JP5336685B2 - Composite electrodes for solid state electrochemical devices - Google Patents

Composite electrodes for solid state electrochemical devices Download PDF

Info

Publication number
JP5336685B2
JP5336685B2 JP2001530143A JP2001530143A JP5336685B2 JP 5336685 B2 JP5336685 B2 JP 5336685B2 JP 2001530143 A JP2001530143 A JP 2001530143A JP 2001530143 A JP2001530143 A JP 2001530143A JP 5336685 B2 JP5336685 B2 JP 5336685B2
Authority
JP
Japan
Prior art keywords
particles
cathode
electrocatalyst
phase
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001530143A
Other languages
Japanese (ja)
Other versions
JP2003511834A (en
Inventor
デバブラタ ゴーシュ
フランク マーテル
ゼン タン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Versa Power Systems Ltd
Original Assignee
Versa Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Versa Power Systems Ltd filed Critical Versa Power Systems Ltd
Publication of JP2003511834A publication Critical patent/JP2003511834A/en
Application granted granted Critical
Publication of JP5336685B2 publication Critical patent/JP5336685B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • H01M4/905Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9066Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC of metal-ceramic composites or mixtures, e.g. cermets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4075Composition or fabrication of the electrodes and coatings thereon, e.g. catalysts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8689Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • H01M4/905Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49115Electric battery cell making including coating or impregnating

Description

(関連出願への参照)
本出願は、1999年10月8日出願の米国仮出願番号60/158,124号(固体酸化物燃料電池複合電極)および、2000年9月9日出願の米国仮出願番号60/ (固体装置のための改良複合電極)の優先利益を主張する。これらの出願は引用により本明細書に取り込まれるものとする。
(Reference to related applications)
This application includes US Provisional Application No. 60 / 158,124 (solid oxide fuel cell composite electrode) filed October 8, 1999 and US Provisional Application No. 60 / (for solid state devices) filed September 9, 2000. Insist on the priority benefits of improved composite electrodes. These applications are incorporated herein by reference.

(発明の分野)
本発明は、固体イオン装置(solid state ionic device)、特に固体酸化物燃料電池とともに使用する複合電極および電極反応のための機能層に関する。
(Field of Invention)
The present invention relates to solid state ionic devices, in particular composite electrodes for use with solid oxide fuel cells and functional layers for electrode reactions.

(発明の背景)
以下の文献は本明細書においてその文献番号によって参照され、それぞれの内容は引用により本明細書に取り込まれるものとする。
1. Erning, J.W., Hauber, T., Stimming, U. Wippermann, K., Catalysis of the electrochemical processes on solid oxide fuel cell cathodes, Journal of Power Sources 61 (1996) 205-211.
2. M. Watanabe, H. Uchida, M. Shibata, N. Mochizuki and K. Amikura, High performance catalyzed-reaction layer for medium temperature operating solid oxide fuel cells, J. Electrochem. Soc., vol. 141, (1994) 342-346.
3. Sahibzada, M., Benson, S.J., Rudkin, R.A., Kilner, J.A., Pd-promoted La0.6Sr0.4Co0.2Fe0.8O3 cathodes. Solid State ionics 113-115 (1998) 285-290.
4. M.M. Murphy, J. Van herle, A.J. McEvoy, K. Ravindranathan Thampi, Electroless deposition of electrodes in solid oxide fuel cells, J. Electrochem. Soc., vol.141 (1994) 30L94-96.
5. Uchida et al. Shin-ichi Arisaka and Masahiro Watanabe, Paper B-IN-05 at 121st International Conference on Solid State Ionics (1999) 154-155
(Background of the invention)
The following documents are referred to by their document numbers in this specification, the contents of each of which are incorporated herein by reference.
1. Erning, JW, Hauber, T., Stimming, U. Wippermann, K., Catalysis of the electrochemical processes on solid oxide fuel cell cathodes, Journal of Power Sources 61 (1996) 205-211.
2. M. Watanabe, H. Uchida, M. Shibata, N. Mochizuki and K. Amikura, High performance catalyzed-reaction layer for medium temperature operating solid oxide fuel cells, J. Electrochem. Soc., Vol. 141, (1994 342-346.
3. Sahibzada, M., Benson, SJ, Rudkin, RA, Kilner, JA, Pd-promoted La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3 cathodes. Solid State ionics 113-115 (1998) 285-290.
4.MM Murphy, J. Van herle, AJ McEvoy, K. Ravindranathan Thampi, Electroless deposition of electrodes in solid oxide fuel cells, J. Electrochem. Soc., Vol. 141 (1994) 30L94-96.
5. Uchida et al. Shin-ichi Arisaka and Masahiro Watanabe, Paper B-IN-05 at 121 st International Conference on Solid State Ionics (1999) 154-155

固体イオン装置は典型的には薄い電極層に挟まれた完全に稠密な電解質からなっている。大部分の固体イオン装置における主要な損失は電極または電極/電解質界面において生じることが知られている。従って、これらの損失を最小限にすることはこれらの装置の効率的な動作に極めて重要である。
固体酸化物燃料電池(SOFC)は理論的には種々の利用のための商業的製品となる可能性を有する非常に効率的なエネルギー転換装置である。SOFCは、多孔性カソードと多孔性アノードの間に挟まれた、ガス不浸透性の固体電解質からなる。酸素ガスはカソードを通して電解質との界面へ運ばれ、そこで酸素イオンへ還元され、電解質を通ってアノードへ移動する。アノードにおいて、イオン化酸素は水素またはメタンのような燃料と反応し、電子を放出する。電子は外部回路を通してカソードに戻り電力を発生する。
Solid ion devices typically consist of a fully dense electrolyte sandwiched between thin electrode layers. It is known that major losses in most solid ion devices occur at the electrode or electrode / electrolyte interface. Therefore, minimizing these losses is critical to the efficient operation of these devices.
Solid oxide fuel cells (SOFCs) are theoretically highly efficient energy conversion devices that have the potential to become commercial products for a variety of applications. SOFC consists of a gas-impermeable solid electrolyte sandwiched between a porous cathode and a porous anode. Oxygen gas is transported through the cathode to the interface with the electrolyte where it is reduced to oxygen ions and travels through the electrolyte to the anode. At the anode, ionized oxygen reacts with a fuel such as hydrogen or methane, releasing electrons. The electrons return to the cathode through an external circuit to generate electric power.

通常のSOFC電極の構築はよく知られている。電極はしばしば電子伝導性物質とイオン伝導性物質との複合体として適用される。例えば、アノードは電子伝導性ニッケル(Ni)とイオン伝導性イットリア安定化ジルコニア(YSZ)からなっていてよく、一方、カソードは電子伝導性材料としてのLa1-xSrxMnO3-δ(LSM)のようなペロブスカイトとイオン伝導体としてのYSZからなっていてよい。
通常のSOFCは1000℃の動作温度にて高い性能を示す。しかしながら、そのような高温動作は、構成材料の物理的または化学的分解のような欠点を有している。従って、SOFCスタックの動作温度を約700℃の中程度の温度に下げることが望まれている。しかし、そのような中程度の温度では、電極反応速度が有意に低下する。低温における電極活性を増加させるための従来技術の努力は、電極の微小構造を最適化すること、および、電極構造に触媒材料を導入することに集中していた。
The construction of normal SOFC electrodes is well known. Electrodes are often applied as a composite of an electron conducting material and an ion conducting material. For example, the anode may be composed of electron conductive nickel (Ni) and ion conductive yttria stabilized zirconia (YSZ), while the cathode is La 1-x Sr x MnO 3-δ (LSM ) And YSZ as an ionic conductor.
Ordinary SOFC exhibits high performance at an operating temperature of 1000 ° C. However, such high temperature operation has drawbacks such as physical or chemical decomposition of the constituent materials. Therefore, it is desirable to reduce the operating temperature of the SOFC stack to a moderate temperature of about 700 ° C. However, at such moderate temperatures, the electrode reaction rate is significantly reduced. Prior art efforts to increase electrode activity at low temperatures have focused on optimizing the electrode microstructure and introducing catalytic materials into the electrode structure.

触媒によって燃料電池電極の活性化表面を提供し、電気化学的過程を助けることはよく知られている。ニッケルは燃料の酸化のためにアノード側の触媒としてよく使用される。カソード側では、SOFCで典型的に使用されるペロブスカイトのようなセラミックカソード材料は酸素還元に関して高い活性化エネルギーを有する。従って、Au、Ag、Pt、Pd、Ir、Ruのような貴金属および他の金属やPt族の合金を添加することによって、酸素還元反応に関する活性化エネルギーは低下することがある。Erningら[1]は高度に分散した貴金属(<=0.1mg/cm2)の添加はSOFCのカソードにおける酸素還元反応の活性化エネルギーを低下させることを報告した。M. Watanabe [2]は、アノード分極抵抗およびその活性化エネルギーはRu、RhおよびPtのような触媒の僅かの量をサマリア-ドーピング(samaria-doped)セリア(SDC)アノード上に装荷することにより大きく低下することも発見した。また、大きな分極効果はPt-触媒LSMカソードにおいても、特に高電流密度において見られた。Sahibzadaら[3]は、最近、少量のPdを含浸させたLSCF電極は400〜750℃の温度範囲で3〜4倍低いカソードインピーダンスを生じさせることを報告した。全体の電池抵抗は6500℃にて15%、550℃にて40%低下した。It is well known that the catalyst provides an activated surface for the fuel cell electrode to aid the electrochemical process. Nickel is often used as a catalyst on the anode side for fuel oxidation. On the cathode side, ceramic cathode materials such as perovskites typically used in SOFC have a high activation energy for oxygen reduction. Therefore, the addition of noble metals such as Au, Ag, Pt, Pd, Ir, and Ru, other metals, and Pt group alloys may reduce the activation energy for the oxygen reduction reaction. Erning et al. [1] reported that the addition of highly dispersed noble metals (<= 0.1 mg / cm 2 ) reduced the activation energy of the oxygen reduction reaction at the SOFC cathode. M. Watanabe [2] found that the anode polarization resistance and its activation energy were loaded on a samaria-doped ceria (SDC) anode with a small amount of catalysts such as Ru, Rh and Pt. It was also found that it declined significantly. A large polarization effect was also observed in the Pt-catalyzed LSM cathode, especially at high current densities. Sahibzada et al. [3] recently reported that LSCF electrodes impregnated with a small amount of Pd produced a cathode impedance 3-4 times lower in the temperature range 400-750 ° C. The overall battery resistance dropped by 15% at 6500 ° C and 40% at 550 ° C.

経済的理由で、貴金属触媒は電極での電気化学的過程を触媒するために非常に少量利用される。触媒は通常は濾過または化学的過程によって電極の孔に含浸される。この含浸過程は、バインダーを沈着粒子上に重ね合わさるバインディング過程をしばしば伴っており、基材への被覆の強固かつ永続的な接着を与える。米国特許番号第3,097,115: 3,097,974; 3,171,757および3,309, 231は多孔性電極に関するその様な慣用的な含浸方法を開示する。
触媒はまた、米国特許番号第3,787,244に開示されるように、Ni、PdおよびAgに関する一般的な無電解メッキ(electroless deposition)技術[4]および置換メッキ法(replacement plating)によって適用されてよい。この方法において、貴金属触媒の塩を含む酸性メッキ溶液はニッケル電極基材の孔を通して押し出され、溶解した塩からの貴金属イオンが孔の内部でニッケル表面の薄層を置換する。
For economic reasons, noble metal catalysts are utilized in very small amounts to catalyze electrochemical processes at the electrodes. The catalyst is usually impregnated into the pores of the electrode by filtration or chemical processes. This impregnation process is often accompanied by a binding process in which the binder is superimposed on the deposited particles, giving a strong and permanent adhesion of the coating to the substrate. US Pat. Nos. 3,097,115: 3,097,974; 3,171,757 and 3,309,231 disclose such conventional impregnation methods for porous electrodes.
The catalyst may also be applied by common electroless deposition techniques [4] and replacement plating for Ni, Pd and Ag, as disclosed in US Pat. No. 3,787,244. In this method, an acidic plating solution containing a salt of a noble metal catalyst is extruded through the pores of the nickel electrode substrate, and the noble metal ions from the dissolved salt replace the thin layer on the nickel surface within the pores.

Pt、Pd、IrまたはRu塩の水性溶液から0.1mg/cm2未満の量の高度に分散した触媒層を形成させることは良く知られている[1]。これらの溶液の数滴が電解質表面上へ適用された。乾燥後、塩は水素下で加熱によって金属形態へ還元されるか(PtおよびPd)または空気中で加熱することによって酸化される(IrおよびRu)。さらに最近、Uchidaら、[5]はナノメートルサイズの貴金属触媒をアノード及びカソードの両方に適用し、かなり低い過電圧オーム抵抗を得た。
Singheiser(EP424813)は、電解質と電極との間に使用し得る、または、2つの燃料電池を電気的に接続するために使用できる、2-70質量%のPt、AgまたはPdのような貴金属を含む金属間化合物層を開示している。この燃料電池は高い電極伝導性のために低い温度で動作できると主張されている。
It is well known to form highly dispersed catalyst layers in amounts of less than 0.1 mg / cm 2 from aqueous solutions of Pt, Pd, Ir, or Ru salts [1]. A few drops of these solutions were applied onto the electrolyte surface. After drying, the salt is reduced to the metal form by heating under hydrogen (Pt and Pd) or oxidized by heating in air (Ir and Ru). More recently, Uchida et al. [5] applied a nanometer-sized noble metal catalyst to both the anode and cathode, resulting in a much lower overvoltage ohmic resistance.
Singheiser (EP424813) uses 2-70 wt% precious metals such as Pt, Ag or Pd that can be used between electrolyte and electrode or can be used to electrically connect two fuel cells. An intermetallic compound layer is disclosed. This fuel cell is claimed to be able to operate at low temperatures due to high electrode conductivity.

貴金属のコストのために、SOFC電極における貴金属の適用はその触媒能力を主に制限する。最近の努力は全て、触媒、ガス層および電解質の3つの相境界を最大にするために触媒の非常に細かい粒子を添加することであった。触媒は非常に薄い層として電解質/電極境界上に置かれるか、電極全体に広く分散される。Virkarらに与えられた米国特許第5,543,239号には、電解触媒が電極微小構造に取り込まれ、触媒の提供および電気的伝導性を改善することによって固体イオン装置の性能を改善するとクレームされている。この開示において、多孔性イオン伝導体が稠密な電解質物質に置かれる。電解触媒は次に多孔性マトリックスに導かれ、電気的な連続性および3相の長い境界線を生じさせる。その結果、電解触媒はイオン伝導体上に小さな粒子の薄層として置かれる。  Due to the cost of noble metals, the application of noble metals in SOFC electrodes mainly limits their catalytic capacity. All recent efforts have been to add very fine particles of catalyst to maximize the three phase boundaries of the catalyst, gas layer and electrolyte. The catalyst is placed on the electrolyte / electrode interface as a very thin layer or is widely dispersed throughout the electrode. U.S. Pat. No. 5,543,239 issued to Virkar et al. Claims that an electrocatalyst is incorporated into the electrode microstructure to improve the performance of the solid ion device by providing the catalyst and improving electrical conductivity. In this disclosure, a porous ionic conductor is placed on a dense electrolyte material. The electrocatalyst is then directed into a porous matrix, resulting in electrical continuity and a three-phase long boundary. As a result, the electrocatalyst is placed as a thin layer of small particles on the ionic conductor.

しかしながら、Virkarらによって開示された電極は、電極の不安定性の問題を解決していない。中程度のSOFC動作温度にてすら貴金属の蒸気損失が起こることが知られている。Thomson-Freundlich(Kelvin)方程式にしたがって、曲面にわたる蒸気圧差の重要な特徴は、高い表面曲率点にお分る蒸気圧の増加である。従って、粒子がより小さくなると、蒸気圧がより高くなる。このことは、SOFC動作温度における小さな貴金属粒子に関する有意な蒸気損失を生じさせる。
さらに、粒子表面における、より高い蒸気圧、および2つの粒子間のネックにおける低い蒸気圧はより小さな粒子の焼結(sintering)をより容易にする。従って、μm以下(<0.5μm)の貴金属粒子を有する電極の微小構造は中〜高SOFC動作温度において安定ではなく、特に電極が高電流を扱う場合は安定でない。
However, the electrode disclosed by Virkar et al. Does not solve the problem of electrode instability. It is known that vapor loss of precious metals occurs even at moderate SOFC operating temperatures. According to the Thomson-Freundlich (Kelvin) equation, an important feature of the vapor pressure difference across the curved surface is the increase in vapor pressure seen at high surface curvature points. Thus, the smaller the particles, the higher the vapor pressure. This results in significant vapor loss for small noble metal particles at the SOFC operating temperature.
Furthermore, the higher vapor pressure at the particle surface and the lower vapor pressure at the neck between the two particles make it easier to sinter the smaller particles. Accordingly, the microstructure of electrodes having noble metal particles of less than μm (<0.5 μm) is not stable at medium to high SOFC operating temperatures, especially when the electrodes handle high currents.

更に、電極における電気的に伝導性の薄層は電極において高いオーム抵抗を有するであろうが、これは電極の電流容量を制限するものである。Virkarらの特許の電流−電圧曲線に示されるように、実験電流はそこに開示されているPt/YSZカソードおよびLSM/YSZカソードについて0.5A/cm2に限定されている。
従って、従来の技術において、従来技術の限界を緩和し、高性能イオン装置および、特に固体酸化物燃料電池を可能とする複合電極に対する需要が存在する。
Furthermore, the electrically conductive thin layer at the electrode will have a high ohmic resistance at the electrode, which limits the current capacity of the electrode. As shown in the current-voltage curve of the Virkar et al. Patent, the experimental current is limited to 0.5 A / cm 2 for the Pt / YSZ and LSM / YSZ cathodes disclosed therein.
Thus, there is a need in the prior art for composite electrodes that alleviate the limitations of the prior art and enable high performance ion devices and, in particular, solid oxide fuel cells.

発明の概要
本発明は、電解質と電極の間に高密度の活性電気化学反応部位を達成するように改善され、貴金属のような電解触媒物質を電極に密接に(intimately)取り込んだ微小構造を有する電極に関する。また、この改善された微小構造は、貴金属触媒焼結および蒸気損失の効果を低減させることにより、より長期の構造的安定性を有するであろう。この電極は、酸素ポンプ、膜およびセンサー、固体状電池または固体酸化物燃料電池のような、どんな固体電気化学的装置にも取り込むことができる。本発明の電極はカソードであってもアノードであってもよい。
SUMMARY OF THE INVENTION The present invention is improved to achieve a high density of active electrochemical reaction sites between an electrolyte and an electrode and has a microstructure that incorporates an electrocatalytic material, such as a noble metal, intimately into the electrode. It relates to an electrode. This improved microstructure will also have longer term structural stability by reducing the effects of precious metal catalyst sintering and steam loss. The electrode can be incorporated into any solid electrochemical device such as an oxygen pump, membrane and sensor, solid state cell or solid oxide fuel cell. The electrode of the present invention may be a cathode or an anode.

従って、本発明のひとつの側面において、本発明は、固体電気化学的装置の部分を形成する電極を含み、前記電極は稠密な電解質層に結合しており、かつ、
(a) 複数の電解触媒粒子を含む電解触媒相;
(b) 複数のイオン伝導体粒子を含むイオン伝導相;
を含む多孔性3次元固体相を含んでおり、前記電解触媒伝導性相及びイオン伝導相は散在しており、前記電解触媒粒子の平均サイズは前記イオン伝導性粒子の平均サイズに実質的に等しいか又はそれより大きい。
Thus, in one aspect of the invention, the invention includes an electrode that forms part of a solid electrochemical device, said electrode being bonded to a dense electrolyte layer, and
(a) an electrocatalytic phase comprising a plurality of electrocatalytic particles;
(b) an ion conducting phase comprising a plurality of ion conductor particles;
The electrocatalytic conductive phase and the ionic conductive phase are interspersed, and the average size of the electrocatalytic particles is substantially equal to the average size of the ionic conductive particles. Or larger.

本発明の電極は、セラミックイオン伝導体粒子と貴金属電解触媒粒子とを混合して複合電極とし、次にこれを稠密な電解質基板へスクリーンプリンティングまたは既知の類似の方法によって適用することによって形成される。生じた電極微小構造は高度に多孔性であり、非常に長い3相境界を含み、触媒部位から電解質への直接イオン伝導チャンネルおよび電極を通って触媒部位への直接電子伝導チャンネルを含む。電解触媒粒子は、好ましくは貴金属を含み、好ましくはイオン伝導体粒子よりも大きく、このことはイオン伝導体粒子が貴金属粒子の境界を押さえつけておくような形態を生じさせる。相対的に大きな貴金属粒子サイズは上昇温度にて蒸気損失を低減させ、一方、粒状の境界ピンニングは貴金属粒子の焼結または癒着を低減または防止する。  The electrodes of the present invention are formed by mixing ceramic ionic conductor particles and noble metal electrocatalyst particles into a composite electrode, which is then applied to a dense electrolyte substrate by screen printing or a similar known method. . The resulting electrode microstructure is highly porous, includes a very long three-phase boundary, and includes a direct ion conduction channel from the catalyst site to the electrolyte and a direct electron conduction channel through the electrode to the catalyst site. The electrocatalyst particles preferably contain a noble metal, preferably larger than the ionic conductor particles, which results in a form in which the ionic conductor particles hold the boundaries of the noble metal particles. A relatively large noble metal particle size reduces vapor loss at elevated temperatures, while granular boundary pinning reduces or prevents sintering or adhesion of the noble metal particles.

一つの実施態様において、イオン伝導体粒子は、好ましくはイットリウム安定化ジルコニアであってよいセラミック粒子を含んでもよく、貴金属粒子はパラジウムを含んでもよい。当業者はイオン伝導性粒子または電解触媒粒子として機能するであろう他の材料を承知しているであろう。
一つの実施態様において、本発明は、
(a) 固体電気化学的装置に使用するための電極機能層であって、電解触媒材料の連結した粒子およびイオン伝導体の連結した粒子を含む多孔性3次元構造を含み、前記電解触媒粒子のメジアンサイズが前記イオン伝導性粒子のメジアンサイズにほぼ等しいかまたは大きい前記機能層;および
(b) 機能層の最上に置かれたロングレンジ伝導性電極層
を含む電極を含んでよい。平面状SOFCにおいて、ロングレンジ伝導性とは、機能層を通したショートレンジ垂直伝導性ではなく、相互接続平面のリブ間の水平伝導性をいう。伝導層はランタンコバルテートのような電子伝導性の金属酸化物を含んでもよい。
In one embodiment, the ionic conductor particles may comprise ceramic particles, which may preferably be yttrium stabilized zirconia, and the noble metal particles may comprise palladium. Those skilled in the art will be aware of other materials that will function as ion conductive particles or electrocatalyst particles.
In one embodiment, the present invention provides:
(a) an electrode functional layer for use in a solid electrochemical device, comprising a porous three-dimensional structure including particles connected with an electrocatalyst material and particles connected with an ionic conductor; The functional layer having a median size approximately equal to or greater than the median size of the ionically conductive particles; and
(b) An electrode comprising a long range conductive electrode layer placed on top of the functional layer may be included. In a planar SOFC, long range conductivity refers to horizontal conductivity between ribs in the interconnect plane, not short range vertical conductivity through the functional layer. The conductive layer may include an electronically conductive metal oxide such as lanthanum cobaltate.

他の側面において、本発明は多孔性アノード、稠密な電解質および、電解触媒材料の連結粒子及びイオン伝導体の連結粒子を含む多孔性3次元構造を含むカソードを含む固体電気化学的装置であって、前記電解触媒粒子の平均サイズまたはメジアンサイズが前記イオン伝導性粒子の平均サイズまたはメジアンサイズよりも大きい前記装置を含む。固体電気化学的装置は固体酸化物燃料電池であってよい。
本発明の他の側面において、本発明は稠密な電解質層を有する固体電気化学的装置に使用する電極を形成する方法であって、
(a) 電解触媒粒子とイオン伝導性粒子とを混合する工程であって、前記電解触媒粒子の平均サイズ又はメジアンサイズが前記イオン伝導性粒子の平均サイズ又はメジアンサイズに実質的に等しいかまたは大きいものである前記工程;および、
(b) 稠密な電解質層に結合した多孔性3次元構造を生成する工程であって、前記構造が貴金属粒子の連結した粒子及びイオン伝導体の連結した粒子を含むものである、前記工程、
を含む方法に関する。
ひとつの実施態様において、予備焼結されない金属酸化物の更なる伝導層が電極に置かれてもよい。金属酸化物はランタンコバルト酸化物を含んでよい。
In another aspect, the invention is a solid electrochemical device comprising a porous anode, a dense electrolyte, and a cathode comprising a porous three-dimensional structure comprising electrocatalytic material linking particles and ionic conductor linking particles. The apparatus includes an apparatus in which an average size or median size of the electrocatalyst particles is larger than an average size or median size of the ion conductive particles. The solid electrochemical device may be a solid oxide fuel cell.
In another aspect of the present invention, the present invention is a method of forming an electrode for use in a solid electrochemical device having a dense electrolyte layer comprising:
(a) a step of mixing the electrocatalyst particles and the ion conductive particles, wherein the average size or median size of the electrocatalyst particles is substantially equal to or larger than the average size or median size of the ion conductive particles Said process being; and
(b) generating a porous three-dimensional structure bonded to a dense electrolyte layer, wherein the structure includes particles connected with noble metal particles and particles connected with an ionic conductor;
Relates to a method comprising:
In one embodiment, a further conductive layer of metal oxide that is not pre-sintered may be placed on the electrode. The metal oxide may include lanthanum cobalt oxide.

本発明は添付の図面を参照すると共に例示的実施態様によって記載される。
本発明は固体酸化物燃料電池とともに使用するための複合電極を提供し、更に、そのような電極を製造する方法を提供する。本発明を説明する際に、特に本明細書で定義しない全ての用語は一般的にこの技術で認識されている意味を有する。
The invention will now be described by way of example embodiments with reference to the accompanying drawings.
The present invention provides a composite electrode for use with a solid oxide fuel cell and further provides a method of manufacturing such an electrode. In describing the present invention, all terms not specifically defined herein generally have the meanings recognized in the art.

A.定義
本明細書で用いる「約」の語は、述べられている値のプラスマイナス10%の範囲の値を言う。
本明細書で用いる用語「電解触媒」は、電気的に伝導性でありかつ電極反応に関して触媒である材料をいう。電解触媒材料は貴金属およびある種の金属酸化物を含んでよい。
本明細書において用いる用語「貴金属」は、銀、金、イリジウム、オスミウム、パラジウム、ルテニウム、ロジウムおよびプラチナを含む群の金属および合金をいう。
本明細書において用いる用語「LC」または「ランタンコバルテート」とはLaCoO3をいう。
A. Definitions As used herein, the term “about” refers to a value in the range of plus or minus 10% of the stated value.
As used herein, the term “electrocatalyst” refers to a material that is electrically conductive and that is a catalyst for electrode reactions. The electrocatalytic material may include precious metals and certain metal oxides.
As used herein, the term “noble metal” refers to a group of metals and alloys including silver, gold, iridium, osmium, palladium, ruthenium, rhodium and platinum.
As used herein, the term “LC” or “lanthanum cobaltate” refers to LaCoO 3 .

B. 説明
図1に示したように、多孔性複合電極(10)の一つの実施態様は電解質(12)に結合して示される。複合電極は電解触媒貴金属粒子(14)、および電解質(12)に密接に結合したイオン伝導性セラミック粒子(16)から形成されている。セラミック粒子は合わさって電解質(12)から電気化学的活性部位(18)へのイオン伝導路(I)を形成する。
金属相は電極(10)を通して接触ペースト(示さず)およびカソード電気的伝導ストリップ(示さず)への電子伝導路(E)を形成する。電気化学的活性領域は3相境界(18)と同じ空間を占め、ガス状多孔性相、セラミック相(16)および貴金属相(14)の共通境界に沿って伸びている。一般に、電極反応は、3相(ガス、電解触媒伝導体、およびイオン伝導体)が出会うこの境界で実質的に起こると考えられている。
従って、本発明の複合電極はより多くの電極反応部位を提供し、過電圧損失を低下させるであろう。さらに、電気化学的活性領域(18)における触媒的貴金属の存在は、電極反応に関する活性化エネルギーを低下させる。
B. Description As shown in FIG. 1, one embodiment of a porous composite electrode (10) is shown coupled to an electrolyte (12). The composite electrode is formed of electrocatalyst noble metal particles (14) and ion conductive ceramic particles (16) closely bonded to the electrolyte (12). The ceramic particles together form an ionic conduction path (I) from the electrolyte (12) to the electrochemically active site (18).
The metal phase forms an electronic conduction path (E) through the electrode (10) to the contact paste (not shown) and the cathode electrical conducting strip (not shown). The electrochemically active region occupies the same space as the three-phase boundary (18) and extends along the common boundary of the gaseous porous phase, the ceramic phase (16) and the noble metal phase (14). In general, the electrode reaction is believed to occur substantially at this boundary where the three phases (gas, electrocatalytic conductor, and ionic conductor) meet.
Thus, the composite electrode of the present invention will provide more electrode reaction sites and reduce overvoltage loss. Furthermore, the presence of catalytic noble metals in the electrochemically active region (18) reduces the activation energy for the electrode reaction.

複合電極中のセラミックイオン伝導相は、イットリア安定化ジルコニア(YSZ)のようなどんな既知のイオン伝導体であってもよい。好ましい実施態様では、セラミック相と電解質の界面が化学的に安定であって、および、2つの材料間の良好な熱的調和が存在するように、セラミック相は好ましくは電解質と同じ材料である。
電解触媒相はどんな貴金属又は貴金属合金であってもよい。これらの金属は全て酸素の還元について触媒効果を有し、良好な電子伝導体である。好ましい実施態様において、熱膨張係数が電解質及びセラミック相に使用されることのあるYSZの係数と類似するためパラジウムが使用される。従って、本発明の好ましい複合電極におけるパラジウム及びYSZの使用は、電極が熱サイクルに曝露される場合であっても良好な熱安定性を与える。
The ceramic ionic conducting phase in the composite electrode may be any known ionic conductor such as yttria stabilized zirconia (YSZ). In a preferred embodiment, the ceramic phase is preferably the same material as the electrolyte so that the interface between the ceramic phase and the electrolyte is chemically stable and there is good thermal harmony between the two materials.
The electrocatalytic phase may be any noble metal or noble metal alloy. All these metals have a catalytic effect on the reduction of oxygen and are good electronic conductors. In a preferred embodiment, palladium is used because the coefficient of thermal expansion is similar to that of YSZ that may be used for the electrolyte and ceramic phases. Thus, the use of palladium and YSZ in the preferred composite electrode of the present invention provides good thermal stability even when the electrode is exposed to thermal cycling.

貴金属とセラミックイオン伝導相の相対的割合は変動し得る。しかしながら、一つの相の体積パーセントがあまりに低くなりすぎると、電極が形成されるときにその相の連続チャンネルが形成されないかもしれない。複合電極厚にわたって連続イオン伝導チャンネル、電子伝導チャンネルおよび多孔性チャンネルを有することが好ましい。
電子伝導チャンネルは電池のオーム抵抗を低下させる。複合電極の電子伝導率は貴金属粒子のサイズを増加させることにより、および金属相の体積パーセントを増加させることにより増大させてもよい。しかしながら、粒子サイズを増加させることは電解触媒の触媒効果を低下させる。イオン伝導性はセラミック材料の粒子サイズを低下させることにより、および、セラミック相の体積パーセントを増加させることにより増加させてもよい。しかしながら、より長い3相境界はセラミック相または金属相のいずれかのより小さな粒子を使用することによって作られる。
The relative proportions of noble metal and ceramic ion conducting phase can vary. However, if the volume percentage of a phase becomes too low, continuous channels of that phase may not be formed when the electrode is formed. It is preferred to have continuous ion conducting channels, electron conducting channels and porous channels across the composite electrode thickness.
The electron conduction channel reduces the ohmic resistance of the battery. The electronic conductivity of the composite electrode may be increased by increasing the size of the noble metal particles and by increasing the volume percentage of the metal phase. However, increasing the particle size reduces the catalytic effect of the electrocatalyst. Ionic conductivity may be increased by reducing the particle size of the ceramic material and by increasing the volume percent of the ceramic phase. However, longer three-phase boundaries are created by using smaller particles of either the ceramic phase or the metal phase.

図に示したように、セラミック粒子は金属粒子よりも好ましく小さいため、セラミック粒子(16)は貴金属粒子(14)を部分的に被覆している。金属相の表面積のこの低下は上昇した動作温度における貴金属の蒸気損失を低減する。さらに、セラミック粒子(16)は2つの隣接する金属粒子(14)間で、粒子境界ピンニングとして知られる効果で凝集する傾向があり、このことが貴金属粒子の更なる焼結を防ぐ。従って、電極の形態、電極/電解質界面および3相境界はより安定となり得る。
図1に示した一つの実施態様において、ガス相、金属相およびセラミック相は体積パーセントにおいてほぼ等しい。しかしながら、金属粒子はセラミック粒子のおよそ5〜10倍のサイズである。生じた微小構造は図1及び図2に示したようなものである。明らかに、セラミック粒子は3相境界から電解質への粒子鎖の形態で連続イオン伝導チャンネルを形成している。金属粒子が接続して3相境界とカソード伝導層間の連続電子伝導チャンネルを形成する。最後に、イオン伝導チャンネルと電子伝導チャンネルの絡み合いと共にこの構造の高度の多孔性は、非常に大きな3相境界を生成する。
As shown in the figure, since the ceramic particles are preferably smaller than the metal particles, the ceramic particles (16) partially cover the noble metal particles (14). This reduction in the surface area of the metal phase reduces noble metal vapor loss at elevated operating temperatures. Furthermore, the ceramic particles (16) tend to agglomerate between two adjacent metal particles (14) with an effect known as particle boundary pinning, which prevents further sintering of the noble metal particles. Thus, the electrode configuration, electrode / electrolyte interface and three-phase boundary can be more stable.
In one embodiment shown in FIG. 1, the gas phase, metal phase and ceramic phase are approximately equal in volume percent. However, the metal particles are approximately 5 to 10 times the size of the ceramic particles. The resulting microstructure is as shown in FIGS. Clearly, the ceramic particles form continuous ion conducting channels in the form of particle chains from the three-phase boundary to the electrolyte. Metal particles connect to form a continuous electron conduction channel between the three-phase boundary and the cathode conduction layer. Finally, the high porosity of this structure along with the entanglement of ionic and electronic conduction channels creates a very large three-phase boundary.

本発明の特徴はセラミック粒子に比較した金属粒子の相対的サイズである。金属粒子は好ましくはセラミック粒子よりも大きくなければならず、より好ましくは2〜10倍大きい。このサイズの相違の結果として、セラミック粒子は金属粒子上で連続糸状に凝集する傾向がある。特に、セラミック粒子は隣接金属粒子の接触パッチ(contact patch)に沿って凝集する。上記で参照したように、この形態はカソードの3相境界を増加させるだけでなく、金属粒子の焼結を低下させ、金属の蒸気損失を低減する。
本発明の電極は、スクリーンプリンティング、テープキャスティング、スリップキャスティング、蒸着または熱スプレーのようなよく知られた技術によって、電解質/アノード基板に乗せてよい。好ましい方法は、適切なバインダー、適切な溶媒、貴金属粒子およびイオン伝導体粒子から形成されるペーストを用いたスクリーンプリンティングである。バインダーと溶媒の性質および使用は当業者にはよく知られたものである。
A feature of the present invention is the relative size of the metal particles compared to the ceramic particles. The metal particles should preferably be larger than the ceramic particles, more preferably 2 to 10 times larger. As a result of this size difference, the ceramic particles tend to agglomerate into continuous threads on the metal particles. In particular, the ceramic particles agglomerate along contact patches of adjacent metal particles. As referenced above, this configuration not only increases the three-phase boundary of the cathode, but also reduces the sintering of the metal particles and reduces metal vapor loss.
The electrodes of the present invention may be placed on the electrolyte / anode substrate by well known techniques such as screen printing, tape casting, slip casting, vapor deposition or thermal spraying. A preferred method is screen printing using a paste formed from a suitable binder, a suitable solvent, noble metal particles and ionic conductor particles. The nature and use of binders and solvents are well known to those skilled in the art.

本発明の別の実施態様において、多孔性複合機能カソード層(110)は図4および図5において電解質(112)に結合して示されている。複合機能層(110)は電子伝導性で触媒的貴金属粒子(114)、および、電解質(112)に密接に結合したイオン伝導性セラミック粒子(116)から形成されている。触媒貴金属粒子(114)およびイオン伝導性セラミック粒子(116)を含む機能層(110)を被覆するのは高度に電子伝導性の層(120)である。ひとつの実施態様で、電子伝導性層(120)はLC材料から作られる。酸化環境で使用するための他の適切な材料にはLSM(LaSrMnO3)、あるいは他の電子伝導性金属酸化物が含まれる。
一つの態様において、機能層(110)は直径約1μmの貴金属粒子を含み、約1〜5μm厚、すなわち約1〜5粒子厚である。このことは良好なショートレンジ垂直電子伝導性を有する層を提供する。なぜなら、貴金属粒子が電解質とLC層(120)の間に電子伝導性経路を提供する確率が、より厚い層かつ同じ量の貴金属を特徴とする従来技術に比べて非常に高くなるからである。セラミック粒子は好ましくは金属粒子よりも小さく、直径約0.1〜0.2μmの範囲でよい。
In another embodiment of the present invention, the porous composite functional cathode layer (110) is shown coupled to the electrolyte (112) in FIGS. The composite functional layer (110) is formed of electronically conductive catalytic noble metal particles (114) and ion conductive ceramic particles (116) intimately bonded to the electrolyte (112). It is the highly electronically conductive layer (120) that covers the functional layer (110) comprising the catalytic noble metal particles (114) and the ion conductive ceramic particles (116). In one embodiment, the electron conductive layer (120) is made from an LC material. Other suitable materials for use in an oxidizing environment include LSM (LaSrMnO 3 ), or other electron conducting metal oxides.
In one embodiment, the functional layer (110) comprises noble metal particles having a diameter of about 1 μm and is about 1-5 μm thick, ie about 1-5 particles thick. This provides a layer with good short range vertical electron conductivity. This is because the probability that the noble metal particles provide an electron conductive path between the electrolyte and the LC layer (120) is much higher than in the prior art, which features a thicker layer and the same amount of noble metal. The ceramic particles are preferably smaller than the metal particles and may range from about 0.1 to 0.2 μm in diameter.

一つの実施態様において、電極層(10)または貴金属機能層(110)は約33体積%多孔性の電解触媒粒子50%およびイオン伝導性粒子50%を含む。言い換えると、電極は、体積にして1/3イオン伝導性粒子、1/3電解触媒粒子、および1/3孔隙を含む。本明細書において、電解触媒相の体積パーセントについての言及は固体相の体積についてである。電解触媒の体積パーセントは、達成すべきコスト目標、電池あたりの所望の性能または他の要因に依存して、電極の固体部に対して約1.0体積%〜約95体積%の間で変動し、好ましくは、約20%〜約60%の間で変動する。孔隙によってとられる電極の体積パーセントは好ましくは約30%または1/3であるが、電極の多孔性はこれより高いことも低いこともある。
電解触媒が貴金属である場合、貴金属の体積パーセントはコストと性能の良好なバランスを達成するためには約1%〜約50%であってよい。図9に示したように、機能層(110)に50%より高い貴金属含量を有する電池における性能の向上は無く、従って、余分の貴金属の追加のコストは好ましくない。最も高い性能が望まれる場合は、貴金属含量は好ましくは約50%である。性能とコストのバランスが望まれる場合は、貴金属含量は好ましくは約5%である。貴金属含量が1%まで低下するに連れて電池性能は低下するが、電池性能のコスト低減によって性能の損失は相殺されるであろう。
In one embodiment, the electrode layer (10) or the noble metal functional layer (110) comprises about 33% by volume porous electrocatalyst particles 50% and ion conductive particles 50%. In other words, the electrode contains 1/3 ion conductive particles, 1/3 electrocatalyst particles, and 1/3 pores by volume. In this specification, reference to the volume percent of electrocatalytic phase refers to the volume of the solid phase. The volume percent of the electrocatalyst varies between about 1.0% to about 95% by volume with respect to the solid part of the electrode, depending on the cost target to be achieved, the desired performance per battery or other factors, Preferably, it varies between about 20% to about 60%. The volume percent of the electrode taken by the pores is preferably about 30% or 1/3, but the porosity of the electrode may be higher or lower.
When the electrocatalyst is a noble metal, the volume percentage of the noble metal may be from about 1% to about 50% to achieve a good balance between cost and performance. As shown in FIG. 9, there is no performance improvement in batteries having a noble metal content higher than 50% in the functional layer (110), and therefore the additional cost of extra noble metal is undesirable. If the highest performance is desired, the noble metal content is preferably about 50%. If a balance between performance and cost is desired, the noble metal content is preferably about 5%. Battery performance decreases as the noble metal content decreases to 1%, but the loss of performance will be offset by a reduction in battery performance costs.

貴金属層が薄く、約5μmよりも薄く、貴金属濃度が約30体積%よりも低い場合の一つの実施態様において、垂直伝導率(図6中、V矢印で示した)は貴金属粒子の分布のために水平ロングレンジ伝導率(H)よりもずっと有望である。電流を相互接続プレート(132)の相対的に広く空けられたリブ(130)に運ぶための連続ロングレンジ伝導性(H)経路を与えるために充分な金属粒子がないこともある。この困難を克服するために、電子伝導性材料の電極(120)が機能層(110)上に置かれている。この伝導性電極(120)は好ましくは約15〜約20μm程度の厚さであってよいが、約3から約100μmまで変動し得る。伝導性電極または「LC層」(120)材料は好ましくはランタンコバルテート(LaCoO3)であり、これは酸化環境では非常に優れた電子伝導特性を有するが、他の適切な伝導性材料も使用することができる。In one embodiment where the noble metal layer is thin, less than about 5 μm, and the noble metal concentration is less than about 30% by volume, the vertical conductivity (indicated by the V arrow in FIG. 6) is due to the distribution of noble metal particles. It is much more promising than horizontal long range conductivity (H). There may not be enough metal particles to provide a continuous long range conductive (H) path to carry current to the relatively wide open ribs (130) of the interconnect plate (132). In order to overcome this difficulty, an electrode (120) of electron conductive material is placed on the functional layer (110). The conductive electrode (120) may preferably be as thick as about 15 to about 20 μm, but can vary from about 3 to about 100 μm. The conductive electrode or “LC layer” (120) material is preferably lanthanum cobaltate (LaCoO 3 ), which has very good electronic conductivity properties in an oxidizing environment, but other suitable conductive materials are also used can do.

LC層は、LC層の焼結を避けることが好ましいので、スタック中で動作に先立って予備焼成しないことが好ましい。一度焼結すると、LC層は燃料電池中の残りの成分の約2倍の熱膨張率を有し、熱膨張率の不適合による密閉性(sealing)および接合性(bonding)問題を生じる。また、焼結の際に出会う高温においてLCは化学的にYSZと反応して望ましくない相を形成し得る。このため、LC層は燃料電池スタック内で使用に先立って焼結されないことが好ましい。
より薄い貴金属機能層(110)およびロングレンジ電子伝導LC層(120)の組合せは従来技術に比べて改善された性能を提供する燃料電池を提供した。さらに、これは図9に示したように1.2 W/cm2の領域の出力密度を提供し得る。
以下の実施例はクレームされた発明を例示するものであって、それらを限定するものではない。
The LC layer is preferably not prefired prior to operation in the stack, as it is preferable to avoid sintering of the LC layer. Once sintered, the LC layer has a coefficient of thermal expansion approximately twice that of the remaining components in the fuel cell, resulting in sealing and bonding problems due to thermal expansion coefficient mismatch. Also, at high temperatures encountered during sintering, LC can chemically react with YSZ to form undesirable phases. For this reason, the LC layer is preferably not sintered prior to use in the fuel cell stack.
The combination of the thinner noble metal functional layer (110) and the long-range electron conducting LC layer (120) provided a fuel cell that provided improved performance compared to the prior art. Furthermore, this can provide a power density in the region of 1.2 W / cm 2 as shown in FIG.
The following examples illustrate, but do not limit, the claimed invention.

(実施例)
実施例1.
本実施例は、アノード支持固体酸化物燃料電池のためのPdおよびYSZ複合電極の作製方法を開示する。得られたカソードを模式的に図1に示した。本実施例のカソードの走査電子顕微鏡写真は図2に示してある。
スクリーンプリント可能なカソードペーストを、α-テルピネオール中によく分散したPd粒子、8モルパーセントのイットリア安定化ジルコニア(8YSZ)の等体積から作製した。エチルセルロースバインダーを効果的量で添加した。Pd粒子サイズ範囲は0.5〜2μmにわたり、約1μmのメジアンサイズを有し、一方、8YSZ粒子サイズは0.1から0.2μmにわたり、約0.17μmのメジアンサイズを有していた。基板(100mm四方)は多孔性NiO-8YSZアノード(1mm厚)上の完全に密な8YSZ電解質(10μm)からなっていた。カソードペーストを基板の電解質側にスクリーンプリントした。フットプリントは90mm四方であった。このプリントを60〜80℃にてオーブン乾燥し、空気中で1300℃にて2時間焼成した。焼成後の複合カソードの厚さは約5〜10μmであった。生じた固相はおよそ33%の多孔性を有し、50体積%Pdおよび50体積%YSZであった。
(Example)
Example 1.
This example discloses a method of making a Pd and YSZ composite electrode for an anode supported solid oxide fuel cell. The obtained cathode is schematically shown in FIG. A scanning electron micrograph of the cathode of this example is shown in FIG.
A screen printable cathode paste was made from an equal volume of Pd particles, 8 mole percent yttria stabilized zirconia (8YSZ) well dispersed in α-terpineol. An effective amount of ethylcellulose binder was added. The Pd particle size range ranged from 0.5-2 μm and had a median size of about 1 μm, while the 8YSZ particle size ranged from 0.1 to 0.2 μm and had a median size of about 0.17 μm. The substrate (100 mm square) consisted of a completely dense 8YSZ electrolyte (10 μm) on a porous NiO-8YSZ anode (1 mm thickness). The cathode paste was screen printed on the electrolyte side of the substrate. The footprint was 90mm square. The print was oven dried at 60-80 ° C. and baked in air at 1300 ° C. for 2 hours. The thickness of the composite cathode after firing was about 5 to 10 μm. The resulting solid phase had a porosity of approximately 33%, 50 volume% Pd and 50 volume% YSZ.

得られたPd/8YSZカソード電池を一般的なペロブスカイトカソード(LSM)を有する類似の電池と比較すると、Pd/8YSZカソードを備えた電池はより優れた性能を示すことが示された。この複合カソードを備えた電池から作製した15個電池スタックを750℃でテストし、燃料として水素/アルゴン(50/50)混合物で750Wの出力が達成された。電流遮断実験(current interrupt experiment)により、この改善はパラジウム伝導性ネットワークによるカソードにおける低いオーム抵抗および電気化学的に活性な領域(3相境界)および触媒活性領域(パラジウム表面)の増加による低い過電圧損失に起因することが示された。
図3は、この実施態様の電極を含む単一燃料電池の、600から900℃まで変動する温度におけるI-V特性を示す。
When the obtained Pd / 8YSZ cathode cell was compared with a similar cell having a general perovskite cathode (LSM), it was shown that the cell with the Pd / 8YSZ cathode showed better performance. A 15 cell stack made from a cell with this composite cathode was tested at 750 ° C. and a power of 750 W was achieved with a hydrogen / argon (50/50) mixture as fuel. Through current interrupt experiments, this improvement is due to the low ohmic resistance at the cathode due to the palladium conductive network and low overvoltage loss due to the increase in the electrochemically active region (three-phase boundary) and the catalytically active region (palladium surface). It was shown to be due to.
FIG. 3 shows the IV characteristics at a temperature varying from 600 to 900 ° C. for a single fuel cell comprising the electrode of this embodiment.

実施例2.
本実施例はアノード支持固体酸化物燃料電池のためのPd、YSZおよびLC複合カソードおよび、そのようなカソードを作製する方法を開示する。得られたカソードの走査電子顕微鏡写真を図4に示した。
スクリーンプリント可能な複合カソード機能層ペーストを、αテルピネオール中によく分散したPdおよび8YSZの適切な体積から作製し、5%Pd/95%8YSZの固相を得た。エチルセルロースバインダーを効果的量で添加した。Pd粒子サイズ範囲は0.5〜2μmにわたり、約1μmのメジアンサイズを有し、一方、8YSZ粒子サイズは0.1μmから0.2μmにわたり、約0.17μmのメジアンサイズを有していた。基板(100mm四方)は多孔性NiO-8YSZアノード(1mm厚)上の完全に密な8YSZ電解質(10μm)からなっていた。カソード機能層ペーストを基板の電解質側にスクリーンプリントした。フットプリントは90mm四方であった。このプリントを60〜80℃にてオーブン乾燥し、空気中で1300℃にて1時間焼成した。複合機能層の厚さは焼成後に約1〜3μmであった。LC層を機能層の最上部に厚さ約3μmにスクリーンプリントしたが焼成しなかった。電池を一度動作温度800℃にすると、LC粉末は充分に機能層に結合した。
図7は、本実施態様のカソードを取り込んだ単一燃料電池の600℃から900℃まで変動させた温度で動作させたI-V特性を図示したものである。
図8は、本実施態様のカソードを取り込んだ15個スタック燃料電池のI-V性能を図示したものである。
Example 2
This example discloses a Pd, YSZ and LC composite cathode for an anode supported solid oxide fuel cell and a method of making such a cathode. A scanning electron micrograph of the obtained cathode is shown in FIG.
A screen-printable composite cathode functional layer paste was made from an appropriate volume of Pd and 8YSZ well dispersed in α-terpineol to obtain a solid phase of 5% Pd / 95% 8YSZ. An effective amount of ethylcellulose binder was added. The Pd particle size range ranged from 0.5-2 μm and had a median size of about 1 μm, while the 8YSZ particle size ranged from 0.1 μm to 0.2 μm and had a median size of about 0.17 μm. The substrate (100 mm square) consisted of a completely dense 8YSZ electrolyte (10 μm) on a porous NiO-8YSZ anode (1 mm thickness). The cathode functional layer paste was screen printed on the electrolyte side of the substrate. The footprint was 90mm square. The print was oven dried at 60-80 ° C. and fired in air at 1300 ° C. for 1 hour. The thickness of the composite functional layer was about 1 to 3 μm after firing. The LC layer was screen printed on the top of the functional layer to a thickness of about 3 μm, but was not fired. Once the battery was at an operating temperature of 800 ° C., the LC powder was fully bonded to the functional layer.
FIG. 7 illustrates the IV characteristics of a single fuel cell incorporating the cathode of this embodiment operated at a temperature varied from 600 ° C. to 900 ° C.
FIG. 8 illustrates the IV performance of a 15 stack fuel cell incorporating the cathode of this embodiment.

実施例3.
複合カソードを上記の実施例2と同様な方法でスクリーンプリントしたが、約10μmの厚さとした。LC層を再度機能層最上部にスクリーンプリントしたが、30μmを越える厚さにした。得られたカソードの断面を示す走査電子顕微鏡写真を図5に示した。
Example 3
The composite cathode was screen printed in the same manner as in Example 2 above, but was about 10 μm thick. The LC layer was screen printed again on top of the functional layer, but with a thickness exceeding 30 μm. A scanning electron micrograph showing a cross section of the obtained cathode is shown in FIG.

実施例4.
図9は、パラジウム割合を固相の0体積%〜95体積%まで変化させることの出力密度(0.7Vにおけるw/cm2)に対する効果を示す。これから分かるように、性能は50体積%Pdで最大となる。しかしながら、かなりの性能が5体積%という低いPd装荷でもなお得られる。
Example 4
FIG. 9 shows the effect on the power density (w / cm 2 at 0.7 V) of changing the palladium ratio from 0% to 95% by volume of the solid phase. As can be seen, the performance is maximum at 50 volume% Pd. However, considerable performance is still obtained with a Pd loading as low as 5% by volume.

当業者には明らかであろうが、請求の範囲に記載した発明の範囲から逸脱することなく上述の特定の開示の種々の修飾、適合および改変が可能である。    It will be apparent to those skilled in the art that various modifications, adaptations, and variations of the specific disclosure described above can be made without departing from the scope of the invention as set forth in the claims.

図1は本発明の一つの実施態様によるカソードの断面の模式図を表す。  FIG. 1 represents a schematic cross-sectional view of a cathode according to one embodiment of the present invention. 図2は、本発明の一つの実施態様によるカソードの断面の走査電子顕微鏡写真である。  FIG. 2 is a scanning electron micrograph of a cross section of a cathode according to one embodiment of the present invention. 図3は本発明の単一燃料電池のI−V特性のグラフである。  FIG. 3 is a graph of IV characteristics of the single fuel cell of the present invention. 図4は、本発明の別の実施態様のカソード断面の走査電子顕微鏡写真(5000x)である。  FIG. 4 is a scanning electron micrograph (5000 ×) of a cathode cross section of another embodiment of the present invention. 図5は、本発明の別の実施態様のカソード断面の走査電子顕微鏡写真である。  FIG. 5 is a scanning electron micrograph of a cathode cross section of another embodiment of the present invention. 図6は、カソードおよび伝導性電極を通る電流の模式図である。  FIG. 6 is a schematic diagram of the current through the cathode and conductive electrode. 図7は、単一燃料電池の別の実施態様のI−V特性のグラフである。  FIG. 7 is a graph of the IV characteristics of another embodiment of a single fuel cell. 図8は、15スタック燃料電池の一つの実施態様におけるI−V特性のグラフである。  FIG. 8 is a graph of IV characteristics in one embodiment of a 15 stack fuel cell. 図9は、種々の温度におけるテストによる、貴金属濃度の変化の出力密度に与える効果を示す。  FIG. 9 shows the effect of changes in precious metal concentration on power density from tests at various temperatures.

Claims (41)

稠密な電解質層およびアノード層を含む固体酸化物燃料電池のカソードであって、
(a)電解触媒粒子を含む電解触媒相;
(b)イオン伝導性粒子を含むイオン伝導相;
を含む多孔性3次元固体相を含み、
前記電解触媒相およびイオン伝導相が分散しており、前記電解触媒粒子の平均サイズが前記イオン伝導性粒子の平均サイズに等しいか又は大きく、11μm厚よりも薄い、前記カソード。
A cathode of a solid oxide fuel cell comprising a dense electrolyte layer and an anode layer,
(A) an electrocatalytic phase comprising electrocatalytic particles;
(B) an ion conducting phase comprising ion conducting particles;
Comprising a porous three-dimensional solid phase comprising
The cathode, wherein the electrocatalyst phase and the ion conductive phase are dispersed, and the average size of the electrocatalyst particles is equal to or larger than the average size of the ion conductive particles and is thinner than 11 μm.
5.5μm厚よりも薄い、請求項1記載のカソード。
The cathode of claim 1, wherein the cathode is less than 5.5 μm thick.
3.3μm厚よりも薄い、請求項2記載のカソード。
The cathode according to claim 2, which is thinner than 3.3 μm.
固体酸化物燃料電池のカソードであって、稠密な電解質層に結合しており、
(a) 電解触媒粒子を含む電解触媒相;
(b) イオン伝導性粒子を含むイオン伝導相;
を含む多孔性3次元固体相を含み、前記電解触媒相およびイオン伝導相が分散しており前記電解触媒粒子の平均サイズが前記イオン伝導性粒子の平均サイズに等しいか又は大きく、垂直方向の広がりおよび水平方向の広がりを有し、前記電解触媒相が垂直方向に連続的電子伝導性を与えるが水平方向には連続的電子伝導性を与えない、前記カソード。
A solid oxide fuel cell cathode coupled to a dense electrolyte layer;
(a) an electrocatalytic phase comprising electrocatalytic particles;
(b) an ion conducting phase comprising ion conducting particles;
The electrocatalyst phase and the ion conductive phase are dispersed, and the average size of the electrocatalyst particles is equal to or larger than the average size of the ion conductive particles, and is spread in the vertical direction. And said cathode having a horizontal spread, wherein said electrocatalytic phase provides continuous electron conductivity in the vertical direction but does not provide continuous electron conductivity in the horizontal direction.
固体酸化物燃料電池のカソードであって、稠密な電解質層に結合しており、
(a)電解触媒粒子を含む電解触媒相;
(b)イオン伝導性粒子を含むイオン伝導相;
を含む多孔性3次元固体相を含み、
前記電解触媒相およびイオン伝導相が分散しており前記電解触媒粒子の平均サイズが前記イオン伝導性粒子の平均サイズに等しいか又は大きく、電子伝導性金属酸化物を含む水平電子伝導性層をさらに含む、前記カソード。
A solid oxide fuel cell cathode coupled to a dense electrolyte layer;
(A) an electrocatalytic phase comprising electrocatalytic particles;
(B) an ion conducting phase comprising ion conducting particles;
Comprising a porous three-dimensional solid phase comprising
A horizontal electron conductive layer in which the electrocatalyst phase and the ion conductive phase are dispersed, the average size of the electrocatalyst particles is equal to or larger than the average size of the ion conductive particles, and further includes an electron conductive metal oxide Including the cathode.
電子伝導性金属酸化物がランタンコバルテートを含む、請求項5に記載のカソード。
6. The cathode of claim 5, wherein the electron conductive metal oxide comprises lanthanum cobaltate.
固体酸化物燃料電池のカソードであって、稠密な電解質層に結合しており、
(a)電解触媒粒子を含む電解触媒相;
(b)イオン伝導性粒子を含むイオン伝導相;
を含む多孔性3次元固体相を含み、
前記電解触媒相およびイオン伝導相が分散しており前記電解触媒粒子の平均サイズが前記イオン伝導性粒子の平均サイズに等しいか又は大きく、前記電解触媒粒子が貴金属を含み、前記イオン伝導性粒子がYSZを含む、前記カソード。
A solid oxide fuel cell cathode coupled to a dense electrolyte layer;
(A) an electrocatalytic phase comprising electrocatalytic particles;
(B) an ion conducting phase comprising ion conducting particles;
Comprising a porous three-dimensional solid phase comprising
The electrocatalyst phase and the ion conductive phase are dispersed, the average size of the electrocatalyst particles is equal to or larger than the average size of the ion conductive particles, the electrocatalyst particles include a noble metal, and the ion conductive particles are The cathode comprising YSZ.
多孔性アノード、稠密な電解質および、パラジウムの連結した粒子およびイオン伝導体の連結した粒子を含む多孔性3次元構造を含むカソード、を含み、前記パラジウム粒子の平均サイズまたはメジアンサイズが前記イオン伝導体粒子の平均サイズまたはメジアンサイズよりも大きい、固体酸化物燃料電池。
A cathode comprising a porous anode, a dense electrolyte, and a porous three-dimensional structure comprising palladium-coupled particles and ionic conductor-coupled particles, wherein the average or median size of the palladium particles is the ionic conductor A solid oxide fuel cell that is larger than the average or median size of the particles.
電解触媒粒子の平均サイズまたはメジアンサイズがイオン伝導体粒子の平均サイズまたはメジアンサイズの少なくとも2倍である、請求項8に記載の燃料電池。
9. The fuel cell according to claim 8, wherein the average size or median size of the electrocatalyst particles is at least twice the average size or median size of the ionic conductor particles.
電解触媒粒子の平均サイズまたはメジアンサイズがイオン伝導体粒子の平均サイズまたはメジアンサイズの4〜10倍である、請求項9に記載の燃料電池。
The fuel cell according to claim 9, wherein the average size or median size of the electrocatalyst particles is 4 to 10 times the average size or median size of the ion conductor particles.
イオン伝導体が電解質層と同じイオン伝導性材料を含む、請求項8に記載の燃料電池。
The fuel cell according to claim 8, wherein the ionic conductor comprises the same ionic conductive material as the electrolyte layer.
電解質およびイオン伝導性粒子がいずれもYSZを含む、請求項11に記載の燃料電池。
The fuel cell according to claim 11, wherein both the electrolyte and the ion conductive particles contain YSZ .
カソードが11μm厚よりも薄い、請求項8に記載の燃料電池。
The fuel cell according to claim 8, wherein the cathode is thinner than 11 μm.
カソードが5.5μm厚よりも薄い、請求項13に記載の燃料電池。
The fuel cell according to claim 13, wherein the cathode is thinner than 5.5 μm thick.
カソードが3.3μm厚よりも薄い、請求項14に記載の燃料電池。
The fuel cell according to claim 14, wherein the cathode is thinner than 3.3 μm.
多孔性アノード、稠密な電解質層、および、電解触媒粒子およびイオン伝導性粒子を含む多孔性3次元構造を含むカソード、を含み、前記電解触媒粒子の平均サイズまたはメジアンサイズが前記イオン伝導性粒子の平均サイズまたはメジアンサイズよりも大きく、前記電解触媒粒子が電子伝導チャンネルを形成し、前記イオン伝導性粒子がイオン伝導チャンネルを形成し、電子伝導性金属酸化物を含む水平電子伝導性層が前記カソード上に置かれた、固体酸化物燃料電池。
A porous anode, a dense electrolyte layer, and a cathode comprising a porous three-dimensional structure comprising electrocatalyst particles and ion conductive particles, wherein the average or median size of the electrocatalyst particles is that of the ion conductive particles. The electrocatalyst particles are larger than the average size or median size, the electroconductive catalyst particles form electron conducting channels, the ion conducting particles form ion conducting channels, and the horizontal electron conducting layer containing the electron conducting metal oxide is the cathode. A solid oxide fuel cell placed on top.
水平電子伝導性層がランタンコバルテートを含む、請求項16に記載の燃料電池。
The fuel cell of claim 16, wherein the horizontal electron conductive layer comprises lanthanum cobaltate.
水平電子伝導性層が燃料電池の作動に先だって焼結されない、請求項17に記載の燃料電池。
The fuel cell of claim 17, wherein the horizontal electron conductive layer is not sintered prior to operation of the fuel cell.
電解触媒粒子が貴金属を含む、請求項16記載の燃料電池。
The fuel cell according to claim 16 , wherein the electrocatalyst particles include a noble metal.
貴金属がパラジウムである、請求項7または19記載の燃料電池。
The fuel cell according to claim 7 or 19, wherein the noble metal is palladium.
カソードが11μm厚よりも薄い、請求項7または16記載の燃料電池。
The fuel cell according to claim 7 or 16, wherein the cathode is thinner than 11 µm.
稠密な電解質層を含む固体酸化物燃料電池のカソードであって、
(a)電解触媒粒子を含む電解触媒相;
(b)イオン伝導性粒子を含むイオン伝導相;
を含む多孔性3次元固体相を含み、前記電解触媒相およびイオン伝導相が分散しており前記電解触媒粒子の平均またはメジアンサイズが前記イオン伝導性粒子の平均またはメジアンサイズに等しいか又は大きく、前記カソードの固相が65体積%以下の前記電解触媒粒子を含む、前記カソード。
A solid oxide fuel cell cathode comprising a dense electrolyte layer, comprising:
(A) an electrocatalytic phase comprising electrocatalytic particles;
(B) an ion conducting phase comprising ion conducting particles;
A porous three-dimensional solid phase containing, wherein the electrocatalyst phase and the ion conductive phase are dispersed, and the average or median size of the electrocatalyst particles is equal to or greater than the average or median size of the ion conductive particles; The cathode, wherein the solid phase of the cathode contains 65% by volume or less of the electrocatalyst particles.
11μm厚より薄い、請求項22記載のカソード。
The cathode of claim 22, wherein the cathode is less than 11 μm thick.
電解触媒粒子が貴金属を含む、請求項22記載のカソード。
The cathode of claim 22, wherein the electrocatalyst particles comprise a noble metal.
貴金属がパラジウムを含む、請求項24記載のカソード。
The cathode of claim 24, wherein the noble metal comprises palladium.
イオン伝導性粒子がYSZを含む、請求項22記載のカソード。
The cathode of claim 22, wherein the ion conductive particles comprise YSZ.
請求項22記載のカソードを含む固体酸化物燃料電池。
A solid oxide fuel cell comprising the cathode of claim 22.
稠密な電解質層を有する固体酸化物燃料電池に使用するためのカソードを形成させる方法であって、
(a) 電解触媒粒子をイオン伝導性粒子と混合する工程であって、前記電解触媒粒子の平均サイズまたはメジアンサイズが前記イオン伝導性粒子の平均サイズまたはメジアンサイズに等しいかまたは大きく、前記電解触媒粒子の前記イオン伝導性粒子に対する体積比が66%:34%以下である、前記工程;および
(b) 稠密な電解質層に結合した多孔性3次元構造を生成する工程であって、前記構造が電解触媒粒子の連結した粒子およびイオン伝導性粒子の連結した粒子を含むものである前記工程、
を含む、前記方法。
A method of forming a cathode for use in a solid oxide fuel cell having a dense electrolyte layer, comprising:
(a) a step of mixing the electrocatalyst particles with the ion conductive particles, wherein an average size or median size of the electrocatalyst particles is equal to or larger than an average size or median size of the ion conductive particles; The process wherein the volume ratio of particles to the ion conductive particles is 66%: 34% or less; and
(b) generating a porous three-dimensional structure bonded to a dense electrolyte layer, wherein the structure includes particles connected with electrocatalyst particles and particles connected with ion conductive particles;
Said method.
電解触媒粒子、イオン伝導性粒子、適切な有機バインダーおよび適切な溶媒を適切な体積で混合してペーストを形成させ、前記ペーストを稠密な電解質上にスクリーンプリントする、請求項28に記載の方法。
29. The method of claim 28, wherein electrocatalyst particles, ion conductive particles, a suitable organic binder and a suitable solvent are mixed in a suitable volume to form a paste and the paste is screen printed onto the dense electrolyte.
電解触媒粒子が貴金属を含む、請求項28に記載の方法。
30. The method of claim 28, wherein the electrocatalyst particles comprise a noble metal.
貴金属がパラジウムを含む、請求項30に記載の方法。
32. The method of claim 30, wherein the noble metal comprises palladium.
イオン伝導性粒子がYSZを含む、請求項28に記載の方法。
30. The method of claim 28, wherein the ion conductive particles comprise YSZ.
更に、カソードを焼結し、金属酸化物を含む水平電子伝導性層を載せる工程を含む、請求項28に記載の方法。
29. The method of claim 28, further comprising sintering the cathode and placing a horizontal electron conductive layer comprising a metal oxide.
金属酸化物がランタンコバルテートを含む、請求項33に記載の方法。
34. The method of claim 33, wherein the metal oxide comprises lanthanum cobaltate.
カソードの固体相中の電解触媒粒子の体積パーセントが1%〜50%である、請求項28に記載の方法。
29. The method of claim 28, wherein the volume percent of electrocatalyst particles in the solid phase of the cathode is 1% to 50%.
稠密な電解質層およびアノード層を含む固体酸化物燃料電池のカソードを形成させる方法であって、
(a)電解触媒粒子をイオン伝導性粒子と混合する工程であって、前記電解触媒粒子の平均サイズが前記イオン伝導性粒子の平均サイズに等しいかまたは大きい、前記工程;および、
(b)稠密な電解質層に結合した多孔性3次元構造を生成する工程であって、前記構造が連結した電解触媒粒子およびイオン伝導体の連結した粒子を含み、前記構造が11μm未満の厚さである、前記方法。
A method of forming a cathode of a solid oxide fuel cell comprising a dense electrolyte layer and an anode layer, comprising:
(A) mixing the electrocatalyst particles with the ion conductive particles, the average size of the electrocatalyst particles being equal to or larger than the average size of the ion conductive particles; and
(B) generating a porous three-dimensional structure bonded to a dense electrolyte layer, comprising electrocatalyst particles connected to the structure and particles connected to an ionic conductor, the structure having a thickness of less than 11 μm Said method.
カソードが5.5μm未満の厚さに形成される、請求項36記載の方法。
38. The method of claim 36, wherein the cathode is formed to a thickness of less than 5.5 [ mu] m.
カソードが3.3μm未満の厚さに形成される、請求項37記載の方法。
38. The method of claim 37, wherein the cathode is formed to a thickness of less than 3.3 [ mu] m.
固体酸化物燃料電池のカソードを形成させる方法であって、前記カソードが稠密な電解質層に結合しており、
(a) 電解触媒粒子をイオン伝導性粒子と混合する工程であって、前記電解触媒粒子の平均サイズまたはメジアンサイズが前記イオン伝導性粒子の平均サイズまたはメジアンサイズに等しいかまたは大きい、前記工程;および
(b) 稠密な電解質層に結合した多孔性3次元構造を生成する工程であって、前記構造が連結した電解触媒粒子および連結したイオン伝導性粒子を含み、前記3次元構造が垂直方向の広がりおよび水平方向の広がりを有し、前記電解触媒粒子が垂直方向に連続的電子伝導性を与えるが水平方向には連続的電子伝導性を与えない、前記工程、
を含む、前記方法。
A method of forming a cathode of a solid oxide fuel cell, wherein the cathode is bonded to a dense electrolyte layer,
(a) mixing electrocatalyst particles with ion conductive particles, wherein the average size or median size of the electrocatalyst particles is equal to or greater than the average size or median size of the ion conductive particles; and
(b) a step of generating a porous three-dimensional structure bonded to a dense electrolyte layer, wherein the structure includes electrocatalyst particles connected and ion-conductive particles connected, and the three-dimensional structure extends in the vertical direction And having a horizontal spread, wherein the electrocatalyst particles provide continuous electronic conductivity in the vertical direction but do not provide continuous electron conductivity in the horizontal direction,
Said method.
さらに電子伝導性金属酸化物を含む水平電子伝導層をさらに載せる工程を含む、請求項39記載の方法。
40. The method of claim 39, further comprising the step of further placing a horizontal electron conducting layer comprising an electron conducting metal oxide.
金属酸化物がランタンコバルテートを含む、請求項40記載の方法。   41. The method of claim 40, wherein the metal oxide comprises lanthanum cobaltate.
JP2001530143A 1999-10-08 2000-10-06 Composite electrodes for solid state electrochemical devices Expired - Lifetime JP5336685B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US15812499P 1999-10-08 1999-10-08
US60/158,124 1999-10-08
US23154200P 2000-09-11 2000-09-11
US60/231,542 2000-09-11
PCT/CA2000/001166 WO2001028024A1 (en) 1999-10-08 2000-10-06 Composite electrodes for solid state electrochemical devices

Publications (2)

Publication Number Publication Date
JP2003511834A JP2003511834A (en) 2003-03-25
JP5336685B2 true JP5336685B2 (en) 2013-11-06

Family

ID=26854760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001530143A Expired - Lifetime JP5336685B2 (en) 1999-10-08 2000-10-06 Composite electrodes for solid state electrochemical devices

Country Status (20)

Country Link
US (2) US6420064B1 (en)
EP (1) EP1135824B8 (en)
JP (1) JP5336685B2 (en)
KR (1) KR20010104686A (en)
CN (1) CN1336016A (en)
AT (1) ATE349777T1 (en)
AU (1) AU769575B2 (en)
BR (1) BR0007698A (en)
CA (1) CA2352391C (en)
CZ (1) CZ301735B6 (en)
DE (1) DE60032577T2 (en)
DK (1) DK1135824T3 (en)
EA (1) EA004168B1 (en)
HK (1) HK1044412A1 (en)
HU (1) HUP0104523A3 (en)
MX (1) MXPA01005771A (en)
NO (1) NO20012859L (en)
NZ (1) NZ512568A (en)
PL (1) PL348192A1 (en)
WO (1) WO2001028024A1 (en)

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6682842B1 (en) * 1999-07-31 2004-01-27 The Regents Of The University Of California Composite electrode/electrolyte structure
US6605316B1 (en) 1999-07-31 2003-08-12 The Regents Of The University Of California Structures and fabrication techniques for solid state electrochemical devices
US7553573B2 (en) 1999-07-31 2009-06-30 The Regents Of The University Of California Solid state electrochemical composite
MXPA01005771A (en) * 1999-10-08 2003-07-14 Global Thermoelectric Inc Composite electrodes for solid state electrochemical devices.
DE10031102C2 (en) * 2000-06-30 2003-03-06 Forschungszentrum Juelich Gmbh Process for producing a composite body, in particular an electrode with temperature-resistant conductivity
CA2431231A1 (en) * 2001-01-12 2002-07-18 Global Thermoelectric Inc. Redox solid oxide fuel cell
US6632554B2 (en) * 2001-04-10 2003-10-14 Hybrid Power Generation Systems, Llc High performance cathodes for solid oxide fuel cells
EP1433767A4 (en) * 2001-09-26 2008-01-16 Ngk Insulators Ltd Laminated ceramic sintered compact, method for producing laminated ceramic sintered compact, electrochemical cell, electroconductive joining member for electrochemical cell, and electrochemical device
JP5393538B2 (en) * 2002-07-19 2014-01-22 株式会社フルヤ金属 Solid electrolyte oxygen sensor and exhaust gas sensor
US7569302B2 (en) 2002-11-05 2009-08-04 Panasonic Corporation Fuel cell for generating electric power
US7014929B2 (en) * 2003-01-23 2006-03-21 Hewlett-Packard Development Company, L.P. Fuel cell
US20050003262A1 (en) * 2003-07-02 2005-01-06 Rajiv Doshi Solid-state fuel cell and related method of manufacture
US7892698B2 (en) * 2003-07-18 2011-02-22 Versa Power Systems, Ltd. Electrically conductive fuel cell contact material
EP1647068B1 (en) * 2003-07-18 2013-12-25 Versa Power Systems, Ltd. Electrically conductive fuel cell contact material
JP2005116225A (en) * 2003-10-03 2005-04-28 Nissan Motor Co Ltd Electrode for solid oxide fuel cell, and its manufacturing method
EP1702376A1 (en) * 2003-12-24 2006-09-20 Pirelli & C. S.p.A. Solid oxide fuel cell
US7190568B2 (en) 2004-11-16 2007-03-13 Versa Power Systems Ltd. Electrically conductive fuel cell contact materials
CN100530766C (en) * 2004-11-30 2009-08-19 加州大学评议会 Sealed joint structure for electrochemical device
CA2630526A1 (en) * 2004-11-30 2006-08-31 The Regents Of The University Of California Joining of dissimilar materials
US20060275647A1 (en) * 2005-06-06 2006-12-07 Caine Finnerty Textile derived solid oxide fuel cell system
JP2007087868A (en) * 2005-09-26 2007-04-05 Tokyo Electric Power Co Inc:The Fuel electrode for solid oxide fuel cell, air electrode for solid oxide fuel cell, and cell for solid oxide fuel cell
US9985295B2 (en) * 2005-09-26 2018-05-29 General Electric Company Solid oxide fuel cell structures, and related compositions and processes
KR100717130B1 (en) * 2005-09-30 2007-05-11 한국과학기술연구원 Paste for solid oxide fuel cells, anode-supported solid oxide fuel cells using the same, and fabricating method thereof
US7864322B2 (en) 2006-03-23 2011-01-04 The Research Foundation Of State University Of New York Optical methods and systems for detecting a constituent in a gas containing oxygen in harsh environments
JP2009544502A (en) * 2006-07-28 2009-12-17 ザ、リージェンツ、オブ、ザ、ユニバーシティ、オブ、カリフォルニア Jointed concentric tubes
JP4919480B2 (en) * 2006-08-02 2012-04-18 三菱マテリアル株式会社 Power generation cell and solid oxide fuel cell incorporating the power generation cell
US9190669B2 (en) * 2006-10-02 2015-11-17 Versa Power Systems, Ltd. Cell materials variation in SOFC stacks to address thermal gradients in all planes
US8313875B2 (en) * 2006-10-02 2012-11-20 Versa Power Systems, Ltd. High performance cathode with controlled operating temperature range
US20080299436A1 (en) * 2007-05-30 2008-12-04 General Electric Company Composite ceramic electrolyte structure and method of forming; and related articles
CN100511788C (en) * 2007-06-22 2009-07-08 中国科学技术大学 Solid-oxide fuel battery complex cathode and method for making same
WO2009014775A2 (en) * 2007-07-25 2009-01-29 The Regents Of The University Of California High temperature electrochemical device with interlocking structure
ATE540133T1 (en) * 2008-02-04 2012-01-15 Univ California CU-BASED CERMET FOR HIGH TEMPERATURE FUEL CELLS
EP2277228B1 (en) 2008-04-18 2012-05-16 The Regents of the University of California Integrated seal for high-temperature electrochemical device
JP4901976B2 (en) * 2009-08-26 2012-03-21 日本碍子株式会社 Bonding agent
JP2014534576A (en) 2011-10-24 2014-12-18 テクニカル・ユニヴァーシティ・オブ・デンマーク Improved anode / electrolyte structure for a solid oxide electrochemical cell and method of making the structure
KR101289095B1 (en) * 2011-12-28 2013-07-23 주식회사 포스코 Solid oxide fuel cell and method for manufacturing the same
US20150308976A1 (en) * 2012-04-23 2015-10-29 Technical University Of Denmark Sensor employing internal reference electrode
JP6131166B2 (en) * 2012-11-22 2017-05-17 株式会社デンソー Electrode for gas sensor and gas sensor element using the same
TWI482660B (en) * 2012-12-11 2015-05-01 Ind Tech Res Inst Electrode, and manufacturing method thereof
EP2814100A1 (en) 2013-06-12 2014-12-17 Topsøe Fuel Cell A/S Impregnation of an electrochemical cell cathode backbone
CN103529103A (en) * 2013-10-25 2014-01-22 郑龙华 Multilayer composite porous electrode of oxygen sensor and manufacturing method of electrode
US10084192B2 (en) 2014-03-20 2018-09-25 Versa Power Systems, Ltd Cathode contact layer design for preventing chromium contamination of solid oxide fuel cells
US9559366B2 (en) 2014-03-20 2017-01-31 Versa Power Systems Ltd. Systems and methods for preventing chromium contamination of solid oxide fuel cells
KR102606710B1 (en) 2014-06-04 2023-11-29 퀀텀스케이프 배터리, 인코포레이티드 Electrode materials with mixed particle sizes
JP6842103B2 (en) * 2015-06-15 2021-03-17 国立研究開発法人物質・材料研究機構 Anode material for solid oxide fuel cell and its manufacturing method, and solid oxide fuel cell
US10458027B2 (en) * 2015-10-08 2019-10-29 Low Emission Resources Corporation Electrode-supported tubular solid-oxide electrochemical cell
JP6543583B2 (en) * 2016-02-24 2019-07-10 株式会社Soken Gas sensor element and method of manufacturing the same
CN106252594B (en) * 2016-09-05 2018-12-07 哈尔滨工业大学 A kind of ball-shaped lithium-ion battery anode material and its synthetic method with nanoscale two-phase coexistent structure
DE102017203900A1 (en) * 2017-03-09 2018-09-13 Siemens Aktiengesellschaft Electrodes comprising metal introduced into solid electrolyte
JP6859926B2 (en) * 2017-11-03 2021-04-14 株式会社デンソー Solid electrolyte, its manufacturing method, gas sensor
JP7135419B2 (en) * 2018-05-11 2022-09-13 株式会社デンソー porous sintered body
JP7040437B2 (en) * 2018-12-28 2022-03-23 株式会社デンソー Gas sensor element and gas sensor
EP3960907A4 (en) 2019-04-26 2022-06-15 Panasonic Intellectual Property Management Co., Ltd. Membrane electrode assembly, electrochemical device, and electrochemical system
US11417891B2 (en) 2019-08-23 2022-08-16 Nissan North America, Inc. Cathode including a tandem electrocatalyst and solid oxide fuel cell including the same
DE102019214915A1 (en) * 2019-09-27 2021-04-01 Siemens Aktiengesellschaft Rod-shaped measuring electrode for a magnetic-inductive flow meter
US11791478B2 (en) 2019-10-07 2023-10-17 Tennessee Technological University Reduced-temperature sintering of spinel-type coatings and layers with metallic alloy powder precursors

Family Cites Families (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1940528A (en) * 1930-12-17 1933-12-19 Rubber Cement Products Ltd Rubber composition
US3219730A (en) 1961-06-27 1965-11-23 Inst Gas Technology Method of making fuel cell elements
BE634204A (en) 1962-06-27 1900-01-01
DE1571978A1 (en) 1966-03-11 1971-04-01 Battelle Institut E V Metallic anodes for galvanic high-temperature fuel cells with solid electrolyte and process for their production
FR96061E (en) * 1967-11-02 1972-05-19 Gen Electric Compound body and method for shaping it, in particular usable as an electrode-electrolyte body.
US3551209A (en) 1969-05-21 1970-12-29 Us Interior Formation of skeletal metal solid electrolyte fuel cell electrodes
US3787244A (en) 1970-02-02 1974-01-22 United Aircraft Corp Method of catalyzing porous electrodes by replacement plating
DE2810134A1 (en) * 1978-03-09 1979-09-20 Bosch Gmbh Robert ZIRCONIUM OXIDE CERAMICS WITH A FINE-GRAY AND THERMALLY STABLE STRUCTURE AND HIGH THERMAL SHOCK RESISTANCE, MOLDED BODIES MANUFACTURED FROM THEM, METHOD FOR MANUFACTURING THE MOLDED BODIES AND THEIR USE
DE2852638C2 (en) * 1978-12-06 1986-01-16 Robert Bosch Gmbh, 7000 Stuttgart Gas sensor with cermet electrodes
DE2904069A1 (en) * 1979-02-03 1980-08-07 Bosch Gmbh Robert FIXED ELECTROLYTE FOR ELECTROCHEMICAL APPLICATIONS AND METHOD FOR PRODUCING THE SAME
DE2911042C2 (en) * 1979-03-21 1985-10-31 Robert Bosch Gmbh, 7000 Stuttgart Electrochemical probe for the determination of oxygen concentration and process for its manufacture
US4459341A (en) 1983-02-02 1984-07-10 The United States Of America As Represented By The United States Department Of Energy High temperature solid electrolyte fuel cell with ceramic electrodes
US4597170A (en) 1985-03-28 1986-07-01 Westinghouse Electric Corp. Method of making an electrode
US4582766A (en) 1985-03-28 1986-04-15 Westinghouse Electric Corp. High performance cermet electrodes
US5037525A (en) 1985-10-29 1991-08-06 Commonwealth Scientific And Industrial Research Organisation Composite electrodes for use in solid electrolyte devices
DE3611291A1 (en) * 1986-04-04 1987-10-15 Dornier System Gmbh MANUFACTURE OF LONG-TERM-RESISTANT OXYGEN ELECTRODES FOR ELECTROLYSIS CELLS WITH FIXED ELECTROLYTE
US4702971A (en) 1986-05-28 1987-10-27 Westinghouse Electric Corp. Sulfur tolerant composite cermet electrodes for solid oxide electrochemical cells
US4711605A (en) 1986-05-29 1987-12-08 Rexnord Inc. Key apparatus
US4767518A (en) 1986-06-11 1988-08-30 Westinghouse Electric Corp. Cermet electrode
US5306411A (en) 1989-05-25 1994-04-26 The Standard Oil Company Solid multi-component membranes, electrochemical reactor components, electrochemical reactors and use of membranes, reactor components, and reactor for oxidation reactions
US4933054A (en) 1987-03-13 1990-06-12 The Standard Oil Company Electrocatalytic oxidative dehydrogenation of saturated hydrocarbons to unsaturated hydrocarbons
US5591315A (en) 1987-03-13 1997-01-07 The Standard Oil Company Solid-component membranes electrochemical reactor components electrochemical reactors use of membranes reactor components and reactor for oxidation reactions
JPS63252908A (en) 1987-04-08 1988-10-20 Agency Of Ind Science & Technol Immobilized oxide of metallic fine particle, production thereof, oxidation catalyst, reduction catalyst, combustible gas sensor element and catalyst for electrode
JPH01184457A (en) * 1988-01-18 1989-07-24 Ngk Insulators Ltd Oxygen sensor element
US4849254A (en) 1988-02-25 1989-07-18 Westinghouse Electric Corp. Stabilizing metal components in electrodes of electrochemical cells
GB8816114D0 (en) 1988-07-06 1988-08-10 Johnson Matthey Plc Reforming catalyst
JP2790852B2 (en) * 1989-05-25 1998-08-27 日本特殊陶業株式会社 Oxygen sensor element for controlling air-fuel ratio and method of manufacturing the same
JPH0381959A (en) * 1989-08-25 1991-04-08 Tonen Corp Solid electrolyte fuel cell
DE3935311A1 (en) 1989-10-24 1991-04-25 Asea Brown Boveri FUEL CELL ARRANGEMENT
US4971830A (en) * 1990-02-01 1990-11-20 Westinghouse Electric Corp. Method of electrode fabrication for solid oxide electrochemical cells
US5045169A (en) 1990-02-05 1991-09-03 Westinghouse Electric Corp. Solid oxide electrolyte electrochemical oxygen generator
US5286580A (en) 1990-02-09 1994-02-15 Osaka Gas Company Limited Fuel electrode for solid electrolyte fuel cells and a method for manufacture of the electrode
JPH0451462A (en) * 1990-06-18 1992-02-19 Yuasa Corp Manufacture of electrode
EP0535138B1 (en) 1990-06-21 1995-03-01 International Fuel Cells Corporation Method for making alloyed catalysts
JPH04141233A (en) 1990-09-29 1992-05-14 Stonehard Assoc Inc Electrode catalyst
JPH04192261A (en) * 1990-11-27 1992-07-10 Ngk Insulators Ltd Fuel electrode and its manufacture for solid electrolyte type fuel cell
US5342703A (en) * 1991-07-19 1994-08-30 Ngk Insulators, Ltd. Solid electrolyte type fuel cell and method for producing the same
JP3062632B2 (en) * 1991-08-06 2000-07-12 大阪瓦斯株式会社 Method for manufacturing cermet electrode
JP3281925B2 (en) 1991-08-06 2002-05-13 大阪瓦斯株式会社 Cermet electrode and method of manufacturing the same
JPH05174833A (en) 1991-12-17 1993-07-13 Tonen Corp Fuel electrode material for solid electrolyte fuel cell
JP3317523B2 (en) 1992-07-27 2002-08-26 新日本石油株式会社 Solid oxide fuel cell
JP3244310B2 (en) * 1992-09-14 2002-01-07 三洋電機株式会社 Solid oxide fuel cell
NL9202087A (en) 1992-12-01 1994-07-01 Stichting Energie Method for applying a cermet electrode layer to a sintered electrolyte.
JP2979911B2 (en) 1993-07-30 1999-11-22 三井造船株式会社 Fuel reforming catalyst for fuel cells
JP2636157B2 (en) * 1993-12-09 1997-07-30 工業技術院長 Electrode materials for solid electrolyte fuel cells and electrodes using the same
DE4400540C2 (en) 1994-01-11 1995-10-12 Forschungszentrum Juelich Gmbh Perovskite electrodes, especially for high-temperature fuel cells
GB2298955B (en) * 1995-03-16 1999-04-07 British Nuclear Fuels Plc Fuel cells
US5543239A (en) 1995-04-19 1996-08-06 Electric Power Research Institute Electrode design for solid state devices, fuel cells and sensors
DE19519847C1 (en) 1995-05-31 1997-01-23 Forschungszentrum Juelich Gmbh Anode substrate for a high temperature fuel cell
GB2305169A (en) 1995-09-14 1997-04-02 Univ Napier Solid oxide fuel cells
US5993986A (en) 1995-11-16 1999-11-30 The Dow Chemical Company Solide oxide fuel cell stack with composite electrodes and method for making
US6117582A (en) 1995-11-16 2000-09-12 The Dow Chemical Company Cathode composition for solid oxide fuel cell
US5670270A (en) 1995-11-16 1997-09-23 The Dow Chemical Company Electrode structure for solid state electrochemical devices
US5753385A (en) 1995-12-12 1998-05-19 Regents Of The University Of California Hybrid deposition of thin film solid oxide fuel cells and electrolyzers
US5863673A (en) 1995-12-18 1999-01-26 Ballard Power Systems Inc. Porous electrode substrate for an electrochemical fuel cell
JP3193294B2 (en) 1996-05-24 2001-07-30 財団法人ファインセラミックスセンター Composite ceramic powder, method for producing the same, electrode for solid oxide fuel cell, and method for producing the same
JPH1021930A (en) * 1996-06-27 1998-01-23 Tokyo Gas Co Ltd Fuel electrode of solid electrolyte type fuel cell
JPH1021931A (en) * 1996-06-27 1998-01-23 Kyocera Corp Solid electrolyte type fuel cell
BG62723B1 (en) 1997-09-29 2000-06-30 "Ламан-Консулт"Оод Gold catalyst and its application in fuel components
US6051329A (en) 1998-01-15 2000-04-18 International Business Machines Corporation Solid oxide fuel cell having a catalytic anode
US6297185B1 (en) 1998-02-23 2001-10-02 T/J Technologies, Inc. Catalyst
NL1009060C2 (en) * 1998-05-04 1999-11-05 Stichting Energie Electrochemical cell.
DE69939061D1 (en) 1998-06-12 2008-08-21 Aep Invest Inc CERAMIC FUEL CELLS
JP2000133280A (en) 1998-10-19 2000-05-12 Sof Co Anode for high performance solid oxide fuel cell
DK173657B1 (en) 1998-11-17 2001-05-28 Forskningsct Risoe Electrochemical cell
US6589680B1 (en) 1999-03-03 2003-07-08 The Trustees Of The University Of Pennsylvania Method for solid oxide fuel cell anode preparation
JP3448242B2 (en) 1999-06-03 2003-09-22 新光電気工業株式会社 Solid electrolyte fuel cell
MXPA01005771A (en) * 1999-10-08 2003-07-14 Global Thermoelectric Inc Composite electrodes for solid state electrochemical devices.

Also Published As

Publication number Publication date
US6750169B2 (en) 2004-06-15
HK1044412A1 (en) 2002-10-18
PL348192A1 (en) 2002-05-06
CA2352391C (en) 2009-08-25
WO2001028024A1 (en) 2001-04-19
CZ20011953A3 (en) 2001-11-14
CA2352391A1 (en) 2001-04-19
CZ301735B6 (en) 2010-06-09
HUP0104523A2 (en) 2002-03-28
EP1135824B1 (en) 2006-12-27
NO20012859D0 (en) 2001-06-08
AU7765700A (en) 2001-04-23
DE60032577T2 (en) 2007-10-04
EP1135824B8 (en) 2007-04-25
HUP0104523A3 (en) 2003-07-28
NO20012859L (en) 2001-08-07
US6420064B1 (en) 2002-07-16
EA004168B1 (en) 2004-02-26
WO2001028024A8 (en) 2001-10-11
EP1135824A1 (en) 2001-09-26
NZ512568A (en) 2003-09-26
JP2003511834A (en) 2003-03-25
DK1135824T3 (en) 2007-04-16
ATE349777T1 (en) 2007-01-15
BR0007698A (en) 2001-10-09
EA200100627A1 (en) 2001-10-22
AU769575B2 (en) 2004-01-29
DE60032577D1 (en) 2007-02-08
MXPA01005771A (en) 2003-07-14
KR20010104686A (en) 2001-11-26
CN1336016A (en) 2002-02-13
US20020122971A1 (en) 2002-09-05

Similar Documents

Publication Publication Date Title
JP5336685B2 (en) Composite electrodes for solid state electrochemical devices
Jiang A review of wet impregnation—an alternative method for the fabrication of high performance and nano-structured electrodes of solid oxide fuel cells
JP6080088B2 (en) Porous current collector and fuel cell using the same
US20020098406A1 (en) Redox solid oxide fuel cell
JP2003132906A (en) Single cell for fuel cell and solid electrolytic fuel cell
KR20030036966A (en) Electrode having microstructure of extended triple phase boundary by porous ion conductive ceria film coating and Method to manufacture the said electrode
AU2008277838B2 (en) Cell materials variation in SOFC stacks to address thermal gradients in all planes
US7691770B2 (en) Electrode structure and methods of making same
CA2665076C (en) High performance cathode with controlled operating temperature range
AU2004201616B2 (en) Methods of forming electrodes for solid state electrochemical devices
JPH10144337A (en) Fuel electrode of solid electrolytic fuel cell and manufacture thereof
EP1735864B1 (en) Electrolyte electrode assembly and method of producing the same
ZA200104613B (en) Composite electrodes for solid state electrochemical devices.
JP5124940B2 (en) Solid oxide fuel cell

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040818

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071005

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110516

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110816

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130722

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130802

R150 Certificate of patent or registration of utility model

Ref document number: 5336685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250