JP2011093019A - Cutting tool - Google Patents

Cutting tool Download PDF

Info

Publication number
JP2011093019A
JP2011093019A JP2009247263A JP2009247263A JP2011093019A JP 2011093019 A JP2011093019 A JP 2011093019A JP 2009247263 A JP2009247263 A JP 2009247263A JP 2009247263 A JP2009247263 A JP 2009247263A JP 2011093019 A JP2011093019 A JP 2011093019A
Authority
JP
Japan
Prior art keywords
region
breaker
coating layer
substrate
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009247263A
Other languages
Japanese (ja)
Inventor
Masato Matsuzawa
正人 松澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2009247263A priority Critical patent/JP2011093019A/en
Publication of JP2011093019A publication Critical patent/JP2011093019A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cutting tool capable of inhibiting wear due to oxidation and crater wear in a breaker and also preventing a coating layer of a cutting blade from chipping or peeling. <P>SOLUTION: A throw-away tip 1 has a surface of a substrate 2 coated with the coating layer 9, has a crossing ridge line between a rake face 3 and a flank face 4 serving as the cutting blades (a front cutting blade 5 and a lateral cutting blade 7), and includes a breaker region on an area of the rake face 3 connected with the front cutting blade 5. A substrate-surface enriched region 11 having a depth of not more than 0.5 μm and enriched in one or more elements selected from a group of nitrogen, carbon, boron, silicon, and titanium is present on the surface of the substrate 2 of the breaker region 8. The surface of the substrate 2 in a region other than the breaker region 8 has no substrate-surface enriched region 11. The throw-away tip 1 has a thickness of the coating layer 9 on the breaker region 1.2-3 times thicker than the thickness of the coating layer 9 on the region other than the breaker region 8. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、基体の表面に被覆層が形成された切削工具に関する。   The present invention relates to a cutting tool in which a coating layer is formed on the surface of a substrate.

現在、切削工具では耐摩耗性や摺動性、耐欠損性が必要とされるため、WC基超硬合金やTiCN基サーメット等の硬質基体の表面に様々な被覆層を成膜して切削工具の耐摩耗性、耐欠損性を向上させる手法が使われている。   At present, cutting tools require wear resistance, slidability, and fracture resistance. Therefore, various coating layers are formed on the surface of a hard substrate such as a WC-based cemented carbide or TiCN-based cermet, and the cutting tool is formed. A technique for improving the wear resistance and fracture resistance of steel is used.

例えば、特許文献1では、基体の表面に被覆層(セラミックス膜)を成膜した部材について、被覆層の表面からイオン注入して被覆層の表面にイオン注入した金属原子の濃度富化層を形成することによって、切削抵抗の大きい被削材を切削する場合でもチッピングの発生を抑制できることが開示されている。   For example, in Patent Document 1, a member having a coating layer (ceramic film) formed on the surface of a substrate is ion-implanted from the surface of the coating layer to form a metal atom concentration-enriched layer that is ion-implanted on the surface of the coating layer. Thus, it is disclosed that the occurrence of chipping can be suppressed even when a work material having a large cutting resistance is cut.

また、特許文献2では、被覆層を成膜する前の基体の表面にNイオン注入を行い、その後に被覆層を成膜することによって、基体と被覆層との界面に発生する歪みを抑制できることが開示されている。   Further, in Patent Document 2, N ion implantation is performed on the surface of the substrate before the coating layer is formed, and then the coating layer is formed, thereby suppressing distortion generated at the interface between the substrate and the coating layer. Is disclosed.

特開平6−2107号公報JP-A-6-2107 特開2007−217771号公報JP 2007-217771 A

しかしながら、すくい面の切刃に続く位置にブレーカを形成した切削工具において、上記特許文献1、2の構成の切削工具を用いた場合、加工条件によっては、ブレーカ領域における酸化摩耗やすくい面のクレータ摩耗が大きくなって、工具寿命に至るケースがあることがわかった。   However, in the cutting tool in which the breaker is formed at the position following the cutting edge of the rake face, when the cutting tool having the configuration of Patent Documents 1 and 2 is used, depending on the machining conditions, the crater of the face that is easily oxidized and worn in the breaker region. It has been found that there are cases where wear increases and tool life is reached.

本発明は、ブレーカ領域における酸化摩耗やクレータ摩耗を抑制しつつ、切刃における被覆層のチッピングや剥離を抑制できる切削工具を提供することを目的とする。   An object of this invention is to provide the cutting tool which can suppress the chipping and peeling of the coating layer in a cutting blade, suppressing the oxidation wear and crater wear in a breaker area | region.

本発明の切削工具は、基体の表面が被覆層で被覆され、すくい面と逃げ面との交差稜線部を切刃とし、前記すくい面の前記切刃に続く位置にブレーカ領域を備えたものであって、前記ブレーカ領域の少なくとも切刃側の領域における前記基体の表面に深さ0.5μm以内の窒素、炭素、硼素、珪素およびチタンの群から選ばれる1種以上の元素が多い基体表面冨化領域が存在し、前記ブレーカ領域以外の領域における前記基体の表面には前記基体表面冨化領域が存在せずに、前記ブレーカ領域の少なくとも切刃側の領域における前記被覆層の厚みが前記ブレーカ領域以外の領域における前記被覆層の厚みよりも1.2〜3倍厚いものである。   The cutting tool of the present invention is such that the surface of the base is covered with a coating layer, the cutting edge is the intersection ridge line portion of the rake face and the flank face, and a breaker region is provided at a position following the cutting edge of the rake face. And a surface of the substrate containing at least one element selected from the group consisting of nitrogen, carbon, boron, silicon and titanium within a depth of 0.5 μm on the surface of the substrate in at least the cutting edge side region of the breaker region. In the region other than the breaker region, there is no substrate surface hatching region on the surface of the substrate, and the thickness of the coating layer in the region at least on the cutting edge side of the breaker region is the breaker region. It is 1.2 to 3 times thicker than the thickness of the coating layer in a region other than the region.

ここで、前記被覆層中における窒素、炭素、硼素、珪素およびチタンの群から選ばれる1種以上の元素は、前記ブレーカ領域の少なくとも切刃側の領域の方がそれ以外の領域よりも多いことが望ましい。   Here, the one or more elements selected from the group of nitrogen, carbon, boron, silicon and titanium in the coating layer are more in the region on at least the cutting edge side of the breaker region than in the other regions. Is desirable.

また、前記ブレーカ領域の少なくとも切刃側の領域における前記被覆層の表面にも深さ1μm以内の炭素、硼素、珪素およびチタンの群から選ばれる1種以上の元素が多い被覆層表面冨化領域が存在し、前記ブレーカ領域以外の領域には前記被覆層表面冨化領域が存在しないことが望ましい。   Further, the surface of the coating layer in the region at least on the cutting edge side of the breaker region also has a coating layer surface hatching region rich in at least one element selected from the group consisting of carbon, boron, silicon and titanium within a depth of 1 μm. It is desirable that the coating layer surface hatching region does not exist in a region other than the breaker region.

さらに、前記ブレーカ領域に、エネルギーを小さくした指向性のイオン注入を施すことによって局所的に前記被覆層の追加成膜を行うことが望ましい。   Furthermore, it is desirable to additionally form the coating layer locally by performing directional ion implantation with reduced energy in the breaker region.

本発明の切削工具によれば、基体の表面のブレーカ領域の少なくとも切刃側の領域のみにイオン注入などの手法によって深さ0.5μm以内の窒素、炭素、硼素、珪素およびチタンの群から選ばれる1種以上の元素が多い基体表面冨化領域を存在させることによって、ブレーカ領域の少なくとも切刃側の領域における被覆層の厚みをブレーカ領域以外のすくい面における被覆層の厚みよりも1.2〜3倍に厚く成膜しても、切屑が延び易い高速切削加工条件での切削において、耐摩耗性が求められるブレーカ領域においては被覆層が厚くても剥離せずかつ摩耗しにくく、かつ被覆層が剥離しやすい切刃においては被覆層の剥離を防止できる構成として、耐摩耗性および耐欠損性を兼ね備えたものとからなる。   According to the cutting tool of the present invention, it is selected from the group of nitrogen, carbon, boron, silicon and titanium having a depth of 0.5 μm or less by a technique such as ion implantation only at least on the cutting edge side region of the breaker region on the surface of the substrate. By allowing the substrate surface hatching region rich in one or more elements to be present, the thickness of the coating layer in the region at least on the cutting edge side of the breaker region is 1.2 than the thickness of the coating layer on the rake face other than the breaker region. Even when the film is formed three times thicker, in cutting under high-speed cutting conditions where chips are likely to extend, in the breaker area where wear resistance is required, even if the coating layer is thick, it does not peel off and is not easily worn. In the cutting blade in which the layer is easy to peel off, the coating layer is configured to prevent peeling of the coating layer and has both wear resistance and fracture resistance.

また、前記ブレーカ領域には、全体の成膜の他に、エネルギーを小さくした指向性のイオン注入を別途施すことによって局所的な成膜が可能でなり、ブレーカ領域における被覆層の厚みを他の部分よりも局所的に厚くすることができる。   In addition to the entire film formation, the breaker region can be locally formed by separately performing directional ion implantation with reduced energy, and the thickness of the coating layer in the breaker region It can be thicker locally than the part.

本発明の切削工具の好適例であるスローアウェイチップの一例を示す概略斜視図である。It is a schematic perspective view which shows an example of the throw away tip which is a suitable example of the cutting tool of this invention. 図1のスローアウェイチップのa−a線についての概略断面図であり、(a)凸状のブレーカ(ブレーカ突起)、(b)凹状のブレーカ(ブレーカ溝)の例である。It is a schematic sectional drawing about the aa line | wire of the throw away tip of FIG. 1, (a) It is an example of a convex breaker (breaker protrusion) and (b) a concave breaker (breaker groove | channel).

本発明の切削工具の一例について、その好適例であるスローアウェイチップ(以下、単にチップと略す。)についての概略斜視図である図1、図1のチップ1についてのa−a断面図である図2を基に説明する。   BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic perspective view of a throw-away tip (hereinafter simply abbreviated as a tip) that is a preferred example of an example of the cutting tool of the present invention, and FIG. This will be described with reference to FIG.

図1、2によれば、チップ1は、主面が略平板状を呈する基体2のすくい面3をなす主面および逃げ面4、6をなす側面との交差稜線が切刃(前切刃5、横切刃7)をなしている。そして、すくい面3の前切刃5に続く位置にブレーカ領域8が形成されている。   According to FIGS. 1 and 2, the tip 1 has a cutting edge (front cutting edge) where the intersecting ridge line between the main surface forming the rake face 3 and the side surfaces forming the flank faces 4, 6 of the base 2 having a substantially flat main surface is formed. 5 and a horizontal cutting edge 7). A breaker region 8 is formed at a position following the front cutting edge 5 of the rake face 3.

ここで、図2に示すように、チップ1は、基体2の表面が被覆層9で被覆され、すくい面3と逃げ面4との交差稜線部が前切刃5をなしており、ブレーカ領域8の少なくとも前切刃5側の領域における基体2の表面に深さ0.5μm以内の窒素、炭素、硼素、珪素およびチタンの群から選ばれる1種以上の元素が多い基体表面冨化領域11が存在し、ブレーカ領域8以外のすくい面3における基体2の表面には基体表面冨化領域11が存在せず、ブレーカ領域8の少なくとも前切刃5側の領域における被覆層9の最大厚みがブレーカ領域8以外のすくい面3における被覆層9の平均厚みよりも1.2〜3倍厚い構成となっている。   Here, as shown in FIG. 2, in the chip 1, the surface of the base 2 is covered with a coating layer 9, and the intersecting ridge line portion between the rake face 3 and the flank face 4 forms the front cutting edge 5, and the breaker region 8 on the surface of the substrate 2 at least in the region on the front cutting edge 5 side, the substrate surface hatching region 11 rich in one or more elements selected from the group of nitrogen, carbon, boron, silicon and titanium within a depth of 0.5 μm. There is no substrate surface hatching region 11 on the surface of the substrate 2 on the rake face 3 other than the breaker region 8, and the maximum thickness of the coating layer 9 in at least the region on the front cutting edge 5 side of the breaker region 8 is The structure is 1.2 to 3 times thicker than the average thickness of the coating layer 9 on the rake face 3 other than the breaker region 8.

これによって、切屑が延び易くブレーカ領域8における被覆層9の摩耗が激しくなるような切削条件において、耐酸化性と耐摩耗性が求められるブレーカ領域8においては被覆層9が厚くても剥離せずかつ摩耗しにくく、被覆層9が剥離しやすい切刃(前切刃5、横切刃7)においては被覆層9の剥離を防止できる構成となり、チップ1は耐摩耗性および耐欠損性を兼ね備えた構成となる。   As a result, even if the coating layer 9 is thick, it does not peel off in the breaker region 8 where oxidation resistance and wear resistance are required under cutting conditions in which chips are likely to extend and the wear of the coating layer 9 in the breaker region 8 becomes severe. In addition, the cutting edge (front cutting edge 5 and side cutting edge 7) that is hard to wear and easily peels off the covering layer 9 is configured to prevent peeling of the covering layer 9, and the chip 1 has both wear resistance and chipping resistance. It becomes the composition.

なお、本発明のブレーカ領域8は、図2(a)に示すような凸状のブレーカ(ブレーカ突起)8であってもよく、図2(b)に示すような凹状のブレーカ(ブレーカ溝)10であってもよい。   The breaker region 8 of the present invention may be a convex breaker (breaker projection) 8 as shown in FIG. 2 (a), or a concave breaker (breaker groove) as shown in FIG. 2 (b). It may be 10.

また、被覆層9は、TiC、TiN、TiCN、Al、TiAlN等が好適に使用可能である。特に、TiAlNについては、単純なTi1−aAlNにて構成されていても良いが、例えば、Ti1−a−bAl(C1−x)(ただし、MはTiを除く周期表第4、5、6族元素、希土類元素およびSiの群から選ばれる1種以上であり、0≦a<1、0<b≦1、0≦x≦1である。)にて構成されていることが望ましい。なお、被覆層9の組成はエネルギー分散型X線分光(EDS)分析法またはX線光電子分光分析法(XPS)にて測定できる。さらに、被覆層9の一部として、エネルギーを小さくした指向性のイオン注入を別途施すことによって局所的に成膜された追加層12が形成されることもあるが、追加層12の具体的な種類としては、ダイヤモンドライクカーボン(DLC)、窒化チタン、窒化クロムおよび炭窒化チタン等が挙げられる。 Further, the coating layer 9, TiC, TiN, TiCN, Al 2 O 3, TiAlN or the like can be suitably used. In particular, TiAlN may be composed of simple Ti 1-a Al a N. For example, Ti 1-a-B Al a M b (C x N 1-x ) (where M is (It is one or more selected from the group consisting of Group 4, 5, 6 elements, rare earth elements and Si in the periodic table excluding Ti, and 0 ≦ a <1, 0 <b ≦ 1, and 0 ≦ x ≦ 1.) It is desirable to be configured with. The composition of the coating layer 9 can be measured by energy dispersive X-ray spectroscopy (EDS) analysis or X-ray photoelectron spectroscopy (XPS). Furthermore, as a part of the coating layer 9, there may be a case where the additional layer 12 locally formed by separately performing directional ion implantation with reduced energy is formed. Examples of the type include diamond-like carbon (DLC), titanium nitride, chromium nitride, and titanium carbonitride.

また、基体2としては、炭化タングステンや、炭窒化チタンを主成分とする硬質相とコバルト、ニッケル等の鉄族金属を主成分とする結合相とからなる超硬合金やサーメットの他、窒化ケイ素や、酸化アルミニウムを主成分とするセラミック、多結晶ダイヤモンドや立方晶窒化ホウ素からなる硬質相と、セラミックスや鉄族金属等の結合相とを超高圧下で焼成する超高圧焼結体等の硬質材料が好適に使用される。   In addition, as the substrate 2, in addition to cemented carbide or cermet composed of tungsten carbide, a hard phase mainly composed of titanium carbonitride, and a binder phase mainly composed of an iron group metal such as cobalt or nickel, silicon nitride And hard materials such as ceramics mainly composed of aluminum oxide, a hard phase made of polycrystalline diamond or cubic boron nitride, and an ultra-high pressure sintered body in which a binder phase such as ceramics or iron group metal is fired under an ultra-high pressure. Materials are preferably used.

本発明の切削工具は、切削工具として種々の切削条件で使用することができるが、特に、切屑による摩耗量が多い切削速度が100m/分を超える高速の旋削加工に対して優れた耐摩耗性および耐欠損性を示す。   The cutting tool of the present invention can be used as a cutting tool under various cutting conditions. In particular, it has excellent wear resistance with respect to high-speed turning processing in which the cutting speed with a large amount of wear due to chips exceeds 100 m / min. And show fracture resistance.

(製造方法)
次に、本発明の切削工具の製造方法の一例について説明する。
(Production method)
Next, an example of the manufacturing method of the cutting tool of this invention is demonstrated.

まず、工具形状の基体を成形、焼成し、この基体に対して、所望によりすくい面、またはすくい面および逃げ面に研削加工を施す。ブレーカ領域は成形時点で金型にその形状を形成することもできるが、焼成後の研削加工時に形成することも可能である。   First, a tool-shaped substrate is molded and fired, and the rake face or the rake face and the flank face are ground on the base as desired. The shape of the breaker region can be formed on the mold at the time of molding, but can also be formed during grinding after firing.

次に、この基体表面のブレーカ領域のみにイオン注入を行う。すなわち、基体表面の特定の部位のみに局所的にイオン注入を行う。   Next, ion implantation is performed only on the breaker region on the substrate surface. That is, ion implantation is locally performed only on a specific part of the substrate surface.

その後、基体の表面に、被覆層を成膜する。被覆層の成膜方法として、イオンプレーティング法やスパッタリング法等の物理蒸着(PVD)法が好適に適応可能である。成膜方法の一例についての詳細について説明すると、被覆層をイオンプレーティング法で作製する場合には、金属チタン(Ti)、金属アルミニウム(Al)、金属M(ただし、MはTiを除く周期表第4、5、6族元素、希土類元素およびSiから選ばれる1種以上)をそれぞれ独立に含有する金属ターゲットまたは複合化した合金ターゲットに用いる。   Thereafter, a coating layer is formed on the surface of the substrate. A physical vapor deposition (PVD) method such as an ion plating method or a sputtering method can be suitably applied as the coating layer forming method. The details of an example of the film forming method will be described. When the coating layer is manufactured by an ion plating method, metal titanium (Ti), metal aluminum (Al), metal M (where M is a periodic table excluding Ti). One or more selected from Group 4, 5, 6 elements, rare earth elements and Si) are used independently for metal targets or composite alloy targets.

成膜条件としては、このターゲットを用いて、アーク放電やグロー放電などにより金属源を蒸発させイオン化すると同時に、窒素源の窒素(N)ガスや炭素源のメタン(CH)/アセチレン(C)ガスと反応させる条件が好適に採用できる。このとき、窒素(N)ガスやアルゴン(Ar)ガスを用いて、イオンプレーティング法またはスパッタリング法によって、成膜温度450〜550℃、スパッタ電力6kW〜9kWまたはバイアス電圧30〜200Vにて被覆層を成膜する。 As the film forming conditions, using this target, the metal source is evaporated and ionized by arc discharge or glow discharge, and at the same time, nitrogen (N 2 ) gas as a nitrogen source or methane (CH 4 ) / acetylene (C) as a carbon source. Conditions for reacting with 2 H 2 ) gas can be suitably employed. At this time, using nitrogen (N 2 ) gas or argon (Ar) gas, coating is performed at a deposition temperature of 450 to 550 ° C., a sputtering power of 6 kW to 9 kW, or a bias voltage of 30 to 200 V by an ion plating method or a sputtering method. Deposit layers.

なお、成膜に際して、ブレーカ領域へイオン注入を併用しながら成膜処理を行うことも可能であり、これによって、ブレーカ領域における被覆層の厚みを厚くしても剥離しにくい被覆層を成膜することが可能である。また、成膜した後に、ブレーカ領域の被覆層表面からイオン注入を行うことも可能である。さらに、成膜する際には、工具の逃げ面がターゲットに対向する向きに基体をセットして成膜を行うことが望ましく、これによって、逃げ面における被覆層の厚みを厚くすることができて、逃げ面摩耗を抑制することもできる。   In film formation, it is also possible to perform film formation while using ion implantation in combination with the breaker region, thereby forming a coating layer that does not easily peel off even if the thickness of the coating layer in the breaker region is increased. It is possible. In addition, after film formation, ion implantation can be performed from the surface of the coating layer in the breaker region. Furthermore, when forming a film, it is desirable to perform the film formation by setting the base so that the flank face of the tool faces the target, thereby increasing the thickness of the coating layer on the flank face. Also, flank wear can be suppressed.

本発明によれば、ブレーカ領域においては成膜前のイオン注入によって内部応力が低くなっているために、被覆層の厚みを増加させても内部応力の蓄積による耐チッピング性の低下などが生じにくい傾向にある。そのため、より厚い被覆層の成膜が可能となり、その場合でも加工中における脆性的な剥離も抑制され、切削工具による耐摩耗性向上の効果を発揮させることができる。   According to the present invention, in the breaker region, the internal stress is lowered by ion implantation before film formation, so that even if the thickness of the coating layer is increased, the chipping resistance is not lowered due to the accumulation of the internal stress. There is a tendency. Therefore, it is possible to form a thicker coating layer, and even in this case, brittle peeling during processing is suppressed, and the effect of improving wear resistance by the cutting tool can be exhibited.

また、上記被覆層を成膜する際に、ブレーカ領域にエネルギーを小さくした指向性のイオン注入を施して局所的に被覆層9の追加成膜を行って、追加層12を形成することによってブレーカ領域8における被覆層9の厚みを他の部分よりも厚くすることができる。さらに、ブレーカが凹形状のブレーカ溝である場合には、被覆層を成膜した後で被覆層の表面をブラシ研磨することにより、ブレーカ溝の底部における被覆層の厚みを他の部分よりも厚くすることができる。   Further, when forming the coating layer, the directional ion implantation with reduced energy is applied to the breaker region to locally form the coating layer 9 and form the additional layer 12 to form the breaker. The thickness of the covering layer 9 in the region 8 can be made thicker than other portions. Further, when the breaker is a concave breaker groove, the surface of the coating layer is brushed after the coating layer is formed, so that the thickness of the coating layer at the bottom of the breaker groove is thicker than the other parts. can do.

平均粒径0.8μmの炭化タングステン(WC)粉末を主成分として、平均粒径1.5μmの金属コバルト(Co)粉末を9質量%、平均粒径1.0μmの炭化バナジウム(VC)粉末を0.2質量%、平均粒径1.0μmの炭化クロム(Cr)粉末を0.6質量%の割合で添加し混合して、プレス成形によりスローアウェイチップ形状(京セラ製スローアウェイチップ型番GBA43L300−030MY、図1のブレーカを形成した形状)に成形した後、脱バインダ処理を施し、0.01Paの真空中、1460℃で1時間焼成して超硬合金を作製した。 Mainly composed of tungsten carbide (WC) powder having an average particle size of 0.8 μm, 9% by mass of metallic cobalt (Co) powder having an average particle size of 1.5 μm, and vanadium carbide (VC) powder having an average particle size of 1.0 μm. Chromium carbide (Cr 3 C 2 ) powder with a mass of 0.2% by mass and an average particle size of 1.0 μm is added and mixed at a rate of 0.6% by mass, and then throwaway tip shape (throwaway tip made by Kyocera) by press molding After forming into a model number GBA43L300-030MY, the shape in which the breaker of FIG. 1 was formed), a binder removal treatment was performed and fired in a vacuum of 0.01 Pa at 1460 ° C. for 1 hour to prepare a cemented carbide.

また、各試料のすくい面表面をブラシ加工およびブラスト加工によって研磨加工するとともに、切刃にブラシ加工を施して刃先処理(ホーニング処理)を行った。そして、表1の方向からイオン注入を行った(照射条件:20keV)。   Further, the rake face surface of each sample was polished by brushing and blasting, and the cutting edge was brushed to perform blade edge processing (honing processing). And ion implantation was performed from the direction of Table 1 (irradiation conditions: 20 keV).

Figure 2011093019
Figure 2011093019

次に、このようにして作製した基体に対して、アークイオンプレーティング法により成膜温度500℃で表1に示す条件でTiAlN組成の被覆層を成膜してスローアウェイチップを作製した。なお、成膜後に表1に記載した方向から照射エネルギー1keVで指向性のイオン注入を行って局所的に被覆層9の追加成膜を行った。   Next, a coating layer having a TiAlN composition was formed on the substrate thus prepared at a film forming temperature of 500 ° C. under the conditions shown in Table 1 by an arc ion plating method to manufacture a throw-away tip. In addition, after the film formation, directional ion implantation was performed at an irradiation energy of 1 keV from the direction described in Table 1 to locally form the coating layer 9.

得られたチップに対して、被覆層の表面からSIMS(二次イオン質量分析)にて組成分析を行った。また、基体と被覆層との界面における組成分析をXPS(X線光電子分光分析)にて行った。さらに、切削工具のブレーカ突起の中央を通る断面を走査型電子顕微鏡にて観察して、ブレーカ領域以外のすくい面の平均厚みおよびブレーカ領域における被覆層の最大厚みを測定した。   The obtained chip was subjected to composition analysis by SIMS (secondary ion mass spectrometry) from the surface of the coating layer. Further, composition analysis at the interface between the substrate and the coating layer was performed by XPS (X-ray photoelectron spectroscopy). Furthermore, the cross section passing through the center of the breaker protrusion of the cutting tool was observed with a scanning electron microscope, and the average thickness of the rake face other than the breaker region and the maximum thickness of the coating layer in the breaker region were measured.

また、各チップをホルダ(京セラ製スローアウェイチップ用ホルダ型番KGBAL22−25)用いて下記条件で切削試験を行った。
切削方法:浅溝入れ
被削材 :S45C
切削速度:200m/min
送り :0.1mm/rev
切り込み:2.0mm
切削状態:湿式
評価方法:120分間切削した時点で、前切刃のチッピング状態の観察を行うと共に、工具寿命となるまでに加工できた切削時間(分)を測定した。
Each chip was subjected to a cutting test under the following conditions using a holder (Kyocera throwaway tip holder model number KGBAL22-25).
Cutting method: Shallow grooving work material: S45C
Cutting speed: 200 m / min
Feed: 0.1mm / rev
Cutting depth: 2.0mm
Cutting state: Wet evaluation method: At the time of cutting for 120 minutes, the chipping state of the front cutting edge was observed, and the cutting time (minutes) that could be processed until the tool life was reached was measured.

Figure 2011093019
Figure 2011093019

表1、2より、ブレーカ領域に基体表面冨化領域が存在しない試料No.9では、ブレーカ領域における摩耗が大きくて耐溶着性が悪くなり、加工時間は短くなった。また、すくい面全体に基体表面冨化領域が存在する試料No.6では、刃先の欠損が生じた。さらに、ブレーカ領域における被覆層の厚みと前切刃における被覆層の厚みとの比率が1.2よりも小さい試料No.7では、摩耗量が大きくなり、逆に、ブレーカ領域における被覆層の厚みと前切刃における被覆層の厚みとの比率が3よりも大きい試料No.8では、チッピングが発生した。   From Tables 1 and 2, Sample No. in which the substrate surface hatching region does not exist in the breaker region is shown. In No. 9, the wear in the breaker region was large, the welding resistance was deteriorated, and the processing time was shortened. In addition, the sample No. 1 in which the substrate surface hatching region exists over the entire rake face. In No. 6, a cutting edge defect occurred. Furthermore, the sample No. 1 in which the ratio of the thickness of the coating layer in the breaker region to the thickness of the coating layer in the front cutting edge is smaller than 1.2. In No. 7, the amount of wear increases, and conversely, the ratio of the thickness of the coating layer in the breaker region to the thickness of the coating layer in the front cutting edge is greater than 3. In No. 8, chipping occurred.

これに対し、本発明に従う試料No.1〜5では、切削性能に優れたものであった。   On the other hand, sample no. In 1-5, it was what was excellent in cutting performance.

実施例1の基体を用いて、表3の被覆層を成膜した。なお、試料作製に関しては、成膜後にブレーカ領域にエネルギーを小さくした指向性のイオン注入(照射条件:1keV)を施して追加成膜した。   Using the substrate of Example 1, the coating layer shown in Table 3 was formed. Regarding sample preparation, additional film formation was performed by performing directional ion implantation (irradiation condition: 1 keV) with reduced energy in the breaker region after film formation.

得られたチップに対して、実施例1と同じ方法を用いて組成分析を行った。また、切削工具のブレーカ突起の中心を通る断面を走査型電子顕微鏡にて観察して、ブレーカ領域以外のすくい面の平均厚みおよびブレーカ領域における被覆層の最大厚みを測定した。   The composition analysis was performed on the obtained chip using the same method as in Example 1. Further, the cross section passing through the center of the breaker projection of the cutting tool was observed with a scanning electron microscope, and the average thickness of the rake face other than the breaker region and the maximum thickness of the coating layer in the breaker region were measured.

また、このチップをホルダに装着して下記条件で切削試験を行った。結果は表4に示した。
切削方法:浅溝入れ
被削材 :A7075
切削速度:250m/min
送り :0.1mm/rev
切り込み:2.0mm
切削状態:湿式
評価方法:180分間切削した時点で、前切刃のチッピング状態の観察を行うと共に、工具寿命となるまでに加工できた切削時間(分)を測定した。
Further, this chip was mounted on a holder and a cutting test was performed under the following conditions. The results are shown in Table 4.
Cutting method: Shallow grooving work material: A7075
Cutting speed: 250 m / min
Feed: 0.1mm / rev
Cutting depth: 2.0mm
Cutting state: wet evaluation method: At the time of cutting for 180 minutes, the tipping state of the front cutting edge was observed, and the cutting time (minutes) that could be processed until the tool life was reached was measured.

Figure 2011093019
Figure 2011093019

Figure 2011093019
Figure 2011093019

表3、4より、本発明に従い、ブレーカ領域に基体表面冨化領域が存在し、すくい面全体に基体表面冨化領域が存在する試料No.11、12では、切削性能に優れたものであった。   From Tables 3 and 4, in accordance with the present invention, Sample No. No. in which the substrate surface hatched region exists in the breaker region and the substrate surface hatched region exists on the entire rake face. 11 and 12 were excellent in cutting performance.

1 スローアウェイチップ(チップ)
2 基体
3 すくい面
4 前逃げ面
5 前切刃
6 横逃げ面
7 横切刃
8、10 ブレーカ領域
9 被覆層
11 基体表面冨化領域
12 追加層
1 Throw away tip (chip)
2 Substrate 3 Rake face 4 Front relief surface 5 Front cutting edge 6 Side relief surface 7 Horizontal cutting edge 8, 10 Breaker region 9 Cover layer 11 Base surface hatching region 12 Additional layer

Claims (3)

基体の表面が被覆層で被覆され、すくい面と逃げ面との交差稜線部を切刃とし、前記すくい面の前記切刃に続く位置にブレーカ領域を備えた切削工具であって、前記ブレーカ領域の少なくとも切刃側の領域における前記基体の表面に深さ0.5μm以内の窒素、炭素、硼素、珪素およびチタンの群から選ばれる1種以上の元素が多い基体表面冨化領域が存在し、前記ブレーカ領域以外の領域における前記基体の表面には前記基体表面冨化領域が存在しないとともに、前記ブレーカ領域の少なくとも切刃側の領域における前記被覆層の最大厚みが前記ブレーカ領域以外の領域における前記被覆層の平均厚みよりも1.2〜3倍厚い切削工具。   A cutting tool in which a surface of a base is coated with a coating layer, a cutting edge is a crossing ridge line portion between a rake face and a flank face, and a breaker area is provided at a position following the cutting edge of the rake face, the breaker area There is a substrate surface hatching region rich in one or more elements selected from the group of nitrogen, carbon, boron, silicon and titanium within a depth of 0.5 μm or less on the surface of the substrate at least in the region on the cutting edge side, The substrate surface hatching region does not exist on the surface of the substrate in the region other than the breaker region, and the maximum thickness of the coating layer in the region at least on the cutting edge side of the breaker region is the region in the region other than the breaker region. A cutting tool that is 1.2 to 3 times thicker than the average thickness of the coating layer. 前記被覆層中における窒素、炭素、硼素、珪素およびチタンの群から選ばれる1種以上の元素が、前記ブレーカ領域の少なくとも切刃側の領域のほうがそれ以外の領域よりも多い請求項1記載の切削工具。   2. The one or more elements selected from the group of nitrogen, carbon, boron, silicon, and titanium in the coating layer are more in the region at least on the cutting edge side of the breaker region than in the other regions. Cutting tools. 前記ブレーカ領域に、エネルギーを小さくした指向性のイオン注入を施して局所的に前記被覆層の追加成膜を行うことによって、前記ブレーカ領域における前記被覆層の厚みを他の部分よりも厚くした請求項1または2記載の切削工具。   Claims wherein the thickness of the coating layer in the breaker region is made thicker than that of other portions by performing directional ion implantation with reduced energy on the breaker region to locally form the coating layer. Item 3. A cutting tool according to Item 1 or 2.
JP2009247263A 2009-10-28 2009-10-28 Cutting tool Withdrawn JP2011093019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009247263A JP2011093019A (en) 2009-10-28 2009-10-28 Cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009247263A JP2011093019A (en) 2009-10-28 2009-10-28 Cutting tool

Publications (1)

Publication Number Publication Date
JP2011093019A true JP2011093019A (en) 2011-05-12

Family

ID=44110517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009247263A Withdrawn JP2011093019A (en) 2009-10-28 2009-10-28 Cutting tool

Country Status (1)

Country Link
JP (1) JP2011093019A (en)

Similar Documents

Publication Publication Date Title
US11872636B2 (en) Surface-coated cutting tool and method for manufacturing same
JP5116777B2 (en) Cutting tools
JP5542925B2 (en) Cutting tools
JP4474646B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP5883161B2 (en) Cutting tools
JP5488824B2 (en) Surface-coated cutting tool that exhibits excellent peeling resistance and excellent wear resistance due to high-speed cutting of hard difficult-to-cut materials
JP2010188512A (en) Cutting tool
US20210001410A1 (en) Surface-coated cutting tool and method for manufacturing same
JP4883475B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent wear resistance in high-speed cutting of hardened steel
JP4807575B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent wear resistance in high-speed cutting of hardened steel
CN109415799B (en) Coated cutting tool
JP5334704B2 (en) Cutting tools
JP5495735B2 (en) Cutting tools
JP2012139795A (en) Surface coated cutting tool with hard coating layer exhibiting superior resistance against peeling and chipping in high speed cutting of soft hard-to-cut material
JP5553013B2 (en) A surface-coated cutting tool that provides excellent peeling resistance and excellent chipping resistance in high-speed, high-feed cutting of hard difficult-to-cut materials.
JP4120500B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting
JP2011093019A (en) Cutting tool
JP4748446B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance when cutting hard difficult-to-cut materials
JP2009061572A (en) Cutting tool
JP2006231423A (en) Surface coated cermet cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting
JP4379911B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP2021154460A (en) Surface-coated cutting tool
JP2003103405A (en) Cutter and tool with holder
JP4883474B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent wear resistance in high-speed cutting of hardened steel
JP2012115967A (en) Surface coated cutting tool in which hard covering layer exhibits superior peeling resistance and superior chipping resistance in intermittently cutting hard difficult-to-cut material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120416

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20130228