JP5334704B2 - Cutting tools - Google Patents

Cutting tools Download PDF

Info

Publication number
JP5334704B2
JP5334704B2 JP2009150612A JP2009150612A JP5334704B2 JP 5334704 B2 JP5334704 B2 JP 5334704B2 JP 2009150612 A JP2009150612 A JP 2009150612A JP 2009150612 A JP2009150612 A JP 2009150612A JP 5334704 B2 JP5334704 B2 JP 5334704B2
Authority
JP
Japan
Prior art keywords
coating layer
flank
cutting
substrate
cutting tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009150612A
Other languages
Japanese (ja)
Other versions
JP2011005582A (en
Inventor
正人 松澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2009150612A priority Critical patent/JP5334704B2/en
Publication of JP2011005582A publication Critical patent/JP2011005582A/en
Application granted granted Critical
Publication of JP5334704B2 publication Critical patent/JP5334704B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、基体の表面に被覆層が形成された切削工具に関する。   The present invention relates to a cutting tool in which a coating layer is formed on the surface of a substrate.

現在、切削工具では耐摩耗性や摺動性、耐欠損性が必要とされるため、WC基超硬合金やTiCN基サーメット等の硬質基体の表面に様々な被覆層を成膜して切削工具の耐摩耗性、耐欠損性を向上させる手法が使われている。   At present, cutting tools require wear resistance, slidability, and fracture resistance. Therefore, various coating layers are formed on the surface of a hard substrate such as a WC-based cemented carbide or TiCN-based cermet, and the cutting tool is formed. A technique for improving the wear resistance and fracture resistance of steel is used.

例えば、特許文献1では、基体の表面に被覆層(セラミックス膜)を成膜した部材について、被覆層の表面からイオン注入して被覆層の表面にイオン注入した金属原子の濃度冨化層を形成することによって、切削抵抗の大きい被削材を切削する場合でもチッピングの発生を抑制できることが開示されている。   For example, in Patent Document 1, a member having a coating layer (ceramic film) formed on the surface of a substrate is ion-implanted from the surface of the coating layer to form a concentration-enhanced layer of metal atoms ion-implanted on the surface of the coating layer. Thus, it is disclosed that the occurrence of chipping can be suppressed even when a work material having a large cutting resistance is cut.

また、特許文献2では、被覆層を成膜する前の基体の表面にNイオン注入を行い、その後に被覆層を成膜することによって、基体と被覆層との界面に発生する歪みを抑制できることが開示されている。   Further, in Patent Document 2, N ion implantation is performed on the surface of the substrate before the coating layer is formed, and then the coating layer is formed, thereby suppressing distortion generated at the interface between the substrate and the coating layer. Is disclosed.

特開平6−2107号公報JP-A-6-2107 特開2007−217771号公報JP 2007-217771 A

しかしながら、フライス切削やドリル加工、エンドミル加工等の断続的な衝撃がかかる回転工具の加工や、表面が粗い被削材を旋削加工するような加工において、上記特許文献1、2の構成の切削工具を用いた場合、切刃において被覆層のチッピングや剥離を充分に抑制できるとは言えず、さらなる改良が必要であった。   However, in the processing of rotating tools that are subject to intermittent impacts such as milling, drilling, and end milling, and the processing of turning work materials with rough surfaces, the cutting tools configured in Patent Documents 1 and 2 above. However, it was not possible to sufficiently suppress chipping and peeling of the coating layer at the cutting edge, and further improvement was necessary.

本発明は、切刃に断続的に衝撃がかかる切削条件においても被覆層のチッピングや剥離を抑制できる切削工具を提供することを目的とする。   An object of this invention is to provide the cutting tool which can suppress the chipping and peeling of a coating layer also on the cutting conditions which an impact is intermittently applied to a cutting blade.

本発明の切削工具は、基体の表面が被覆層で被覆され、すくい面と逃げ面との交差稜線部を切刃とする切削工具であって、前記逃げ面における前記基体の表面に深さ0.5μm以内の窒素、炭素、硼素、珪素およびチタンの群から選ばれる1種以上の元素が多い基体表面冨化領域が存在し、前記すくい面における前記基体の表面には前記基体表面冨化領域が存在しないとともに、前記逃げ面における前記被覆層の厚みが前記すくい面における前記被覆層の厚みよりも1.2〜3倍厚いものである。   The cutting tool of the present invention is a cutting tool in which the surface of the base is covered with a coating layer, and the cutting edge is a cross ridge line portion between the rake face and the flank, and the depth of the surface of the base at the flank is 0. There is a substrate surface hatching region rich in one or more elements selected from the group consisting of nitrogen, carbon, boron, silicon, and titanium within 5 μm, and the substrate surface hatching region on the surface of the substrate at the rake face And the thickness of the coating layer on the flank face is 1.2 to 3 times thicker than the thickness of the coating layer on the rake face.

ここで、前記被覆層中における窒素、炭素、硼素、珪素およびチタンの群から選ばれる1種以上の元素が、前記逃げ面のほうが前記すくい面よりも多いか、または前記逃げ面における前記被覆層の表面にも深さ1μm以内の炭素、硼素、珪素およびチタンの群から選ばれる1種以上の元素が多い被覆層表面冨化領域が存在し、前記すくい面には前記被覆層表面冨化領域が存在しないことが望ましい。   Here, one or more elements selected from the group consisting of nitrogen, carbon, boron, silicon, and titanium in the coating layer are more on the flank surface than the rake surface, or the coating layer on the flank surface There is also a coating layer surface hatching region rich in one or more elements selected from the group consisting of carbon, boron, silicon and titanium within a depth of 1 μm, and the rake surface has the coating layer surface hatching region on the rake surface. It is desirable that is not present.

また、前記基体がCoを結合相とする超硬合金からなり、前記基体表面冨化領域の内部に隣接して、Co冨化層が存在することが望ましい。   Further, it is desirable that the base is made of a cemented carbide having Co as a binder phase, and a Co hatched layer is present adjacent to the inside of the base surface hatched area.

本発明の切削工具によれば、基体の表面の逃げ面のみにイオン注入などの手法によって深さ0.5μm以内の窒素、炭素、硼素、珪素およびチタンの群から選ばれる1種以上の元素が多い基体表面冨化領域を存在させて、逃げ面における被覆層の厚みをすくい面における被覆層の厚みよりも1.2〜3倍に厚くすることによって、強い衝撃のかかる条件での切削において耐摩耗性が求められる逃げ面においては被覆層が厚くても剥離せずかつ摩耗しにくい構成とし、被覆層が剥離しやすいすくい面においては被覆層の剥離を防止できる構成として、耐摩耗性および耐欠損性を兼ね備えた構成からなる。   According to the cutting tool of the present invention, at least one element selected from the group of nitrogen, carbon, boron, silicon and titanium having a depth of 0.5 μm or less by a technique such as ion implantation only on the flank of the surface of the substrate. In the presence of many substrate surface hatching regions, the thickness of the coating layer on the flank face is 1.2 to 3 times greater than the thickness of the coating layer on the rake face. The flank that requires wear is configured so that it does not peel off and is not easily worn even if the coating layer is thick, and the rake surface where the coating layer is easy to peel off can prevent peeling of the coating layer. It consists of a structure that also has deficiency.

ここで、前記被覆層中における窒素、炭素、硼素、珪素およびチタンの群から選ばれる1種以上の元素が、前記逃げ面のほうが前記すくい面よりも多いか、または前記逃げ面における前記被覆層の表面にも深さ1μm以内の炭素、硼素、珪素およびチタンの群から選ばれる1種以上の元素が多い被覆層表面冨化領域が存在し、前記すくい面には前記被覆層表面冨化領域が存在しない構成とすることによって、逃げ面における耐チッピング性がより向上する。   Here, one or more elements selected from the group consisting of nitrogen, carbon, boron, silicon, and titanium in the coating layer are more on the flank surface than the rake surface, or the coating layer on the flank surface There is also a coating layer surface hatching region rich in one or more elements selected from the group consisting of carbon, boron, silicon and titanium within a depth of 1 μm, and the rake surface has the coating layer surface hatching region on the rake surface. By adopting a configuration that does not exist, chipping resistance at the flank face is further improved.

また、前記基体がCoを結合相とする超硬合金からなり、前記基体表面冨化領域の内部に隣接して、Co冨化層が存在することが、逃げ面における耐衝撃性を高める点で望ましい。   In addition, the fact that the substrate is made of a cemented carbide having Co as a binder phase, and a Co hatched layer is present adjacent to the inside of the substrate surface hatched region, improves the impact resistance on the flank. desirable.

本発明の切削工具の好適例であるスローアウェイ式ミリング工具の一例を示す概略斜視図である。It is a schematic perspective view which shows an example of the throw away type milling tool which is a suitable example of the cutting tool of this invention. 図1のスローアウェイ式ミリング工具に装着されるスローアウェイチップの一例を示し、(a)概略斜視図、(b)平面図である。An example of the throw away tip with which the throw away type milling tool of Drawing 1 is equipped is shown, (a) a schematic perspective view, (b) a top view. 図2(a)におけるa−a線についての概略断面図である。It is a schematic sectional drawing about the aa line in Fig.2 (a).

本発明の切削工具の一例について、その好適例であるスローアウェイチップ(以下、単にチップと略す。)を装着したスローアウェイ式ミリング工具(以下、単に工具と略す。)Aの先端部についての概略斜視図である図1、装着されるチップ1の(a)概略斜視図、(b)平面図である図2、図2のチップ1について図2(a)のa−aラインについての断面図である図3を基に説明する。   About an example of the cutting tool of this invention, the outline about the front-end | tip part of the throw-away type milling tool (henceforth only abbreviated as a tool) A which equipped with the throw-away tip (henceforth only abbreviated as a chip) which is the example of the cutting tool. FIG. 1 is a perspective view, (a) is a schematic perspective view of a chip 1 to be mounted, (b) is a plan view of FIG. 2, and FIG. 2 is a cross-sectional view of the chip 1 of FIG. This will be described with reference to FIG.

図1〜3によれば、チップ1は、主面が略平板状を呈する基体2のすくい面3をなす主面および逃げ面4をなす側面との交差稜線がコーナー切刃5を挟んで主切刃6および副切刃7を具備した切刃8をなしている。また、工具Aではホルダ20のチップポケット21にチップ1が装着されている。そして、チップ1の中央部に形成されているねじ穴23にねじ22を挿入してホルダ20にねじ22を螺合することにより、チップ1がホルダ20にクランプされている。   According to FIGS. 1 to 3, the tip 1 has a crossed ridge line between the main surface forming the rake face 3 and the side surface forming the flank 4 of the base 2 having a substantially flat main surface across the corner cutting edge 5. A cutting edge 8 having a cutting edge 6 and a secondary cutting edge 7 is formed. In the tool A, the chip 1 is mounted in the chip pocket 21 of the holder 20. And the chip | tip 1 is clamped by the holder 20 by inserting the screw | thread 22 in the screw hole 23 currently formed in the center part of the chip | tip 1, and screwing the screw | thread 22 in the holder 20. FIG.

ここで、図3に示すように、チップ1は、基体2の表面が被覆層9で被覆され、すくい面3と逃げ面4との交差稜線部が切刃8をなしており、逃げ面4における基体2の表面に深さ0.5μm以内の窒素、炭素、硼素、珪素およびチタンの群から選ばれる1種以上の元素が多い基体表面冨化領域11が存在し、すくい面3における基体2の表面には基体表面冨化領域11が存在しないとともに、逃げ面4における被覆層9の厚みがすくい面3における被覆層9の厚みよりも1.2〜3倍厚い構成となっている。   Here, as shown in FIG. 3, in the chip 1, the surface of the base body 2 is covered with the coating layer 9, and the intersecting ridge line portion between the rake face 3 and the flank face 4 forms a cutting edge 8. In the surface of the substrate 2, a substrate surface hatching region 11 containing one or more elements selected from the group consisting of nitrogen, carbon, boron, silicon and titanium within a depth of 0.5 μm is present. The surface of the substrate 11 does not have the substrate surface hatching region 11, and the thickness of the coating layer 9 on the flank 4 is 1.2 to 3 times larger than the thickness of the coating layer 9 on the rake face 3.

これによって、強い衝撃のかかる条件での切削において耐摩耗性と耐欠損性が求められる逃げ面においては被覆層が厚くても剥離せずかつ摩耗しにくく、被覆層9が剥離しやすいすくい面3においては被覆層9の剥離を防止できる構成となり、チップ1は耐摩耗性および耐欠損性を兼ね備えた構成となる。   As a result, a rake face 3 in which the coating layer 9 is easy to peel off because it does not peel off and is not easily worn even if the coating layer is thick on the flank surface that requires wear resistance and chipping resistance in cutting under a strong impact condition. In this case, the coating layer 9 can be prevented from being peeled off, and the chip 1 has a configuration having both wear resistance and chipping resistance.

ここで、被覆層9中における窒素、炭素、硼素、珪素およびチタンの群から選ばれる1種以上の元素が、逃げ面4のほうがすくい面3よりも多いか、または逃げ面4における被覆層9の表面にも深さ0.5μm以内の窒素、炭素、硼素、珪素およびチタンの群から選ばれる1種以上の元素が多い被覆層表面冨化領域12が存在し、すくい面3における被覆層9の表面には被覆層表面冨化領域12が存在しないことが、逃げ面4における耐チッピング性を向上させる点で望ましい。   Here, one or more elements selected from the group of nitrogen, carbon, boron, silicon and titanium in the covering layer 9 are more on the flank face 4 than on the rake face 3 or on the flank face 4. Also on the surface of the coating layer, there is a coating layer surface hatching region 12 containing one or more elements selected from the group consisting of nitrogen, carbon, boron, silicon and titanium within a depth of 0.5 μm. In order to improve the chipping resistance on the flank 4, it is desirable that the coating layer surface hatching region 12 does not exist on the surface.

また、基体2がCoを結合相とする超硬合金からなり、基体表面冨化領域11の内側に隣接してCo冨化層13が存在することが、逃げ面4における耐衝撃性を高める点で望ましい。   Further, the fact that the base body 2 is made of a cemented carbide having a binder phase of Co and the Co hatched layer 13 exists adjacent to the inside of the base surface hatched area 11 improves the impact resistance on the flank 4. Is desirable.

さらに、コーナー切刃5にホーニング10を設けることもできる。ホーニング10の形状は、被覆層9の剥離を抑制するためにRホーニングであることが望ましいが、Cホーニング(チャンファホーニング)であってもよい。なお、ホーニング量は、すくい面3側Rと逃げ面4側Rとの比率R/Rが1〜1.5であることが切刃5における切れ味と耐チッピング性能との兼ね合いで望ましい。また、底刃である主切刃6側が大きく外周刃である副切刃7側が小さいことが、切刃8の各位置での切削環境に適した構成を実現して、最適な切削性能を発揮できるために望ましい。 Furthermore, the honing 10 can be provided on the corner cutting edge 5. The shape of the honing 10 is desirably R honing in order to suppress peeling of the coating layer 9, but may be C honing (Chanhwa honing). Incidentally, honing amount, it ratio R r / R f of the rake face 3 side R r and the flank 4 side R f is 1 to 1.5 is in view of the sharpness and chipping resistance in cutting edge 5 desirable. In addition, the fact that the main cutting edge 6 side as the bottom edge is large and the secondary cutting edge 7 side as the outer edge is small realizes a configuration suitable for the cutting environment at each position of the cutting edge 8 and exhibits optimum cutting performance. Desirable because it can.

さらに、被覆層9は、TiC、TiN、TiCN、Al、TiAlN等が好適に使用可能である。特に、TiAlNについては、単純なTi1−aAlNにて構成されていても良いが、例えば、Ti1−a−bAl(C1−x)(ただし、MはTiを除く周期表第4、5、6族元素、希土類元素、Si、ダイヤモンド、ダイヤモンドライクカーボン(DLC)および立方晶窒化硼素(cBN)の群から選ばれる1種以上であり、0≦a<1、0<b≦1、0≦x≦1である。)にて構成されていることが望ましい。なお、被覆層9の組成はエネルギー分散型X線分光(EDS)分析法またはX線光電子分光分析法(XPS)にて測定できる。 Further, the coating layer 9, TiC, TiN, TiCN, Al 2 O 3, TiAlN or the like can be suitably used. In particular, TiAlN may be composed of simple Ti 1-a Al a N. For example, Ti 1-a-B Al a M b (C x N 1-x ) (where M is It is at least one selected from the group consisting of Group 4, 5, 6 elements, rare earth elements, Si, diamond, diamond-like carbon (DLC), and cubic boron nitride (cBN), excluding Ti, and 0 ≦ a < 1 and 0 <b ≦ 1, and 0 ≦ x ≦ 1). The composition of the coating layer 9 can be measured by energy dispersive X-ray spectroscopy (EDS) analysis or X-ray photoelectron spectroscopy (XPS).

また、基体としては、炭化タングステンや、炭窒化チタンを主成分とする硬質相とコバルト、ニッケル等の鉄族金属を主成分とする結合相とからなる超硬合金やサーメットの他、窒化ケイ素や、酸化アルミニウムを主成分とするセラミック、多結晶ダイヤモンドや立方晶窒化ホウ素からなる硬質相と、セラミックスや鉄族金属等の結合相とを超高圧下で焼成する超高圧焼結体等の硬質材料が好適に使用される。   In addition, as a substrate, tungsten carbide, a cemented carbide or cermet composed of a hard phase mainly composed of titanium carbonitride and a binder phase mainly composed of an iron group metal such as cobalt and nickel, silicon nitride, , Hard materials such as ceramics mainly composed of aluminum oxide, hard phases made of polycrystalline diamond or cubic boron nitride, and bonded phases such as ceramics and iron group metals under super high pressure, etc. Are preferably used.

本発明の切削工具は、切削工具として種々の切削条件で使用することができるが、特に、切削油を使用しながら切削加工を行う湿式切削条件で、中でも、エンドミル加工、ドリル加工を含むフライス加工や、表面が粗い被削材の旋削加工をする際に優れた耐摩耗性および耐欠損性を示す。   The cutting tool of the present invention can be used as a cutting tool under various cutting conditions. In particular, it is a wet cutting condition in which cutting is performed while using a cutting oil, and in particular, milling including end milling and drilling. In addition, it exhibits excellent wear resistance and fracture resistance when turning a work material with a rough surface.

(製造方法)
次に、本発明の切削工具の製造方法の一例について説明する。
(Production method)
Next, an example of the manufacturing method of the cutting tool of this invention is demonstrated.

まず、工具形状の基体を成形、焼成し、この基体に対して、所望によりすくい面、またはすくい面および逃げ面に研削加工を施す。次に、この基体表面の逃げ面のみにイオン注入を行う。このとき、基体表面の特定の部位のみに局所的にイオン注入を行うことが重要である。   First, a tool-shaped substrate is molded and fired, and the rake face or the rake face and the flank face are ground on the base as desired. Next, ion implantation is performed only on the flank of the substrate surface. At this time, it is important to locally ion-implant only a specific part of the substrate surface.

その後、基体の表面に、被覆層を成膜する。被覆層の成膜方法として、イオンプレーティング法やスパッタリング法等の物理蒸着(PVD)法が好適に適応可能である。   Thereafter, a coating layer is formed on the surface of the substrate. A physical vapor deposition (PVD) method such as an ion plating method or a sputtering method can be suitably applied as the coating layer forming method.

成膜方法の一例についての詳細について説明すると、被覆層をイオンプレーティング法で作製する場合には、金属チタン(Ti)、金属アルミニウム(Al)、金属M(ただし、MはTiを除く周期表第4、5、6族元素、希土類元素およびSiから選ばれる1種以上)をそれぞれ独立に含有する金属ターゲットまたは複合化した合金ターゲットに用いる。   The details of an example of the film forming method will be described. When the coating layer is manufactured by an ion plating method, metal titanium (Ti), metal aluminum (Al), metal M (where M is a periodic table excluding Ti). One or more selected from Group 4, 5, 6 elements, rare earth elements and Si) are used independently for metal targets or composite alloy targets.

成膜条件としては、このターゲットを用いて、アーク放電やグロー放電などにより金属源を蒸発させイオン化すると同時に、窒素源の窒素(N)ガスや炭素源のメタン(CH)/アセチレン(C)ガスと反応させる条件が好適に採用できる。このとき、窒素(N)ガスやアルゴン(Ar)ガスを用いて、イオンプレーティング法またはスパッタリング法によって、成膜温度450〜550℃、スパッタ電力6kW〜9kWまたはバイアス電圧30〜200Vにて被覆層を成膜する。 As the film forming conditions, using this target, the metal source is evaporated and ionized by arc discharge or glow discharge, and at the same time, nitrogen (N 2 ) gas as a nitrogen source or methane (CH 4 ) / acetylene (C) as a carbon source. Conditions for reacting with 2 H 2 ) gas can be suitably employed. At this time, using nitrogen (N 2 ) gas or argon (Ar) gas, coating is performed at a deposition temperature of 450 to 550 ° C., a sputtering power of 6 kW to 9 kW, or a bias voltage of 30 to 200 V by an ion plating method or a sputtering method. Deposit layers.

なお、成膜に際して、逃げ面方向へイオン注入を併用しながら成膜処理を行うことも可能であり、これによって、逃げ面における被覆層の厚みを厚くしても剥離しくにい被覆層を成膜することが可能である。また、成膜した後に、逃げ面の被覆層表面からイオン注入を行うことも可能である。さらに、成膜する際には、工具の逃げ面がターゲットに対向する向きに基体をセットして成膜を行う。   In film formation, it is also possible to perform film formation while using ion implantation in the direction of the flank surface. This makes it possible to form a coating layer that is difficult to peel off even if the thickness of the coating layer on the flank surface is increased. It is possible to membrane. It is also possible to perform ion implantation from the surface of the coating layer on the flank after film formation. Further, when forming a film, the substrate is set in such a direction that the flank of the tool faces the target.

本発明によれば、逃げ面においては内部応力が低いために、被覆層の厚みを増加させても内部応力の蓄積による耐チッピング性の低下などが生じにくい傾向にある。そのため、より厚い被覆層の成膜が可能となり、その場合でも加工中における脆性的な剥離も抑制され、切削工具による耐摩耗性向上の効果を発揮させることができる。   According to the present invention, since the internal stress is low at the flank, even if the thickness of the coating layer is increased, the chipping resistance is not easily lowered due to the accumulation of internal stress. Therefore, it is possible to form a thicker coating layer, and even in this case, brittle peeling during processing is suppressed, and the effect of improving wear resistance by the cutting tool can be exhibited.

平均粒径0.8μmの炭化タングステン(WC)粉末を主成分として、平均粒径1.5μmの金属コバルト(Co)粉末を9質量%、平均粒径1.0μmの炭化バナジウム(VC)粉末を0.2質量%、平均粒径1.0μmの炭化クロム(Cr)粉末を0.6質量%の割合で添加し混合して、プレス成形により刃先交換式ミリング用スローアウェイチップ形状(BDMT11T308ER−JT)に成形した後、脱バインダ処理を施し、0.01Paの真空中、1460℃で1時間焼成して超硬合金を作製した。 Mainly composed of tungsten carbide (WC) powder having an average particle size of 0.8 μm, 9% by mass of metallic cobalt (Co) powder having an average particle size of 1.5 μm, and vanadium carbide (VC) powder having an average particle size of 1.0 μm. Chromium carbide (Cr 3 C 2 ) powder of 0.2% by mass and average particle size of 1.0 μm is added and mixed at a ratio of 0.6% by mass, and the tip-away tip shape for milling changeable blade tip by press molding ( BDMT11T308ER-JT) was subjected to a binder removal treatment and fired at 1460 ° C. for 1 hour in a vacuum of 0.01 Pa to produce a cemented carbide.

また、各試料のすくい面表面をブラシ加工およびブラスト加工によって研磨加工するとともに、切刃にブラシ加工を施して、ホーニング量がすくい面側から見た研磨量R=0.03mm、逃げ面側から見た研磨量R=0.02mmとなるように刃先処理(ホーニング)を行った。そして、表1の方向からイオン注入を行った。 Further, the rake face surface of each sample is polished by brushing and blasting, and the cutting edge is brushed so that the honing amount is the polishing amount R r = 0.03 mm as viewed from the rake face side, the flank side The blade edge treatment (honing) was performed so that the polishing amount R f as seen from FIG. Then, ion implantation was performed from the direction of Table 1.

Figure 0005334704
Figure 0005334704

次に、このようにして作製した基体に対して、アークイオンプレーティング法により成膜温度500℃で表1に示す条件でTiAlN組成の被覆層を成膜してスローアウェイチップを作製した。なお、試料No.1、2については成膜後に逃げ面にてイオン注入を行い、試料No.3〜8については成膜中に表1に記載した方向からイオン注入を併用した。その後、さらに表1の条件で被覆層の表面からイオン注入を行った。また、被覆層の厚みを調整するために、試料のセットの向き、ターゲットとの距離を調整して成膜した。   Next, a coating layer having a TiAlN composition was formed on the substrate thus prepared at a film forming temperature of 500 ° C. under the conditions shown in Table 1 by an arc ion plating method to manufacture a throw-away tip. Sample No. For Nos. 1 and 2, ion implantation was performed on the flank after film formation. As for 3 to 8, ion implantation was used in combination from the direction described in Table 1 during film formation. Thereafter, ions were further implanted from the surface of the coating layer under the conditions shown in Table 1. Further, in order to adjust the thickness of the coating layer, the film was formed by adjusting the direction of setting the sample and the distance from the target.

得られたチップに対して、被覆層の表面からSIMS(二次イオン質量分析)にて組成分析を行った。また、基体と被覆層との界面における組成分析をXPS(X線光電子分光分析)にて行った。さらに、切削工具の断面を走査型電子顕微鏡にて観察して、すくい面および逃げ面における被覆層の厚みを測定した。   The obtained chip was subjected to composition analysis by SIMS (secondary ion mass spectrometry) from the surface of the coating layer. Further, composition analysis at the interface between the substrate and the coating layer was performed by XPS (X-ray photoelectron spectroscopy). Furthermore, the cross section of the cutting tool was observed with a scanning electron microscope, and the thickness of the coating layer on the rake face and flank face was measured.

また、各チップをホルダに取り付けて図1のエンドミルを作製し、下記条件で切削試験を行った。
切削方法:肩削り(ミリング加工)
被削材 :SKD11
切削速度:150m/min
送り :0.12mm/tooth
切り込み:横切り込み10mm、深さ切り込み3mm
切削状態:湿式
評価方法:15分間切削した時点で、刃先の観察を行うと共に、逃げ面における摩耗量(幅)を測定した。なお、加工済みのホーニング量は摩耗幅には含めないように注意した。
Moreover, each chip | tip was attached to the holder, the end mill of FIG. 1 was produced, and the cutting test was done on the following conditions.
Cutting method: Shoulder (milling)
Work material: SKD11
Cutting speed: 150 m / min
Feeding: 0.12mm / tooth
Incision: Horizontal incision 10mm, depth incision 3mm
Cutting state: wet evaluation method: At the time of cutting for 15 minutes, the cutting edge was observed and the wear amount (width) on the flank was measured. Care was taken not to include the processed honing amount in the wear width.

Figure 0005334704
Figure 0005334704

表1、2より、逃げ面に基体表面冨化領域が存在しない試料No.9では、逃げ面での摩耗幅が大きく、また、すくい面に基体表面冨化領域が存在する試料No.6では、摩耗量が大きいものであった。さらに、逃げ面における被覆層の厚みとすくい面における被覆層の厚みとの比率が1.2よりも小さい試料No.7でも、摩耗量が大きくなり、逆に、逃げ面における被覆層の厚みとすくい面における被覆層の厚みとの比率が3よりも大きい試料No.8では、チッピングが発生した。   From Tables 1 and 2, sample no. In Sample No. 9, the wear width on the flank face is large, and the substrate surface hatching region is present on the rake face. In No. 6, the amount of wear was large. Further, the sample No. 1 in which the ratio of the thickness of the coating layer on the flank surface to the thickness of the coating layer on the rake surface is smaller than 1.2. 7 also increased the amount of wear and, conversely, the ratio of the coating layer thickness on the flank surface to the coating layer thickness on the rake surface was greater than 3. In No. 8, chipping occurred.

これに対し、本発明に従う試料No.1〜5では、切削性能に優れたものであった。   On the other hand, sample no. In 1-5, it was what was excellent in cutting performance.

A スローアウェイ式ミリング工具(工具)
1 スローアウェイチップ(チップ)
2 基体
3 すくい面
4 逃げ面
5 コーナー切刃
6 主切刃
7 副切刃
8 切刃
9 被覆層
10 ホーニング
すくい面3側のホーニング量
逃げ面4側のホーニング量
20 ホルダ
21 チップポケット
22 ねじ
23 ねじ穴
A Throw-away milling tool (tool)
1 Throw away tip (chip)
2 Substrate 3 Rake face 4 Relief face 5 Corner cutting edge 6 Main cutting edge 7 Sub cutting edge 8 Cutting edge 9 Covering layer 10 Honing R r Honing amount on rake face 3 side R f Honing amount on flank face 4 side Holder 21 Tip Pocket 22 Screw 23 Screw hole

Claims (4)

基体の表面が被覆層で被覆され、すくい面と逃げ面との交差稜線部を切刃とする切削工具であって、前記逃げ面における前記基体の表面に深さ0.5μm以内の窒素、炭素、硼素、珪素およびチタンの群から選ばれる1種以上の元素が多い基体表面冨化領域が存在し、前記すくい面における前記基体の表面には前記基体表面冨化領域が存在しないとともに、前記逃げ面における前記被覆層の厚みが前記すくい面における前記被覆層の厚みよりも1.2〜3倍厚い切削工具。   A cutting tool in which the surface of a base is coated with a coating layer, and the cutting edge is a cross ridge line portion between a rake face and a flank, and the surface of the base at the flank is nitrogen or carbon having a depth of 0.5 μm or less. There is a substrate surface hatching region rich in one or more elements selected from the group consisting of boron, silicon, and titanium, the substrate surface hatching region does not exist on the surface of the substrate at the rake face, and the escape A cutting tool in which the thickness of the coating layer on the surface is 1.2 to 3 times thicker than the thickness of the coating layer on the rake surface. 前記被覆層中における窒素、炭素、硼素、珪素およびチタンの群から選ばれる1種以上の元素が、前記逃げ面のほうが前記すくい面よりも多い請求項1記載の切削工具。   2. The cutting tool according to claim 1, wherein the flank has a larger amount of one or more elements selected from the group of nitrogen, carbon, boron, silicon and titanium in the coating layer than the rake face. 前記逃げ面における前記被覆層の表面にも深さ1μm以内の炭素、硼素、珪素およびチタンの群から選ばれる1種以上の元素が多い被覆層表面冨化領域が存在し、前記すくい面には前記被覆層表面冨化領域が存在しない請求項1記載の切削工具。   The surface of the coating layer on the flank surface also has a coating layer surface hatching region rich in one or more elements selected from the group of carbon, boron, silicon and titanium within a depth of 1 μm, and the rake surface has The cutting tool according to claim 1, wherein the coating layer surface hatching region does not exist. 前記基体がCoを結合相とする超硬合金からなり、前記基体表面冨化領域の内側に隣接して、Co冨化層が存在する請求項1乃至3のいずれか記載の切削工具。   The cutting tool according to any one of claims 1 to 3, wherein the base body is made of a cemented carbide having Co as a binder phase, and a Co hatched layer is present adjacent to the inside of the base surface hatched area.
JP2009150612A 2009-06-25 2009-06-25 Cutting tools Expired - Fee Related JP5334704B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009150612A JP5334704B2 (en) 2009-06-25 2009-06-25 Cutting tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009150612A JP5334704B2 (en) 2009-06-25 2009-06-25 Cutting tools

Publications (2)

Publication Number Publication Date
JP2011005582A JP2011005582A (en) 2011-01-13
JP5334704B2 true JP5334704B2 (en) 2013-11-06

Family

ID=43562850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009150612A Expired - Fee Related JP5334704B2 (en) 2009-06-25 2009-06-25 Cutting tools

Country Status (1)

Country Link
JP (1) JP5334704B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5680465B2 (en) * 2011-03-29 2015-03-04 住友電工ハードメタル株式会社 Cutting edge exchangeable cutting tip, cutting method using the same, and manufacturing method of cutting edge exchangeable cutting tip
JP5764181B2 (en) * 2013-10-31 2015-08-12 ユニオンツール株式会社 Hard film coated cutting tool

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6362873A (en) * 1986-09-03 1988-03-19 Hitachi Ltd Ion-implanted cutting tool
JPH0215160A (en) * 1988-07-01 1990-01-18 Mitsubishi Metal Corp Production of cutting tool made of surface-treated high speed steel
JP2770372B2 (en) * 1989-02-21 1998-07-02 住友電気工業株式会社 Coated cemented carbide for wear-resistant tools and method for producing the same
JP2775298B2 (en) * 1989-06-28 1998-07-16 京セラ株式会社 Cermet tool
JP2004122263A (en) * 2002-09-30 2004-04-22 Sumitomo Electric Ind Ltd Coated cutting tool for highly precise work
JP2007217771A (en) * 2006-02-20 2007-08-30 Hitachi Tool Engineering Ltd Hard film coated member and its manufacturing method

Also Published As

Publication number Publication date
JP2011005582A (en) 2011-01-13

Similar Documents

Publication Publication Date Title
JP5116777B2 (en) Cutting tools
JP5542925B2 (en) Cutting tools
JP5052666B2 (en) Surface coating tool
US20060292399A1 (en) Composite coating for finishing of hardened steels
EP3440232A1 (en) Coated cutting tool
JP4748450B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP2006231422A (en) Surface-coated cermet cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting
WO2018216256A1 (en) Coating and cutting tool
JP5404232B2 (en) Cutting tools
JP5517577B2 (en) Cutting tool for grooving
JP2009285760A (en) Cutware
JP5744336B2 (en) Cutting tools
JP5334704B2 (en) Cutting tools
JP5247377B2 (en) Cutting tools
CN109415799B (en) Coated cutting tool
JP5495735B2 (en) Cutting tools
JP2011194535A (en) Surface-coat cutting tool with hard coating layer exhibiting excellent chipping resistance
JP5241538B2 (en) Cutting tools
JP4808972B2 (en) Surface coated cutting tool
JP2012139795A (en) Surface coated cutting tool with hard coating layer exhibiting superior resistance against peeling and chipping in high speed cutting of soft hard-to-cut material
JP5094293B2 (en) Cutting tools
JP5553013B2 (en) A surface-coated cutting tool that provides excellent peeling resistance and excellent chipping resistance in high-speed, high-feed cutting of hard difficult-to-cut materials.
JP2003175405A (en) Surface-coated cemented-carbide cutting tool having hard coating layer exhibiting excellent heat resistance
JP2011093019A (en) Cutting tool
WO2023008113A1 (en) Coated tool and cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130730

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees