JP5342188B2 - Negative electrode active material for secondary battery and secondary battery using the same - Google Patents

Negative electrode active material for secondary battery and secondary battery using the same Download PDF

Info

Publication number
JP5342188B2
JP5342188B2 JP2008202141A JP2008202141A JP5342188B2 JP 5342188 B2 JP5342188 B2 JP 5342188B2 JP 2008202141 A JP2008202141 A JP 2008202141A JP 2008202141 A JP2008202141 A JP 2008202141A JP 5342188 B2 JP5342188 B2 JP 5342188B2
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
active material
lithium
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008202141A
Other languages
Japanese (ja)
Other versions
JP2010015964A (en
Inventor
秀和 井戸
憲一 大江
隆成 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco Research Institute Inc
Original Assignee
Kobelco Research Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Research Institute Inc filed Critical Kobelco Research Institute Inc
Priority to JP2008202141A priority Critical patent/JP5342188B2/en
Priority to PCT/JP2008/068494 priority patent/WO2009048146A1/en
Publication of JP2010015964A publication Critical patent/JP2010015964A/en
Application granted granted Critical
Publication of JP5342188B2 publication Critical patent/JP5342188B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、二次電池用負極活物質およびこれを用いた二次電池に関する。   The present invention relates to a negative electrode active material for a secondary battery and a secondary battery using the same.

近年、二次電池として、リチウム二次電池が脚光を浴びている。それは、リチウム(L
i)という比重が金属の中でもっとも小さく、標準電極電位がマイナス3.04Vともっ
とも大きな数値を示す卑な電位である等の材料的な特異性が着目されたものである。しか
し、リチウム二次電池は、充放電を繰り返すと、負極にリチウムのデンドライトが成長し
、セパレータの破損やショートを引き起こしたり、容量の低下を招いたりする問題があっ
た。
In recent years, lithium secondary batteries have attracted attention as secondary batteries. It is lithium (L
Material specificities such as i) having the smallest specific gravity among metals and a standard electrode potential of minus 3.04 V, which is a base potential showing the largest value, have been noticed. However, when the lithium secondary battery is repeatedly charged and discharged, lithium dendrite grows on the negative electrode, causing problems such as breakage or short-circuiting of the separator or reduction in capacity.

そこで、これらの問題を解決すべく、さまざまな提案がなされている。   Therefore, various proposals have been made to solve these problems.

例えば、特許文献1には、カソードと、結晶度>0.8の炭素材料を含有するアノード
と、高誘電定数を有する第1の溶媒及び低粘度を有する第2の溶媒を含む少なくとも2種
の非プロトン性有機溶媒の混合物とリチウム塩からなる電解液とを含むリチウム二次電池
であって、前記電解液が、少なくとも1個の不飽和結合を含み且つ不動態化層を形成する
ためにリチウムよりも1V高い電位で前記アノードにおいて還元可能な、前記溶媒の少な
くとも1種と同一種の可溶性化合物を更に含有することを特徴とするリチウム二次電池が
開示されている。
For example, Patent Document 1 discloses at least two types including a cathode, an anode containing a carbon material having a crystallinity> 0.8, a first solvent having a high dielectric constant, and a second solvent having a low viscosity. A lithium secondary battery comprising a mixture of an aprotic organic solvent and an electrolyte comprising a lithium salt, wherein the electrolyte contains at least one unsaturated bond and forms a passivation layer to form a passivation layer Further disclosed is a lithium secondary battery further comprising a soluble compound of the same type as at least one of the solvents, which can be reduced at the anode at a potential higher by 1 V than that of the solvent.

また、特許文献2には、非プロトン性非水性電解液と、該電解液と有効に接触している
正極及び負極とからなり、前記正極がリチウム層間化合物からなるものであり且つ前記負
極が炭素−炭素複合材料からなるものであるリチウム二次電池が開示されている。
Patent Document 2 includes an aprotic non-aqueous electrolyte, a positive electrode and a negative electrode that are in effective contact with the electrolyte, the positive electrode is made of a lithium intercalation compound, and the negative electrode is carbon. -A lithium secondary battery comprising a carbon composite material is disclosed.

また、特許文献3には、カソードと、結晶度>0.8の炭素材料を含有するアノードと
、高誘電定数を有する第1の溶媒及び低粘度を有する第2の溶媒を含む少なくとも2種の
非プロトン性有機溶媒の混合物とリチウム塩からなる電解液とを含むリチウム二次電池で
あって、前記電解液が、少なくとも1個の不飽和結合を含み且つ不動態化層を形成するた
めにリチウムよりも1V高い電位で前記アノードにおいて還元可能な、前記溶媒の少なく
とも1種と同一種の可溶性化合物を更に含有することを特徴とするリチウム二次電池が開
示されている。
Patent Document 3 discloses at least two kinds of materials including a cathode, an anode containing a carbon material having a crystallinity> 0.8, a first solvent having a high dielectric constant, and a second solvent having a low viscosity. A lithium secondary battery comprising a mixture of an aprotic organic solvent and an electrolyte comprising a lithium salt, wherein the electrolyte contains at least one unsaturated bond and forms a passivation layer to form a passivation layer Further disclosed is a lithium secondary battery further comprising a soluble compound of the same type as at least one of the solvents, which can be reduced at the anode at a potential higher by 1 V than that of the solvent.

また、特許文献4には、析出リチウムの電解液との反応やデンドライトの成長に基づく
充放電サイクル特性の低下を抑制し、充放電サイクル特性を向上させることを目的に、液
体急冷法により作成した非晶質金属(アルミニウム(Al)、インジウム(In)、ガリ
ウム(Ga)、ビスマス(Bi)、ホウ素(B)、ケイ素(Si)、鉛(Pb)、スズ(
Sn)、銀(Ag)、金(Au)等)板を2枚のリチウム金属板で挟み、その間に電解液
を入れ、この電解液の存在下で電気化学的に合金化した構成の負極と、この負極を用いた
リチウム二次電池が開示されている。
Moreover, in patent document 4, it produced by the liquid quenching method for the purpose of suppressing the fall of the charge / discharge cycle characteristic based on the reaction with the electrolyte solution of deposited lithium and the growth of dendrite, and improving a charge / discharge cycle characteristic. Amorphous metals (aluminum (Al), indium (In), gallium (Ga), bismuth (Bi), boron (B), silicon (Si), lead (Pb), tin (
Sn), silver (Ag), gold (Au), etc.) plate is sandwiched between two lithium metal plates, an electrolyte is put between them, and an anode is formed that is electrochemically alloyed in the presence of this electrolyte. A lithium secondary battery using this negative electrode is disclosed.

また、特許文献5には、充電過程でのデンドライトの成長を抑制し、充放電特性を改善
し、かつ、テープ状の成形体への量産性を向上させることを目的に、Li−X合金(Xは
Al、In、Sn、Ga、亜鉛(Zn)の群から選ばれた少なくとも一種を表わす。)の
Xの重量比が0.1〜30重量%になるように成分調整した後、鋳造し、押し出し、最後
に打ち抜き加工してなるリチウム二次電池用負極活物質が開示されている。
Patent Document 5 discloses a Li-X alloy (for the purpose of suppressing dendrite growth in the charging process, improving charge / discharge characteristics, and improving mass productivity of a tape-shaped molded body. X is at least one selected from the group consisting of Al, In, Sn, Ga, and zinc (Zn).) The components are adjusted so that the weight ratio of X is 0.1 to 30% by weight, and then cast. , A negative electrode active material for a lithium secondary battery, which is extruded and finally punched.

また、特許文献6には、サイクル寿命特性を向上させることを目的に、Snに常温で液
体となる微量の金属(GaまたはGa−In合金)が固定されている固溶体合金からなる
負極活物質と、これを含んだ負極と、この負極を用いたリチウム二次電池が開示されてい
る。
Patent Document 6 discloses a negative electrode active material made of a solid solution alloy in which a small amount of metal (Ga or Ga—In alloy) that is liquid at room temperature is fixed to Sn for the purpose of improving cycle life characteristics. In addition, a negative electrode including the negative electrode and a lithium secondary battery using the negative electrode are disclosed.

しかしながら、上記特許文献1〜6に開示された技術には以下のような問題点が存在す
る。
However, the techniques disclosed in Patent Documents 1 to 6 have the following problems.

すなわち、特許文献1から3に記載されたような負極であれば、Liのデンドライトの
生成は防止できるものの、いずれも負極に層状からなる炭素電極が使用されるため、充放
電の繰り返しにより炭素電極に体積変化が起こる。この炭素電極に起こる体積変化は、充
電−放電プロセス中に、層状からなる炭素電極で起こるLiイオンの挿入と脱離に起因す
るものである。また、この炭素電極に起こる体積変化により、炭素電極の剥離が発生する
。また、このLiイオンの挿入と脱離により、炭素電極に著しい膨張と収縮が生じるため
、負極としての機械的団結性も緩む。これにより、負極のインピーダンスも増大し、リチ
ウム二次電池の容量の漸進的低下を引き起こす。現状のリチウム二次電池では、100%
の放電深度で約500回の充放電を行い、容量保存率は80%程度である。
That is, if it is a negative electrode as described in patent documents 1 to 3, although generation of Li dendrite can be prevented, a carbon electrode having a layered structure is used for the negative electrode. Volume change occurs. The volume change that occurs in the carbon electrode is due to the insertion and desorption of Li ions that occur in the layered carbon electrode during the charge-discharge process. Moreover, peeling of the carbon electrode occurs due to the volume change occurring in the carbon electrode. In addition, the insertion and desorption of Li ions cause significant expansion and contraction of the carbon electrode, so that the mechanical integrity as a negative electrode is relaxed. As a result, the impedance of the negative electrode also increases, causing a gradual decrease in the capacity of the lithium secondary battery. 100% for current lithium secondary batteries
The battery is charged and discharged about 500 times at a depth of discharge of about 1, and the capacity retention is about 80%.

また、特許文献4に記載の負極の構成は、2枚のリチウム金属板で挟まれた非晶質金属
板が結晶構造を呈しないため、充電時のリチウムの電気化学的合金化反応が速くなるとい
うものの所詮非晶質金属板も固体であるため、固体内へのLi原子の拡散速度より固体表
面での金属リチウムの電着速度の方が速く、充電時のLiのデンドライトの生成の抑制効
果が十分でない。
Moreover, since the structure of the negative electrode described in Patent Document 4 does not exhibit a crystal structure of an amorphous metal plate sandwiched between two lithium metal plates, the electrochemical alloying reaction of lithium during charging is accelerated. However, since the amorphous metal plate is also solid, the electrodeposition rate of metallic lithium on the solid surface is faster than the diffusion rate of Li atoms in the solid, and the effect of suppressing the formation of Li dendrite during charging Is not enough.

また、特許文献5に記載のリチウム二次電池用負極活物質は、従来の純粋リチウムを使
用する場合に比べて充電時のデンドライトの生成は多少抑制されるものの、充放電を繰り
返すと固体である前記負極活物質の粒界部が優先的に腐食して負極活物質が欠落し、性能
が劣化する。
Further, the negative electrode active material for a lithium secondary battery described in Patent Document 5 is solid when repeated charge / discharge, although generation of dendrites during charging is somewhat suppressed as compared with the case of using conventional pure lithium. The grain boundary part of the negative electrode active material is preferentially corroded, the negative electrode active material is lost, and the performance deteriorates.

また、特許文献6に記載のリチウム二次電池用負極活物質は、固溶体合金であるため、
固体内へのLi原子の拡散速度より固体表面での金属リチウムの電着速度の方が速く、充
電時のLiのデンドライトの生成の抑制効果が十分でない。また、負極を構成するための
活物質にするために、上記合金を製造した後、粉砕しなければならないといった煩雑さを
伴う。
Moreover, since the negative electrode active material for lithium secondary batteries described in Patent Document 6 is a solid solution alloy,
The electrodeposition rate of metallic lithium on the surface of the solid is faster than the diffusion rate of Li atoms in the solid, and the effect of suppressing the formation of Li dendrite during charging is not sufficient. Moreover, in order to use as an active material for constituting a negative electrode, it is complicated that the alloy must be pulverized after being manufactured.

以上のような問題点を克服できる二次電池用負極活物質およびそれを用いた二次電池が、これまでに存在しなかった。
特開平8−45545号公報 特表2003−534636号公報 特開2004−31366号公報 特開昭63−13267号公報 特開平4−253159号公報 特開2007−214127号公報
A negative electrode active material for a secondary battery that can overcome the above problems and a secondary battery using the same have never existed.
JP-A-8-45545 Special table 2003-534636 gazette JP 2004-31366 A JP-A 63-13267 JP-A-4-253159 JP 2007-214127 A

本発明の目的は、充電時にデンドライトの生成がなく、充放電時に電極の損傷も起こら
ない二次電池用負極活物質およびそれを用いた二次電池を提供することにある。
An object of the present invention is to provide a negative electrode active material for a secondary battery that does not generate dendrites during charging and that does not cause electrode damage during charging and discharging, and a secondary battery using the same.

この目的を達成するために、本発明の請求項1に記載の発明は、ガリウムと、リチウムと、融点がアルミニウムの融点以下の金属からなる群から選ばれた少なくとも1種の金属と、を含有し、充電時には少なくとも前記リチウムを含む液相を有し、前記融点がアルミニウムの融点以下の金属からなる群から選ばれた少なくとも1種の金属は、亜鉛であり、この亜鉛が5〜94%の範囲、前記ガリウムが5%以上、前記リチウムが0.5〜20%の範囲であることを特徴とするリチウム二次電池用負極活物質である。 In order to achieve this object, the invention according to claim 1 of the present invention contains gallium, lithium, and at least one metal selected from the group consisting of metals having a melting point equal to or lower than that of aluminum. and, will have a liquid phase containing at least the lithium during charge, at least one metal the melting point is selected from the group consisting of metallic aluminum in the melting point is zinc, this zinc is from 5 to 94% range, the gallium is more than 5%, the lithium is a negative active material for a lithium secondary battery, wherein the range der Rukoto from 0.5 to 20%.

請求項に記載の発明は、請求項に記載のリチウム二次電池用負極活物質が収納保持された負極と、正極と、前記負極と正極間に配置されたイオン伝導性電解液とを備えたリチウム二次電池であって、前記リチウム二次電池用負極活物質中のリチウムは、放電時にはリチウムイオンとして前記電解液内に拡散し、充電時には前記リチウムイオンが前記リチウム二次電池用負極活物質表面で再び金属に戻り、前記リチウム二次電池用負極活物質内へ拡散するように構成されたことを特徴とするリチウム二次電池である。 According to a second aspect of the present invention, there is provided a negative electrode in which the negative electrode active material for a lithium secondary battery according to the first aspect is housed and held, a positive electrode, and an ion conductive electrolyte disposed between the negative electrode and the positive electrode. The lithium secondary battery is provided, wherein lithium in the negative electrode active material for lithium secondary battery diffuses into the electrolyte as lithium ions at the time of discharging, and the lithium ions are negative electrode for the lithium secondary battery at the time of charging. The lithium secondary battery is configured to return to the metal again on the surface of the active material and diffuse into the negative electrode active material for the lithium secondary battery.

請求項に記載の発明は、請求項に記載の発明において、前記リチウム二次電池用負極活物質内のリチウムを含む液相の割合が、放電時には増加し、充電時には減少することを特徴とする。 The invention according to claim 3 is characterized in that, in the invention according to claim 2 , the ratio of the liquid phase containing lithium in the negative electrode active material for a lithium secondary battery increases during discharging and decreases during charging. And

請求項に記載の発明は、請求項またはに記載の発明において、前記イオン伝導性電解液は、化学式がLiPFで表される電解質を化学式がCで表される有機溶媒に溶解した構成である。 The invention according to claim 4 is the invention according to claim 2 or 3 , wherein the ion conductive electrolyte is an electrolyte having a chemical formula of LiPF 6 and a chemical formula of C 3 H 4 O 3. The structure is dissolved in an organic solvent.

以上のように、本発明に係る二次電池用負極活物質は、ガリウムと、リチウムと、融点がアルミニウムの融点以下の金属からなる群から選ばれた少なくとも1種の金属と、を含有し、充電時には少なくとも前記リチウムを含む液相を有することを特徴とする。   As described above, the negative electrode active material for a secondary battery according to the present invention contains gallium, lithium, and at least one metal selected from the group consisting of metals having a melting point equal to or lower than that of aluminum, It has a liquid phase containing at least lithium at the time of charging.

また、本発明に係る二次電池は、前記二次電池用負極活物質が収納保持された負極(詳
細は後述する)と、正極(詳細は後述する)と、前記負極と正極間に配置されたイオン伝
導性電解液(詳細は後述する)とを備えた二次電池であって、前記二次電池用負極活物質
中のリチウムは、放電時にはリチウムイオンとして前記電解液内に拡散し、充電時には前記リチウムイオンが前記二次電池用負極活物質表面で再び金属に戻り、前記二次電池用負極活物質内へ拡散するように構成されている。
The secondary battery according to the present invention is disposed between a negative electrode (details will be described later), a positive electrode (details will be described later) in which the negative electrode active material for a secondary battery is accommodated and held, and between the negative electrode and the positive electrode. In addition, lithium in the negative electrode active material for the secondary battery diffuses into the electrolyte as lithium ions during discharging, and is charged. Sometimes, the lithium ions return to the metal again on the surface of the negative electrode active material for the secondary battery and diffuse into the negative electrode active material for the secondary battery.

以上のような構成であるため、本発明は、以下のような作用効果を奏する。
1)二次電池用負極活物質自体が全体として粘性の低い状態を呈し、かつ、前記負極活物質内のリチウムが原子として全体に拡散しているため、放電時に前記負極活物質内のリチウムを含む液相の割合が増加しながら、リチウムイオンとして電解液内にスムーズに拡散する。また、充電時には前記イオンが前記負極活物質側に移動し、前記負極活物質表面で金属として電析すると同時に、この金属は再び前記負極活物質内へ原子として素早く拡散するとともに、リチウムを含む液相の割合を減少させる。通常の固体電極におけるデンドライトは、充電時の金属析出による電極表面の圧縮応力により生成すると言われているが、前記負極活物質は全体として粘性の低い状態(すなわち、充電時に少なくともリチウムを含む液相を有した全体として液相あるいは固液共存相の状態)であり、電極表面が自由に変形できるため、上記応力が発生せず、デンドライトの生成もない。
2)前記二次電池用負極活物質自体がそもそも固体ではなく、全体として粘性の低い状
態を呈しているため、層状をなす炭素電極のように充放電の繰り返しによるイオンの挿入
と脱離に起因した膨張と収縮で電極が損傷したりすることもない。また、固体の金属のよ
うに充放電の繰り返しによる粒界部の優先的な腐食で負極活物質が欠落し、性能が劣化し
たりするようなこともない。このように、充放電時の負極活物質の損傷がないため、二次
電池の容量の漸進的低下を引き起こすこともない。
Since it is the above structures, this invention has the following effects.
1) The negative electrode active material for a secondary battery itself exhibits a low viscosity state as a whole, and the lithium in the negative electrode active material is diffused throughout as an atom. While the proportion of the liquid phase contained increases, lithium ions diffuse smoothly into the electrolyte. Further, at the time of charging, the ions move to the negative electrode active material side and are electrodeposited as a metal on the surface of the negative electrode active material. At the same time, the metal quickly diffuses again as atoms into the negative electrode active material, and a liquid containing lithium. Reduce the proportion of phase. It is said that dendrites in normal solid electrodes are generated by compressive stress on the electrode surface due to metal deposition during charging, but the negative electrode active material as a whole has a low viscosity (that is, a liquid phase containing at least lithium during charging). And the electrode surface can be freely deformed, so that the stress is not generated and dendrite is not generated.
2) The negative electrode active material for secondary battery itself is not solid in the first place and exhibits a low viscosity state as a whole. Therefore, it is caused by the insertion and desorption of ions due to repeated charge and discharge like a layered carbon electrode. The electrode is not damaged by the expansion and contraction. Further, the negative electrode active material is not lost due to the preferential corrosion of the grain boundary portion due to repeated charge and discharge as in the case of a solid metal, and the performance is not deteriorated. Thus, since the negative electrode active material is not damaged during charging and discharging, the capacity of the secondary battery is not gradually reduced.

以下、本発明の実施形態についてさらに詳細に説明する。   Hereinafter, embodiments of the present invention will be described in more detail.

(本発明に係る二次電池用負極活物質およびこれを用いた二次電池の構成)
本発明に係る二次電池用負極活物質は、ガリウムと、リチウムと、融点がアルミニウムの融点以下の金属からなる群から選ばれた少なくとも1種の金属と、を含有し、充電時には少なくとも前記リチウムを含む液相を有することを特徴とする。
(Negative electrode active material for secondary battery according to the present invention and configuration of secondary battery using the same)
The negative electrode active material for a secondary battery according to the present invention contains gallium, lithium, and at least one metal selected from the group consisting of metals having a melting point equal to or lower than that of aluminum, and at least the lithium during charging It has the liquid phase containing.

また、本発明に係る二次電池は、前記二次電池用負極活物質が収納保持された負極(詳
細は後述する)と、正極(詳細は後述する)と、前記負極と正極間に配置されたイオン伝
導性電解液(詳細は後述する)とを備えた二次電池であって、前記二次電池用負極活物質
中のリチウムは、放電時にはリチウムイオンとして前記電解液内に拡散し、充電時には前記リチウムイオンが前記二次電池用負極活物質表面で再び金属に戻り、前記二次電池用負極活物質内へ拡散するように構成されていることを特徴とする。
The secondary battery according to the present invention is disposed between a negative electrode (details will be described later), a positive electrode (details will be described later) in which the negative electrode active material for a secondary battery is accommodated and held, and between the negative electrode and the positive electrode. In addition, lithium in the negative electrode active material for the secondary battery diffuses into the electrolyte as lithium ions during discharging, and is charged. The lithium ion sometimes returns to the metal again on the surface of the negative electrode active material for the secondary battery, and diffuses into the negative electrode active material for the secondary battery.

以上のような構成であるため、本発明は、以下のような作用効果を奏する。
1)10℃〜100℃の温度範囲において、二次電池用負極活物質自体が全体として粘性の低い状態を呈し、かつ、前記負極活物質内のリチウムが原子として全体に拡散しているため、放電時に前記負極活物質内のリチウムを含む液相の割合が増加しながら、リチウムイオンとして電解液内にスムーズに拡散する。また、充電時には前記イオンが前記負極活物質側に移動し、前記負極活物質表面で金属として電析すると同時に、この金属は再び前記負極活物質内へ原子として素早く拡散するとともに、リチウムを含む液相の割合を減少させる。通常の固体電極におけるデンドライトは、充電時の金属析出による電極表面の圧縮応力により生成すると言われているが、前記負極活物質は全体として粘性の低い状態(すなわち、充電時に少なくともリチウムを含む液相を有した全体として液相あるいは固液共存相の状態)であり、電極表面が自由に変形できるため、上記応力が発生せず、デンドライトの生成もない。
2)前記二次電池用負極活物質自体がそもそも固体ではなく、全体として粘性の低い状
態を呈しているため、層状をなす炭素電極のように充放電の繰り返しによるイオンの挿入
と脱離に起因した膨張と収縮で電極が損傷したりすることもない。また、固体の金属のよ
うに充放電の繰り返しによる粒界部の優先的な腐食で負極活物質が欠落し、性能が劣化し
たりするようなこともない。このように、充放電時の負極活物質の損傷がないため、二次
電池の容量の漸進的低下を引き起こすこともない。
Since it is the above structures, this invention has the following effects.
1) In a temperature range of 10 ° C. to 100 ° C., the negative electrode active material for a secondary battery itself exhibits a low viscosity state as a whole, and lithium in the negative electrode active material diffuses as atoms as a whole. During the discharge, the proportion of the liquid phase containing lithium in the negative electrode active material increases while smoothly diffusing into the electrolyte as lithium ions. Further, at the time of charging, the ions move to the negative electrode active material side and are electrodeposited as a metal on the surface of the negative electrode active material. At the same time, the metal quickly diffuses again as atoms into the negative electrode active material, and a liquid containing lithium. Reduce the proportion of phase. It is said that dendrites in normal solid electrodes are generated by compressive stress on the electrode surface due to metal deposition during charging, but the negative electrode active material as a whole has a low viscosity (that is, a liquid phase containing at least lithium during charging). And the electrode surface can be freely deformed, so that the stress is not generated and dendrite is not generated.
2) The negative electrode active material for secondary battery itself is not solid in the first place and exhibits a low viscosity state as a whole. Therefore, it is caused by the insertion and desorption of ions due to repeated charge and discharge like a layered carbon electrode. The electrode is not damaged by the expansion and contraction. Further, the negative electrode active material is not lost due to the preferential corrosion of the grain boundary portion due to repeated charge and discharge as in the case of a solid metal, and the performance is not deteriorated. Thus, since the negative electrode active material is not damaged during charging and discharging, the capacity of the secondary battery is not gradually reduced.

以下に、上記構成に至った理由について詳述する。   Hereinafter, the reason for the above configuration will be described in detail.

本発明者は、如何にしたら充電時にデンドライトの生成がなく、充放電時に電極の損傷
も起こらない二次電池用負極活物質およびそれを用いた二次電池を実現できるのか、鋭意研究を行った。その結果、これまで二次電池用負極としては、固体の金属や層状をなす炭素電極といった所謂固体状のものを使用するのが技術常識とされていたが、当業者においても想到し得ないリチウムを含有しながらも粘性の低い状態を保つ二次電池用負極活物質を見出し、これを用いることで上記目的を達成することができた。上記目的を達成できたポイントとしては、主に以下の2点があると考えている。
1)二次電池用負極として、固体状のもので問題があるのであれば、適用想定温度であ
る10℃〜100℃において、あえて粘性の低い状態を呈するものを使用すれば一気に解決できるのではないかと考えたことである。そして、リチウムを含有しながらも充放電に際して可逆的に、かつ、スムーズに負極内と電解液の間を往復可能でありそうな粘性の低い状態を呈する二次電池用負極活物質を探索し、上記組成物を含んだ二次電池用負極活物質を見出せたことである。
2)すなわち、二次電池用負極活物質自体が全体として粘性の低い状態を呈し、かつ、前記負極活物質内のリチウムが原子として全体に拡散しているため、放電時に前記負極活物質内のリチウムを含む液相の割合が増加しながら、リチウムイオンとして電解液内にスムーズに拡散することが証明された。また、充電時にデンドライトの生成がなかったことより、充電時には前記イオンが前記負極活物質側に移動し、前記負極活物質表面で金属として電析すると同時に、この金属は再び前記負極活物質内へ原子として素早く拡散するとともに、リチウムを含む液相の割合を減少させる。また、充放電の繰り返しによる前記二次電池用負極活物質の損傷が認められないことより、予想したように粘性の低い状態を呈する二次電池用負極活物質であるがゆえに、前記イオンの出入りがあっても自由に変形できることが証明された。
The present inventor conducted earnest research on how to realize a negative electrode active material for a secondary battery that does not generate dendrites during charging and that does not cause electrode damage during charging and discharging, and a secondary battery using the same. . As a result, it has been common knowledge in the art to use so-called solid materials such as solid metals and layered carbon electrodes as negative electrodes for secondary batteries, but lithium ions that cannot be conceived by those skilled in the art. The negative electrode active material for a secondary battery that keeps a low viscosity state while containing the above was found, and by using this, the above object could be achieved. The following two points are considered to be the main points that have achieved the above objective.
1) If there is a problem with a solid secondary battery as a negative electrode for a secondary battery, it can be solved at once by using one that exhibits a low-viscosity state at an assumed application temperature of 10 ° C to 100 ° C. This is what I thought. And while searching for a negative electrode active material for a secondary battery that exhibits a low-viscosity state that is reversibly and smoothly reciprocating between the inside of the negative electrode and the electrolyte while containing lithium, That is, a negative electrode active material for a secondary battery containing the composition was found.
2) That is, since the negative electrode active material for a secondary battery itself exhibits a low viscosity state as a whole, and lithium in the negative electrode active material is diffused as atoms as a whole, It has been proved that lithium ions smoothly diffuse into the electrolyte as the proportion of the liquid phase containing lithium increases. In addition, since no dendrite was generated during charging, the ions migrated to the negative electrode active material side during charging and electrodeposited as a metal on the negative electrode active material surface. At the same time, the metal again entered the negative electrode active material. While rapidly diffusing as atoms, it reduces the proportion of the liquid phase containing lithium. In addition, since the negative electrode active material for the secondary battery is not damaged due to repeated charge and discharge, the negative electrode active material for the secondary battery exhibits a low viscosity state as expected. Even if there is, it was proved that it can be transformed freely.

以下に、本発明を詳細に説明する。   The present invention is described in detail below.

ガリウム(Ga)、アルミニウム(Al)およびリチウム(Li)を含有した二次電池
用負極活物質であって、Gaが10%(質量%の意味、以下同じ)以上、Alが3〜80
%の範囲、Liが5〜65%の範囲である二次電池用負極活物質は、例えば、20℃において、粘性の低い状態(粘性の低い状態とは、固液共存状態も含めて、広く粘性の低い状態をいう)を呈する。この二次電池用負極活物質には、不可避的不純物を含有していても構わない。例えば、アルミニウム(Al)は、工業用アルミニウム合金でもよく、本願の二次電池用負極活物質には、工業用アルミニウム合金等に含まれるFe、Ti等の不可避的不純物を有してもよい。前述のように、二次電池用負極活物質は、工業用アルミニウム合金等に起因する不可避的不純物を含有することができるが、本願の二次電池用負極活物質において、Ga、Al、Liの3元系の元素は、合計して全体の95%以上、さらには97%以上であることが好ましい。また、二次電池用負極活物質(Ga−Al−Li100−X−Y :ただし、X、Yは質量%の意味)として、より安定した粘性の低い状態を維持させる点からは、下記式(1)〜(3)を満足させるのがより好ましい。
10≦X≦90 … (1)
3≦Y≦80 … (2)
35≦X+Y≦95 … (3)
A negative electrode active material for a secondary battery containing gallium (Ga), aluminum (Al), and lithium (Li), wherein Ga is 10% (meaning mass%, hereinafter the same) or more, and Al is 3 to 80
The negative electrode active material for secondary batteries in which Li is in the range of 5 to 65% is, for example, a low viscosity state at 20 ° C. (a low viscosity state includes a solid-liquid coexistence state widely) Presents a low viscosity state). This secondary battery negative electrode active material may contain inevitable impurities. For example, aluminum (Al) may be an industrial aluminum alloy, and the negative electrode active material for a secondary battery of the present application may have inevitable impurities such as Fe and Ti contained in the industrial aluminum alloy. As described above, the negative electrode active material for a secondary battery can contain inevitable impurities due to industrial aluminum alloys and the like, but in the negative electrode active material for a secondary battery of the present application, Ga, Al, Li The total of ternary elements is preferably 95% or more, more preferably 97% or more of the total. The negative electrode active material for a secondary battery (Ga X -Al Y -Li 100- X-Y: However, X, Y mean mass%) as from the viewpoint of maintaining a more stable low viscosity state, It is more preferable to satisfy the following formulas (1) to (3).
10 ≦ X ≦ 90 (1)
3 ≦ Y ≦ 80 (2)
35 ≦ X + Y ≦ 95 (3)

上記組成物を含んだ二次電池用負極活物質中のリチウムは、充放電に際して可逆的に負極内と電解液の間を往復可能であり、放電時にはイオンとして電解液内にスムーズに拡散し、充電時には前記イオンが前記二次電池用負極活物質側に移動し、前記二次電池用負極活物質表面で金属として電析すると同時に、この金属は前記二次電池用負極活物質内へ原子として素早く拡散する。   Lithium in the negative electrode active material for secondary batteries containing the above composition can reversibly reciprocate between the negative electrode and the electrolyte during charge and discharge, and smoothly diffuses into the electrolyte as ions during discharge. At the time of charging, the ions move to the negative electrode active material side for the secondary battery and are electrodeposited as a metal on the surface of the negative electrode active material for the secondary battery. At the same time, the metal is atomized into the negative electrode active material for the secondary battery. Spread quickly.

次に、上記二次電池用負極活物質(Ga−Al−Li)を二次電池に用いた場合の負極
側での放電・充電反応をそれぞれ下記式(4)〜(5)に示す。
放電反応
Ga−Al−Li → (Ga−Al)+Li+e ・・・(4)
充電反応
(Ga−Al)+Li+e → Ga−Al−Li ・・・(5)
Next, discharge / charge reactions on the negative electrode side when the negative electrode active material for secondary battery (Ga—Al—Li) is used in a secondary battery are shown in the following formulas (4) to (5), respectively.
Discharge reaction
Ga—Al—Li → (Ga—Al) + Li + + e (4)
Charge reaction
(Ga—Al) + Li + + e → Ga—Al—Li (5)

(4)式に示すように、放電時には二次電池用負極活物質(Ga−Al−Li)内のL
iが酸化され、イオンとして電解液内に溶出し、拡散する。また、(5)式に示すように
、充電時には電解液内のLiイオンが二次電池用負極活物質側に移動し、二次電池用負極
活物質表面で還元され、二次電池用負極活物質内へ素早く拡散し、再びGa−Al−Li
となり、二次電池用負極活物質の表面にLi金属がデンドライトを生成するようなことも
ない。
As shown in the formula (4), L in the negative electrode active material for secondary battery (Ga—Al—Li) at the time of discharging.
i is oxidized and eluted into the electrolyte as ions and diffuses. Further, as shown in the equation (5), during charging, Li ions in the electrolytic solution move to the secondary battery negative electrode active material side and are reduced on the surface of the secondary battery negative electrode active material, so that the secondary battery negative electrode active material is activated. Quickly diffuses into the material and again Ga-Al-Li
Thus, Li metal does not generate dendrites on the surface of the negative electrode active material for secondary batteries.

また、正極側での放電・充電反応をそれぞれ下記式(6)〜(7)に示す。
放電反応
2Li0.5CoO+Li+e → 2LiCoO ・・・(6)
充電反応
2LiCoO → 2Li0.5CoO+Li+e ・・・(7)
Further, the discharge and charge reactions on the positive electrode side are shown in the following formulas (6) to (7), respectively.
Discharge reaction
2Li 0.5 CoO 2 + Li + + e → 2LiCoO 2 (6)
Charge reaction
2LiCoO 2 → 2Li 0.5 CoO 2 + Li + + e (7)

上記二次電池用負極活物質は、Ga、AlとLiを約30℃〜約100℃で攪拌混合す
ることで容易に製造できる組成物である。
The negative electrode active material for a secondary battery is a composition that can be easily manufactured by stirring and mixing Ga, Al, and Li at about 30 ° C to about 100 ° C.

また、ガリウム(Ga)、亜鉛(Zn)およびリチウム(Li)を含有した二次電池用負極活物質であって、ガリウムが5%以上、亜鉛が5〜94%の範囲、リチウムが0.5〜20%以下の範囲である二次電池用負極活物質は、例えば、20℃において、粘性の低い状態(粘性の低い状態とは、固液共存状態も含めて、広く粘性の低い状態をいう)を呈する。この二次電池用負極活物質には、不可避的不純物を含有していても構わない。また、二次電池用負極活物質(Ga−Zn−Li100−X−Y :ただし、X、Yは質量%の意味)として、より安定した粘性の低い状態を維持させる点からは、下記式(8)〜(10)を満足させるのがより好ましい。
5≦X<100 … (8)
5≦Y≦90 … (9)
80≦X+Y<100 … (10)
A negative electrode active material for a secondary battery containing gallium (Ga), zinc (Zn), and lithium (Li), in which gallium is 5% or more, zinc is in the range of 5 to 94%, and lithium is 0.5. The negative electrode active material for secondary batteries in a range of ˜20% or less is, for example, at 20 ° C., a low-viscosity state (a low-viscosity state refers to a state of low viscosity, including a solid-liquid coexistence state). ). This secondary battery negative electrode active material may contain inevitable impurities. Moreover, from the point of maintaining a more stable and low viscosity state as a negative electrode active material for secondary battery (Ga X -Zn Y -Li 100-XY : where X and Y mean mass%), It is more preferable to satisfy the following formulas (8) to (10).
5 ≦ X <100 (8)
5 ≦ Y ≦ 90 (9)
80 ≦ X + Y <100 (10)

上記組成物を含んだ二次電池用負極活物質中のリチウムは、充放電に際して可逆的に負極内と電解液の間を往復可能であり、放電時にはイオンとして電解液内にスムーズに拡散し、充電時には前記イオンが前記二次電池用負極活物質側に移動し、前記二次電池用負極活物質表面で金属として電析すると同時に、この金属は前記二次電池用負極活物質内へ原子として素早く拡散する。   Lithium in the negative electrode active material for secondary batteries containing the above composition can reversibly reciprocate between the negative electrode and the electrolyte during charge and discharge, and smoothly diffuses into the electrolyte as ions during discharge. At the time of charging, the ions move to the negative electrode active material side for the secondary battery and are electrodeposited as a metal on the surface of the negative electrode active material for the secondary battery. At the same time, the metal is atomized into the negative electrode active material for the secondary battery. Spread quickly.

次に、上記二次電池用負極活物質(Ga−Zn−Li)を二次電池に用いた場合の負極側での放電・充電反応をそれぞれ下記式(11)〜(12)に示す。
放電反応
Ga−Zn−Li → (Ga−Zn)+Li+e ・・・(11)
充電反応
(Ga−Zn)+Li+e → Ga−Zn−Li ・・・(12)
Next, discharge / charge reactions on the negative electrode side when the negative electrode active material for secondary battery (Ga—Zn—Li) is used in a secondary battery are shown in the following formulas (11) to (12), respectively.
Discharge reaction
Ga—Zn—Li → (Ga—Zn) + Li + + e (11)
Charge reaction
(Ga—Zn) + Li + + e → Ga—Zn—Li (12)

(11)式に示すように、放電時には二次電池用負極活物質(Ga−Zn−Li)内のLiが酸化され、イオンとして電解液内に溶出し、拡散する。また、(12)式に示すように、充電時には電解液内のLiイオンが二次電池用負極活物質側に移動し、二次電池用負極活物質表面で還元され、二次電池用負極活物質内へ素早く拡散し、再びGa−Zn−Liとなり、二次電池用負極活物質の表面にLi金属がデンドライトを生成するようなこともない。   As shown in the equation (11), during discharge, Li in the secondary battery negative electrode active material (Ga—Zn—Li) is oxidized and eluted as ions into the electrolytic solution and diffused. In addition, as shown in the equation (12), during charging, Li ions in the electrolyte move to the secondary battery negative electrode active material side and are reduced on the surface of the secondary battery negative electrode active material, so that the secondary battery negative electrode active material is reduced. It quickly diffuses into the material, becomes Ga-Zn-Li again, and Li metal does not generate dendrites on the surface of the negative electrode active material for secondary batteries.

また、正極側での放電・充電反応をそれぞれ下記式(13)〜(14)に示す。
放電反応
2Li0.5CoO+Li+e → 2LiCoO ・・・(13)
充電反応
2LiCoO → 2Li0.5CoO+Li+e ・・・(14)
Further, the discharge and charge reactions on the positive electrode side are shown in the following formulas (13) to (14), respectively.
Discharge reaction
2Li 0.5 CoO 2 + Li + + e → 2LiCoO 2 (13)
Charge reaction
2LiCoO 2 → 2Li 0.5 CoO 2 + Li + + e (14)

上記二次電池用負極活物質は、Ga、ZnとLiを約30℃〜約100℃で攪拌混合することで容易に製造できる組成物である。   The negative electrode active material for a secondary battery is a composition that can be easily produced by stirring and mixing Ga, Zn, and Li at about 30 ° C to about 100 ° C.

以上、二次電池用負極活物質として、ガリウムおよびリチウムに、アルミニウムまたは亜鉛を含有させたものについて説明してきたが、これらはほんの一例であり、必ずしもこれに限定されるものではない。例えば、アルミニウムや亜鉛以外にも、スズ(Sn)を含有させてもよい。この場合の一例を挙げるならば、スズが9.3%とガリウムが90.7%含有したものに対してさらにリチウムを3%含有させた組成物も本発明に係る二次電池用負極活物質の範囲に属する。これら以外にもガリウムおよびリチウムに対して、インジウム(In)、タリウム(Tl)、鉛(Pb)、ビスマス(Bi)、アンチモン(Sb)、カドミウム(Cd)、水銀(Hg)、マグネシウム(Mg)等を含有させてもよい。すなわち、本発明に係る二次電池用負極活物質を特定するための構成要件は、ガリウムと、リチウムと、融点がアルミニウムの融点以下の金属からなる群から選ばれた少なくとも1種の金属と、を含有し、充電時に少なくとも前記リチウムを含む液相を有するものであればよい。リチウムを含む液相を形成するためには、ガリウムとリチウムの二元系では困難であり、上記のような融点がアルミニウムの融点以下の金属を含有させることによってはじめて可能になる。   As described above, the negative electrode active material for the secondary battery has been described in which gallium and lithium contain aluminum or zinc. However, these are merely examples, and the present invention is not necessarily limited thereto. For example, tin (Sn) may be contained in addition to aluminum and zinc. An example of this case is a negative electrode active material for a secondary battery according to the present invention, in which a composition containing 9.3% tin and 90.7% gallium and further containing 3% lithium is also included. Belongs to the range. Besides these, for gallium and lithium, indium (In), thallium (Tl), lead (Pb), bismuth (Bi), antimony (Sb), cadmium (Cd), mercury (Hg), magnesium (Mg) Etc. may be included. That is, the constituent requirements for specifying the negative electrode active material for a secondary battery according to the present invention are gallium, lithium, and at least one metal selected from the group consisting of metals having a melting point equal to or lower than that of aluminum, As long as it has a liquid phase containing at least the lithium during charging. In order to form a liquid phase containing lithium, a binary system of gallium and lithium is difficult, and it becomes possible only when a metal having a melting point as described above is contained below that of aluminum.

上記二次電池用負極活物質は、以下に説明するような収納部に収納保持され負極を構成
する。収納部は、例えば、樹脂でできた円筒体と、イオン伝導性電解液側であり、かつ、
前記円筒体の一端側に接続されたイオン交換膜と、前記円筒体の他端側に接続され、密閉
する集電体とから構成されている。また、前記二次電池用負極活物質は、前記イオン交換
膜と前記集電体と接するように構成されている。上記負極の構成は、一例であり必ずしも
これに限定されるものではない。
The negative electrode active material for a secondary battery is housed and held in a housing portion as described below to form a negative electrode. The storage part is, for example, a cylindrical body made of resin and the ion conductive electrolyte side, and
The ion exchange membrane is connected to one end side of the cylindrical body, and the current collector is connected to the other end side of the cylindrical body and sealed. Further, the negative electrode active material for a secondary battery is configured to contact the ion exchange membrane and the current collector. The configuration of the negative electrode is an example and is not necessarily limited thereto.

次に、本発明の二次電池に用いる正極について、以下に説明する。   Next, the positive electrode used for the secondary battery of the present invention will be described below.

例えば、化学式LiCoO、MnO、V、MoO、NiOのような正極用
活物質を白金(Pt)板に塗布したものを正極として用いることが可能である。また、N
iOOHのような正極用活物質をニッケル(Ni)板からなる集電体に塗布したものを正
極として用いることも可能である。上記正極の構成も、ほんの一例であり、必ずしもこれ
に限定されるものではない。
For example, a cathode (Pt) plate coated with a positive electrode active material such as chemical formulas LiCoO 2 , MnO 2 , V 2 O 5 , MoO 3 , and NiO can be used as the positive electrode. N
A material obtained by applying a positive electrode active material such as iOOH to a current collector made of a nickel (Ni) plate can also be used as the positive electrode. The configuration of the positive electrode is just an example and is not necessarily limited thereto.

次に、本発明の二次電池に用いるイオン伝導性電解液について、以下に説明する。   Next, the ion conductive electrolyte used for the secondary battery of the present invention will be described below.

イオン伝導性電解液は、有機溶媒に電解質を溶解させたものを用いることが可能である
。有機溶媒としては炭酸エチレン(化学式C)、炭酸プロピレン、炭酸ブチレ
ン、炭酸ジメチル、炭酸ジエチル等、さまざまなものを用いることができる。また、前記
有機溶媒と組み合わせる電解質としては、例えば、化学式LiPF、LiClO、L
iBF、LiN(CFSOのようなものを用いることができる。
As the ion conductive electrolyte, an electrolyte in which an electrolyte is dissolved in an organic solvent can be used. As the organic solvent, various solvents such as ethylene carbonate (chemical formula C 3 H 4 O 3 ), propylene carbonate, butylene carbonate, dimethyl carbonate, and diethyl carbonate can be used. Examples of the electrolyte combined with the organic solvent include chemical formulas LiPF 6 , LiClO 4 , L
A material such as iBF 4 or LiN (CF 3 SO 2 ) 2 can be used.

また、上記イオン伝導性電解液を、不織布に含浸させたり、ポリマー(例えば、ポリエ
チレンオキシド、アクリル共重合体等)に吸収させたりして、通称セパレータと呼ばれる
ものが構成され、このセパレータが負極と正極の間に配置される。また、例えば、有機溶
媒にLiPFを溶解させたイオン伝導性電解液を不織布に含浸させたものをセパレータ
として用いる場合は、さらに上記二次電池用負極活物質と接する側に、Li、PF
は通過可能であるが負極活物質は通過しない膜を設けるのが好ましい。
Moreover, what is called a so-called separator is constituted by impregnating the ion conductive electrolyte into a non-woven fabric or absorbing it in a polymer (for example, polyethylene oxide, acrylic copolymer, etc.). It arrange | positions between positive electrodes. Further, for example, when using as a separator a non-woven fabric impregnated with an ion conductive electrolytic solution in which LiPF 6 is dissolved in an organic solvent, Li + , PF on the side in contact with the secondary battery negative electrode active material. 6 -
It is preferable to provide a film that can pass through but does not pass through the negative electrode active material.

以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は本発明を制限す
るものではなく、前・後記の趣旨を逸脱しない範囲で変更実施をすることは全て本発明の
技術的範囲に包含される。
Hereinafter, the present invention will be described in detail based on examples. However, the following examples are not intended to limit the present invention, and all modifications made without departing from the spirit of the preceding and following descriptions are included in the technical scope of the present invention.

以下、本発明の二次電池用負極活物質およびこれを用いた二次電池の実施例について図
面を参照しながら説明する。
Examples of a negative electrode active material for a secondary battery and a secondary battery using the same according to the present invention will be described below with reference to the drawings.

(実施例1)
図1は本発明の実施例1の二次電池の模式縦断面図である。図1において、1は正極外
装缶、2は正極、3は負極外装缶、4は負極、5はセパレータ、6は絶縁パッキングであ
る。
Example 1
FIG. 1 is a schematic longitudinal sectional view of a secondary battery according to Example 1 of the present invention. In FIG. 1, 1 is a positive electrode outer can, 2 is a positive electrode, 3 is a negative electrode outer can, 4 is a negative electrode, 5 is a separator, and 6 is an insulating packing.

図1において、正極2は、正極用活物質(LiCoO)が白金(Pt)板に塗布され
た構成からなる。
In FIG. 1, a positive electrode 2 has a configuration in which a positive electrode active material (LiCoO 2 ) is applied to a platinum (Pt) plate.

また、図1において、負極4は、樹脂でできた円筒体4aと円筒体4aの一端側に接続
されたLi、PF が通過可能である多孔膜4bと円筒体4aの他端側に接続され、
密閉するための集電体4cとからなる収納部とこの収納部内に収納された粘性の低い状態
を呈する本発明の二次電池用負極活物質4d(詳細組成は、下記表1の試験No.1〜6
を参照)から構成されている。また、この二次電池用負極活物質4dは、Ga、AlとL
iを約30℃〜約100℃で攪拌混合して作成した組成物である。また、本発明の二次電
池用負極活物質4dは、多孔膜4bと集電体4cと接するように構成されている。また、
比較例(試験No.7、8)で用いた負極は、それぞれGa、AlとLiからなる固体状
の合金である(詳細組成は、下記表1の試験No.7、8を参照)。また、本実施例にお
いては、負極4の構成要素として、多孔膜4bを用いた例について説明したが、適宜省略
することも可能である。

Figure 0005342188
In FIG. 1, the negative electrode 4 includes a cylindrical body 4a made of resin and a porous film 4b through which Li + and PF 6 connected to one end side of the cylindrical body 4a can pass, and the other end side of the cylindrical body 4a. Connected to
A negative electrode active material 4d for a secondary battery of the present invention that exhibits a low-viscosity state accommodated in a storage portion comprising a current collector 4c for sealing and a low-viscosity state stored in the storage portion. 1-6
For example). Further, the negative electrode active material 4d for the secondary battery includes Ga, Al and L
i is a composition prepared by stirring and mixing at about 30 ° C. to about 100 ° C. Moreover, the negative electrode active material 4d for a secondary battery of the present invention is configured so as to be in contact with the porous film 4b and the current collector 4c. Also,
The negative electrodes used in the comparative examples (Test Nos. 7 and 8) are solid alloys composed of Ga, Al, and Li, respectively (for detailed compositions, see Test Nos. 7 and 8 in Table 1 below). In the present embodiment, the example in which the porous film 4b is used as the constituent element of the negative electrode 4 has been described, but may be omitted as appropriate.
Figure 0005342188

また、図1において、セパレータ5は、イオン伝導性電解液とこのイオン伝導性電解液
が含浸される不織布とから構成されている。上記表1に示す試験No.1〜8で用いたイ
オン伝導性電解液は、有機溶媒Cと電解質LiPFから構成される。また、
電解質は有機溶媒に対してそれぞれ1g/L(Lはリットルの意味)になるように50℃
で溶解した。
Moreover, in FIG. 1, the separator 5 is comprised from the ion conductive electrolyte and the nonwoven fabric impregnated with this ion conductive electrolyte. Test No. shown in Table 1 above. The ion conductive electrolyte used in 1 to 8 is composed of an organic solvent C 3 H 4 O 3 and an electrolyte LiPF 6 . Also,
The electrolyte is 50 ° C. so that the electrolyte is 1 g / L (L means liter) with respect to the organic solvent.
And dissolved.

以上のような構成で組み立てられた試験No.1〜8のものについて、発生電圧、電流およびエネルギー密度{単位質量当たりの取出せる電力量(Wh/kg)}を測定した。
その結果、発明例(試験No.1〜6)においては、2.0〜3.7Vの電圧が発生し、
いずれも0.5mA/cmの電流が流れた(上記表1参照)。比較例(試験No.7、
8)においては、1.9、2.0Vの電圧が発生し、いずれも0.5mA/cmの電流
が流れた(上記表1参照)。また、発明例(試験No.1〜6)におけるエネルギー密度
は、150〜251Wh/kgであり、比較例(試験No.7、8)におけるエネルギー
密度は、それぞれ117、255Wh/kgであった。比較例(試験No.8)に関して
は、前述のように放電時のエネルギー密度が255Wh/kgと高いものの、後述するよ
うに充電時にデンドライトを生成する等の問題が起こるため、二次電池として使用するこ
とは困難である。
Test No. assembled with the above configuration. About the thing of 1-8, the generated voltage, electric current, and energy density {the electric energy which can be taken out per unit mass (Wh / kg)} were measured.
As a result, in the inventive examples (test Nos. 1 to 6), a voltage of 2.0 to 3.7 V is generated,
In both cases, a current of 0.5 mA / cm 2 flowed (see Table 1 above). Comparative Example (Test No. 7,
In 8), voltages of 1.9 and 2.0 V were generated, and a current of 0.5 mA / cm 2 flowed in both cases (see Table 1 above). Moreover, the energy density in invention example (test No. 1-6) was 150-251 Wh / kg, and the energy density in a comparative example (test No. 7, 8) was 117, 255 Wh / kg, respectively. As for the comparative example (test No. 8), although the energy density at the time of discharging is as high as 255 Wh / kg as described above, problems such as the generation of dendrites at the time of charging occur as described later, so it is used as a secondary battery. It is difficult to do.

次に、上記試験No.1〜8の二次電池について、充電時(4Vで5時間充電後)の負
極表面へのデンドライトの生成の有無、充放電時の電極の損傷の有無および充電時の負極内におけるリチウムを含む液相の存在の有無を確認した。その結果、比較例(試験No.7、8)においては、デンドライトの生成が認められた(上記表1参照)が、発明例(試験No.1〜6)においては、認められなかった(上記表1参照)。また、比較例(試験No.7、8)においては、充放電時の電極の損傷が認められたが、発明例(試験No.1〜6)においては、認められなかった。また、比較例(試験No.7、8)においては、充電時の負極内におけるリチウムを含む液相の存在は認められなかったが、発明例(試験No.1〜6)においては、認められた。すなわち、本発明に係る二次電池においては、上記表1に示す発明例(試験No.1〜6)のような作成時の負極活物質時点で全体として粘性の低い状態(すなわち、液相あるいは固液共存相の状態)であり、この状態から放電時には前記負極活物質内のリチウムを含む液相の割合が増加し、充電時には前記負極活物質内のリチウムを含む液相の割合が減少する。このように充放電サイクルにより、前記負極活物質内のリチウムを含む液相の割合の増減が起こる。なお、上記試験は温度20℃の条件下で行った。
Next, the above test No. For the secondary batteries 1 to 8, a liquid containing lithium in the negative electrode surface during charging (after charging at 4 V for 5 hours), whether or not dendrite is generated on the negative electrode surface, whether or not the electrode is damaged during charging and discharging. The presence or absence of a phase was confirmed. As a result, in the comparative examples (Test Nos. 7 and 8), the formation of dendrites was observed (see Table 1 above), but in the inventive examples (Test Nos. 1 to 6) (noted above) (See Table 1). Further, in the comparative examples (Test Nos. 7 and 8), the electrode was damaged during charging and discharging, but not in the invention examples (Test Nos. 1 to 6). In Comparative Examples (Test Nos. 7 and 8), the presence of a liquid phase containing lithium in the negative electrode during charging was not observed, but in the Invention Examples (Test Nos. 1 to 6). It was. That is, in the secondary battery according to the present invention, the state of low viscosity as a whole at the time of the negative electrode active material at the time of preparation as in the inventive examples (test Nos. 1 to 6) shown in Table 1 above (that is, liquid phase or From this state, the proportion of the liquid phase containing lithium in the negative electrode active material increases during discharging, and the proportion of the liquid phase containing lithium in the negative electrode active material decreases during charging from this state. . Thus, the charge / discharge cycle causes an increase or decrease in the ratio of the liquid phase containing lithium in the negative electrode active material. In addition, the said test was done on the conditions of the temperature of 20 degreeC.

このように本願発明の構成によると、充電時にデンドライトの生成がなく、かつ、充放電時に電極の損傷も起こらない二次電池用負極活物質およびそれを用いた二次電池を実現できる。   Thus, according to the structure of this invention, the negative electrode active material for secondary batteries which does not produce | generate a dendrite at the time of charge, and does not cause the damage of an electrode at the time of charging / discharging, and a secondary battery using the same are realizable.

なお、固液共存状態も含めて、広く粘性の低い状態を呈する二次電池用負極活物質(G
a−Al−Li)としては、本実施例において説明した上記表1に示す組成範囲の組合せ
のものに、必ずしも限定されるものではなく、Gaが10%以上、Alが3〜80%の範
囲、Liが5〜65%の範囲であればよい。だだし、より安定した粘性の低い状態が維持
させた二次電池用負極活物質(Ga−Al−Li100−X−Y :ただし、X、Yは質量%の意味)を得る点からは、下記式(1)〜(3)を満足させるのがより好ましい。
10≦X≦90 … (1)
3≦Y≦80 … (2)
35≦X+Y≦95 … (3)
In addition, the negative electrode active material for secondary batteries (G
a-Al-Li) is not necessarily limited to the combination of the composition ranges shown in Table 1 described in the present example, and Ga is 10% or more and Al is 3 to 80%. , Li may be in the range of 5 to 65%. Dadashi more stable negative electrode active material for a secondary battery low viscosity state was maintained (Ga X -Al Y -Li 100- X-Y: However, X, Y mean mass%) from the viewpoint of obtaining a More preferably, the following formulas (1) to (3) are satisfied.
10 ≦ X ≦ 90 (1)
3 ≦ Y ≦ 80 (2)
35 ≦ X + Y ≦ 95 (3)

また、本実施例においては、イオン伝導性電解液として、機能性、および、より安全性
を高める観点から、溶媒にC3、電解質にLiPFを用いた例について説明したが、必ずしもこれに限定されるものではなく、上述のようにさまざまなもの使用することが可能である。
In this example, as an ion conductive electrolyte, an example in which C 3 H 4 O 3 was used as a solvent and LiPF 6 was used as an electrolyte was described from the viewpoint of enhancing functionality and safety. The present invention is not necessarily limited to this, and various types can be used as described above.

(実施例2)
本発明の実施例2の二次電池に関しても、その構造は実施例1における図1に示すものと同じであるため、異なる部分のみ詳述する。
(Example 2)
Since the structure of the secondary battery of Example 2 of the present invention is the same as that shown in FIG. 1 in Example 1, only different parts will be described in detail.

本発明の二次電池用負極活物質4dは、Ga、ZnとLiを約30℃〜約100℃で攪拌混合して作成した組成物(詳細組成は、下記表2の試験No.9〜13を参照)である。また、二次電池用負極活物質4dは、多孔膜4bと集電体4cと接するように構成されている。また、比較例(試験No.14)で用いた負極は、それぞれGa、ZnとLiからなる固体状の合金である。

Figure 0005342188
The negative electrode active material 4d for secondary batteries of the present invention is a composition prepared by stirring and mixing Ga, Zn, and Li at about 30 ° C. to about 100 ° C. (detailed composition is test Nos. 9 to 13 in Table 2 below). See). Further, the negative electrode active material 4d for the secondary battery is configured to contact the porous film 4b and the current collector 4c. The negative electrode used in the comparative example (Test No. 14) is a solid alloy made of Ga, Zn and Li, respectively.
Figure 0005342188

実施例1と同様に組み立てられた試験No.9〜14の二次電池において、発生電圧および電流を測定した。その結果、発明例(試験No.9〜13)においては、2.0〜3.4Vの電圧が発生し、いずれも0.5mA/cmの電流が流れた(上記表2参照)。比較例(試験No.14)においては、3.5Vの電圧が発生し、いずれも0.5mA/cmの電流が流れた。 Test No. 1 assembled in the same manner as in Example 1. In the secondary batteries of 9 to 14, the generated voltage and current were measured. As a result, in the inventive examples (Test Nos. 9 to 13), a voltage of 2.0 to 3.4 V was generated, and a current of 0.5 mA / cm 2 flowed in all cases (see Table 2 above). In the comparative example (Test No. 14), a voltage of 3.5 V was generated, and a current of 0.5 mA / cm 2 flowed in all cases.

次に、上記試験No.9〜13の二次電池について、充電時(4Vで5時間充電後)の負極表面へのデンドライトの生成の有無、充放電時の電極の損傷の有無および充電時の負極内におけるリチウムを含む液相の存在の有無を確認した。その結果、比較例(試験No.14)においては、デンドライトの生成が認められた(上記表2参照)が、発明例(試験No.9〜13)においては、認められなかった(上記表2参照)。また、比較例(試験No.14)においては、充放電時の電極の損傷が認められたが、発明例(試験No.9〜13)においては、認められなかった。また、比較例(試験No.14)においては、充電時の負極内におけるリチウムを含む液相の存在は認められなかったが、発明例(試験No.9〜13)においては、認められた。すなわち、本発明に係る二次電池においては、上記表2に示す発明例(試験No.9〜13)のような作成時の負極活物質時点で全体として粘性の低い状態(すなわち、液相あるいは固液共存相の状態)であり、この状態から放電時には前記負極活物質内のリチウムを含む液相の割合が増加し、充電時には前記負極活物質内のリチウムを含む液相の割合が減少する。このように充放電サイクルにより、前記負極活物質内のリチウムを含む液相の割合の増減が起こる。なお、上記試験は温度20℃の条件下で行った。   Next, the above test No. About the secondary battery of 9-13, the liquid containing the lithium in the negative electrode at the time of the presence or absence of the generation | occurrence | production of the dendrite to the negative electrode surface at the time of charge (after charging for 5 hours at 4V), the damage of the electrode at the time of charge / discharge The presence or absence of a phase was confirmed. As a result, in the comparative example (Test No. 14), the formation of dendrites was observed (see Table 2 above), but not in the invention examples (Test Nos. 9 to 13) (Table 2 above). reference). Moreover, in the comparative example (test No. 14), although the damage of the electrode at the time of charging / discharging was recognized, it was not recognized in the invention example (test No. 9-13). Further, in the comparative example (Test No. 14), the presence of the liquid phase containing lithium in the negative electrode during charging was not observed, but in the invention examples (Test Nos. 9 to 13). That is, in the secondary battery according to the present invention, the state of the low viscosity as a whole (that is, the liquid phase or From this state, the proportion of the liquid phase containing lithium in the negative electrode active material increases during discharging, and the proportion of the liquid phase containing lithium in the negative electrode active material decreases during charging from this state. . Thus, the charge / discharge cycle causes an increase or decrease in the ratio of the liquid phase containing lithium in the negative electrode active material. In addition, the said test was done on the conditions of the temperature of 20 degreeC.

このように本願発明の構成によると、充電時にデンドライトの生成がなく、かつ、充放電時に電極の損傷も起こらない二次電池用負極活物質およびそれを用いた二次電池を実現できる。   Thus, according to the structure of this invention, the negative electrode active material for secondary batteries which does not produce | generate a dendrite at the time of charge, and does not cause the damage of an electrode at the time of charging / discharging, and a secondary battery using the same are realizable.

なお、固液共存状態も含めて、広く粘性の低い状態を呈する二次電池用負極活物質(Ga−Zn−Li)としては、本実施例において説明した上記表2に示す組成範囲の組合せのものに、必ずしも限定されるものではなく、ガリウムが5%以上、亜鉛が5〜94%の範囲、リチウムが0.5〜20%以下の範囲であればよい。だだし、より安定した粘性の低い状態が維持させた二次電池用負極活物質(Ga−Zn−Li100−X−Y :ただし、X、Yは質量%の意味)を得る点からは、下記式(8)〜(10)を満足させるのがより好ましい。
5≦X<100 … (8)
5≦Y≦90 … (9)
80≦X+Y<100 … (10)
In addition, as a negative electrode active material for secondary batteries (Ga-Zn-Li) that exhibits a state of low viscosity, including a solid-liquid coexistence state, a combination of composition ranges shown in Table 2 described above in this example is used. However, it is not necessarily limited, and it is sufficient that gallium is 5% or more, zinc is 5 to 94%, and lithium is 0.5 to 20%. Dadashi more stable negative electrode active material for a secondary battery low viscosity state was maintained (Ga X -Zn Y -Li 100- X-Y: However, X, Y mean mass%) from the viewpoint of obtaining a More preferably, the following formulas (8) to (10) are satisfied.
5 ≦ X <100 (8)
5 ≦ Y ≦ 90 (9)
80 ≦ X + Y <100 (10)

また、本実施例においては、イオン伝導性電解液として、機能性、および、より安全性を高める観点から、溶媒にC3、電解質にLiPFを用いた例について説明したが、必ずしもこれに限定されるものではなく、上述のようにさまざまなもの使用することが可能である。 In this example, as an ion conductive electrolyte, an example in which C 3 H 4 O 3 was used as a solvent and LiPF 6 was used as an electrolyte was described from the viewpoint of enhancing functionality and safety. The present invention is not necessarily limited to this, and various types can be used as described above.

本発明の実施例1の二次電池の模式縦断面図である。It is a model longitudinal cross-sectional view of the secondary battery of Example 1 of this invention.

符号の説明Explanation of symbols

1 正極外装缶
2 正極
3 負極外装缶
4 負極
4a 円筒体
4b 多孔膜
4c 集電体
4d 二次電池用負極活物質
5 セパレータ
6 絶縁パッキング
DESCRIPTION OF SYMBOLS 1 Positive electrode outer can 2 Positive electrode 3 Negative electrode outer can 4 Negative electrode 4a Cylindrical body 4b Porous film 4c Current collector 4d Negative electrode active material for secondary batteries 5 Separator 6 Insulation packing

Claims (4)

ガリウムと、リチウムと、融点がアルミニウムの融点以下の金属からなる群から選ばれた少なくとも1種の金属と、を含有し、充電時には少なくとも前記リチウムを含む液相を有し、
前記融点がアルミニウムの融点以下の金属からなる群から選ばれた少なくとも1種の金属は、亜鉛であり、この亜鉛が5〜94%の範囲、前記ガリウムが5%以上、前記リチウムが0.5〜20%の範囲であることを特徴とするリチウム二次電池用負極活物質。
Containing gallium, lithium, and at least one metal melting point selected from the group consisting of metallic aluminum in the melting point, and will have a liquid phase containing at least the lithium during charging,
The at least one metal selected from the group consisting of metals having a melting point equal to or lower than that of aluminum is zinc, the zinc is in the range of 5 to 94%, the gallium is 5% or more, and the lithium is 0.5. negative active material for a lithium secondary battery, wherein the range der Rukoto of 20%.
請求項に記載のリチウム二次電池用負極活物質が収納保持された負極と、正極と、前記負極と正極間に配置されたイオン伝導性電解液とを備えたリチウム二次電池であって、前記リチウム二次電池用負極活物質中のリチウムは、放電時にはリチウムイオンとして前記電解液内に拡散し、充電時には前記リチウムイオンが前記リチウム二次電池用負極活物質表面で再び金属に戻り、前記リチウム二次電池用負極活物質内へ拡散するように構成されたことを特徴とするリチウム二次電池。 A negative electrode negative active material of claim 1 is accommodated and held, a lithium secondary battery comprising a positive electrode and, with said negative electrode and the ion-conducting electrolyte disposed between the positive electrode In addition, lithium in the negative electrode active material for lithium secondary battery diffuses into the electrolyte as lithium ions during discharge, and the lithium ions return to metal again on the surface of the negative electrode active material for lithium secondary batteries during charging, A lithium secondary battery configured to diffuse into the negative electrode active material for a lithium secondary battery. 前記リチウム二次電池用負極活物質内のリチウムを含む液相の割合が、放電時には増加し、充電時には減少することを特徴とする請求項に記載のリチウム二次電池。 Ratio of the liquid phase containing lithium of the negative electrode active substance in a lithium secondary battery, a lithium secondary battery according to claim 2, at the time of discharge increases, wherein the decrease in charging. 前記イオン伝導性電解液は、化学式がLiPFで表される電解質を化学式がCで表される有機溶媒に溶解した構成である請求項またはに記載のリチウム二次電池。 The ion-conducting electrolyte, a lithium secondary battery according to claim 2 or 3 formula is a structure in which the formula of electrolyte represented by LiPF 6 is dissolved in an organic solvent represented by C 3 H 4 O 3 .
JP2008202141A 2007-10-10 2008-08-05 Negative electrode active material for secondary battery and secondary battery using the same Expired - Fee Related JP5342188B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008202141A JP5342188B2 (en) 2008-06-05 2008-08-05 Negative electrode active material for secondary battery and secondary battery using the same
PCT/JP2008/068494 WO2009048146A1 (en) 2007-10-10 2008-10-10 Negative electrode active material for rechargeable battery, rechargeble battery using the negative electrode active material, and air rechargeable battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008148523 2008-06-05
JP2008148523 2008-06-05
JP2008202141A JP5342188B2 (en) 2008-06-05 2008-08-05 Negative electrode active material for secondary battery and secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2010015964A JP2010015964A (en) 2010-01-21
JP5342188B2 true JP5342188B2 (en) 2013-11-13

Family

ID=41701875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008202141A Expired - Fee Related JP5342188B2 (en) 2007-10-10 2008-08-05 Negative electrode active material for secondary battery and secondary battery using the same

Country Status (1)

Country Link
JP (1) JP5342188B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5356011B2 (en) * 2008-12-24 2013-12-04 株式会社コベルコ科研 Positive electrode for secondary battery and secondary battery using the same
JP6646932B2 (en) * 2012-09-07 2020-02-14 八尾 健 Primary or secondary battery electrode with controlled local battery reaction and primary or secondary battery using the electrode
GB2543836A (en) * 2015-10-30 2017-05-03 Sharp Kk Metal-ion rechargeable cell or battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3411365B2 (en) * 1993-11-19 2003-05-26 同和鉱業株式会社 Negative electrode active material containing Ga as main component and secondary battery using the same
JP3332133B2 (en) * 1994-09-21 2002-10-07 松下電器産業株式会社 All-solid lithium secondary battery
JP4029291B2 (en) * 2003-09-02 2008-01-09 福田金属箔粉工業株式会社 Negative electrode material for lithium secondary battery and method for producing the same

Also Published As

Publication number Publication date
JP2010015964A (en) 2010-01-21

Similar Documents

Publication Publication Date Title
JP4837614B2 (en) Lithium secondary battery
JP4400019B2 (en) Non-aqueous electrolyte battery and method for producing the same
JP5143852B2 (en) Nonaqueous electrolyte secondary battery
US20150364755A1 (en) Silicon Oxide (SiO) Anode Enabled by a Conductive Polymer Binder and Performance Enhancement by Stabilized Lithium Metal Power (SLMP)
US8685564B2 (en) Active material for rechargeable battery
JP2008059765A (en) Nonaqueous secondary battery
JP3640227B2 (en) Non-aqueous secondary battery
CN110600677A (en) Lithium metal negative electrode, preparation method thereof and lithium metal, lithium sulfur and lithium air battery
JP3252414B2 (en) Non-aqueous electrolyte secondary battery
JP2022552733A (en) Negative electrode for lithium secondary battery, manufacturing method thereof, and lithium secondary battery using the same
JP5342188B2 (en) Negative electrode active material for secondary battery and secondary battery using the same
KR20120036945A (en) Thin film alloy electrodes
JP5329066B2 (en) Negative electrode active material for secondary battery and secondary battery using the same
JP4701595B2 (en) Lithium ion secondary battery
WO1984003591A1 (en) Rechargeable electrochemical apparatus and negative pole therefor
JPS6313267A (en) Lithium secondary battery
JPWO2011024414A1 (en) Lithium secondary battery and manufacturing method thereof
WO2013058079A1 (en) Method for operating molten salt battery
KR102282912B1 (en) Anode, secondary battery including the same, and manufacturing method thereof
JPH06267542A (en) Nonaqueous electrolyte battery
KR101551700B1 (en) Zinc air cell, anode for zinc air cell and method of preparing the same
JP3202880B2 (en) Crystalline lithium metal, method for producing the same, and lithium secondary battery
JPH06310125A (en) Negative electrode for lithium secondary battery
KR20190119508A (en) Electrode assembly and rechargeable battery including same
JP3835807B2 (en) Manufacturing method of non-aqueous secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130603

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130613

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130809

R150 Certificate of patent or registration of utility model

Ref document number: 5342188

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees