続する端部に至るまで設けられる請求項1〜4のいずれか1項に記載の積層型電池。 A bent portion is formed between a portion where the active material layer is provided in the multilayer structure current collector and an end portion connected to the electrode terminal, and the insulating layer is provided with the active material layer. stacked battery according to any one of claims 1 to 4, provided up to the end to be connected to the electrode terminals beyond the bent portion from the site. 極の前記多層構造集電体の導電材料はアルミであり、負極の前記多層構造集電体の導電材料は銅である請求項1〜11のいずれか1項に記載の積層型電池。 Positive conductive material of the multilayer structure collector poles are aluminum, stacked battery according to any one of claims 1 to 11 electrically conductive material of said multilayered collector of the negative electrode is copper. 前記多層構造集電体の絶縁層は、ポリイミドからなる請求項1〜12のいずれか1項に記載の積層型電池。 The insulating layer of the multilayered collector body is stacked battery according to any one of claims 1 to 12 made of polyimide. 負極の集電体が前記多層構造集電体である請求項1〜13のいずれか1項に記載の積層型電池。 The stacked battery according to any one of claims 1 to 13, wherein the current collector of the negative electrode is the multilayer structure current collector.
JP2008064318A 2007-07-11 2008-03-13 Stacked battery Expired - Fee Related JP5353032B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2008064318A JP5353032B2 (en) 2007-07-11 2008-03-13 Stacked battery
US12/165,905 US8734986B2 (en) 2007-07-11 2008-07-01 Laminate type battery
EP08012315A EP2026402B1 (en) 2007-07-11 2008-07-08 Laminate type battery
DE602008000179T DE602008000179D1 (en) 2007-07-11 2008-07-08 laminate battery
KR1020080066892A KR101001841B1 (en) 2007-07-11 2008-07-10 Laminate type battery
CN2010102763108A CN101916841B (en) 2007-07-11 2008-07-11 Battery
CN2008101323300A CN101345322B (en) 2007-07-11 2008-07-11 Battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007182542 2007-07-11
JP2007182542 2007-07-11
JP2008064318A JP5353032B2 (en) 2007-07-11 2008-03-13 Stacked battery

Publications (2)

Publication Number Publication Date
JP2009038004A JP2009038004A (en) 2009-02-19
JP5353032B2 true JP5353032B2 (en) 2013-11-27

Family

ID=40247257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008064318A Expired - Fee Related JP5353032B2 (en) 2007-07-11 2008-03-13 Stacked battery

Country Status (4)

Country Link
JP (1) JP5353032B2 (en)
KR (1) KR101001841B1 (en)
CN (2) CN101916841B (en)
DE (1) DE602008000179D1 (en)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5158452B2 (en) * 2009-01-26 2013-03-06 トヨタ自動車株式会社 Positive electrode for lithium secondary battery and its utilization
JP5124506B2 (en) * 2009-02-13 2013-01-23 シャープ株式会社 Secondary battery and method for manufacturing secondary battery
JP5474466B2 (en) * 2009-09-18 2014-04-16 三洋電機株式会社 Stacked battery
CN104882574B (en) 2010-02-17 2018-01-16 株式会社东芝 Battery and its manufacture method
US20110206976A1 (en) 2010-02-19 2011-08-25 Kyung-Mo Yoo Electrode assembly and secondary battery using the same
JP5690575B2 (en) * 2010-12-16 2015-03-25 シャープ株式会社 Non-aqueous secondary battery
WO2012093588A1 (en) * 2011-01-07 2012-07-12 シャープ株式会社 Non-aqueous secondary battery
JP5693982B2 (en) * 2011-01-25 2015-04-01 シャープ株式会社 Non-aqueous secondary battery
KR101955414B1 (en) * 2011-01-28 2019-03-07 삼성에스디아이 주식회사 Secondary battery having lead member with cut portion
JP2013016321A (en) * 2011-07-01 2013-01-24 Sharp Corp Collector and nonaqueous secondary battery
JP5667537B2 (en) * 2011-08-22 2015-02-12 Jmエナジー株式会社 Power storage device
JP6212846B2 (en) * 2011-10-04 2017-10-18 株式会社Gsユアサ Electrochemical equipment
CN102437378A (en) * 2011-12-29 2012-05-02 广东国光电子有限公司 Winding forming method of lithium ion battery
JP6093369B2 (en) * 2012-05-23 2017-03-08 エルジー ケム. エルティーディ. Electrode assembly and electrochemical device including the same
US9343727B2 (en) 2012-08-28 2016-05-17 Kabushiki Kaisha Toyota Jidoshokki Electricity storage device
CN104604003B (en) * 2012-08-30 2017-08-11 株式会社钟化 Battery current collector and the battery for having used it
KR101561735B1 (en) * 2013-09-25 2015-10-19 주식회사 엘지화학 Method for electrode assembly
KR101876614B1 (en) * 2015-03-26 2018-07-09 주식회사 엘지화학 Electrode Assembly of Combination Structure
US20190013507A1 (en) * 2015-08-31 2019-01-10 Panasonic Intellectual Property Management Co., Ltd. Stack-type battery
CN105355806B (en) * 2015-10-28 2018-02-23 广东烛光新能源科技有限公司 Electrochemical battery packaging material, battery using packaging material and preparation method of battery
EP3358644B1 (en) * 2017-02-03 2019-09-11 Robert Bosch GmbH Battery cell and battery module
JP6796256B2 (en) * 2017-02-23 2020-12-09 トヨタ自動車株式会社 Lithium ion secondary battery
CN108428849B (en) * 2017-11-22 2024-01-16 宁德时代新能源科技股份有限公司 Electrode member, electrode assembly, and rechargeable battery
KR102320342B1 (en) 2018-05-29 2021-11-03 주식회사 엘지에너지솔루션 Battery module
CN111883740B (en) * 2018-06-22 2021-09-21 宁德时代新能源科技股份有限公司 Pole piece and secondary battery
CN111244388B (en) * 2018-07-13 2022-02-25 宁德时代新能源科技股份有限公司 Pole piece, manufacturing method of pole piece and secondary battery
EA202192436A1 (en) * 2019-03-22 2021-12-06 Сотериа Бэттери Инновейшн Груп Инк. BATTERY CONNECTIONS AND METALIZED FILM COMPONENTS IN ENERGY STORAGE DEVICES WITH INTERNAL FUSES
CN110335984A (en) * 2019-06-28 2019-10-15 宁德新能源科技有限公司 A kind of dichotomous tab, electrode assembly and battery
JP6835925B1 (en) * 2019-09-25 2021-02-24 積水化学工業株式会社 Manufacturing method of stacked batteries
CN210805919U (en) * 2019-10-16 2020-06-19 宁德时代新能源科技股份有限公司 Secondary battery, electrode member for secondary battery, battery module, and device using secondary battery
KR20210061114A (en) * 2019-11-19 2021-05-27 주식회사 엘지화학 The Electrode Assembly And The Method For Thereof
CN111509180B (en) * 2020-03-26 2022-04-12 合肥国轩高科动力能源有限公司 Lithium battery cell with conductive tabs
KR20220016554A (en) * 2020-08-03 2022-02-10 주식회사 엘지에너지솔루션 Electrode assembly including disconnection preventing layer and method for manufacturing the same
CN112382831B (en) * 2020-09-09 2022-09-06 万向一二三股份公司 A utmost point ear and utmost point ear welding set for laminate polymer battery
CN112397722B (en) * 2020-11-12 2022-03-22 上海兰钧新能源科技有限公司 Composite base material, preparation method of composite base material, battery and electric vehicle
CN113066986A (en) * 2021-03-16 2021-07-02 珠海冠宇电池股份有限公司 Current collector, preparation method thereof and pole piece
CN115428253A (en) * 2021-03-31 2022-12-02 Tdk株式会社 Electrode for electricity storage device, and secondary battery
CN113708018B (en) * 2021-09-02 2023-10-20 北京卫蓝新能源科技有限公司 Welding structure and welding method for composite current collector tab and battery
CN115995562A (en) * 2021-10-20 2023-04-21 华为技术有限公司 First electrode plate, bare cell, battery and electronic equipment
CN117063304A (en) * 2021-12-31 2023-11-14 东莞新能源科技有限公司 Battery and electronic equipment
CN114373886A (en) * 2021-12-31 2022-04-19 东莞新能源科技有限公司 Battery and electronic equipment
CN114497912B (en) * 2022-01-27 2023-10-03 北京卫蓝新能源科技有限公司 Tab structure, welding method and battery
CN117438532A (en) * 2022-07-20 2024-01-23 华为技术有限公司 Continuous electrode plate, bare cell, battery and electronic equipment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09120842A (en) * 1995-10-26 1997-05-06 Sony Corp Lithium ion secondary battery
JPH10255754A (en) * 1997-03-12 1998-09-25 Japan Storage Battery Co Ltd Connecting structure between current collector of electrode plate for battery and lead, and battery
JP4026993B2 (en) * 1999-08-10 2007-12-26 三洋電機株式会社 Non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
CN101345322A (en) 2009-01-14
CN101345322B (en) 2011-07-27
DE602008000179D1 (en) 2009-11-12
KR20090006765A (en) 2009-01-15
KR101001841B1 (en) 2010-12-15
CN101916841A (en) 2010-12-15
CN101916841B (en) 2013-01-02
JP2009038004A (en) 2009-02-19

Similar Documents

Publication Publication Date Title
JP5353032B2 (en) Stacked battery
US8734986B2 (en) Laminate type battery
JP5112429B2 (en) Battery cell electrode plate and method of manufacturing the same
JP6859059B2 (en) Lithium-ion secondary battery and its manufacturing method
JP6315269B2 (en) Sealed battery module and manufacturing method thereof
JP2019053948A (en) Battery pack, and method of manufacturing the same
JP3758629B2 (en) Laminate sheet and laminate battery using the same
JP2005276486A (en) Laminated battery, battery pack, and vehicle
JP4655593B2 (en) Bipolar battery
JP4096664B2 (en) Laminated battery
JP2007194090A (en) Bipolar type battery, battery module, and battery pack
US10818901B2 (en) Laminated cell and method for manufacturing same
WO2018092640A1 (en) High power battery and battery case
JP4670275B2 (en) Bipolar battery and battery pack
JP4182856B2 (en) Secondary battery, assembled battery, composite assembled battery, vehicle, and manufacturing method of secondary battery
JP2014007064A (en) Collector for battery and lithium-ion battery
JP4635589B2 (en) Bipolar battery, assembled battery, composite battery and vehicle equipped with these
JP2011048991A (en) Lithium ion secondary battery
JP4929587B2 (en) Bipolar battery, manufacturing method thereof, and assembled battery
JP5119615B2 (en) Secondary battery and assembled battery
JP2005340005A (en) Secondary battery and battery pack
JP7317877B2 (en) Non-aqueous electrolyte secondary battery
JP5177989B2 (en) Manufacturing method of assembled battery and assembled battery
CN111682151B (en) Sealed battery and method for manufacturing same
JP2021077597A (en) Secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130812

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees