JP5343746B2 - 継目無鋼管用丸鋳片の連続鋳造方法 - Google Patents

継目無鋼管用丸鋳片の連続鋳造方法 Download PDF

Info

Publication number
JP5343746B2
JP5343746B2 JP2009173317A JP2009173317A JP5343746B2 JP 5343746 B2 JP5343746 B2 JP 5343746B2 JP 2009173317 A JP2009173317 A JP 2009173317A JP 2009173317 A JP2009173317 A JP 2009173317A JP 5343746 B2 JP5343746 B2 JP 5343746B2
Authority
JP
Japan
Prior art keywords
round
slab
roll
reduction
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009173317A
Other languages
English (en)
Other versions
JP2010052042A (ja
Inventor
龍郎 勝村
康一 堤
正道 阿部
博英 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009173317A priority Critical patent/JP5343746B2/ja
Publication of JP2010052042A publication Critical patent/JP2010052042A/ja
Application granted granted Critical
Publication of JP5343746B2 publication Critical patent/JP5343746B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
  • Metal Rolling (AREA)
  • Continuous Casting (AREA)

Description

本発明は、継目無鋼管用丸鋳片の連続鋳造方法に関し、詳しくは、連続鋳造ままの内部品質では継目無鋼管用素材として問題のあった炭素濃度の高い炭素鋼及び合金鋼などの丸鋳片や、鋳造ままの状態では熱間加工性が悪く、継目無鋼管用素材としては使用できなかったCr含有鋼の丸鋳片の内部品質を改善するための連続鋳造方法に関する。
継目無鋼管は、非特許文献1に記載されるように、一般的に、鋳造した鋼塊(インゴット)に加工を加えて製造される丸状または角状の鋼片、或いは、連続鋳造により製造される丸状または角状の鋳片を継目無鋼管用素材として使用し、これらの鋼片或いは鋳片をマンネスマン穿孔法、またはプレス穿孔法、若しくは熱間押出法などを用いて中空の素管に加工し、その後、エロンゲータ、プラグミルまたはマンドレルミルなどの圧延機により延伸し、仕上げ工程としてサイザーやストレッチレデューサにより定径化する工程を経て製造されている。
この継目無鋼管用の素材としては、一般の低炭素鋼のように、内質に優れ、熱間加工性の良い丸鋳片を比較的簡単に連続鋳造により製造可能な鋼種の場合には、鋳造ままの丸鋳片が用いられる。しかし、Crを含有するステンレス鋼などのように、連続鋳造による製造では、その軸芯部にポロシティや偏析が生じやすく、熱間加工性に劣る鋼種の場合には、鋳造ままの丸鋳片を用いると素管(継目無鋼管)の内面に疵が発生する。このため、連続鋳造などにより角形状の鋳片を製造し、その後、該鋳片に加工を加えて所定の寸法の丸状鋼片または角状鋼片とし、継目無鋼管用素材として使用していた。
ステンレス鋼などのCr含有鋼の熱間加工性が劣る主な原因は、耐食性向上のために添加されるCrの含有量増加に起因して、連続鋳造時に偏析やポロシティが鋳片軸芯部に発生しやすく、内質の劣った丸鋳片になるためである。熱間加工性に特に大きな悪影響を与えるポロシティは、丸鋳片の最終凝固部に発生する空隙に、溶鋼の粘度が高いなどの理由により、溶鋼が供給され難いことによって発生する。
図7に、溶鋼中のCr濃度と溶鋼の粘度との関係を示す。図7から、溶鋼中のCr濃度の増加に伴って溶鋼の粘度が増すこと、及び、13質量%前後のCr濃度で溶綱の粘度がピークを示すこと、が分かる。また、図8に、Cr濃度の少ない領域における、溶鋼中のCr濃度と溶鋼の粘度との関係を示す。図8から、Cr濃度が0.5質量%を超えると溶綱の粘度の上昇が顕著になることが分かる。
このように内部欠陥を有する丸鋳片に対して、過酷な加工方法であるマンネスマン穿孔法を施すと、得られる素管の内面には、ポロシティや偏析に起因した疵が発生する。このため、特に難加工性材料と呼ばれる鋼種は当然のこととして、炭素量の多い鋼種やCrが添加された鋼種についても、圧延工程を経て製造された丸鋼片を継目無鋼管用素材として用いることが必須とされてきた。例えば、非特許文献2に記載されるように、高Cr鋼などのように、連続鋳造ままの丸鋳片を素材として用いると素管の内面疵の発生が懸念される鋼種の場合には、大断面の鋼塊或いは連続鋳造鋳片を製造し、これらを加熱した後に分塊圧延してポロシティを機械的に圧着させ、内部品質の優れた丸鋼片を得て、継目無鋼管用素材としていた。なお、ここでいう「鋼片」とは、分塊圧延などの圧延工程を経て得られるものであり、また「鋳片」とは、連続鋳造したままのものである。
また、近年、ポロシティに加え、ポロシティの周囲に発生する放射状の割れ(以下、「軸芯割れ」と記す)が製管の阻害要因になるとも言われている。この軸芯割れの発生原因は幾つか提唱されているが、最も影響度の大きい因子としては、鋳片の冷却時に発生する軸芯部熱応力であるとされている。
このように、鋳造ままの素材で製管を行うと疵の発生が懸念される場合には、鋳造した素材を分塊圧延して機械的にポロシティを圧着させ、鋳片にポロシティが存在していてもその影響を製管時に発生させないようにしていた。
しかしながら、連続鋳造鋳片に分塊圧延を施すと、圧延後の鋼片の端面が凹凸のある形状となり、そのまま、継目無鋼管用素材として穿孔すると凸部を巻き込み、素管の内面疵になる。そのため、圧延後の鋼片を継目無鋼管用素材とするためには、鋼片端面の形状を整えるための切断工程が必須となる。即ち、端部の切断によりクロップが必然的に発生し、製品歩留が低下するという問題がある。また、当然ながら、分塊圧延を行うための再加熱も製品コストを増大させる要因となるという問題もある。
そこで、分塊圧延工程を経ずに丸鋳片をそのまま継目無鋼管用素材とするべく、丸鋳片の内質を向上させる技術が提案されている。
例えば、特許文献1には、連続鋳造中の鋳片を、鋳片中心部の固相率fsがO.5〜0.9の位置で、鍛造による総圧下量δが、当該鍛造位置における未凝固厚みdの0.5倍以上、つまり、δ/d≧0.5となるように連続鍛造による大圧下を施しながら鋳造する技術が開示されている。この技術は、連続鋳造時に圧下力を付与しており、圧下のための加熱は必要とせず、しかも、ポロシティの圧下については優れた技術であるが、設備費が高額であるという問題がある。また、一般の炭素鋼などの圧下不要の鋳片に対しても設備費の負担がかかってくるため、現実的でない。
また、特許文献2には、連続鋳造時の鋳片内質向上のために、鋳型及び鋳型直下に配置した電磁攪拌装置によって溶綱を攪拌しながら丸鋳片を連続鋳造する技術が開示されている。この技術は、鋳型内及び鋳型直下で溶鋼を電磁撹絆することにより、凝固核を未凝固層中に生成させ、この凝固核によって鋳片の軸芯部を等軸晶で充填させ、鋳片軸芯部のポロシティ及び偏析を抑制するという技術である。ただし、この技術は広く実施されているものの、その効果はポロシティの発生を防止する程は大きくない。
また、連続鋳造鋳片の内質を向上させる他の手段として、例えば特許文献3に示されるように、連続鋳造中の凝固末期の鋳片に、凝固収縮量に相当する程度の圧下を加えながら鋳造する技術が実施されている。この技術は、凝固末期の鋳片を凝固収縮量だけロールで圧下し、ポロシティを軽減するとともに、濃化溶鋼の流動を抑えて中心偏析を防止する技術であり、スラブ鋳片やブルーム鋳片の内質改善方法として良く知られており、「軽圧下技術」と呼ばれている。この技術は、鋳造中に圧下を加えるだけであり、設備費は軽微であり、圧下のための再加熱も不要であり、製造コストを低減できる技術である。
この軽圧下技術の1例として、非特許文献3には、高Cr鋼であるSUS304の丸ブルーム鋳片に軽圧下技術を適用した例が開示されている。非特許文献3に記載される、鋳片軸芯部の密度測定結果では、ポロシティの発生していないときの密度が7.8g/ cmであるのに対し、圧下を付与したときの鋳片軸芯部の密度は7.7g/cmであり、また、凝固組織の写真からも軸芯部に若干のポロシティの残存が確認でき、完全にはポロシティを潰しきれていない。しかし、軽圧下を実施しない場合に比較すると、改善効果は大きい。
この軽圧下技術を丸鋳片の連続鋳造に採用したときの最大の問題は、ロールによる圧下で引き起こされる鋳片形状の悪化つまり偏平化と、圧下量の増大に伴って発生の可能性が増大する凝固界面近傍の割れである。
即ち、丸鋳片に対して、板状鋳片を圧下するために用いるような、鋳片の移送方向に対し垂直な断面の断面形状が矩形である平型ロールにより圧下を加えると、ロールに接触した部分は平面化し、他方、ロールに接触していない部分は膨らみ、丸鋳片の断面形状は偏平化し、更には角形に近づく。このような鋳片を穿孔して継目無鋼管とすると、偏肉が発生する場合が多くなる。しかも、このような圧下により、鋳片断面内で圧下方向と直交する方向に引張応力が発生することで、割れが発生しやすくなる。また、ポロシティの圧着効果を高めるために圧下量を大きくすれば、断面形状は更に真円から遠ざかり、その結果、継目無鋼管の偏肉が大きくなって所望の規格を外れる恐れが高くなるとともに、割れの発生率が高くなり、更には、継目無鋼管用素材として使用する際に、丸鋳片を転動して行う搬送ができなくなったり、また穿孔時の噛込み不安定になったりするなどの重大な問題が発生する。
この偏平化の問題を解決するべく、特許文献4には、楕円形鋳型により断面形状が楕円形の鋳片を鋳造し、それを、ラウンド孔型ロ一ルにより長径方向に圧下し、真円断面の鋳片を得る技術が開示されている。
特許文献4に記載された方法は圧下後の鋳片形状の問題を解決しているが、記載される実施例から判断すると、所望する鋳片直径に対し、10%を超える、いわば強圧下を施しても、直径10mm以上のポロシティが残存し、鋳片段階におけるポロシティの低減効果は認められるものの、製管工程での疵抑制効果は疑問であり、その効果は小さいと言わざるを得ない。また、圧下量を大きくするためには、楕円形鋳型の長径と短径との差を大きくする必要があり、その場合には、鋳造時の鋳型内湯流れが真円断面の鋳型(円形鋳型)を用いた場合に比較して不均一になり、それに起因する湯面変動やモールドパウダーの巻き込みが、新たな欠陥の原因になる。また、必要な圧下量に対応して鋳型を数多く準備する必要があること、及び、内部品質に問題の無い鋼種の場合も圧下をかけることになり、コストが上昇することなどの問題もある。
これらの問題を解決するために、本発明者らは、例えば特許文献5に示すように、カリバー底の開き角度δが70°以上115°以下である鞍型ロールを用い、円形鋳型により鋳造された連続鋳造中の丸鋳片を圧下しながら鋳造する技術を提案し、一定の効果が得られることを確認した。
特開昭63-183765号公報 特開平1-180762号公報 特開昭49-121738号公報 特開平7-108358号公報 特開平10-34304号公報
第3版鉄鋼便覧III(2)(1980)、p.952、p.971 第3版鉄鋼便覧III(2)(1980)、p.107〜170 材料とプロセス、vo1.7(1994)、No.1、p.195
特許文献5に記載された技術により、所望する効果を得るためには、体積減少率なるパラメータを増加する必要があり、それは、即ち、鋳造速度の相関が或る程度はあるものの、実質的には圧下量を増大させることが必要であることが分かった。この場合、鋳片径が大きくなればなるほど、圧下の負荷は増大し、従って、大型設備を導入するか、或いは、軸芯部のポロシティの抑制を不十分のまま断念するかと、いう選択を余儀なくされ、特許文献5に記載の技術によっても、完全な解決には至らないことが認められた。
また、上記した従来の技術では、さらに、鋼の丸鋳片、特にCr含有鋼の丸鋳片を連続鋳造するにあたり、ポロシティの生成を完全に抑制することはできず、また、鋳造中の丸鋳片に軽圧下を加えた場合、鋳片断面形状が偏平となり、それによる弊害も発生していた。
即ち、合金成分を多く含む継目無鋼管用の丸鋳片の製造方法においては、軽圧下を行うことなく内質を改善することはほぼ不可能である一方、軽圧下そのものの実施により真円形状から遠ざかることに起因して生ずる製管工程での損失が大きく、それ故、所望する圧下量での軽圧下を行うことができず、その結果、内質が良く、製管に好適な丸鋳片を得ることは困難であるという問題があった。
本発明は、上記した従来技術の問題に鑑みてなされたものであり、熱間加工性の劣る鋼、特にCr含有鋼などの合金元素の多い鋼であっても、鋳造ままの丸鋳片をそのまま継目無鋼管用素材とすることのできる、内部品質に優れた丸鋳片を、断面形状劣化を伴うことなく且つ経済的に安定して製造することのできる、継目無鋼管用丸鋳片の連続鋳造方法を提供することを目的とする。
本発明者らは、上記した目的を達成するために、連続鋳造時の丸鋳片の内部品質に影響する各種要因ついて、鋭意研究した。その結果、丸鋳片の凝固完了位置近傍に、所定のカリバー底の開き角度δを有し、かつ丸鋳片に接触する部位に円周方向に連続した突条、または円周方向に離散的に分布した突起を配設した一対の鞍型ロールを配し、丸鋳片を圧下することが有効であるという結論に達した。これにより、丸鋳片の内部品質が格段に向上することを知見した。
本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨とするところは、次のとおりである。
(1)円形鋳型による連続鋳造中の丸鋳片に、該丸鋳片の凝固完了前に、一対の圧下ロールにより圧下を加え、次いで、丸鋳片を切断して継目無鋼管用丸鋳片を製造するに当たり、前記一対の圧下ロールとして、カリバー底の開き角度δが75°以上105°以下であり、且つ、前記丸鋳片と対向する部位に、丸鋳片と接触する突起を有する鞍型ロールを使用することを特徴とする継目無鋼管用丸鋳片の連続鋳造方法。
(2)(1)において、前記突起が、少なくとも1条のロール円周方向に連続する突条であることを特徴とする継目無鋼管用丸鋳片の連続鋳造方法。
(3)(1)において、前記突起が、ロール円周方向に離散的に分布した複数の突起であることを特徴とする継目無鋼管用丸鋳片の連続鋳造方法。
(4)(1)ないし(3)のいずれかにおいて、前記突起が、前記鞍型ロールの軸方向断面における断面形状が円弧であり、該円弧の半径Rが、
R=0.20D〜0.50D
(ここで、R:突条断面の円弧半径(mm)、D:丸鋳片直径(mm))
を満足することを特徴とする継目無鋼管用丸鋳片の連続鋳造方法。
(5)(3)において、前記複数の突起が、該突起の、ロール円周方向の底面長さBとロール軸方向の底面長さAとの比、A/B、が0.2〜1であることを特徴とする継目無鋼管用丸鋳片の連続鋳造方法。
(6)(5)において、前記複数の突起を、該複数の突起のうち隣り合う突起同士の端部間の間隔が、前記鞍型ロールの円周方向の投影長さで、零を含み、前記鞍型ロールと前記丸鋳片との接触長さ未満となるように、設けることを特徴とする継目無鋼管用丸鋳片の連続鋳造方法。
(7)(5)または(6)において、前記複数の突起を、該複数の突起の前記鞍型ロールの円周方向における底面長さBが、前記鞍型ロールと前記丸鋳片との接触長さの1/2以上である突起とすることを特徴とする継目無鋼管用丸鋳片の連続鋳造方法。
(8)(1)ないし(7)のいずれかにおいて、前記圧下を、前記丸鋳片の軸芯部での固相率fsが0.3〜0.85である時期に、次式
面積減少率(%)={1−(圧下後の丸鋳片の断面積)/(圧下前の丸鋳片の断面積)}×100
で定義される面積減少率が1〜5%の範囲となる圧下とすることを特徴とする継目無鋼管用丸鋳片の連続鋳造方法。
(9)(1)ないし(8)のいずれかにおいて、前記丸鋳片が、0.5質量%以上のCrを含有するCr含有鋼製であることを特徴とする継目無鋼管用丸鋳片の連続鋳造方法。
本発明によれば、所定のカリバー底開き角度を有する鞍型ロールの丸鋳片に接触する位置に設置した突起を介して丸鋳片を圧下するので、丸鋳片の軸芯部に有効に圧下力が付与され、少ない圧下量で且つ丸鋳片の断面形状を損ねることなく、Cr含有鋼などに生じやすい軸芯部のポロシティや軸芯割れの発生を抑制できた丸鋳片を製造でき、継目無鋼管用素材として、製造コストの削減や継目無鋼管の品質向上等に寄与でき、産業上格段の効果を奏する。また本発明によれば、少ない圧下量でも丸鋳片軸芯部のポロシティや軸芯割れの発生を抑制でき、高額な設備投資が不要となるという効果もある。
また、本発明によれば、炭素鋼などの連続鋳造ままの継目無鋼管用丸鋳片においても、低コストで内部品質の大幅な改善が得られ、それにより、製品歩留りが向上するとともに生産能率も向上するという大きな効果もある。
本発明の実施形態の1例を示す図であり、継目無鋼管用丸鋳片を連続鋳造により製造する状況を示す概略図である。 突条付き鞍型ロールを用いて鋳造中の丸鋳片を圧下している状態を模式的に示す説明図である。 突条付き鞍型ロールを用いて鋳造中の丸鋳片を圧下している状態を、ロール軸芯を含む断面で、模式的に示す説明図である。 2列の突条を有する鞍型ロールの一例を模式的に示す説明図である。 突条の断面形状の一例を模式的に示す説明図である。 複数の突起付き鞍型ロールを用いて鋳造中の丸鋳片を圧下している状態を模式的に示す説明図である。 溶鋼中のCr濃度と溶鋼の粘度との関係の一例を示した図である。 溶鋼中のCr濃度(低濃度側)と溶鋼の粘度との関係の一例を示した図である。 圧下ロールとして平型ロールを使用して連続鋳造中の丸鋳片を圧下している状態を模式的に示す説明図である。
本発明は、継目無鋼管用丸鋳片の製造方法であり、本発明では、連続鋳造機1を利用し、タンディッシュ2に収容された溶鋼8を、浸漬ノズル3を介して内部空間横断面が真円(円形)である連続鋳造鋳型(円形鋳型)4に注入し、連続的に丸鋳片9を鋳造するに当たり、油圧シリンダー7を備え丸鋳片に押付け力を付加可能な一対の圧下ロール6,6を丸鋳片の凝固完了位置より上流側の適正な位置に配置し、該一対の圧下ロール6,6により該丸鋳片の凝固完了前に該丸鋳片9に圧下を加える。そして、丸鋳片の凝固完了位置より下流側の適当な位置に設置された鋳片切断機(図示せず)により丸鋳片を切断して、継目無鋼管用素材を得る。この状況を図1に示す。
なお、円形鋳型4の下流側には、鋳造中の丸鋳片を支持するための鋳片支持ロール5が多数、配置される。また、鋳片支持ロール5が配置される範囲には、鋳造中の丸鋳片9を強制冷却するためのスプレーノズル(図示せず)が配置され、二次冷却帯を構成している。図1では、圧下ロール6,6は、鋳片支持ロール5を設置すべき位置と同じ位置に配置しているが、鋳片支持ロール5を設置すべき位置とは異なる位置に配置してもよい。また、図1では、圧下ロール6,6を、丸鋳片9が水平方向に移送される位置に設置した例を示しているが、これに限定されないことは言うまでもない。圧下ロール6,6を、丸鋳片9が垂直または斜め方向に移送される位置に設置することも可能である。
さらに、図1に示す連続鋳造機1を利用して、継目無鋼管用の丸鋳片を製造する場合を例にとり、本発明の製造方法についてさらに詳しく説明する。
タンディッシュ2から、浸漬ノズル3を介して円形鋳型4に注入された溶鋼8は、円形鋳型4の内壁に接触して冷却され、円形鋳型4との接触部に円形の凝固シェル10を形成する。そして、この凝固シェル10を外殻とし、内部に未凝固層11を有する丸鋳片9は、鋳片支持ロ一ル5のうちのピンチロールによって円形鋳型4から引き抜かれ、鋳片支持ロール5で支持されながら二次冷却帯で冷却される。二次冷却帯での冷却により、凝固シェル10の厚みが増大し、やがて軸芯部までの凝固を完了する。軸芯部までの凝固を完了した丸鋳片9は、鋳片切断機(図示せず)によって所定の長さに切断され、継目無鋼管用丸鋳片とされる。なお、図1には示されていないが、丸鋳片9の軸芯部の品質を向上させるために、円形鋳型4或いは円形鋳型直下の二次冷却帯に電磁撹拌装置を配置してもよい。この電磁撹拌装置により、未凝固層11が強制的に撹拌され、等軸晶を形成して、軸芯部のポロシティ及び偏析が改善される。
本発明では、凝固が完了する前の適正な位置で、鋳造中の丸鋳片9に一対の圧下ロール6,6を用いて圧下を加える。これにより、軸芯部のポロシティ及び放射状の軸芯割れが改善し、丸鋳片9の内部品質が向上する。
本発明では、使用する一対の圧下ロール6,6を、カリバー底の開き角度δが75°以上105°以下であり、且つ、丸鋳片と対向する部位に、丸鋳片と接触する突起13を有する一対の鞍型ロール6a,6aとする。
鞍型ロールの丸鋳片に接触する部位に設けられる突起13としては、少なくとも1条のロール円周方向に連続する突条13a、あるいは、ロール円周方向に離散的に分布した複数の突起13bとすることが好ましい。少なくとも1条のロール円周方向に連続する突条13aを有する例を図2に、また、ロール円周方向に離散的に分布した複数の突起13bを有する例を図6に示す。
一対の圧下ロール6,6として、一対の鞍型ロール6a,6aを用いることにより、圧下ロール6a,6aと丸鋳片9との接触箇所が4点となり、圧下ロール6a,6aが丸鋳片9を拘束しやすくなるうえ、図3に断面図で示すように、異なる4つの方向から丸鋳片9を圧下することが可能となる。これにより、平型ロールを用いた圧下に比較して、圧下後の丸鋳片9の偏平率εを小さくすることができる。なお、ここでいう「偏平率ε」は、「ε(%)=1一(丸鋳片の或る断面中での最短径部長さ)/(同一断面中の最長径部長さ)/×100」で定義される値をいう。
圧下ロールとして使用する鞍型ロール6aは、カリバー底の開き角度δを75°以上105°以下とする。これにより、丸鋳片の軸芯部に、圧下により発生する応力・歪を圧縮方向の応力・歪とすることができ、ポロシティの低減が可能となる。なお、カリバー底の開き角度δが、この範囲を逸脱すると、圧下時に丸鋳片の幅方向(圧下方向に垂直な方向)に、引張応力が作用し、問題となる。ポロシティの低減のためには、当該箇所への静水圧の付加が有効であるとされているが、丸鋳片の軸芯部に対しては簡便に行うことは困難である。また、丸鋳片への圧下を、平型ロールを用いて行えば、圧下方向には大きな圧縮効果を得ることが可能であるが、圧下方向に垂直な鋳片幅方向(鋳片の圧下方向に垂直な方向)の応力は引張応力となり、ポロシティの低減効果が低下する。
そして、本発明で使用する鞍型ロール6aは、上記したカリバー底の開き角度δを有し、さらに、丸鋳片9と対向する面に丸鋳片に接触する突起13を設けたロールとする。例えば図3に示すように、この突起13を丸鋳片9と接触させて、鞍型ロール6aの圧下力を丸鋳片9に付与する。なお、突起13の配設位置は、丸鋳片9と接触できる位置であればよく、とくに限定する必要はないが、丸鋳片9の軸芯部への圧下効率をより一層高める観点からは、鞍型ロール6a、6aのロール軸を含み丸鋳片9の軸方向(搬送方向)に垂直な断面で、丸鋳片9の中心Oと鞍型ロール6a、6aの幅方向中心とを結んだ直線に対して、略45°の角度をなし、且つ、丸鋳片9の中心Oを通る2つの直線と鞍型ロール表面との交点近傍の位置となるように、鞍型ロール表面にそれぞれ配置することが好ましい。
なお、配設する突起13は、図2に示すようなロール円周方向に連続する突条13aとすることが好ましい。突起13をロール円周方向に連続する突条13aとすることにより、丸鋳片9の全長にわたって圧下力を均等に与えることができ、内部品質向上に有利である。なお、突条13aは、ロール幅の片側で1条としてもあるいは図4に示すように2条(複数条)としてもよい。また、ロール円周方向に連続する突起ではなく、図6(a)に示すようなロール円周方向に離散的に分布した複数の突起13bとしてもよい。ロール円周方向に離散的に分布した複数の突起13bは、ロール軸方向に、ロール幅の片側で1列としてもあるいは片側で複数列形成してもよい。ロール円周方向に離散的に分布した複数の突起13bをロール軸方向に、複数列形成する場合には、例えば図6(c)に示すように、突起13bを千鳥状に配置することが丸鋳片の長手方向に均一に圧下力を付与する観点から好ましい。また、突起13の設置数(設置条、設置列)を多くすると、突起の設置なしの通常の鞍型ロールによる圧下と大差ないことになるため、ロール幅の片側で4条以下程度、あるいは4列以下程度とすることが好ましい。
なお、ロール幅の片側で複数条あるいは複数列の突起を設ける場合には、上記した、鞍型ロール6a、6aのロール軸を含み丸鋳片9の軸方向(搬送方向)に垂直な断面で、丸鋳片9の中心Oと鞍型ロール6a、6aの幅方向中心とを結んだ直線に対して、略45°の角度をなし、且つ、丸鋳片9の中心Oを通る直交する2つの直線と鞍型ロール表面との交点近傍の位置となるように、突条又は突起をそれぞれ並べて鞍型ロール表面に配置することが好ましい。
また、突起13の、鞍型ロール6aの軸方向断面における断面形状は、少なくとも底部に比べ高さ方向に幅が狭くなる形状とすることが好ましい。しかし、突起の高さ方向に対する幅の変化が大きくなるような鋭角的断面形状の突起では、突起との接触部で丸鋳片が鋭角的にへこみ、その個所が真円形状への整形時または製管時に外面疵の起点となる恐れがある。また、ロール円周方向に離散的に分布した複数の突起13bの場合には、とくに突起の断面形状が、底部に比べ高さ方向に大きくなる形状では、圧下ロールによる丸鋳片の圧下に際して、突起が鋳片に食込み、操業を阻害する恐れがある。このような問題や、ロールによる圧下力を丸鋳片の軸芯部へ効果的に伝達するという観点から、本発明では、突起の、鞍型ロール6aの軸方向断面における断面形状は、図5に示すような円弧状とすることが好ましい。突起の断面形状が円弧状であれば、加工が比較的簡便であり、圧下によるへこみが外面疵の起点となるという問題も少ないという利点がある。なお、突起の断面形状が矩形状や台形状であってもなんら問題はない。また、複数条、複数列の突起を設置する場合、全て同じ形状とする必要もない。
突起の断面形状を円弧状とした場合には、円弧の半径Rは、丸鋳片の直径Dとの関係で、次式
R=0.20D〜0.50D
(ここで、R:突条断面の円弧半径(mm)、D:丸鋳片直径(mm))
を満足する範囲とすることが好ましい。円弧の半径Rが、丸鋳片直径Dの0.20未満では、突起が鋭利な断面形状を呈し、突起による丸鋳片のへこみが製管後の疵となる恐れがある。一方、円弧の半径Rが、丸鋳片直径Dの0.50を超えて大きくなると、鞍型ロール6aの限られた領域に設置することが難しくなるとともに、突起を設置する効果が小さくなりすぎ、実質的に突起を設置する意味がなくなる。このようなことから、突起13のロール軸方向断面の断面形状を円弧状とした場合の、円弧の半径Rは、丸鋳片の直径Dとの関係で、0.20D以上0.50D以下の範囲に限定することが好ましい。なお、円弧の中心点はロール表面上としてもロール表面より下の領域としてもよい。
また、突起13を、ロール円周方向に離散的に分布した複数の突起13bとする場合には、突起の底面の、ロール円周方向長さBと、ロール軸方向長さAとの比、A/B、が0.2〜1とすることが好ましい。なお、図6(b)に示すように、ロール円周方向長さBは、ロール軸方向に直交し突起13bのロール軸方向中心を含む断面で、ロール表面に沿った長さを言うものとする。また、図6(b)のA−A矢視図に示すように、突起の底面のロール軸方向長さAは、ロール軸方向断面で、ロール表面に沿った長さを言うものとする。
A/Bが0.2未満では、丸鋳片の範囲が狭く、鞍型ロールの圧下力を効果的に丸鋳片の軸芯部に伝達することが難しくなる。また、突起により鋳片表面に凹みが発生しやすくなる。また、A/Bが1を超えて大きくなると、突起の幅が大きくなりすぎて、鞍型ロールの圧下力を効果的に丸鋳片の軸芯部に伝達しにくくなる。このため、ロール円周方向に離散的に分布した複数の突起13bにおける突起の底面の、ロール円周方向長さBと、ロール軸方向長さAとの比、A/Bを0.2以上1以下とすることが好ましい。
また、突起13を、ロール円周方向に離散的に分布した複数の突起13bとする場合には、突起の底面の、ロール円周方向長さBは、鞍型ロール6aの円周方向で、鞍型ロール6aと丸鋳片9との接触長以下接触長の1/2以上とすることが好ましい。底面のロール円周方向長さBが、接触長の1/2未満では、鞍型ロールと鋳片の接触長範囲で圧縮応力場を保持し、流動的である溶鋼を排出させる効果を有効に生み出すことが難しくなる。
またこの場合、隣り合う突起の端部間の距離である突起端部間の間隔Lが、少なくともロール円周方向間隔で、鞍型ロール6aと丸鋳片9との接触長さ未満(零を含む)となるように、複数の突起13bを設けることが好ましい。突起端部間の間隔Lが接触長さを超えて大きくなると、丸鋳片の長さ方向に亘って、均一に圧縮応力場を付与できなくなる場合が生じる。複数の突起13bを設ける場合は、図6(c)に示すように突起13bを千鳥状に複数列設けることが好ましい。この場合、隣り合う突起13bの端部間の間隔Lは、ロール円周方向断面への投影面での間隔で接触長さ未満、好ましくは零となるように、すなわち、図6(c)に示すように、千鳥状で重なり合うように配置することが好ましい。これにより、丸鋳片の長さ方向に亘って軸芯部に均一に圧縮応力場が付与できることになる。
本発明では、圧下ロールとして突起付きの鞍型ロールを使用して圧下を行うが、圧下は、丸鋳片の軸芯部での固相率fsが0.3〜0.85である時期に行うことが好ましい。なお、ここでいう「丸鋳片の軸芯部での固相率fs」とは、当該断面において、凝固・伝熱計算により求めた丸鋳片の軸芯部の温度Tが、鋼種によって決まる液相線温度Tと固相線温度Tの間のどの位置にあるかを表す指標で、次式を用いて算出するものとする。
fs=(T−T)/(T−T
完全凝固状態がfs:1.0であり、未凝固状態がfs:0である。
圧下位置における鋳片の固相率fsが0.3未満では、凝固があまり進行しておらず、その後の凝固過程でさらにポロシティが発生するため、軸芯部への圧下効果が不十分となる。一方、固相率fsが0.85を超えると、未凝固層として残留する溶湯の流動性が低下するうえ、鋳片の温度も低下し、丸鋳片の軸芯部への圧下効果が低下する。このようなことから、圧下ロールによる圧下は、fsが0.3〜0.85である時期に行うことが好ましい。なお、完了凝固後に丸鋳片に圧下を加えても、わずかではあるが軸芯部への圧下効果はあるが、鋳片の軸芯部に割れを生じる恐れがある。
さらに、上記した位置で、一対の鞍型ロール6a,6aを使用して行う圧下では、圧下量を面積減少率で1〜5%の範囲となるように圧下することが好ましい。なお、「面積減少率」は、次式
面積減少率(%)={1−(圧下後の丸鋳片の断面積)/(圧下前の丸鋳片の断面積)}×100
で定義される値を使用するものとする。
面積減少率が1%未満では、丸鋳片軸芯部への、所望の圧下効果が期待できない。一方、面積減少率を、5%を超えて大きくすると、その後に、丸鋳片の真円化処理を必要とする場合が生じ、工程を複雑化する。このようなことから、圧下量(面積減少率)は、1%以上5%以下の範囲とすることが好ましい。一対の鞍型ロール6a,6aを用いて丸鋳片を圧下すると、平型ロールで丸鋳片を圧下した場合に比較して、圧下量(面積減少率)を大きくすることなく、軸芯部への有効な圧下を加えることができる。このため、一対の鞍型ロール6a,6aを用いる丸鋳片の圧下では、面積減少率が1%以上5%以下程度あれば、十分にポロシティを圧着できる。
本発明は、鋼種を問わず、丸鋳片9の内質の向上に有効であるが、溶鋼の粘度が高く、鋳造中にポロシティや偏析が発生しやすい鋼種に対して適用した場合に、特にその効果が著しい。このような鋼種としては、0.5質量%を超えるCrを含有するCr含有鋼が例示できる。
以上のように、本発明によれば、従来は困難であった、Cr含有鋼などの難加工性鋼種の連続鋳造による継目無鋼管用丸鋳片の製造が、連続鋳造設備に大きな変更を加えることなく実現される。そして、丸鋳片9の断面形状を損ねることなく、内部品質の大幅に改善された丸鋳片が製造可能になることにより、Cr含有鋼などの継目無鋼管の製造コストが低減可能となる。
本発明の効果を検証するために、有限要素法解析や実験にて得た、各種形状の鞍型ロールの効果を、図1に示すビレット連続鋳造機における丸鋳片の鋳造にて調査した。
(実施例1)
[試験鋳造1]
図1に示すビレット連続鋳造機を利用し、圧下ロール6,6として、表1に示すカリバー底の角度δを変更した各種形状の一対の鞍型ロール6a,6aを使用し、表1に示す固相率(0.4〜0.6)の位置で、丸鋳片9に、面積減少率で2%の圧下を施し、丸鋳片を製造した。圧下位置での固相率は、凝固・伝熱計算により算出された鋳片温度を用いて算出した値を使用した。
なお、対象とした丸鋳片は、Crを13質量%含有するCr含有鋼製丸鋳片であり、圧下前の直径Dは210mmであった。使用した鞍型ロール6aは、図3に示すような位置に、ロール円周方向に連続する突条13aを1条、設置した鞍型ロールを使用した場合を本発明例とし、突条を設置しない鞍型ロール6aを使用した場合、あるいは図9に示すような一対の平型ロール6c,6cを使用した場合を比較例とした。なお、設置した突条13aのロール軸方向断面での断面形状は、半径R:50mmの円弧形状とした(R/D:0.24)。
得られた丸鋳片について、ポロシティの面積、軸芯割れを測定し、軸芯部の性状を評価した。評価方法は次のとおりとした。
得られた丸鋳片から、軸芯部観察用試験材を採取し、該試験材の断面を研磨し、光学顕微鏡(倍率:100倍)を用いて、断面のマクロ組織、および軸芯部近傍のミクロ組織を撮像し、画像解析により、該断面におけるポロシティの面積を測定した。ポロシティの面積率は、次式で算出した。
ポロシティ面積率(%)=(ポロシティの面積)/(丸鋳片断面積)×100
得られたポロシティ面積率(%)を指標にし、評点1〜5の5段階で評価した。ポロシティ面積率が0.3%超えは評点1、ポロシティ面積率が0.3%以下0.15%超えは評点2、ポロシティ面積率が0.15%以下0.1%超えは評点3、ポロシティ面積率が0.1%以下0.025%超えは評点4、ポロシティ面積率が0.025%以下は評点5、とした。評点が高いほどポロシティの残存程度が低いことになる。
また、軸芯部のミクロ組織から、軸芯部での割れ発生の有無、および割れが発生している場合には、その長さを測定し、各割れの長さ合計を求め、その試験材の軸芯部割れ長さとして、軸芯割れの程度を評価した。
得られた軸芯割れの長さ合計を指標として、5段階で評価した。割れ長さ合計が50mm超えの場合を評点1、50mm以下15mm超えの場合を評点2、15mm以下5mm超えの場合を評点3、5mm以下1mm超えの場合を評点4、1mm以下の場合を評点5、とした。評点が高いほど軸芯割れの程度が低いことになる。
得られた結果を表1に示す。
またさらに、上記したような軸芯部内部性状を有する、丸鋳片(外径:210mmφ)を素材(継目無鋼管素材)とし、通常のマンネスマン穿孔方式の製管法により、継目無鋼管(外径177.8mmφ×肉厚12mm)を得た。得られた各鋼管について全長に亘り、内面を目視および超音波探傷法で検査し、内面疵の発生の有無を調査した。そして、内面疵の発生した鋼管の全数に対する割合を、内面疵発生率(%)と定義し、算出した。
なお、得られた内面疵発生率に基づき、5段階で評価し、製管結果とした。なお、内面疵発生率が、15%超えの場合を評点1、15%以下10%超えの場合を評点2、10%以下5%超えの場合を評点3、5%以下3%超えの場合を評点4、3%以下の場合を評点5、とした。製管結果が、評点3以上である場合を、合格と評価した。得られた製管の結果を表1に併記する。
また、有限要素法解析を用いて、丸鋳片の圧下時に、丸鋳片に作用する応力を解析し、丸鋳片軸芯部における引張応力の有無を調査し、その結果を表1に併記した。
Figure 0005343746
本発明例はいずれも、丸鋳片に引張応力の発生はなく、丸鋳片軸芯部の内部性状が良好となり、製管後の内面疵発生率も低下し、製管結果も良好であった。一方、本発明の範囲を外れる比較例では、丸鋳片の軸芯部に引張応力が発生し、ポロシティ評点や軸芯割れ評点が低く、したがって製管後の内面疵発生率が高く製管評点も2以下となっている。なお、圧下ロールとして鞍型ロールを使用することにより、突起なしでも、カリバー底の開き角度δを適切に選定することにより、平型ロールにくらべてある程度の圧下効果が期待できる。
平型ロールを用いて圧下し、本発明の範囲を外れる試験No.1(比較例)は、圧下時に鋳片に引張応力が発生するため、ポロシティ評点、軸芯割れ評点が2で低く、また製管評点は1となっている。また、カリバー底の角度δが70°で、突起なしの鞍型ロールを使用し、本発明の範囲を外れる試験No.2(比較例)は、カリバー底の開き角度δが小さいため、圧下時に鋳片に引張応力が発生し、しかも、突起を有していないため、鋳片軸芯部への圧下力の伝達が十分でなく、ポロシティ評点、軸芯割れ評点が2で低く、また製管評点は1となっている。また、カリバー底の角度δが80°で、突起を有していない鞍型ロールを用いて圧下し、本発明の範囲を外れる試験No.3(比較例)は、突起を有していないことから鋳片軸芯部への圧下力の伝達が十分でなく、丸鋳片におけるポロシティ評点が3、軸芯割れ評点が2で、製管評点は2と低かった。また、カリバー底の角度δが90°で、突起を有していない鞍型ロールを用いて圧下し、本発明の範囲を外れる試験No.4(比較例)は、突起を有していないことから鋳片軸芯部への圧下力の伝達が十分でなく、丸鋳片におけるポロシティ評点が3、軸芯割れ評点が3で、製管評点は2と低かった。また、カリバー底の角度δが110°で、突起なしの鞍型ロールを使用し、本発明の範囲を外れる試験No.2(比較例)は、カリバー底の開き角度δが大きすぎるため、圧下時に鋳片に引張応力が発生し、しかも、突起を有していないため、鋳片軸芯部への圧下力の伝達が十分でなく、ポロシティ評点、軸芯割れ評点が2で低く、また製管評点は1となっている。また、カリバー底の開き角度δが110°と本発明の範囲を外れる試験No.11(比較例)は、カリバー底の開き角度δが大きすぎるため、圧下時に鋳片に引張応力が発生し、突起を有していたにもかかわらず、鋳片軸芯部への圧下力の伝達が十分でなく、ポロシティ評点が3、軸芯割れ評点が2で低く、また製管評点は2となっている。
[試験鋳造2]
試験鋳造1と同様に、図1に示すビレット連続鋳造機を利用し、圧下ロール6,6として、カリバー底の角度δが90°で、ロール円周方向に連続する突条13aを1条、設置した、一対の鞍型ロール6a,6aを使用し、表2に示すように、固相率fsが0.2〜1.0の範囲内の各位置で、丸鋳片9に、面積減少率で3%の圧下を施し、丸鋳片を製造した。なお、対象とした丸鋳片は、試験鋳造1と同様に、Crを13質量%含有するCr含有鋼製であり、圧下前の直径Dは210mmであった。また、突条(突起)の設置位置は、図3に示すような位置とし、試験鋳造1と同様とした。なお、設置した突条は、ロール軸方向断面の断面形状が円弧状(半径R:70mm)の突条(R/D:0.33)とした。
得られた丸鋳片について、試験鋳造1と同様に、ポロシティ面積率、軸芯割れ長さを測定し、ポロシティ評点、軸芯割れ評点を求めた。
またさらに、試験鋳造1と同様に、得られた丸鋳片を用いて製管し、継目無鋼管(大きさ:外径177.8mmφ×肉厚12mm)を製造した。得られた各鋼管について内面を検査し、試験鋳造1と同様に、内面疵発生率(%)を算出し、製管評点を求めた。なお、製管後の外面についても、目視で観察し、外面疵の有無を調査した。
得られた結果を表2に示す。
Figure 0005343746
本発明例はいずれも、丸鋳片に引張応力の発生はなく、丸鋳片軸芯部の内部性状が良好となり、製管後の内面疵発生率も低下し、製管結果も良好であった。一方、本発明の範囲を外れる試験No.17(比較例)は、圧下時の固相率fsが1.0で完全凝固完了後の圧下であり、ポロシティ評点が3、軸芯割れ評点が3で低く、また製管評点は2となっている。また、圧下時の固相率が本発明の好ましい範囲を低く外れる試験No.12(本発明例)は、ポロシティ評点が3、軸芯割れ評点が4、製管評点は3となっている。圧下時の固相率が本発明の好ましい範囲を低く外れる場合には、圧下の効果は小さく、ポロシティの低減効果の度合が小さく、好ましい範囲の場合に比べて製管成績も低くなる。一方、圧下時の固相率が好ましい範囲より高くなると、低固相率の時に比べポロシティの低減効果は大きくなるが、溶鋼の流動性に起因して、ポロシティ、軸芯割れの改善度合いは低下し、好ましい固相率での圧下に比べ、製管成績は圧下している。また、凝固完了後の圧下の効果は極めて少ないことがわかる。
また、圧下時の面積減少率が本発明の好適範囲を低く外れる試験No.18、No.20(本発明例)は、ポロシティ評点が3、軸芯割れ評点が3で、製管評点は3と若干低めとなっており、圧下の効果が、圧下時の面積減少率が好ましい範囲に比べて低くなっている。また、圧下時の面積減少率が本発明の好適範囲を高く外れる試験No.19、No.21(本発明例)は、ポロシティ評点が5、軸芯割れ評点が4で、製管評点は4または5と高いが、突起による鋳片外面の凹みが深く鋳片断面形状が若干不良となり、製管後に管の外面に疵の発生が認められた。圧下時の面積減少率の増加は、圧下時の負荷が大きくなり、設備規模の増大を考慮する必要があるとともに、圧下後の鋳片表面に突起による凹みが深くなり、製管時の外面疵の発生源となることが懸念される。
[試験鋳造3]
試験鋳造1と同様に、図1に示すビレット連続鋳造機を利用し、圧下ロール6,6として、カリバー底の角度δが90°で、ロール円周方向に連続する突条13aを1条、設置した、一対の鞍型ロール6a,6aを使用し、表3に示すように、固相率fsが0.4〜0.6の位置で、丸鋳片9に、面積減少率で2%の圧下を施し、丸鋳片を製造した。なお、対象とした丸鋳片は、試験鋳造1と同様に、Crを13質量%含有するCr含有鋼製であり、圧下前の直径Dは210mmであった。また、突条(突起)の設置位置は、図3に示すような位置とし、試験鋳造1と同様とした。なお、設置した突条は、ロール軸方向断面の断面形状が円弧状とし、円弧の半径Rを種々変化させ、表3に示すように、R/Dが0.10〜0.65の範囲に変化させた突条とした。
得られた丸鋳片について、試験鋳造1と同様に、ポロシティ面積率、軸芯割れ長さを測定し、ポロシティ評点、軸芯割れ評点を求めた。
またさらに、試験鋳造1と同様に、得られた丸鋳片を用いて製管し、継目無鋼管(大きさ:外径177.8mmφ×肉厚12mm)を製造した。得られた各鋼管について内面を検査し、試験鋳造1と同様に、内面疵発生率(%)を算出し、製管評点を求めた。なお、製管後の管外面についても、目視で観察し、外面疵の有無を調査した。
得られた結果を表3に示す。
Figure 0005343746
突起の断面形状が本発明の好適範囲を満足する本発明例では、丸鋳片に引張応力の発生もなく、丸鋳片軸芯部の内部性状が良好となり、製管後の内面疵発生率も低下し、製管結果も良好であった。
なお、R/Dが0.10となる、突起の断面形状が本発明の好適範囲を低く外れる試験No.22(本発明例)では、ポロシティ評点が3、軸芯割れ評点が3で内部品質が若干低下し、製管評点が3となっており、突起による鋳片凹みに起因する、管の外面疵の発生が認められた。また、R/Dが0.65となり、突起の断面形状が本発明の好適範囲を高く外れる試験No.26(本発明例)では、圧下効果が若干不足し、ポロシティ評点が3、軸芯割れ評点が3で内部品質が若干低下し、製管評点が3となっているが、管の外面疵の発生は認められなかった。
このように、突起(突条)の円弧状断面の半径Rが大きすぎなければ、圧下効果が高まり、製管評点も高くなり製管成績が向上する。一方、半径Rが小さすぎると、丸鋳片を局部的に圧下するため、その部分が外面疵の基点となることがある。
[試験鋳造4]
試験鋳造1と同様に、図1に示すビレット連続鋳造機を利用し、圧下ロール6,6として、カリバー底の角度δが90°で、ロール円周方向に連続する突条13aを1条、設置した、一対の鞍型ロール6a,6aを使用し、表4に示すように、固相率fsが0.4〜0.6の位置で、丸鋳片9に、面積減少率で2%の圧下を施し、丸鋳片を製造した。なお、突条(突起)の設置位置は、試験鋳造1と同様に、図3に示す位置とした。なお、設置した突条は、ロール軸方向断面の断面形状が円弧状とし、円弧の半径Rを50mmとした(R/D:0.24)。なお、比較例として、圧下なしの場合も行った。
対象とした丸鋳片は、Crを質量%で、0%(炭素鋼)、1%、13%含有する鋼製とし、圧下前の直径Dはいずれも210mmとした。
得られた丸鋳片について、試験鋳造1と同様に、ポロシティ面積率、軸芯割れ長さを測定し、ポロシティ評点、軸芯割れ評点を求めた。
またさらに、試験鋳造1と同様に、得られた丸鋳片を用いて製管し、継目無鋼管(大きさ:外径177.8mmφ×肉厚12mm)を製造した。得られた各鋼管について内面を検査し、試験鋳造1と同様に、内面疵発生率(%)を算出し、製管評点を求めた。
得られた結果を表4に示す。
Figure 0005343746
一般の炭素鋼の場合には、圧下なしでもポロシティ面積が0〜数mmと小さく、本発明を適用した場合はもちろん、本発明を適用することなく、製管評点は3以上であり、製管成績は良好である。一方、1%Cr鋼では、圧下なしではポロシティ面積が数十〜100 mm程度と、切断位置でばらつくが、本発明を適用することにより、炭素鋼並みの数mm程度までポロシティ面積を低減することができ、製管評点も4と、向上している。さらに、13%Cr鋼では、圧下なしでは100 mm程度以上のポロシティが切断位置に係らず観察され、製管評点は1であるが、本発明を適用することにより、大幅にポロシティ面積を低減することができ、製管評点も3と向上し、製管成績は良好である。
(実施例2)
実施例1に加えてさらに、丸鋳片の内部性状に及ぼす突起形状の影響を、ロール円周方向に離散的に分布した複数の突起を設置した鞍型ロールを用いて行った。
[試験鋳造2−1]
(実施例1)の[試験鋳造−1]と同様に、図1に示すビレット連続鋳造機を利用し、圧下ロール6,6として、表5に示すカリバー底の角度δ、突起形状を有する一対の鞍型ロール6a,6aを使用し、表5に示す固相率fsの位置で、丸鋳片9に、表5に示す面積減少率で圧下を施し、丸鋳片(圧下前の直径D:210mmφ)を製造した。なお、圧下位置での固相率は、凝固・伝熱計算により算出された鋳片温度を用いて算出した値を使用した。また、使用した鞍型ロール6aは、図3に示すような位置に、図6(c)示すようなロール円周方向に離散的に分布した複数の突起13bを、隣り合う列間で千鳥状となるように2列設置したロールとした。突起の形状は、図6(b)に示すように、ロール軸方向断面で円弧状(半径R)を呈し、ロール円周方向でロール表面に沿った長さBとロール表面に沿った長さAとの比、A/Bが0.50となる形状を有し、隣り合う突起の端部間の間隔Lがロール円周方向断面への投影面で隣り合う列間では零となるようにした。
なお、対象とした丸鋳片は、Crを13質量%含有するCr含有鋼製とした。得られた丸鋳片について、実施例1と同様に、ポロシティの面積、軸芯割れを測定し、軸芯部の性状を評価した。評価方法は実施例1と同様とした。
またさらに、得られた丸鋳片(外径:210mmφ)を素材(継目無鋼管素材)とし、通常のマンネスマン穿孔方式の製管法により、継目無鋼管(大きさ:外径177.8mmφ×肉厚12mm)を得た。実施例1と同様に、得られた各鋼管の全長に亘り検査し、内面疵の発生の有無および内面疵発生率を求めた。得られた内面疵発生率に基づき、実施例1と同様に、5段階で評価し、製管結果とした。
なお、有限要素法解析を用いて、丸鋳片の圧下時に、丸鋳片に作用する応力を解析し、丸鋳片軸芯部における引張応力の有無を調査し、その結果を表5に併記した。
得られた結果を表5に示す。
Figure 0005343746
ロール円周方向に離散的に分布した複数の突起13bを2列、設置した鞍型ロールを使用した本発明例では、得られる丸鋳片の内部性状は、ロール円周方向に連続的する突条を1条設置した鞍型ロールを使用した場合と同様の、丸鋳片に引張応力の発生もなく、優れた、ポロシティ評点、軸芯割れ評点を有する丸鋳片が得られ、丸鋳片軸芯部の内部性状が良好となり、製管後の内面疵発生率も低下し、製管結果も良好であった。なお、カリバー底の開き角度δが、70°、110°と本発明の範囲を外れる試験No.2−1(比較例)は、カリバー底の開き角度δが小さすぎるため、圧下時に鋳片に引張応力が発生し、またカリバー底の開き角度δが、110°と本発明の範囲を外れる試験No.2−5(比較例)は、カリバー底の開き角度δが大きすぎるため、それぞれ、圧下時に鋳片に引張応力が発生し、突起を有していたにもかかわらず、鋳片軸芯部への圧下力の伝達が十分でなく、いずれもポロシティ評点が3、軸芯割れ評点が2で低く、また製管評点は2となっている。
[試験鋳造2−2]
[試験鋳造2−1]と同様に、図1に示すビレット連続鋳造機を利用し、圧下ロール6,6として、表6に示すカリバー底の角度δ、突起形状を有する一対の鞍型ロール6a,6aを使用し、表6に示す固相率fsの位置で、丸鋳片9に、表6に示す面積減少率で圧下を施し、丸鋳片(圧下前の直径D:210mmφ)を製造した。なお、対象とした丸鋳片は、Crを13質量%含有するCr含有鋼製である。圧下位置での固相率は、凝固・伝熱計算により算出された鋳片温度を用いて算出した値を使用した。
また、使用した鞍型ロール6aは、[試験鋳造2−1]と同様に、図3に示すような位置に、図6(c)示すようなロール円周方向に離散的に分布した複数の突起13bを隣り合う列間で千鳥状となるように2列設置したロールとした。突起の形状は、図6(b)に示すように、ロール軸方向断面で円弧状(半径R)を呈し、ロール円周方向でロール表面に沿った長さBとロール表面に沿った長さAとの比、A/Bが0.50となる形状を有し、隣り合う突起の端部間の間隔Lが隣り合う列間で零となるようにした。なお、対象とした丸鋳片は、Crを13質量%含有するCr含有鋼製とした。なお、有限要素法解析を用いて、丸鋳片の圧下時に、丸鋳片に作用する応力を解析し、丸鋳片軸芯部における引張応力の有無を調査し、その結果を表6に併記した。
得られた丸鋳片について、[試験鋳造2−1]と同様に、ポロシティ面積率、軸芯割れ長さを測定し、ポロシティ評点、軸芯割れ評点を求めた。評価方法は[試験鋳造2−1]と同様とした。
またさらに、[試験鋳造2−1]と同様に、得られた丸鋳片(外径:210mmφ)を素材(継目無鋼管素材)として製管し、継目無鋼管(大きさ:外径177.8mmφ×肉厚12mm)を得た。実施例1と同様に、得られた各鋼管の全長に亘り検査し、内面疵の発生の有無および内面疵発生率を求めた。得られた内面疵発生率に基づき、実施例1と同様に、5段階で評価し、製管結果とした。また、製管後の外面についても、目視で観察し、外面疵の有無を調査した。
得られた結果を表6に示す。
Figure 0005343746
ロール円周方向に離散的に分布した複数の突起13bを2列、設置した鞍型ロールを使用した本発明例では、得られる丸鋳片の内部性状は、ロール円周方向に連続的する突条を1条設置した鞍型ロールを使用した場合と同様の、丸鋳片に引張応力の発生もなく、優れた、ポロシティ評点、軸芯割れ評点を有する丸鋳片が得られ、丸鋳片軸芯部の内部性状が良好となり、製管後の内面疵発生率も低下し、製管結果も良好であった。
一方、本発明の範囲を外れる試験No.2−11(比較例)は、圧下時の固相率fsが1.0で完全凝固完了後の圧下であり、ポロシティ評点が3、軸芯割れ評点が3で低く、また製管評点は2となっている。また、圧下時の固相率が本発明の好ましい範囲を低く外れる試験2−6(本発明例)は、ポロシティ評点が3、軸芯割れ評点が4で低く、また製管評点は3となっている。圧下時の固相率が本発明の好ましい範囲を低く外れる場合には、圧下の効果は小さく、ポロシティ、軸芯割れの改善効果は少なく、製管成績も低くなる。また、凝固完了後の圧下の効果は極めて少ないことがわかる。
また、圧下時の面積減少率が本発明の好適範囲を低く外れる試験No.2−12、No. 2−14(本発明例)は、ポロシティ評点が3、軸芯割れ評点が3で、製管評点は3と若干低めとなっている。圧下時の面積減少率が本発明の好適範囲を低く外れる場合には、圧下の効果は小さく、ポロシティおよび軸芯割れの改善効果は少なく、圧下時の面積減少率が好ましい範囲の場合に比べて製管成績が低下する。また、圧下時の面積減少率が本発明の好適範囲を高く外れる試験No. 2−13、No. 2−15(本発明例)は、ポロシティ評点が5、軸芯割れ評点が4で、製管評点は4または5と高いが、突起による鋳片外面の凹みが深く鋳片断面形状が若干不良となり、製管後に管の外面に疵の発生が認められた。圧下時の面積減少率の増加は、圧下時の負荷が大きくなり、設備規模の増大を考慮する必要があるとともに、圧下後の鋳片表面に突起による凹みが深くなり、製管時の外面疵の発生源となることが懸念される。
[試験鋳造2−3]
[試験鋳造2−1]と同様に、図1に示すビレット連続鋳造機を利用し、圧下ロール6,6として、カリバー底の角度δが90°で、表7に示すカリバー底の角度δ、突起形状を有する一対の鞍型ロール6a,6aを使用し、表7に示す固相率fsの位置で、丸鋳片9に、表7に示す面積減少率で圧下を施し、丸鋳片(圧下前の直径D:210mmφ)を製造した。なお、圧下位置での固相率は、凝固・伝熱計算により算出された鋳片温度を用いて算出した値を使用した。また、使用した鞍型ロール6aは、図3に示すような位置に、図6(c)示すようなロール円周方向に離散的に分布した複数の突起13bを、隣り合う列間で千鳥状となるように2列、設置したロールとした。突起の形状は、図6(b)に示すように、ロール軸方向断面で円弧状(半径R)を呈し、ロール円周方向でロール表面に沿った長さBとロール表面に沿った長さAとの比、A/Bを0.10〜1.50に変化した形状とした。なお、Bは接触弧長の最大値とした。また、隣り合う突起の端部間の間隔Lはロール円周方向断面への投影面で隣り合う列間で零となるようにした。
なお、対象とした丸鋳片は、同様に、Crを13質量%含有するCr含有鋼製とした。得られた丸鋳片について、[試験鋳造2−1]と同様に、ポロシティの面積、軸芯割れを測定し、軸芯部の性状を評価した。評価方法は[試験鋳造2−1]と同様とした。
またさらに、得られた丸鋳片(外径:210mmφ)を素材(継目無鋼管素材)とし、[試験鋳造2−1]と同様に製管し、継目無鋼管(大きさ:外径177.8mmφ×肉厚12mm)を得た。実施例1と同様に、得られた各鋼管の全長に亘り検査し、内面疵の発生の有無および内面疵発生率を求めた。得られた内面疵発生率に基づき、[試験鋳造2−1]と同様に、5段階で評価し、製管結果とした。また、製管後の外面についても、目視で観察し、外面疵の有無を調査した。
なお、有限要素法解析を用いて、丸鋳片の圧下時に、丸鋳片に作用する応力を解析し、丸鋳片軸芯部における引張応力の有無を調査した。
得られた結果を表7に示す。
Figure 0005343746
突起形状A/Bが本発明の好適範囲を満足する本発明例では、丸鋳片に引張応力の発生もなく、丸鋳片軸芯部の内部性状が良好となり、製管後の内面疵発生率も低下し、製管結果も良好であった。なお、突起形状A/Bが0.10と、突起形状A/Bが本発明の好適範囲を低く外れる試験No.2-16(本発明例)では、ポロシティ評点が3、軸芯割れ評点が3で内部品質が若干低下し、製管評点が3となっており、また、突起による鋳片凹みに起因する、管の外面疵の発生が認められた。また、突起形状A/Bが1.50となる、突起形状A/Bが本発明の好適範囲を高く外れる試験No.2-20(本発明例)では、圧下効果が若干不足し、ポロシティ評点が3、軸芯割れ評点が3で内部品質が若干低下し、製管評点が2となっているが、管の外面疵の発生は認められなかった。
このように、突起形状A/Bが大きすぎなければ、圧下効果が高まり、製管評点も高くなり製管成績が向上する。一方、突起形状A/Bが小さすぎると、丸鋳片を局部的に圧下するため、その部分が外面疵の基点となることがある。
[試験鋳造2−4]
[試験鋳造2−1]と同様に、図1に示すビレット連続鋳造機を利用し、圧下ロール6,6として、表8に示すカリバー底の角度δ、突起形状を有する一対の鞍型ロール6a,6aを使用し、表8に示す固相率fsの位置で、丸鋳片9に、表8に示す面積減少率で圧下を施し、丸鋳片(圧下前の直径D:210mmφ)を製造した。なお、圧下位置での固相率は、凝固・伝熱計算により算出された鋳片温度を用いて算出した値を使用した。
また、使用した鞍型ロール6aは、図3に示すような位置に、図6(c)示すようなロール円周方向に離散的に分布した複数の突起13bを、隣り合う列間で千鳥状となるように2列、設置したロールとした。突起の形状は、図6(b)に示すように、ロール軸方向断面で円弧状(半径R)を呈し、ロール円周方向でロール表面に沿った長さBとロール表面に沿った長さAとの比、A/Bが0.50となる形状を有し、隣り合う突起の端部間の長さ(ロール円周方向への投影)Lが隣り合う列間で零となるようにした。
なお、対象とした丸鋳片は、Crを含有しない炭素鋼、Crを1.0質量%含有する1%Cr鋼、Crを13質量%含有する13%Cr鋼製とした。得られた丸鋳片について、[試験鋳造2−1]と同様に、ポロシティの面積、軸芯割れを測定し、軸芯部の性状を評価した。評価方法は実施例1と同様とした。
またさらに、得られた丸鋳片(外径:210mmφ)を素材(継目無鋼管素材)として製管し、継目無鋼管(大きさ:外径177.8mmφ×肉厚12mm)を得た。[試験鋳造2−1]と同様に、得られた各鋼管の全長に亘り検査し、内面疵の発生の有無および内面疵発生率を求めた。得られた内面疵発生率に基づき、[試験鋳造2−1]と同様に、5段階で評価し、製管結果とした。
なお、有限要素法解析を用いて、丸鋳片の圧下時に、丸鋳片に作用する応力を解析し、丸鋳片軸芯部における引張応力の有無を調査し、その結果を表8に併記した。
得られた結果を表8に示す。
Figure 0005343746
ロール円周方向に離散的に分布した複数の突起を有する鞍型ロールを使用して所定の断面減少率以上に圧下を施す本発明例は、円周方向に連続的に延びる発条を有する鞍型ロールを使用して所定の固相率範囲の位置で所定量以上の圧下を施した試験鋳造4の場合と同様の圧下効果が得られる。
一般の炭素鋼の場合には、圧下なしでもポロシティ面積が0〜数mmと小さく、本発明を適用した場合はもちろん、本発明を適用することなく、製管評点は3以上であり、製管成績は良好である。一方、1%Cr鋼では、圧下なしではポロシティ面積が数十〜100 mm程度と、切断位置でばらつくが、本発明を適用することにより、炭素鋼並みの数mm程度までポロシティ面積を低減することができ、製管評点も4と、向上している。さらに、13%Cr鋼では、圧下なしでは100 mm程度以上のポロシティが切断位置に係らず観察されるが、本発明を適用することにより、大幅にポロシティ面積を低減することができ、製管評点も3と向上し、製管成績は良好である。
1 ビレット連続鋳造機
2 タンディッシュ
3 浸漬ノズル
4 円形鋳型
5 鋳片支持ロール
6、 圧下ロール
6a、6b 圧下ロール(鞍型ロール)
6c 圧下ロール(平型ロール)
7 油圧シリンダー
8 溶鋼
9 丸鋳片
10 凝固シェル
11 未凝固層
12 鞍型ロール
13、13a、13b 突起

Claims (9)

  1. 円形鋳型による連続鋳造中の丸鋳片に、該丸鋳片の凝固完了前に、一対の圧下ロールにより圧下を加え、次いで、丸鋳片を切断して継目無鋼管用丸鋳片を製造するに当たり、前記一対の圧下ロールとして、カリバー底の開き角度δが75°以上105°以下であり、且つ、前記丸鋳片と対向する部位に、丸鋳片と接触する突起を有する鞍型ロールを使用することを特徴とする継目無鋼管用丸鋳片の連続鋳造方法。
  2. 前記突起が、少なくとも1条のロール円周方向に連続する突条であることを特徴とする請求項1に記載の継目無鋼管用丸鋳片の連続鋳造方法。
  3. 前記突起が、ロール円周方向に離散的に分布した複数の突起であることを特徴とする請求項1に記載の継目無鋼管用丸鋳片の連続鋳造方法。
  4. 前記突起が、前記鞍型ロールの軸方向断面における断面形状が円弧であり、該円弧の半径Rが、
    R=0.20D〜0.50D
    (ここで、R:突起断面の円弧半径(mm)、D:丸鋳片直径(mm))
    を満足することを特徴とする請求項1ないし3のいずれかに記載の継目無鋼管用丸鋳片の連続鋳造方法。
  5. 前記複数の突起が、該突起の、ロール円周方向の底面長さBとロール軸方向の底面長さAとの比、A/Bが0.2〜1であることを特徴とする請求項3に記載の継目無鋼管用丸鋳片の連続鋳造方法。
  6. 前記複数の突起を、該複数の突起のうち隣り合う突起同士の端部間の間隔が、前記鞍型ロールの円周方向への投影長さで、零を含み、前記鞍型ロールと前記丸鋳片との接触長さ未満となるように、設けることを特徴とする請求項5に記載の継目無鋼管用丸鋳片の連続鋳造方法。
  7. 前記複数の突起を、該複数の突起の前記鞍型ロールの円周方向における底面長さBが、前記鞍型ロールと前記丸鋳片との接触長さの1/2以上である突起とすることを特徴とする請求項5または6に記載の継目無鋼管用丸鋳片の連続鋳造方法。
  8. 前記圧下を、前記丸鋳片の軸芯部での固相率fsが0.3〜0.85である時期に、次式
    面積減少率(%)={1−(圧下後の丸鋳片の断面積)/(圧下前の丸鋳片の断面積)}×100
    で定義される面積減少率が1〜5%の範囲となる圧下とすることを特徴とする請求項1ないし7のいずれかに記載の継目無鋼管用丸鋳片の連続鋳造方法。
  9. 前記丸鋳片が、0.5質量%以上のCrを含有するCr含有鋼製であることを特徴とする請求項1ないし8のいずれかに記載の継目無鋼管用丸鋳片の連続鋳造方法。
JP2009173317A 2008-07-30 2009-07-24 継目無鋼管用丸鋳片の連続鋳造方法 Expired - Fee Related JP5343746B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009173317A JP5343746B2 (ja) 2008-07-30 2009-07-24 継目無鋼管用丸鋳片の連続鋳造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008195625 2008-07-30
JP2008195625 2008-07-30
JP2009173317A JP5343746B2 (ja) 2008-07-30 2009-07-24 継目無鋼管用丸鋳片の連続鋳造方法

Publications (2)

Publication Number Publication Date
JP2010052042A JP2010052042A (ja) 2010-03-11
JP5343746B2 true JP5343746B2 (ja) 2013-11-13

Family

ID=42068516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009173317A Expired - Fee Related JP5343746B2 (ja) 2008-07-30 2009-07-24 継目無鋼管用丸鋳片の連続鋳造方法

Country Status (1)

Country Link
JP (1) JP5343746B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109622904B (zh) * 2019-02-01 2020-06-02 东北大学 一种实现连铸圆坯凝固过程芯部压下工艺的装置及方法
CN114054700B (zh) * 2021-10-15 2022-11-15 东北大学 圆坯的压下方法及装置
CN116000258B (zh) * 2023-02-01 2023-06-02 东北大学 一种连铸圆坯凝固末端压下的孔型制作方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07124704A (ja) * 1991-10-11 1995-05-16 Kawasaki Heavy Ind Ltd 水平連続鋳造方法およびその装置
JPH09174212A (ja) * 1995-12-22 1997-07-08 Nkk Corp 継目無鋼管用連続鋳造鋳片の製造方法
JPH09174211A (ja) * 1995-12-22 1997-07-08 Nkk Corp 継目無鋼管用連続鋳造鋳片の製造方法
JP3237518B2 (ja) * 1996-05-16 2001-12-10 日本鋼管株式会社 クロム合金鋼丸ビレット鋳片の製造方法
JP3646417B2 (ja) * 1996-07-30 2005-05-11 Jfeスチール株式会社 継目無鋼管製造用連続鋳造鋳片の製造方法
JP3214377B2 (ja) * 1996-12-12 2001-10-02 日本鋼管株式会社 継目無鋼管用連続鋳造鋳片の製造方法

Also Published As

Publication number Publication date
JP2010052042A (ja) 2010-03-11

Similar Documents

Publication Publication Date Title
JP4830612B2 (ja) 極厚鋼板用鋳片の連続鋳造方法
JP5545419B1 (ja) 鋼の連続鋳造方法及び条鋼の製造方法
JP4609330B2 (ja) 内質に優れた極厚鋼板および極厚鋼板用鋳片の連続鋳造方法
JP4296985B2 (ja) 内質に優れた極厚鋼板とその製造方法
JP5741162B2 (ja) 高Cr鋼継目無鋼管製管用丸鋼片の製造方法
JP5835531B2 (ja) 極厚鋼板用鋳片の連続鋳造方法
JP6390718B2 (ja) 連続鋳造鋳片とその製造方法および製造装置、厚鋼板の製造方法および製造装置
JP5343746B2 (ja) 継目無鋼管用丸鋳片の連続鋳造方法
JPH09300053A (ja) クロム合金鋼丸ビレット鋳片の製造方法
JP5157664B2 (ja) 継目無鋼管用丸鋳片の連続鋳造方法
JP5962206B2 (ja) 高Cr鋼継目無鋼管製管用丸鋳片の製造方法
JP5594164B2 (ja) 高合金またはステンレス鋼における継目無鋼管の製造方法
JP5387205B2 (ja) 丸鋳片の連続鋳造方法および連続鋳造設備
JP2013252542A (ja) 鋳片の連続鋳造方法
JP3319379B2 (ja) 鋼ビレットの連続鋳造方法
JP3958787B1 (ja) 連続鋳造方法
JP3646417B2 (ja) 継目無鋼管製造用連続鋳造鋳片の製造方法
JP3104627B2 (ja) 丸ビレットの未凝固圧下製造方法
JP3367332B2 (ja) 難加工性継目無鋼管の製造方法
JP5973703B2 (ja) 継目無パイプの製造方法
JP3356100B2 (ja) 連続鋳造方法
JP3275828B2 (ja) 連続鋳造方法
JP4424189B2 (ja) 内部品質に優れたビレット鋼片の製造方法
JP3395674B2 (ja) 連続鋳造方法
JP2013180307A (ja) 継目無鋼管製造用連続鋳造丸鋳片の製造方法及び継目無鋼管の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121227

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130614

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130729

R150 Certificate of patent or registration of utility model

Ref document number: 5343746

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees