JP5344113B2 - Hydrogen separation and recovery method and hydrogen separation and recovery equipment - Google Patents

Hydrogen separation and recovery method and hydrogen separation and recovery equipment Download PDF

Info

Publication number
JP5344113B2
JP5344113B2 JP2007276564A JP2007276564A JP5344113B2 JP 5344113 B2 JP5344113 B2 JP 5344113B2 JP 2007276564 A JP2007276564 A JP 2007276564A JP 2007276564 A JP2007276564 A JP 2007276564A JP 5344113 B2 JP5344113 B2 JP 5344113B2
Authority
JP
Japan
Prior art keywords
hydrogen
absorption
chlorosilanes
hydrogen chloride
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007276564A
Other languages
Japanese (ja)
Other versions
JP2008143775A (en
Inventor
満敏 生川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2007276564A priority Critical patent/JP5344113B2/en
Priority to PCT/JP2007/072113 priority patent/WO2008059887A1/en
Publication of JP2008143775A publication Critical patent/JP2008143775A/en
Application granted granted Critical
Publication of JP5344113B2 publication Critical patent/JP5344113B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a facility for separation/collection of hydrogen, wherein hydrogen contained in a gas generated by a conversion reaction is efficiently separated and collected to be reused by being connected to a conversion facility for producing trichlorosilane. <P>SOLUTION: The hydrogen separation/collection method comprises: [an absorption step] of bringing a mixed gas containing chlorosilanes, hydrogen chloride and hydrogen into contact with an absorption solution consisting mainly of liquid chlorosilanes to absorb the chlorosilanes and hydrogen chloride in the mixed gas into the absorption solution; [a hydrogen chloride separation step] of distillating the absorption solution which has absorbed the chlorosilanes and hydrogen chloride to gasify hydrogen chloride and separating the gasified hydrogen chloride; [an absorption solution circulating step] of collecting the chlorosilanes separated from hydrogen chloride, cooling the collected chlorosilanes, and returning the cooled chlorosilanes to the absorption step; and [a hydrogen purification step] of passing a gas which has passed through the absorption solution and is mainly composed of hydrogen through active carbon to adsorb the chlorosilanes and hydrogen chloride remaining in the gas onto the active carbon, thereby separating hydrogen from the chlorosilanes and hydrogen chloride. The facility for the method is also provided. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、例えば、トリクロロシランを生成する転換設備に接続され、転換反応の生成ガスに含まれる塩化水素およびクロロシラン類を分離して精製された水素を回収することができる水素分離回収方法およびその設備に関する。   The present invention is, for example, a hydrogen separation and recovery method that is connected to a conversion facility that generates trichlorosilane, and that can recover hydrogen purified by separating hydrogen chloride and chlorosilanes contained in the product gas of the conversion reaction, and its Regarding equipment.

高純度多結晶シリコンは、例えばトリクロロシラン(SiHCl3:TCSと略称)および水素を原料とし、次式(1)に示されるトリクロロシランの水素還元反応、次式(2)に示されるトリクロロシランの熱分解反応によって生成されている。
SiHCl3+H2 → Si+3HCl ・・・(1)
4SiHCl3 → Si+3SiCl4+2H2 ・・・(2)
High-purity polycrystalline silicon is obtained by using, for example, trichlorosilane (SiHCl 3 : abbreviated as TCS) and hydrogen as a raw material, a hydrogen reduction reaction of trichlorosilane represented by the following formula (1), and trichlorosilane represented by the following formula (2). It is produced by a pyrolysis reaction.
SiHCl 3 + H 2 → Si + 3HCl (1)
4SiHCl 3 → Si + 3SiCl 4 + 2H 2 (2)

多結晶シリコンの上記生成反応から排出されるガスには、未反応のトリクロロシランおよび水素と共に、副生した塩化水素およびテトラクロロシラン、ジクロロシラン、ヘキサクロロジシランなどのクロロシラン類が含まれる。これらのクロロシラン類は沸点に応じて段階的に蒸留分離され、必要に応じて再利用される。   The gas discharged from the production reaction of polycrystalline silicon includes unreacted trichlorosilane and hydrogen, and by-produced hydrogen chloride and chlorosilanes such as tetrachlorosilane, dichlorosilane, and hexachlorodisilane. These chlorosilanes are distilled and separated in stages according to the boiling point, and reused as necessary.

例えば、上記生成反応の排ガスから蒸留分離して回収したテトラクロロシランを原料とし、次式(3)に示す水素付加の転換反応によってトリクロロシランを得ることができる。転換反応において生成したガスに含まれるトリクロロシランやテトラクロロシランなどのクロロシラン類は冷却凝集して回収し、トリクロロシランは上記多結晶シリコンの製造原料として再利用される。
SiCl4+H2 → SiHCl3+HCl ・・・(3)
For example, trichlorosilane can be obtained by the conversion reaction of hydrogenation represented by the following formula (3) using tetrachlorosilane recovered by distillation separation from the exhaust gas of the production reaction as a raw material. Chlorosilanes such as trichlorosilane and tetrachlorosilane contained in the gas generated in the conversion reaction are recovered by cooling and aggregation, and the trichlorosilane is reused as a raw material for producing the polycrystalline silicon.
SiCl 4 + H 2 → SiHCl 3 + HCl (3)

また、上記生成ガスには未反応の水素が多量に含まれているので、クロロシラン類を凝縮分離した後に、混合ガス中の水素を回収して上記転換反応の原料として転換炉に戻して再利用すれば、水素の使用効率を高め大幅なコスト低減を図ることができる。   In addition, since the product gas contains a large amount of unreacted hydrogen, after the chlorosilanes are condensed and separated, the hydrogen in the mixed gas is recovered and returned to the conversion furnace as the raw material for the conversion reaction for reuse. If so, the use efficiency of hydrogen can be increased and the cost can be greatly reduced.

しかし、上記生成ガスには塩化水素が含まれており、塩化水素が含まれている状態で転換反応の原料として使用すると、転換反応が阻害されると云う問題があり、上記生成ガスから水素を回収して再利用するには、生成ガスに含まれる塩化水素を効率よく取り除くことが必要である。   However, the product gas contains hydrogen chloride, and when used as a raw material for the conversion reaction in a state where hydrogen chloride is contained, there is a problem that the conversion reaction is inhibited. In order to recover and reuse, it is necessary to efficiently remove hydrogen chloride contained in the product gas.

従来の塩化水素の除去方法としては、例えば、図3に示す処理方法が知られている。この方法は、まず転換炉1の反応生成ガスを冷却器2に導いて冷却し、クロロシラン類を凝縮させて捕集し、生成ガスから取り除いて塩化水素と水素の混合ガスにする。次に、塩化水素と水素の混合ガスを苛性ソーダの水溶液が循環する中和塔3に通して塩化水素を取り除く。混合ガスに含まれている塩化水素と未凝縮のクロロシラン類は中和塔3において苛性ソーダと反応し、塩化ナトリウム、珪酸ナトリウムを生じて塔底に沈積するので、これを抜き出して系外に除去する。   As a conventional method for removing hydrogen chloride, for example, a treatment method shown in FIG. 3 is known. In this method, the reaction product gas of the conversion furnace 1 is first led to the cooler 2 to be cooled, the chlorosilanes are condensed and collected, and removed from the product gas to form a mixed gas of hydrogen chloride and hydrogen. Next, hydrogen chloride is removed by passing a mixed gas of hydrogen chloride and hydrogen through a neutralization tower 3 in which an aqueous solution of caustic soda circulates. Hydrogen chloride and non-condensed chlorosilanes contained in the mixed gas react with caustic soda in the neutralization tower 3 to produce sodium chloride and sodium silicate and deposit them at the bottom of the tower. .

一方、水素が残った混合ガスは中和塔3を通過して乾燥塔4に導入される。該乾燥塔4にはゼオライトが充填されており、水素含有ガスが塔内を通過する間に乾燥される。乾燥された水素は蒸発器5に戻され、供給水素および供給STCと混合されて転換炉1に導入され、循環使用される(特許文献1参照)。
特開昭48−40625号公報(第4頁右上欄、図1)
On the other hand, the mixed gas in which hydrogen remains passes through the neutralization tower 3 and is introduced into the drying tower 4. The drying tower 4 is filled with zeolite and dried while the hydrogen-containing gas passes through the tower. The dried hydrogen is returned to the evaporator 5, mixed with the supplied hydrogen and the supplied STC, introduced into the conversion furnace 1, and recycled (see Patent Document 1).
Japanese Patent Laid-Open No. 48-40625 (page 4, upper right column, FIG. 1)

図3に示す従来の水素回収技術では、反応生成ガス中の塩化水素は塩化ナトリウム等に転換して除去されるので、有効利用されることなく廃棄物として処理されており、廃棄処理のコストが嵩む。また、転換装置から抜き出した生成ガスを極低温まで冷却し、凝縮液化したクロロシラン類を分離するが、極低温まで冷却しても未凝縮クロロシラン類が生成ガスに残留するので、水素除去のためにこれを中和処理すると、未凝縮クロロシラン類も中和処理されて廃棄物となるので、クロロシラン類を有効に利用できない問題があった。さらに、中和剤として多くの苛性ソーダを消費してしまう不都合もあった。   In the conventional hydrogen recovery technique shown in FIG. 3, since hydrogen chloride in the reaction product gas is converted to sodium chloride and removed, it is treated as waste without being effectively used, and the cost of disposal processing is reduced. Bulky. In addition, the product gas extracted from the converter is cooled to a very low temperature to separate condensed chlorosilanes, but uncondensed chlorosilanes remain in the product gas even when cooled to a very low temperature. When this is neutralized, uncondensed chlorosilanes are also neutralized to become waste, which causes a problem that chlorosilanes cannot be used effectively. Further, there is a disadvantage that a lot of caustic soda is consumed as a neutralizing agent.

本発明は、従来の水素回収技術における上記問題を解決するものであり、水素と共にクロロシラン類および塩化水素を含むガス、例えば、転換炉の生成ガスから効率よく塩化水素およびクロロシラン類を分離除去して、転換反応に再利用できる精製水素ガスを回収し、かつ塩化水素およびクロロシラン類を有効利用できる形態で分離して廃棄ロスを防止した水素精製回収方法とその設備を提供する。   The present invention solves the above-mentioned problems in the conventional hydrogen recovery technology, and efficiently separates and removes hydrogen chloride and chlorosilanes from a gas containing chlorosilanes and hydrogen chloride together with hydrogen, for example, a product gas of a converter. The present invention provides a hydrogen purification and recovery method and equipment for recovering purified hydrogen gas that can be reused for a conversion reaction and separating hydrogen chloride and chlorosilanes in a form that can be effectively used to prevent waste loss.

本発明は、以下の構成を有することによって、上記課題を解決した水素分離回収方法に関する。
〔1〕クロロシラン類と塩化水素および水素を含む混合ガスを吸収塔に導入し、該混合ガスを液状のクロロシラン類を主体とする吸収液に接触させて混合ガス中のクロロシランおよび塩化水素を該吸収液に吸収させる工程〔吸収工程〕、上記吸収塔から流出した吸収液を蒸留塔に導き、クロロシランおよび塩化水素を吸収した吸収液を蒸留して塩化水素をガス化し分離する工程〔塩化水素分離工程〕、上記蒸留塔から流出した吸収液を冷却してクロロシラン類を回収し、該クロロシラン類を上記吸収工程に戻す工程〔吸収液循環工程〕、上記吸収塔から流出した水素主体のガスを活性炭に通じてガス中に残留するクロロシラン類および塩化水素を該活性炭に吸着させて分離する工程〔水素精製工程〕を有し、さらに上記吸収塔から流出した吸収液を上記蒸留塔に導く管路に熱交換器を設けるとともに、上記吸収液循環工程において、上記蒸留塔から流出した吸収液を上記吸収塔に戻す循環路が上記熱交換器を経由するように形成し、上記吸収塔から流出した吸収液が該熱交換器によって温度が高められて蒸留塔に導入されることを特徴とする水素分離回収方法。
〔2〕クロロシラン類と塩化水素および水素を含む混合ガスが、テトラクロロシランと水素を反応させてトリクロロシランを生成させる転換反応において生成した混合ガスである上記[1]に記載する水素分離回収方法。
The present invention relates to a hydrogen separation and recovery method that has solved the above problems by having the following configuration.
[1] A mixed gas containing chlorosilanes, hydrogen chloride and hydrogen is introduced into an absorption tower, and the mixed gas is brought into contact with an absorption liquid mainly composed of liquid chlorosilanes to absorb the chlorosilane and hydrogen chloride in the mixed gas. A step of absorbing into the liquid [absorption step], a step of introducing the absorption liquid flowing out from the absorption tower to the distillation tower, and distilling the absorption liquid absorbing chlorosilane and hydrogen chloride to gasify and separate hydrogen chloride [hydrogen chloride separation step ), Cooling the absorption liquid flowing out from the distillation tower to recover chlorosilanes and returning the chlorosilanes to the absorption process [absorption liquid circulation process], hydrogen-based gas flowing out from the absorption tower into activated carbon absorption of through the chlorosilanes and hydrogen chloride remaining in the gas comprising the step [hydrogen purification step] of separating by adsorption on the activated carbon, further flowing out from the absorption tower A heat exchanger is provided in a pipe line that guides the liquid to the distillation tower, and in the absorption liquid circulation step, a circulation path that returns the absorption liquid that has flowed out of the distillation tower to the absorption tower passes through the heat exchanger. A method for separating and recovering hydrogen, wherein the absorption liquid formed and discharged from the absorption tower is introduced into the distillation tower after the temperature is increased by the heat exchanger .
[2] The method for separating and recovering hydrogen according to the above [1], wherein the mixed gas containing chlorosilanes, hydrogen chloride and hydrogen is a mixed gas produced in a conversion reaction in which tetrachlorosilane and hydrogen are reacted to produce trichlorosilane .

また、本発明は、以下の構成を有する水素分離回収設備に関する。
〔3〕クロロシラン類と塩化水素および水素を含む混合ガスを液状のクロロシラン類を主体とする吸収液に接触させて混合ガス中のクロロシランおよび塩化水素を該吸収液に吸収させる吸収塔、該吸収塔から流出した吸収液を蒸留して塩化水素をガス化し分離する蒸留塔、該蒸留塔から流出した吸収液を吸収塔に戻す循環路、該循環路に設けられた冷却器、吸収塔から流出した水素主体のガス中に残留するクロロシラン類および塩化水素を吸着させる活性炭を充填した活性炭吸着塔を備え、さらに吸収塔から流出した吸収液を蒸留塔に導く管路に熱交換器が設けられ、蒸留塔から流出した吸収液を上記吸収塔に戻す循環路が該熱交換器を経由するように形成されており、吸収塔から流出した吸収液が該熱交換器によって温度が高められて蒸留塔に導入されることを特徴とする水素分離回収設備。
〔4〕テトラクロロシランと水素を反応させてトリクロロシランを生成させる転換炉に接続され、転換炉から流出したクロロシラン類と塩化水素および水素を含む混合ガスを処理する上記[3]に記載する水素分離回収設備。
The present invention also relates to a hydrogen separation and recovery facility having the following configuration.
[3] An absorption tower in which a mixed gas containing chlorosilanes, hydrogen chloride and hydrogen is brought into contact with an absorption liquid mainly composed of liquid chlorosilanes, and the absorption liquid absorbs chlorosilane and hydrogen chloride in the mixed gas, and the absorption tower Distillation tower that distills the absorption liquid flowing out from the gas to separate and gasify hydrogen chloride, a circulation path for returning the absorption liquid flowing out from the distillation tower to the absorption tower, a cooler provided in the circulation path, and a flow out from the absorption tower It is equipped with an activated carbon adsorption tower filled with activated carbon that adsorbs chlorosilanes and hydrogen chloride remaining in the hydrogen-based gas, and a heat exchanger is provided in a pipe that leads the absorption liquid flowing out from the absorption tower to the distillation tower. A circulation path for returning the absorption liquid flowing out from the tower to the absorption tower is formed so as to pass through the heat exchanger, and the absorption liquid flowing out from the absorption tower is distilled by being heated by the heat exchanger. Hydrogen separation and recovery equipment, characterized in that it is introduced into.
[4] Hydrogen separation as described in [3] above , which is connected to a conversion furnace for reacting tetrachlorosilane with hydrogen to produce trichlorosilane and treating a mixed gas containing chlorosilanes and hydrogen chloride and hydrogen flowing out of the conversion furnace Recovery equipment.

上記水素分離回収方法および上記水素分離回収設備では、クロロシラン類と水素と塩化水素とを含む混合ガスを、液状のクロロシラン類を主体とする吸収液に接触させて、クロロシラン類と塩化水素を上記吸収液に吸収させることによってガス中から除去するので、混合ガスから容易に水素を分離して回収することができる。
In the hydrogen separation / recovery method and the hydrogen separation / recovery facility , a mixed gas containing chlorosilanes, hydrogen and hydrogen chloride is brought into contact with an absorption liquid mainly composed of liquid chlorosilanes to absorb the chlorosilanes and hydrogen chloride. Since it is removed from the gas by absorbing it in the liquid, hydrogen can be easily separated and recovered from the mixed gas.

本発明において使用する吸収液は、液状のクロロシラン類を主体とするものであり、具体的には、常温以下、例えば20℃以下で液状のクロロシラン類からなるものである。液状のクロロシラン類からなる吸収液に混合ガスを気液接触させることによって、ガス中の塩化水素およびクロロシラン類がこの吸収液に吸収され、ガス中に残る水素と分離することができる。20℃以下で液状のクロロシラン類としてはトリクロロシラン、ジクロロシラン、テトラクロロシランなどを用いることができる。
The absorbing liquid used in the present invention is mainly composed of liquid chlorosilanes, and specifically comprises liquid chlorosilanes at room temperature or lower, for example, 20 ° C. or lower. By bringing the mixed gas into gas-liquid contact with an absorption liquid composed of liquid chlorosilanes, hydrogen chloride and chlorosilanes in the gas are absorbed by the absorption liquid and can be separated from hydrogen remaining in the gas. Trichlorosilane, dichlorosilane, tetrachlorosilane and the like can be used as chlorosilanes which are liquid at 20 ° C. or lower.

本発明において、上記水素分離回収方法および上記水素分離回収設備では、クロロシラン類および塩化水素を吸収した吸収液を蒸留することによって塩化水素を蒸留分離することができる。また、クロロシラン類は液状のまま残るので、クロロシラン類を極低温まで冷却する必要がなく、これを回収して吸収液として再利用することができる。従って、クロロシラン類のロスが無く、使用効率を高めることができる。
In the present invention, in the hydrogen separation and recovery method and the hydrogen separation and recovery facility , hydrogen chloride can be distilled and separated by distilling the absorption liquid that has absorbed chlorosilanes and hydrogen chloride. Further, since the chlorosilanes remain in a liquid state, it is not necessary to cool the chlorosilanes to an extremely low temperature, and these can be recovered and reused as an absorbing solution. Therefore, there is no loss of chlorosilanes and the use efficiency can be increased.

上記水素分離回収方法および上記水素分離回収設備では、吸収液(吸収塔)を通過した水素主体のガスを水素精製装置に導入して活性炭に通じ、ガス中に残留するクロロシラン類および塩化水素を活性炭に吸着させてガス中から除去するので、クロロシラン類および塩化水素を実質的に含まない精製された水素ガスを得ることができる。従って、この水素ガスをトリクロロシランの転換反応に再利用することができ、該反応の転換率を高めることができる。また、水素を乾燥させる工程が不要である。
In the hydrogen separation / recovery method and the hydrogen separation / recovery facility , the hydrogen-based gas that has passed through the absorption liquid (absorption tower) is introduced into the hydrogen purifier and passed through the activated carbon, and the chlorosilanes and hydrogen chloride remaining in the gas are removed from the activated carbon. Since it is adsorbed on the gas and removed from the gas, a purified hydrogen gas substantially free of chlorosilanes and hydrogen chloride can be obtained. Therefore, this hydrogen gas can be reused for the conversion reaction of trichlorosilane, and the conversion rate of the reaction can be increased. Moreover, the process of drying hydrogen is unnecessary.

上記水素分離回収方法および上記水素分離回収設備は、吸収工程、蒸留による塩化水素分離工程、該蒸留分離工程から回収したクロロシラン類を反応液として循環し再利用する工程、水素精製工程を有し、混合ガスが上記一連の工程を経て処理されるので、混合ガスから効率よく水素を分離し回収することができる。
The hydrogen separation and recovery method and the hydrogen separation and recovery facility have an absorption step, a hydrogen chloride separation step by distillation, a step of circulating and reusing chlorosilanes recovered from the distillation separation step as a reaction liquid, a hydrogen purification step, Since the mixed gas is processed through the above series of steps, hydrogen can be efficiently separated and recovered from the mixed gas.

上記水素分離回収方法および上記水素分離回収設備は、本発明の水素分離回収技術をトリクロロシランの生成転換反応に適用したものであり、この転換反応において生成したガスから水素を効率よく分離して回収することができる。具体的には、上記転換反応において生成したガスを冷却してガス中のクロロシラン類を凝縮液化して分離し、凝縮捕集したクロロシラン類を回収工程に導いてトリクロロシランを分離回収し、また凝縮分離後の残留クロロシラン類を含む混合ガスを上記吸収工程、上記塩化水素分離工程、上記吸収液循環工程、および上記水素精製工程に導いて水素を分離回収し、これを転換反応に戻して有効に再利用することができる。
The hydrogen separation / recovery method and the hydrogen separation / recovery equipment are obtained by applying the hydrogen separation / recovery technology of the present invention to the trichlorosilane production conversion reaction, and efficiently recover and separate hydrogen from the gas generated in the conversion reaction can do. Specifically, the gas produced in the above conversion reaction is cooled to condense and separate chlorosilanes in the gas, and the condensed and collected chlorosilanes are led to a recovery process to separate and recover trichlorosilane, and condensation The mixed gas containing residual chlorosilanes after separation is led to the absorption step, the hydrogen chloride separation step, the absorption liquid circulation step, and the hydrogen purification step to separate and recover hydrogen, which is returned to the conversion reaction for effective use. Can be reused.

本発明を実施形態に基づいて具体的に説明する。本発明に係る水素分離回収システム(方法ないし設備)の一例を図2に示す。図示する実施形態は、テトラクロロシランと水素との反応によってトリクロロシランを生成させる転換設備に本発明の水素分離回収システムを適用した例である。
The present invention will be specifically described based on embodiments. An example of the hydrogen separation and recovery system (method or equipment) according to the present invention is shown in FIG. The illustrated embodiment is an example in which the hydrogen separation and recovery system of the present invention is applied to a conversion facility that generates trichlorosilane by reaction of tetrachlorosilane and hydrogen.

図示する水素分離回収設備は、液状のクロロシラン類を主体とする吸収液と上記混合ガスとが接触する吸収装置8、該吸収装置を通過した水素主体のガスが導入される水素精製装置12、上記吸収装置8から抜き出した吸収液が導入される蒸留装置9、該蒸留装置9から抜き出したクロロシラン類を上記吸収装置8に戻す循環管路10、該循環管路10に設けた冷却器14を有している。さらに、この水素分離回収設備はテトラクロロシランと水素を反応させてトリクロロシランを生成させる転換装置に接続されており、該転換装置から吸収装置に至る管路の間に冷却器7が設けられている。   The hydrogen separation and recovery equipment shown in the figure includes an absorption device 8 in which an absorption liquid mainly composed of liquid chlorosilanes and the mixed gas are in contact with each other, a hydrogen purification device 12 into which a hydrogen-based gas that has passed through the absorption device is introduced, A distillation apparatus 9 into which the absorption liquid extracted from the absorption apparatus 8 is introduced, a circulation line 10 for returning chlorosilanes extracted from the distillation apparatus 9 to the absorption apparatus 8, and a cooler 14 provided in the circulation line 10 are provided. doing. Further, this hydrogen separation and recovery equipment is connected to a conversion device that reacts tetrachlorosilane with hydrogen to produce trichlorosilane, and a cooler 7 is provided between the pipes leading from the conversion device to the absorption device. .

〔転換設備〕
図示する例において、トリクロロシランを生成する転換設備には、テトラクロロシランの蒸発器5と、転換炉1とが設けられている。原料の水素および四塩化珪素(STC)は蒸発器5に導入され、混合されて転換炉1に導入される。転換炉1は約800℃〜約1300℃の炉内温度に設定され、水素と四塩化珪素が反応してクロロシラン類が生成する。クロロシラン類はテトラクロロシラン、トリクロロシラン、微量のジクロロシラン、ヘキサクロロジシランなどであり、これらは上記反応温度下でガス化し、これらのクロロシラン類と塩化水素および水素を含む混合ガスが転換炉1から抜き出される。
[Conversion equipment]
In the illustrated example, a tetrachlorosilane evaporator 5 and a conversion furnace 1 are provided in a conversion facility for generating trichlorosilane. Raw materials hydrogen and silicon tetrachloride (STC) are introduced into the evaporator 5, mixed and introduced into the converter 1. The converter 1 is set to a furnace temperature of about 800 ° C. to about 1300 ° C., and hydrogen and silicon tetrachloride react to produce chlorosilanes. The chlorosilanes are tetrachlorosilane, trichlorosilane, a small amount of dichlorosilane, hexachlorodisilane, etc., which are gasified at the reaction temperature, and a mixed gas containing these chlorosilanes, hydrogen chloride and hydrogen is extracted from the converter 1. It is.

〔凝縮分離工程〕
転換炉1から流出した混合ガス(温度約600℃〜約1100℃)は第1冷却器7に導かれて約−50℃〜約50℃に冷却される。混合ガスに含まれているクロロシラン類は冷却されて凝縮液化し、混合ガスから分離される。
[Condensation separation process]
The mixed gas (temperature of about 600 ° C. to about 1100 ° C.) flowing out of the converter 1 is led to the first cooler 7 and cooled to about −50 ° C. to about 50 ° C. The chlorosilanes contained in the mixed gas are cooled to condense and are separated from the mixed gas.

分離したクロロシラン類は蒸留設備(図示省略)に導かれ、複数の蒸留塔を通過する間に、クロロシラン類の沸点に対応した蒸留温度下で、トリクロロシラン、テトラクロロシラン、その他の高沸点物が段階的に蒸留分離される。回収されたトリクロロシランは多結晶シリコンの製造原料などに利用することができる。   The separated chlorosilanes are guided to a distillation facility (not shown), and while passing through multiple distillation towers, trichlorosilane, tetrachlorosilane, and other high-boiling substances are staged at a distillation temperature corresponding to the boiling point of the chlorosilanes. Is separated by distillation. The recovered trichlorosilane can be used as a raw material for producing polycrystalline silicon.

〔吸収工程〕
第1冷却器7を通過した混合ガスは水素分離回収設備の吸収装置8に導入される。この混合ガスには未分離のクロロシラン類、塩化水素、水素が含まれている。吸収装置8には液状のクロロシラン類を主体とする吸収液が供給され、上記混合ガスは吸収液と気液接触し、ガス中のクロロシラン類および塩化水素が吸収液に吸収される。
[Absorption process]
The mixed gas that has passed through the first cooler 7 is introduced into the absorption device 8 of the hydrogen separation and recovery facility. This mixed gas contains unseparated chlorosilanes, hydrogen chloride, and hydrogen. The absorption device 8 is supplied with an absorption liquid mainly composed of liquid chlorosilanes, and the mixed gas comes into gas-liquid contact with the absorption liquid, so that the chlorosilanes and hydrogen chloride in the gas are absorbed by the absorption liquid.

吸収液は液状のクロロシラン類を主体とするものであり、具体的には、常温以下、例えば20℃以下で液状のクロロシラン類からなるものである。このクロロシラン類としてはトリクロロシラン、ジクロロシラン、テトラクロロシランなどを用いることができる。   The absorbing liquid is mainly composed of liquid chlorosilanes, and specifically, is composed of liquid chlorosilanes at room temperature or lower, for example, 20 ° C. or lower. As the chlorosilanes, trichlorosilane, dichlorosilane, tetrachlorosilane and the like can be used.

吸収装置8としては、吸収塔やバブリング槽を用いることができる。吸収塔は例えばポールリング充填塔などが用いられ、塔底から混合ガスを供給し、塔頂から吸収液をシャワー状に流下させ、混合ガスが塔内を上昇する間に吸収液と接触させる。吸収槽では槽内に吸収液を溜め、槽下部から混合ガスを導入して吸収液内をバブリングさせれば良い。   As the absorption device 8, an absorption tower or a bubbling tank can be used. For example, a pole ring packed tower or the like is used as the absorption tower. A mixed gas is supplied from the bottom of the tower, the absorbing liquid is allowed to flow down from the top of the tower in a shower-like manner, and the mixed gas is brought into contact with the absorbing liquid while rising in the tower. In the absorption tank, the absorption liquid may be stored in the tank, and a mixed gas may be introduced from the lower part of the tank to bubble the absorption liquid.

〔塩化水素の蒸留分離工程〕
吸収装置8から抜き出した吸収液は蒸留装置(蒸留塔)9に導入される。蒸留装置9は塩化水素の沸点に応じて操作され、上記吸収液に含まれる塩化水素は蒸留し、塔頂成分として取り除かれる。一方、未蒸留物のクロロシラン類は塔底成分として抜き出され、塩化水素を分離したクロロシラン類、例えば塩化水素濃度100ppm以下のクロロシラン類を回収することができる。
[Distillation separation process of hydrogen chloride]
The absorption liquid extracted from the absorption device 8 is introduced into a distillation device (distillation tower) 9. The distillation apparatus 9 is operated according to the boiling point of hydrogen chloride, and hydrogen chloride contained in the absorption liquid is distilled and removed as a column top component. On the other hand, undistilled chlorosilanes are extracted as a bottom component, and chlorosilanes separated from hydrogen chloride, for example, chlorosilanes having a hydrogen chloride concentration of 100 ppm or less can be recovered.

なお、分離した塩化水素は各種の用途に使用することができる。例えば、分離した塩化水素は塩化水素と金属シリコンとを反応させてトリクロロシランを製造する工程に送り、原料として再利用することができる。   The separated hydrogen chloride can be used for various purposes. For example, the separated hydrogen chloride can be sent to a process for producing trichlorosilane by reacting hydrogen chloride with metallic silicon and reused as a raw material.

〔反応液の循環工程〕
未蒸留物のクロロシラン類は蒸留装置9から抜き出され、循環管路10を通じて第2冷却器14に導入され、常温以下、例えば20℃以下、好ましくはくは−50℃〜20℃に冷却され、ガス状のまま含まれるクロロシラン類が凝縮液化し、循環管路10を通じて上記吸収装置8に戻され、吸収液として再び使用される。
[Reaction liquid circulation process]
Undistilled chlorosilanes are extracted from the distillation apparatus 9, introduced into the second cooler 14 through the circulation line 10, and cooled to room temperature or lower, for example, 20 ° C or lower, preferably -50 ° C to 20 ° C. The chlorosilanes contained in the gaseous state are condensed and returned to the absorption device 8 through the circulation line 10 and used again as the absorption liquid.

このように、吸収液は繰り返し循環して使用される。吸収液は循環使用によって繰返しクロロシラン類が吸収されることによって液量が一定量以上に増加した場合には吸収液の一部を抜き出し、また、冷却器14の出口ガス温度が吸収塔の塔内温度より低いと吸収塔内で液の蒸発が生じて液量が減るので、液量が減る場合にはクロロシラン類を追加し、吸収液の循環量が一定範囲になるように調整される。   In this way, the absorbing solution is repeatedly circulated and used. When the liquid volume increases to a certain level or more due to repeated absorption of chlorosilanes by circulation, a part of the liquid absorption liquid is extracted, and the outlet gas temperature of the cooler 14 is set in the tower of the absorption tower. If the temperature is lower than the temperature, the liquid is evaporated in the absorption tower and the amount of liquid is reduced. When the amount of liquid is reduced, chlorosilanes are added to adjust the circulating amount of the absorbing liquid to be within a certain range.

吸収液の循環液量を調整するために抜出された吸収液(クロロシラン類)はトリクロロシランを回収する蒸留設備などに送られ、有効に再利用される。このように、クロロシラン類は一定量になるまで系外に抜き出されないので、実質的にクロロシラン類の損失を生じることがなく、効率よくクロロシラン類を利用することができる。   Absorbing liquid (chlorosilanes) extracted to adjust the amount of circulating liquid in the absorbing liquid is sent to a distillation facility for recovering trichlorosilane and reused effectively. Thus, since chlorosilanes are not extracted out of the system until a certain amount is reached, loss of chlorosilanes does not occur substantially, and chlorosilanes can be used efficiently.

図2に示すように、吸収装置8から蒸留装置9に至る管路に熱交換機11を設け、循環路10が該熱交換機11を経由するように形成することによって、蒸留装置9の熱を有効に利用できるようにすると良い。蒸留装置9から抜き出されるクロロシラン類の温度は概ね70℃〜120℃であり、一方、吸収装置8から抜き出された吸収液の温度は常温以下であるので、熱交換機11を通じることによって蒸留装置9に導入する吸収液の温度を高めることができ、蒸留に必要な熱量を節約することができる。   As shown in FIG. 2, a heat exchanger 11 is provided in a pipe line from the absorption device 8 to the distillation device 9, and the circulation path 10 is formed so as to pass through the heat exchanger 11, thereby effectively using the heat of the distillation device 9. It is good to make it available for use. The temperature of the chlorosilanes extracted from the distillation apparatus 9 is approximately 70 ° C. to 120 ° C., while the temperature of the absorption liquid extracted from the absorption apparatus 8 is not more than room temperature, so that it is distilled by passing through the heat exchanger 11. The temperature of the absorbing liquid introduced into the apparatus 9 can be increased, and the amount of heat necessary for distillation can be saved.

〔水素精製工程〕
上記吸収装置8に導入された混合ガス中の水素は吸収液(液状のクロロシラン類)に吸収されずにガス状のまま吸収液を通過する。従って、吸収装置8から流出するガスは水素主体のガスであり、これは水素精製装置12に導入される。水素精製装置12には活性炭が充填されており、水素主体のガスが該活性炭充填層を通過する間に、ガス中に含まれる未分離のクロロシラン類および塩化水素が活性炭に吸着されてガス中から除去され、精製された水素ガスが得られる。
[Hydrogen purification process]
Hydrogen in the mixed gas introduced into the absorption device 8 passes through the absorption liquid in a gaseous state without being absorbed by the absorption liquid (liquid chlorosilanes). Therefore, the gas flowing out from the absorption device 8 is a hydrogen-based gas, which is introduced into the hydrogen purification device 12. The hydrogen purifier 12 is filled with activated carbon, and while the hydrogen-based gas passes through the activated carbon packed bed, unseparated chlorosilanes and hydrogen chloride contained in the gas are adsorbed on the activated carbon, and the gas is extracted from the gas. Removed and purified hydrogen gas is obtained.

精製された水素ガスは循環管路13を通じて転換設備の蒸発器5に導入され、転換反応の原料の一部として再利用される。この精製された水素ガスはクロロシラン類および塩化水素を含まないので、上記転換反応を阻害せず、原料の転換率を高めることができる。   The purified hydrogen gas is introduced into the evaporator 5 of the conversion facility through the circulation line 13 and reused as a part of the raw material for the conversion reaction. Since this purified hydrogen gas does not contain chlorosilanes and hydrogen chloride, the conversion rate of the raw material can be increased without inhibiting the conversion reaction.

なお、水素精製装置12において、クロロシラン類および塩化水素を吸着した活性炭充填層は、加熱下で水素ガスを通過させることによって脱着することができる。この脱着ガスを冷却し、クロロシラン類を凝縮液化して回収することができる。   In the hydrogen purifier 12, the activated carbon packed bed that adsorbs chlorosilanes and hydrogen chloride can be desorbed by passing hydrogen gas under heating. This desorption gas is cooled, and chlorosilanes can be condensed and recovered.

本発明の水素分離回収設備を用い、トリクロロシランを生成する転換反応において生じた混合ガスから水素を分離回収した実施例を以下に示す。   Examples in which hydrogen is separated and recovered from a mixed gas produced in a conversion reaction for producing trichlorosilane using the hydrogen separation and recovery facility of the present invention are shown below.

転換炉出口ガス(上記混合ガス)の成分を以下に示す。
TCS=2.7kmol/hr、STC=15.4kmol/hr、HCl=2.7kmol/hr、H2=33.5kmol/hr
The components of the converter outlet gas (the mixed gas) are shown below.
TCS = 2.7 kmol / hr, STC = 15.4 kmol / hr, HCl = 2.7 kmol / hr, H 2 = 33.5 kmol / hr

上記混合ガスを冷却器7に導入し、−50℃〜20℃に冷却してクロロシラン類を凝縮液化して捕集し、未凝縮のクロロシラン類を含む混合ガスを図2に示す水素分離回収設備の吸収塔8に導入した。吸収塔8は塔径800mmφ、充填層高さ13500mmhのポールリング充填塔を用いた。吸収塔に導入する混合ガスの圧力を表1に示した。また吸収塔の温度、および塔内を流れる吸収液の循環液量を表1に示す範囲に制御した。この結果を表1に示した。   The mixed gas is introduced into the cooler 7, cooled to −50 ° C. to 20 ° C., and chlorosilanes are condensed and collected, and the mixed gas containing uncondensed chlorosilanes is shown in FIG. The absorption tower 8 was introduced. As the absorption tower 8, a pole ring packed tower having a tower diameter of 800 mmφ and a packed bed height of 13500 mmh was used. The pressure of the mixed gas introduced into the absorption tower is shown in Table 1. Further, the temperature of the absorption tower and the amount of circulating liquid flowing through the tower were controlled within the ranges shown in Table 1. The results are shown in Table 1.

吸収塔出口ガスに含まれるクロロシラン類および塩化水素の濃度はガスクロマトグラフィー法ないし赤外吸収光度法(FTIR)に基づいて測定した。吸収塔の循環液量は吸収液の吸収塔に供給する液量である。塩化水素の吸収率は(吸収塔出口ガス中のHCl濃度/吸収塔入口ガス中のHCl濃度)によって示される。   The concentrations of chlorosilanes and hydrogen chloride contained in the absorption tower outlet gas were measured based on gas chromatography or infrared absorption photometry (FTIR). The amount of circulating liquid in the absorption tower is the amount of liquid supplied to the absorption tower of the absorption liquid. The absorption rate of hydrogen chloride is indicated by (HCl concentration in absorption tower outlet gas / HCl concentration in absorption tower inlet gas).

吸収塔8から流出したガスを活性炭充填層12を有する水素精製装置に導入した。活性炭充填層12は、塔径1600mmφ、充填高さ9000mmhのものを用いた。この結果を表1に示した。   The gas flowing out from the absorption tower 8 was introduced into a hydrogen purifier having an activated carbon packed bed 12. The activated carbon packed bed 12 used had a tower diameter of 1600 mmφ and a packing height of 9000 mmh. The results are shown in Table 1.

表1の結果に示すように、吸収塔出口ガスのクロロシラン類および塩化水素の濃度は何れも低く、混合ガスに含まれる塩化水素の大部分は吸収液に吸収されることがわかる。塩化水素の吸収率は、No.2およびNo.3を除き、96%以上であり、高い吸収率を示している。さらに水素精製装置の出口ガスからは塩化水素およびクロロシラン類が検出されず、これらが完全に除去されており、塩化水素およびクロロシラン類を含まない精製された水素ガスが回収されている。
As shown in the results of Table 1, it can be seen that the concentrations of chlorosilanes and hydrogen chloride at the absorption tower outlet gas are both low, and most of the hydrogen chloride contained in the mixed gas is absorbed by the absorbing solution. The absorption rate of hydrogen chloride is 96% or more except for No. 2 and No. 3, indicating a high absorption rate. Further, hydrogen chloride and chlorosilanes are not detected from the outlet gas of the hydrogen purifier, and these are completely removed, and purified hydrogen gas not containing hydrogen chloride and chlorosilanes is recovered.

Figure 0005344113
Figure 0005344113

上記循環液量、塩化水素の吸収率などは装置のサイズ、吸収塔充填物の性能、混合ガスの組成などによって変わるので上記実施例は一例である。また、従って、本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。   The above embodiment is an example because the amount of circulating fluid, the absorption rate of hydrogen chloride, and the like vary depending on the size of the apparatus, the performance of the absorption tower packing, the composition of the mixed gas, and the like. Therefore, the technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.

本発明に係る水素分離回収方法ないし設備の参考例を示す概念図。The conceptual diagram which shows the reference example of the hydrogen separation-recovery method thru | or equipment which concerns on this invention. 本発明に係る水素分離回収方法ないし設備の他の一例を示す概念図。The conceptual diagram which shows another example of the hydrogen separation-recovery method thru | or equipment which concerns on this invention. 従来の水素分離回収設備を示す概念図。The conceptual diagram which shows the conventional hydrogen separation and recovery equipment.

符号の説明Explanation of symbols

1…転換炉、7…第1冷却器、8…吸収塔(吸収装置)、9…蒸留塔(蒸留装置)、
10…吸収液循環管路、12…活性炭吸着塔(水素精製装置)、13…水素循環管路、
14…第2冷却器。
DESCRIPTION OF SYMBOLS 1 ... Conversion furnace, 7 ... 1st cooler, 8 ... Absorption tower (absorption apparatus), 9 ... Distillation tower (distillation apparatus),
10 ... Absorbing liquid circulation line, 12 ... Activated carbon adsorption tower (hydrogen purifier), 13 ... Hydrogen circulation line,
14 ... Second cooler.

Claims (4)

クロロシラン類と塩化水素および水素を含む混合ガスを吸収塔に導入し、該混合ガスを液状のクロロシラン類を主体とする吸収液に接触させて混合ガス中のクロロシランおよび塩化水素を該吸収液に吸収させる工程〔吸収工程〕、上記吸収塔から流出した吸収液を蒸留塔に導き、クロロシランおよび塩化水素を吸収した吸収液を蒸留して塩化水素をガス化し分離する工程〔塩化水素分離工程〕、上記蒸留塔から流出した吸収液を冷却してクロロシラン類を回収し、該クロロシラン類を上記吸収工程に戻す工程〔吸収液循環工程〕、上記吸収塔から流出した水素主体のガスを活性炭に通じてガス中に残留するクロロシラン類および塩化水素を該活性炭に吸着させて分離する工程〔水素精製工程〕を有し、さらに上記吸収塔から流出した吸収液を上記蒸留塔に導く管路に熱交換器を設けるとともに、上記吸収液循環工程において、上記蒸留塔から流出した吸収液を上記吸収塔に戻す循環路が上記熱交換器を経由するように形成し、上記吸収塔から流出した吸収液が該熱交換器によって温度が高められて蒸留塔に導入されることを特徴とする水素分離回収方法。 A mixed gas containing chlorosilanes, hydrogen chloride and hydrogen is introduced into the absorption tower, and the mixed gas is brought into contact with an absorption liquid mainly composed of liquid chlorosilanes to absorb the chlorosilane and hydrogen chloride in the mixed gas into the absorption liquid. step [absorption step] to be led to the distillation column flowing out absorption liquid from said absorption tower, chlorosilane and a step of distilling the absorbed absorbing liquid hydrogen chloride gasified hydrogen chloride separation [hydrogen chloride separation step], the A step of cooling the absorption liquid flowing out from the distillation tower to recover chlorosilanes and returning the chlorosilanes to the absorption step [absorption liquid circulation step], a gas mainly containing hydrogen flowing out from the absorption tower through the activated carbon chlorosilanes and hydrogen chloride and a step [hydrogen purification step] of separating by adsorption on the activated carbon, further flowing out from the absorption column absorbed liquid remaining in the A heat exchanger is provided in the pipe leading to the distillation tower, and in the absorption liquid circulation step, a circulation path for returning the absorption liquid flowing out from the distillation tower to the absorption tower is formed so as to pass through the heat exchanger. A method for separating and recovering hydrogen, wherein the absorption liquid flowing out from the absorption tower is introduced into the distillation tower after the temperature is raised by the heat exchanger . クロロシラン類と塩化水素および水素を含む混合ガスが、テトラクロロシランと水素を反応させてトリクロロシランを生成させる転換反応において生成した混合ガスである請求項1に記載する水素分離回収方法。 The hydrogen separation and recovery method according to claim 1, wherein the mixed gas containing chlorosilanes, hydrogen chloride and hydrogen is a mixed gas generated in a conversion reaction in which tetrachlorosilane and hydrogen are reacted to generate trichlorosilane . クロロシラン類と塩化水素および水素を含む混合ガスを液状のクロロシラン類を主体とする吸収液に接触させて混合ガス中のクロロシランおよび塩化水素を該吸収液に吸収させる吸収塔、該吸収塔から流出した吸収液を蒸留して塩化水素をガス化し分離する蒸留塔、該蒸留塔から流出した吸収液を吸収塔に戻す循環路、該循環路に設けられた冷却器、吸収塔から流出した水素主体のガス中に残留するクロロシラン類および塩化水素を吸着させる活性炭を充填した活性炭吸着塔を備え、さらに吸収塔から流出した吸収液を蒸留塔に導く管路に熱交換器が設けられ、蒸留塔から流出した吸収液を上記吸収塔に戻す循環路が該熱交換器を経由するように形成されており、吸収塔から流出した吸収液が該熱交換器によって温度が高められて蒸留塔に導入されることを特徴とする水素分離回収設備。 An absorption tower in which a mixed gas containing chlorosilanes, hydrogen chloride and hydrogen is brought into contact with an absorption liquid mainly composed of liquid chlorosilanes to absorb the chlorosilane and hydrogen chloride in the mixed gas into the absorption liquid, and flows out of the absorption tower. A distillation column for distilling the absorption liquid to gasify and separate hydrogen chloride, a circulation path for returning the absorption liquid flowing out from the distillation tower to the absorption tower, a cooler provided in the circulation path, a hydrogen main body flowing out from the absorption tower It is equipped with an activated carbon adsorption tower filled with activated carbon that adsorbs chlorosilanes and hydrogen chloride remaining in the gas, and a heat exchanger is installed in the pipe that leads the absorption liquid flowing out from the absorption tower to the distillation tower. A circulation path for returning the absorbed liquid to the absorption tower is formed so as to pass through the heat exchanger, and the temperature of the absorbed liquid flowing out from the absorption tower is increased by the heat exchanger and led to the distillation tower. Hydrogen separation and recovery equipment, characterized in that it is. テトラクロロシランと水素を反応させてトリクロロシランを生成させる転換炉に接続され、転換炉から流出したクロロシラン類と塩化水素および水素を含む混合ガスを処理する請求項3に記載する水素分離回収設備。 The hydrogen separation and recovery equipment according to claim 3, wherein the hydrogen separation and recovery equipment is connected to a conversion furnace for reacting tetrachlorosilane with hydrogen to produce trichlorosilane and treating a mixed gas containing chlorosilanes, hydrogen chloride and hydrogen flowing out of the conversion furnace .
JP2007276564A 2006-11-14 2007-10-24 Hydrogen separation and recovery method and hydrogen separation and recovery equipment Active JP5344113B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007276564A JP5344113B2 (en) 2006-11-14 2007-10-24 Hydrogen separation and recovery method and hydrogen separation and recovery equipment
PCT/JP2007/072113 WO2008059887A1 (en) 2006-11-14 2007-11-14 Hydrogen separation/collection method and hydrogen separation/collection facility

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006308475 2006-11-14
JP2006308475 2006-11-14
JP2007276564A JP5344113B2 (en) 2006-11-14 2007-10-24 Hydrogen separation and recovery method and hydrogen separation and recovery equipment

Publications (2)

Publication Number Publication Date
JP2008143775A JP2008143775A (en) 2008-06-26
JP5344113B2 true JP5344113B2 (en) 2013-11-20

Family

ID=39604352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007276564A Active JP5344113B2 (en) 2006-11-14 2007-10-24 Hydrogen separation and recovery method and hydrogen separation and recovery equipment

Country Status (1)

Country Link
JP (1) JP5344113B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5566290B2 (en) * 2008-08-06 2014-08-06 電気化学工業株式会社 Method for producing hydrogen gas from hydrogen halide, mixed gas containing hydrogen and silicon halide, method for producing silicon compound using the hydrogen gas, and plant for the method
WO2010100750A1 (en) * 2009-03-06 2010-09-10 電気化学工業株式会社 Trichlorosilane cooling tower and process for producing trichlorosilane with the same
JP2011084422A (en) 2009-10-14 2011-04-28 Shin-Etsu Chemical Co Ltd System for recovering hydrogen gas and method for separating and recovering hydrogen gas
JP6179246B2 (en) * 2012-07-31 2017-08-16 三菱マテリアル株式会社 Polycrystalline silicon manufacturing method and manufacturing apparatus
JP6433867B2 (en) 2015-08-28 2018-12-05 信越化学工業株式会社 Hydrogen gas recovery system and hydrogen gas separation and recovery method
CN115228245A (en) * 2022-07-19 2022-10-25 金澳科技(湖北)化工有限公司 Method and device for recycling liquid-phase hydrogenation cold low-split gas of diesel wax oil

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3727470B2 (en) * 1997-06-03 2005-12-14 株式会社トクヤマ Method for producing polycrystalline silicon with low carbon content
JP4869671B2 (en) * 2004-10-05 2012-02-08 株式会社トクヤマ Method for producing silicon

Also Published As

Publication number Publication date
JP2008143775A (en) 2008-06-26

Similar Documents

Publication Publication Date Title
JP5344113B2 (en) Hydrogen separation and recovery method and hydrogen separation and recovery equipment
CN107848796B (en) Hydrogen recovery system and hydrogen separation and recovery method
KR101778068B1 (en) System and methods of producing trichlorosilane
JP5442780B2 (en) Purification method by distillation of chlorosilane
EP2998270A1 (en) Method for purifying hydrogen chloride
CN105531229B (en) The manufacture method of polysilicon
JP5344114B2 (en) Hydrogen purification recovery method and hydrogen purification recovery equipment
JP5511667B2 (en) Method for producing hydrogen gas from hydrogen halide, mixed gas containing hydrogen and silicon halide, method for producing silicon compound using the hydrogen gas, and plant for the method
CN104030293B (en) A kind of silicon tetrachloride purifying technique and system
JP2011139987A (en) Method for treating purged exhaust gas and use as hydrogen source
JP5339948B2 (en) High purity polycrystalline silicon manufacturing method
CN110078024B (en) Method and device for preparing electronic grade hydrogen chloride by taking hydrogen chloride gas as byproduct of organochlorosilane alcoholysis as raw material
CN106477525B (en) Method for purifying chlorination tail gas chlorine hydride dechlorination gas
CN113247862A (en) High-purity electronic-grade hydrogen chloride production device and process
WO2008059887A1 (en) Hydrogen separation/collection method and hydrogen separation/collection facility
RU2394762C2 (en) Method of producing trichlorosilane
WO2014100705A1 (en) Conserved off gas recovery systems and processes
JP6698762B2 (en) Hydrogen gas recovery system and method for separating and recovering hydrogen gas
JP5566290B2 (en) Method for producing hydrogen gas from hydrogen halide, mixed gas containing hydrogen and silicon halide, method for producing silicon compound using the hydrogen gas, and plant for the method
JP6486049B2 (en) Method for producing pentachlorodisilane and pentachlorodisilane produced by the method
WO2008059883A1 (en) Hydrogen purification/collection method and hydrogen purification/collection facility
RU2280010C1 (en) Method of production 0f trichlorosilane
US8551298B2 (en) Processes for purifying silane
CN219898098U (en) Methyl chlorosilane hydrolysate dechlorination system
CN215101984U (en) High-purity electronic-grade hydrogen chloride production device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130730

R150 Certificate of patent or registration of utility model

Ref document number: 5344113

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250