JP5333723B2 - Rubber composition - Google Patents

Rubber composition Download PDF

Info

Publication number
JP5333723B2
JP5333723B2 JP2008189915A JP2008189915A JP5333723B2 JP 5333723 B2 JP5333723 B2 JP 5333723B2 JP 2008189915 A JP2008189915 A JP 2008189915A JP 2008189915 A JP2008189915 A JP 2008189915A JP 5333723 B2 JP5333723 B2 JP 5333723B2
Authority
JP
Japan
Prior art keywords
rubber
group
rubber composition
compound
poss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008189915A
Other languages
Japanese (ja)
Other versions
JP2010024400A (en
Inventor
俊生 多田
一喜 志賀
博 清水
勇進 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Sumitomo Rubber Industries Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2008189915A priority Critical patent/JP5333723B2/en
Publication of JP2010024400A publication Critical patent/JP2010024400A/en
Application granted granted Critical
Publication of JP5333723B2 publication Critical patent/JP5333723B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/7476Systems, i.e. flow charts or diagrams; Plants
    • B29B7/7495Systems, i.e. flow charts or diagrams; Plants for mixing rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rubber composition where a cage polysilsesquioxane (POSS) compound serving as a nanofiller is dispersed in a rubber component; to improve affinity of the POSS compound to a rubber molecule for finely dispersing the POSS compound in the rubber component; and to finely disperse the POSS compound. <P>SOLUTION: In the rubber composition, the cage polysilsesquioxane having at least one functional group selected from the group consisting of a phenyl group, a halogen group, an epoxy group, an acrylic group, a methacryloyl group, a thiol group and a &le;18C alkyl group is dispersed. The rubber composition is kneaded by a high shear kneader. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、籠状ポリシルセスキオキサン化合物を含有するゴム組成物に関する。   The present invention relates to a rubber composition containing a cage-like polysilsesquioxane compound.

籠状ポリシルセスキオキサン(POSS)化合物は、無機化合物と有機複合化合物の長所を兼ねている新規フィラーであり、ポリマー中でナノサイズに微分散させることによって、ガラス転移点や融点の上昇による耐熱性向上、剛性・破壊強度などの力学的特性を飛躍的に改善できることが期待されている。しかし、POSS化合物は微分散が難しい機能性微粒子である。   A cage-like polysilsesquioxane (POSS) compound is a novel filler that combines the advantages of an inorganic compound and an organic composite compound, and is finely dispersed in a nano-size in a polymer, thereby increasing the glass transition point and melting point. It is expected that mechanical properties such as improved heat resistance, rigidity and fracture strength can be dramatically improved. However, the POSS compound is a functional fine particle that is difficult to finely disperse.

従来、補強剤として樹脂組成物にシリカを配合することが知られている。シリカは、カーボンブラックやガラス繊維などと同レベルの補強物性を示し、カーボンブラックと比較して、引き裂きに対して優れた耐性を樹脂組成物に与えることができる。そして、このようなシリカの特性を発揮するためには、シリカがマトリックスとなる樹脂の中に均質に分散する必要があり、均質に分散するためには、シリカの粒子径を小さくする必要があった。しかし、シリカの粒子径が小さくなるほど、マトリックス単位体積あたりの粒子の表面エネルギーが大きくなるので、凝集する傾向が強くなる。そして、凝集した粒子間の凝集力はマトリックスの凝集力と比較して極端に弱いので、破壊開始点になりやすく、得られた樹脂組成物の力学強度は低下してしまうことが考えられる。   Conventionally, it is known to add silica to a resin composition as a reinforcing agent. Silica exhibits the same level of reinforcing physical properties as carbon black and glass fiber, and can give the resin composition superior resistance to tearing compared to carbon black. In order to exert such characteristics of silica, it is necessary to disperse the silica uniformly in the matrix resin, and in order to disperse homogeneously, it is necessary to reduce the particle size of the silica. It was. However, the smaller the particle diameter of silica, the greater the surface energy of the particles per unit volume of the matrix, and thus the tendency to agglomerate. And since the cohesive force between the aggregated particles is extremely weak compared with the cohesive force of the matrix, it tends to be a breakage starting point, and the mechanical strength of the obtained resin composition may be lowered.

また、近年、POSS化合物を利用して各種ポリマーの耐熱性や粘弾特性を向上させる試みが行われている。そこで、POSS化合物を含有するポリエステル組成物(たとえば特許文献1参照)が提供されている。しかし、ポリエステル組成物など樹脂組成物は、その未架橋状態での溶融粘度が低いことから、POSS化合物が凝集してしまい、樹脂組成物中に均質に分散せず、POSS化合物添加による、耐熱性向上および剛性・破壊強度などの力学的特性を安定して得ることができないという問題があった。   In recent years, attempts have been made to improve the heat resistance and viscoelastic properties of various polymers using POSS compounds. Then, the polyester composition (for example, refer patent document 1) containing a POSS compound is provided. However, since the resin composition such as a polyester composition has a low melt viscosity in an uncrosslinked state, the POSS compound is aggregated and is not uniformly dispersed in the resin composition. There was a problem that mechanical properties such as improvement and rigidity / breaking strength could not be obtained stably.

また、ゴム組成物の溶融粘度は、前記ポリエステル組成物などの非ゴム組成物の溶融粘度よりも比較的高く、強いせん断応力を生むことができることから、POSS化合物などのナノフィラーの微分散化には適していると考えられる。しかし、カーボンナノチューブやフラーレンなどのナノフィラーと同様に、POSS化合物は、表面活性が高く凝集する傾向が強く、また、樹脂中に微分散する方法もなく、ゴム組成物においてナノフィラーが持つ前記特性を安定して発揮することができなかった。   In addition, the melt viscosity of the rubber composition is relatively higher than the melt viscosity of the non-rubber composition such as the polyester composition, and can generate strong shear stress. Therefore, it is possible to finely disperse nanofillers such as POSS compounds. Is considered suitable. However, like nanofillers such as carbon nanotubes and fullerenes, POSS compounds have a high surface activity and a strong tendency to aggregate, and there is no method of finely dispersing them in the resin. Could not be demonstrated stably.

特開2004−307738号公報JP 2004-307738 A

本発明は、ナノフィラーである籠状ポリシルセスキオキサン(POSS)化合物をゴム成分中に微分散したゴム組成物を提供することを目的とする。   An object of the present invention is to provide a rubber composition in which a cage-like polysilsesquioxane (POSS) compound, which is a nanofiller, is finely dispersed in a rubber component.

そして、POSS化合物とゴム分子との親和性を高くし、ゴム成分中のPOSS化合物を微分散させることを目的とする。   And it aims at making affinity of a POSS compound and a rubber molecule high, and finely dispersing the POSS compound in a rubber component.

さらには、前記微分散を可能とすることを目的とする。   A further object is to enable the fine dispersion.

本発明は、未架橋状態で170℃、10Hzにおける複素弾性率が1×10 3 〜8×10 5 Pa・sであるゴム成分100重量部に対して、フェニル基、ハロゲン基、アクリル基、メタアクリロイル基および炭素数18以下のアルキル基よりなる群から選ばれる少なくとも1種の官能基を有し、1分子当たりの珪素原子数が7〜20である籠状ポリシルセスキオキサン化合物1〜150重量部を高せん断混練機で混練する工程によって得られる、前記籠状ポリシルセスキオキサン化合物がゴム成分中に分散し、該化合物の平均分散径が300nm以下であるゴム組成物であり、前記高せん断混練機として溶融混練機を用い、前記混練する工程の混練条件が、スクリュー回転数1000〜3000rpm、せん断速度500〜1500sec -1 、混練温度100〜230℃、混練時間1〜5分であるゴム組成物に関する。 In the present invention, a phenyl group, a halogen group, an acrylic group, a meta group, and 100 parts by weight of a rubber component having a complex elastic modulus of 1 × 10 3 to 8 × 10 5 Pa · s at 170 ° C. and 10 Hz in an uncrosslinked state. have at least one functional group selected from the group consisting of acryloyl group Contact and an alkyl group having 18 or less carbon atoms, cage polysilsesquioxane compound number of silicon atoms per molecule is 7-20 1 Obtained by a step of kneading 150 parts by weight with a high shear kneader, the cocoon-shaped polysilsesquioxane compound is dispersed in a rubber component , and the average dispersion diameter of the compound is a rubber composition of 300 nm or less, the melt kneader used as the high shear kneaders, kneading conditions of the kneading step, a screw speed of 1,000 to 3,000 rpm, shear rate 500~1500Sec -1 Kneading temperature 100 to 230 ° C., it relates to a rubber composition which is 1-5 minutes kneading time.

また、本発明は前記ゴム組成物を用いたタイヤに関する。   The present invention also relates to a tire using the rubber composition.

また、本発明は前記ゴム組成物を用いた免震材料に関する。   The present invention also relates to a seismic isolation material using the rubber composition.

本発明によれば、表面に、芳香族官能基、ハロゲン基、エポキシ基、アクリル基、メタアクリロイル基、チオール基、または飽和・不飽和もしくは直鎖・分岐の炭素数18以下のアルキル基など、ゴム分子と親和性の高い官能基を導入したPOSS化合物をゴム成分に配合し、POSS化合物がゴム成分中に微分散され、高せん断混練機で混練することを特徴とするゴム組成物であることで、分散を良くすることで破壊強度を保ったまま複素弾性率(E*)の絶対値を下げることができるので、例えばタイヤの摩耗特性を損なうことなく、グリップ特性を向上させることが可能となる。また、通常、フィラーを充填したゴムの弾性率は変形が大きくなると低下するが、分散を良くすることで弾性率の変形に対する依存性が小さくなり、走行の変化を受けても常に硬さが安定するので走行安定性の向上が望まれる。   According to the present invention, on the surface, an aromatic functional group, a halogen group, an epoxy group, an acrylic group, a methacryloyl group, a thiol group, or a saturated / unsaturated or linear / branched alkyl group having 18 or less carbon atoms, A rubber composition characterized in that a POSS compound having a functional group having a high affinity for rubber molecules is blended in a rubber component, the POSS compound is finely dispersed in the rubber component and kneaded by a high shear kneader. By improving the dispersion, the absolute value of the complex elastic modulus (E *) can be lowered while maintaining the breaking strength. For example, it is possible to improve the grip characteristics without impairing the wear characteristics of the tire. Become. In addition, the elastic modulus of rubber filled with filler usually decreases as deformation increases, but by improving dispersion, the dependence of elastic modulus on deformation decreases, and the hardness is always stable even when subjected to changes in running. Therefore, improvement in running stability is desired.

また、該ゴム組成物を各種ゴム製品に用いることで、ゴム製品の耐熱性や力学特性、寸法安定性などの向上が望まれる。さらに、この性質を利用して、安全性が高く、長期耐久性に優れたゴム組成物が得られることから、タイヤ用ゴム組成物または免震用ゴム組成物を提供することができる。   Further, by using the rubber composition for various rubber products, it is desired to improve the heat resistance, mechanical properties, dimensional stability, etc. of the rubber product. Furthermore, since a rubber composition having high safety and excellent long-term durability can be obtained by utilizing this property, a tire rubber composition or a seismic isolation rubber composition can be provided.

本発明のゴム組成物は、ゴム成分および籠状ポリシルセスキオキサン(POSS)化合物を含有する。   The rubber composition of the present invention contains a rubber component and a caged polysilsesquioxane (POSS) compound.

POSS化合物は一般に一次粒子径が小さく、すなわち表面の活性が非常に高い。この理由でカーボンナノチューブやフラーレンなど、他のナノフィラーと同様、フィラーを充填することによる利点を得ることができなかった。   POSS compounds generally have a small primary particle size, that is, the surface activity is very high. For this reason, as with other nanofillers such as carbon nanotubes and fullerenes, it has not been possible to obtain the advantages of filling with fillers.

本発明では、POSS化合物などのフィラーをゴム成分と混ぜることで、ゴム組成物の高い溶融粘度を利用してPOSS化合物の微分散を実現する。   In the present invention, a fine dispersion of the POSS compound is realized by utilizing a high melt viscosity of the rubber composition by mixing a filler such as a POSS compound with the rubber component.

ゴム組成物を構成するゴム成分は特に限定されないが、実用性の観点からスチレン、ブタジエン、エチレン、プロピレン、イソプレン、アクリロニトリルなどからなるゴム成分があげられる。また、シリコーンゴム、フッ素ゴムなどなどからなるゴム成分も好適に用いることができる。スチレン、ブタジエン、エチレン、プロピレン、イソプレンから選ばれる単量体からなるゴム成分としては、例えばスチレン−ブタジエンゴム、ブタジエンゴム、天然ゴム、イソプレンゴム、エチレン−プロピレン−ジエンゴム(EPDM)、スチレン−エチレン−ブタジエン−スチレン4元重合体などが好適に用いられる。上記ゴム成分のほか、シリコーンゴム、フッ素ゴムなども好適に用いられる。   Although the rubber component which comprises a rubber composition is not specifically limited, From the viewpoint of practical use, the rubber component which consists of styrene, butadiene, ethylene, propylene, isoprene, acrylonitrile etc. is mention | raise | lifted. A rubber component made of silicone rubber, fluorine rubber, or the like can also be suitably used. Examples of the rubber component comprising a monomer selected from styrene, butadiene, ethylene, propylene, and isoprene include, for example, styrene-butadiene rubber, butadiene rubber, natural rubber, isoprene rubber, ethylene-propylene-diene rubber (EPDM), and styrene-ethylene- A butadiene-styrene quaternary polymer is preferably used. In addition to the rubber component, silicone rubber, fluorine rubber, and the like are also preferably used.

ゴムとしては特に限定されないが、炭素数2〜8の直鎖および/または分岐アルキル単量体から成るゴムが好適に用いられる。結晶性の問題などから特に好ましい単量体炭素数の範囲は2〜6である。スチレンモノマーやアクリルモノマーなどとの共重合体も好適に用いられる。アクリルモノマーとしては例えば、強度を向上させる目的でメタクリル酸メチルやアクリロニトリルが好適に用いられ、実用の観点からは、天然ゴム、イソプレンゴム、ブタジエンゴム、スチレン−ブタジエンゴム、ブチルゴム、エチレンプロピレンゴム、エチレンプロピレンジエンゴムが好適に用いられる。天然ゴムも好適に用いることができる。なかでも耐熱性の高いエチレンプロピレンジエンゴムが好適に用いられる。   Although it does not specifically limit as rubber | gum, The rubber | gum which consists of a C2-C8 linear and / or branched alkyl monomer is used suitably. In view of crystallinity and the like, the particularly preferable range of the number of monomer carbon atoms is 2-6. A copolymer with a styrene monomer or an acrylic monomer is also preferably used. As the acrylic monomer, for example, methyl methacrylate or acrylonitrile is preferably used for the purpose of improving strength. From a practical viewpoint, natural rubber, isoprene rubber, butadiene rubber, styrene-butadiene rubber, butyl rubber, ethylene propylene rubber, ethylene Propylene diene rubber is preferably used. Natural rubber can also be suitably used. Of these, ethylene propylene diene rubber having high heat resistance is preferably used.

ゴム組成物を構成するゴム成分としては、未架橋状態の170℃、10Hzにおける複素弾性率が1×103Pa・s以上が好ましく、複素弾性率は2×103Pa・s以上がより好ましく、8×103Pa・s以上がさらに好ましい。ゴム成分の複素弾性率が、1×103Pa・s未満であれば、ゴム組成物を構成するゴムの高いせん断力を得ることができない傾向があり、POSS化合物をゴム中に均質に微分散させることができない傾向がある。 As a rubber component constituting the rubber composition, a complex elastic modulus at 170 ° C. and 10 Hz in an uncrosslinked state is preferably 1 × 10 3 Pa · s or more, and a complex elastic modulus is more preferably 2 × 10 3 Pa · s or more. 8 × 10 3 Pa · s or more is more preferable. If the complex elastic modulus of the rubber component is less than 1 × 10 3 Pa · s, there is a tendency that the high shearing force of the rubber constituting the rubber composition cannot be obtained, and the POSS compound is uniformly finely dispersed in the rubber. There is a tendency that cannot be made.

また、前記複素弾性率が8×105Pa・s以下が好ましく、2×105Pa・s以下がより好ましく、1×105Pa・s以下がさらに好ましい。ゴム成分の複素弾性率が、8×105Pa・sをこえると、混練時の発熱により、ゴム組成物が劣化する傾向がある。また、ゴム組成物を構成するゴム成分のせん断力が高くなることで、混練が難しくなり、POSS化合物をゴム中に均質に微分散させることができない傾向がある。 The complex elastic modulus is preferably 8 × 10 5 Pa · s or less, more preferably 2 × 10 5 Pa · s or less, and further preferably 1 × 10 5 Pa · s or less. If the complex elastic modulus of the rubber component exceeds 8 × 10 5 Pa · s, the rubber composition tends to deteriorate due to heat generation during kneading. Further, since the shearing force of the rubber component constituting the rubber composition is increased, kneading becomes difficult and the POSS compound tends to be not uniformly finely dispersed in the rubber.

ゴム成分の動的貯蔵粘性率は動的粘弾性測定が好適に用いられ、周波数としては比較的安定性が高い10Hzで評価を行なう。170℃において、せん断型または伸張型の動的粘弾性試験機で動的弾性率の測定を行い、動的損失剛性率G”と測定周波数ωの関係から動的貯蔵粘性率η’=G”/ωを求めることができる。   The dynamic storage viscosity of the rubber component is preferably measured by dynamic viscoelasticity, and the frequency is evaluated at 10 Hz, which is relatively stable. At 170 ° C., the dynamic elastic modulus is measured with a shear type or extension type dynamic viscoelasticity tester, and the dynamic storage viscosity η ′ = G ″ is calculated from the relationship between the dynamic loss rigidity G ″ and the measurement frequency ω. / Ω can be obtained.

籠状ポリシルセスキオキサン(Polyhedral Origometric SilSesquioxane:POSS)化合物とは、3官能シランを加水分解した際に得られる多面体のクラスターのことをいう。分子的に籠状の多面体をとることにより、通常樹脂の補強に用いられるカーボンブラック、酸化チタン、炭酸カルシウムなどの無機系フィラーと比較して比表面積が大きく、かつ、ナノサイズで分子分散に近い状態で分散するために強い補強効果を得ることができる。   A cage-shaped polysilsesquioxane (Polyhedral Organic SilSequioxane: POSS) compound refers to a polyhedral cluster obtained when a trifunctional silane is hydrolyzed. By taking a molecularly saddle-like polyhedron, the specific surface area is large compared to inorganic fillers such as carbon black, titanium oxide, and calcium carbonate, which are usually used to reinforce resins, and it is nano-sized and close to molecular dispersion A strong reinforcing effect can be obtained due to the dispersion in the state.

POSS化合物の1分子あたりの珪素原子数は7以上であることが好ましく、8以上であることがより好ましい。1分子あたりの珪素原子数が7未満では、安定な籠状の形状を保持することができず、補強効果が発揮できない傾向がある。また、POSS化合物の1分子あたりの珪素原子数は20以下であることが好ましい。1分子あたりの珪素原子数が20をこえると、形状が不均質になり、密度分布ができやすくなることから、補強効果が得られにくい傾向がある。また、粒子径が大きくなることでナノ分散することが難しく、さらには相分離することでかえって力学特性が悪化する場合もある。   The number of silicon atoms per molecule of the POSS compound is preferably 7 or more, and more preferably 8 or more. If the number of silicon atoms per molecule is less than 7, a stable bowl-like shape cannot be maintained, and the reinforcing effect tends to be not exhibited. The number of silicon atoms per molecule of the POSS compound is preferably 20 or less. When the number of silicon atoms per molecule exceeds 20, the shape becomes inhomogeneous and the density distribution is easily made, so that the reinforcing effect tends to be hardly obtained. In addition, nano-dispersion is difficult due to the increase in particle size, and mechanical properties may deteriorate due to phase separation.

ゴム成分に対するPOSS化合物の付加の様式については特に限定されず、例えば、共有結合などの化学結合やイオン結合、配位結合などの物理結合が挙げられる。本発明のゴム成分の力学特性に対する経時安定性や熱安定性の観点から共有結合が好ましい。例えば、ゴム成分とPOSS化合物の結合様式が配位結合であれば加熱によりゴム成分との結合が切断されてしまい、凝集するなどの問題点が考えられる。   The mode of addition of the POSS compound to the rubber component is not particularly limited, and examples thereof include chemical bonds such as covalent bonds and physical bonds such as ionic bonds and coordinate bonds. A covalent bond is preferable from the viewpoints of temporal stability and thermal stability of the rubber component of the present invention. For example, if the bonding mode between the rubber component and the POSS compound is a coordinate bond, there may be a problem that the bond between the rubber component is broken by heating and the rubber component is aggregated.

本発明は、ゴム成分中にPOSS化合物が分散してなり、POSS化合物の平均分散径が500nm以下であることが好ましい。   In the present invention, the POSS compound is dispersed in the rubber component, and the average dispersion diameter of the POSS compound is preferably 500 nm or less.

本発明において分散径とは、POSS化合物の縦方向の最大径(長径)と横方向の最大径(短径)の平均値をいう。また、分散径においては、POSS化合物を大きい順に5個選択し、それらの分散径の平均値を平均分散径とする。分散径および平均分散径の測定方法は、例えばPOSS化合物が混練されたゴムシートの任意の場所を選択し、そのゴムシートの薄片の断面を透過型電子顕微鏡(TEM)などにより、観察して行う。   In the present invention, the dispersion diameter means an average value of the maximum diameter (major diameter) in the vertical direction and the maximum diameter (minor diameter) in the horizontal direction of the POSS compound. As for the dispersion diameter, five POSS compounds are selected in descending order, and the average value of the dispersion diameters is defined as the average dispersion diameter. The method for measuring the dispersion diameter and the average dispersion diameter is performed, for example, by selecting an arbitrary location of the rubber sheet in which the POSS compound is kneaded and observing the cross section of the thin piece of the rubber sheet with a transmission electron microscope (TEM) or the like. .

POSS化合物は有機、無機両方の特性を有した一次粒子径が数十〜数百nmオーダーの微粒子であり、これをゴム成分中にフィラーとして分散させることで無機ガラスのように、耐熱性および剛性・破壊強度などが強い力学特性が期待できる。この力学特性は高い温度まで保持できることが期待されている。しかしこのようなフィラーの長所を発現させるためには、POSS化合物をゴム成分中に分子サイズで分散させる必要がある。もし、POSS化合物の分散が不充分になり凝集した状態で樹脂中に練りこまれると、凝集したPOSS化合物の破壊が起こることで、ゴム組成物の構造上の破壊開始点になってしまい、結果としてゴム組成物の強度は通常よりも低下してしまう。このことからPOSS化合物の長所を引き出すためには、POSS化合物をゴム成分中に微分散させる必要がある。   POSS compounds are fine particles with both organic and inorganic properties and primary particle sizes on the order of several tens to several hundreds of nanometers. By dispersing this as a filler in the rubber component, heat resistance and rigidity are achieved like inorganic glass.・ Mechanical properties with strong fracture strength can be expected. This mechanical property is expected to be maintained up to a high temperature. However, in order to develop the advantages of such a filler, it is necessary to disperse the POSS compound in the rubber component with a molecular size. If the dispersion of the POSS compound becomes insufficient and is kneaded into the resin in an aggregated state, the aggregated POSS compound will be destroyed, which will be the structural failure start point of the rubber composition. As a result, the strength of the rubber composition will be lower than usual. Therefore, in order to extract the advantages of the POSS compound, it is necessary to finely disperse the POSS compound in the rubber component.

本発明は、ゴム成分中に分散してなるPOSS化合物の平均分散径が500nm以下であることが好ましい。そして、POSS化合物の平均分散径は、用いるPOSS化合物の種類にも依存するが、好ましくは300nm以下、より好ましくは80nm以下である。平均分散径が500nmをこえた場合、たとえ分子が分散していてもPOSS化合物の有する無機フィラー的な特性は発現しなく、さらに、POSS化合物の凝集構造が破壊の開始点になり、ゴム組成物が脆くなる可能性がある。   In the present invention, the average dispersion diameter of the POSS compound dispersed in the rubber component is preferably 500 nm or less. And although the average dispersion diameter of a POSS compound is dependent also on the kind of POSS compound to be used, Preferably it is 300 nm or less, More preferably, it is 80 nm or less. When the average dispersion diameter exceeds 500 nm, even if the molecules are dispersed, the characteristics of the inorganic filler possessed by the POSS compound do not appear, and furthermore, the aggregate structure of the POSS compound becomes the starting point of destruction, and the rubber composition May become brittle.

また、ゴム成分中にPOSS化合物を単粒子として、分子サイズで分散させることが好ましいことから、平均分散径の下限値を特に設定する必要はないと考えられる。   Further, since it is preferable to disperse the POSS compound as a single particle in the rubber component with a molecular size, it is considered that it is not necessary to set the lower limit of the average dispersion diameter.

そして、本発明でいうゴム成分中にPOSS化合物が微分散しているとは、少なくとも単分散の粒子が確認できる状態であることを意味する。   And that the POSS compound is finely dispersed in the rubber component in the present invention means that at least monodisperse particles can be confirmed.

これらの平均分散径を評価する方法は、たとえば透過型電子顕微鏡(TEM)で観察する場合においては、採取した試料の少なくとも400μm2の範囲を観察し、長径が1μmを超えるPOSS化合物またはPOSS化合物の凝集体が1つも存在しないことを確認したほうが好ましい。前記POSS化合物の分散径について述べたように、長径が1μmを超えるPOSS化合物またはPOSS化合物凝集体があれば、そこが力学的な破壊開始点になるので、POSS化合物を微分散することで得られる耐熱性、破壊特性の向上、あるいは光学的な透明性などの特性を失う。また、小角X線散乱測定で、例えばGuinierの式を用いることで比較的簡単に平均的な分散粒子径に関する情報を得ることができる。 For example, in the case of observing with a transmission electron microscope (TEM), the average dispersion diameter is evaluated by observing a range of at least 400 μm 2 of the collected sample and measuring the POSS compound or POSS compound having a major axis exceeding 1 μm. It is preferable to confirm that no aggregate is present. As described for the dispersion diameter of the POSS compound, if there is a POSS compound or POSS compound aggregate having a major axis exceeding 1 μm, it becomes a starting point for mechanical destruction, so that it can be obtained by finely dispersing the POSS compound. Loss characteristics such as heat resistance, improved fracture characteristics, or optical transparency. Further, in the small-angle X-ray scattering measurement, for example, information on the average dispersed particle diameter can be obtained relatively easily by using the Guinier equation.

本発明は、フェニル基、ハロゲン基、エポキシ基、アクリル基、メタアクリロイル基、チオール基および炭素数18以下のアルキル基よりなる群から選ばれる少なくとも1種の官能基を有することを特徴とするPOSS化合物を含むゴム組成物である。また、前記アルキル基としては、直鎖もしくは分岐または飽和もしくは不飽和の炭素数18以下のアルキル基が好ましい。   The present invention has at least one functional group selected from the group consisting of a phenyl group, a halogen group, an epoxy group, an acrylic group, a methacryloyl group, a thiol group, and an alkyl group having 18 or less carbon atoms. A rubber composition containing the compound. Further, the alkyl group is preferably a linear, branched, or saturated or unsaturated alkyl group having 18 or less carbon atoms.

これまで、POSS化合物を樹脂中に分散できない原因の1つとして、POSS化合物はシリカ化合物であるため、ゴム分子と親和性が低いといった問題があった。しかし、本発明では、これらの官能基は一般にゴムとして用いられる樹脂と高い親和性を示す。例えば不飽和結合を有する場合には、ゴムの加硫時に反応させることが好ましい。   Until now, as one of the reasons why the POSS compound cannot be dispersed in the resin, the POSS compound is a silica compound, and thus has a problem of low affinity with rubber molecules. However, in the present invention, these functional groups have a high affinity with resins generally used as rubber. For example, when it has an unsaturated bond, it is preferable to react at the time of rubber vulcanization.

本発明のPOSS化合物は炭素数18以下のアルキル基を有することを特徴とする。炭素数18以下のアルキル基としては、例えば、メチル基、エチル基、ビニル基、n−プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基などが挙げられる。炭素数が18をこえるとアルキル基は結晶し、結晶するとゴム分子と高い相溶性が望めないだけでなく、結晶構造自体がゴムマトリックスの中の異物として作用するので破壊開始点になる可能性がある。この理由から導入する官能基は非晶であることが好ましい。アルキル基以外に好ましい官能基としては、フェニル基などの芳香族系の官能基が挙げられる。フェニル基などの芳香族系の官能基は、スチレンブタジエンゴムなどと良好な相溶性を示し、分散性も良好であるので好適に用いられる。ビニル基以外にもアクリル系、メタアクリル系の不飽和性官能基は、好適な分散の後、ゴムと反応させることができるので好適に用いられる。アクリル系、メタクリル系の官能基は、アクリル、メタクリルの重合体に組み込まれていてもかまわない。ハロゲン系の官能基および/またはエポキシ系の官能基も反応性が高く、不飽和系官能基と同様の理由で好適に用いられる。チオール基などの硫黄含有官能基はゴムの有する不飽和結合との反応性が良好なので好適に用いられる。   The POSS compound of the present invention is characterized by having an alkyl group having 18 or less carbon atoms. Examples of the alkyl group having 18 or less carbon atoms include a methyl group, an ethyl group, a vinyl group, an n-propyl group, an isopropyl group, a butyl group, an isobutyl group, and a tert-butyl group. If the number of carbon atoms exceeds 18, the alkyl group will crystallize, and if crystallized, not only high compatibility with rubber molecules can be expected, but also the crystal structure itself acts as a foreign substance in the rubber matrix, so there is a possibility of becoming a starting point of fracture. is there. For this reason, the functional group to be introduced is preferably amorphous. Preferable functional groups other than alkyl groups include aromatic functional groups such as phenyl groups. Aromatic functional groups such as phenyl groups are preferably used because they have good compatibility with styrene butadiene rubber and the like and have good dispersibility. In addition to vinyl groups, acrylic and methacrylic unsaturated functional groups are preferably used because they can be reacted with rubber after suitable dispersion. Acrylic and methacrylic functional groups may be incorporated into acrylic and methacrylic polymers. Halogen functional groups and / or epoxy functional groups are also highly reactive and are preferably used for the same reason as unsaturated functional groups. A sulfur-containing functional group such as a thiol group is preferably used because of its good reactivity with the unsaturated bond of the rubber.

POSS化合物の配合量は、ゴム成分100重量部に対して1重量部以上が好ましく、5重量部以上がより好ましく、10重量部以上がさらに好ましい。POSS化合物の配合量が1重量部未満では、POSS化合物の配合による充分な補強効果を得ることが難しくなる傾向がある。   The compounding amount of the POSS compound is preferably 1 part by weight or more, more preferably 5 parts by weight or more, and still more preferably 10 parts by weight or more with respect to 100 parts by weight of the rubber component. When the blending amount of the POSS compound is less than 1 part by weight, it tends to be difficult to obtain a sufficient reinforcing effect by blending the POSS compound.

また、POSS化合物の配合量は、ゴム成分100重量部に対して150重量部以下が好ましく、120重量部以下がより好ましく、100重量部以下がさらに好ましい。POSS化合物の含有量が150重量部をこえると、POSS化合物が相分離してしまい、耐引き裂き特性などの力学特性が著しく低下してしまう傾向がある。また、POSS化合物の含有量が150重量部をこえると、破断強度が極端に低くなり、脆性破壊を招くことになる。また、POSS化合物の配合量が多いと、平均分散径が500nmを超えるPOSS化合物がゴム成分中に多数存在する傾向があり、前記POSS化合物の分散径において述べたように、POSS化合物を微分散することで得られる特性を失う傾向がある。   Further, the compounding amount of the POSS compound is preferably 150 parts by weight or less, more preferably 120 parts by weight or less, and still more preferably 100 parts by weight or less with respect to 100 parts by weight of the rubber component. When the content of the POSS compound exceeds 150 parts by weight, the POSS compound is phase-separated and mechanical properties such as tear resistance tend to be remarkably deteriorated. On the other hand, when the content of the POSS compound exceeds 150 parts by weight, the breaking strength becomes extremely low, leading to brittle fracture. In addition, when the blending amount of the POSS compound is large, many POSS compounds having an average dispersion diameter exceeding 500 nm tend to exist in the rubber component, and as described in the dispersion diameter of the POSS compound, the POSS compound is finely dispersed. There is a tendency to lose the characteristics obtained.

本発明の官能基を有する籠状ポリシルセスキオキサン化合物が分散したゴム組成物は、高せん断混練機で混練することを特徴とする。   The rubber composition in which the cage-like polysilsesquioxane compound having a functional group of the present invention is dispersed is kneaded with a high shear kneader.

(1)高せん断成形加工法
高分子材料は広範な産業分野において機能材料や高性能材料として、あるいは様々な基盤材料として利用されている。しかしながら産業界の多様なニーズに対しては単一の高分子材料で応えることができず、最近はブレンド、アロイ、コンポジットといった多成分化により材料化が図られている。このような大きな潮流にありながら,例えば実用的な高分子同士は相互に分子レベルでは混ざらない(非相溶性)ため、高分子同士を溶融状態で機械的に混ぜてもすぐに相分離してしまい、マトリクス相に分散している分散相のサイズが数〜数十ミクロンレベルとなってしまう。このため、材料物性の相乗効果を期待してブレンド化を図っても、結局は所与の物性を発揮できないという技術的な壁に阻まれていた。すなわち、単純機械的なブレンド技術では分子レベルの相溶化やナノレベルでの微視的分散状態を実現できないでいた。従来、機械的な混合だけでは、非相溶性ポリマーブレンド系の分散相のサイズは限界(350nm)があるとされていた。このような困難を打開するため、ブレンド化に際し組成高分子と親和性があり界面活性剤としての働きをする相容化剤を混合する手法、あるいは高分子末端を修飾することにより界面で反応を起こして相容化を図る技術(リアクティブプロセシング)も利用されてきたが、両者とも技術的な限界を有していた。特に、従来手法により相容化剤等の余分な添加剤を加えて混合したものは、例えば電子材料においてはそれら添加剤が不純物や欠陥となり性能向上への大きな障害となっていた。またリアクティブプロセシング法では副反応により物性が低下してしまう問題点が指摘されていた。
(1) High shear molding method Polymer materials are used as functional materials and high performance materials in various industrial fields or as various base materials. However, a single polymer material cannot meet the diverse needs of the industry, and recently, materialization has been achieved by using multiple components such as blends, alloys, and composites. In spite of such a large current, for example, practical polymers do not mix with each other at the molecular level (incompatible), so even if the polymers are mechanically mixed in a molten state, they are immediately phase separated. Consequently, the size of the dispersed phase dispersed in the matrix phase is on the order of several to several tens of microns. For this reason, even if blending was performed in anticipation of a synergistic effect of material properties, the technical barrier was that the given physical properties could not be achieved in the end. That is, the simple mechanical blending technology cannot realize the molecular level compatibilization and the nano level microscopic dispersion state. Conventionally, the size of the dispersed phase of the incompatible polymer blend system is limited (350 nm) only by mechanical mixing. In order to overcome these difficulties, a method of mixing a compatibilizer that has an affinity for the composition polymer and acts as a surfactant during blending, or a reaction at the interface by modifying the polymer end A technology to wake up and achieve compatibility (reactive processing) has been used, but both have technical limitations. In particular, a mixture obtained by adding an extra additive such as a compatibilizing agent by a conventional method, for example, in an electronic material, the additive becomes an impurity or a defect, which is a great obstacle to performance improvement. Further, the reactive processing method has been pointed out to have a problem that the physical properties deteriorate due to side reactions.

そこで、添加剤等を使うことなく高せん断流動場の利用だけで非相溶性高分子をナノブレンド化するための単純かつクリーンな技術構築に向けて独自に基盤研究を進めてきた。   Therefore, we have independently conducted basic research toward the construction of a simple and clean technology for nano-blending incompatible polymers using only high shear flow fields without using additives.

本発明は、高せん断成形加工法により、添加剤を使わずに、非相溶性高分子ブレンド系の分散相サイズの限界を一桁以上、上回るナノ分散構造を実現できるものである。   The present invention can realize a nano-dispersed structure that exceeds the limit of the dispersed phase size of an incompatible polymer blend system by one or more digits by using a high shear molding method without using an additive.

(1−1)高せん断成形加工法の概要
高分子ブレンド系にせん断流動場、高圧場等の外部場を加えた状態で“その場”相挙動解析を行ってきた。その解析結果から高せん断流動場により非相溶性高分子ブレンドのナノ分散化が実現できると予想した。従来市販されていた成形加工機では、十分なせん断速度が得られないため、1,000sec-1以上の高せん断速度を発生できる成形加工装置を開発してきた。これまで、スクリュー回転数として最高3,000rpmまで到達するプロトタイプの微量型高せん断成形加工機を完成させ、冷却機構の導入などこれまで装置細部の改良を図りながら研究を進めてきた。この成形加工機においては最高のスクリュー回転数3,000rpm出力時に4,400sec-1のせん断速度に到達する。すなわち、本機では、ギャップが1mmの場合、スクリュー回転数の約1.5倍の数値に相当するせん断速度を発生させることができる。本機では試料を、スクリューを備えたシリンダーに加熱部およびシール部を有する溶融混練部の端部に設けられた投入部から投入し、スクリューの先端面と該先端面に対向して配置されているシール面との間隔(ギャップ)を0.5mmから5mmの間で設定可能である。従って通常ギャップを1mmに設定しているので、相当するせん断速度はスクリュー回転数の約1.5倍で定義されるが、ギャップを3mmに設定すると、1mmに設定した場合に比べて、せん断速度に対する係数が1/3となるのでスクリュー回転数1000rpmでは相当するせん断速度は500sec-1である。また、フィードバック型スクリューの採用により高速でスクリューを回転させながら混練時間を任意に設定可能であることを大きな特徴としている。言い換えれば、この成形機では試料を高せん断流動状態下に長時間滞留させることができる。
(1-1) Outline of High Shear Molding Method “In-situ” phase behavior analysis has been conducted in a state where an external field such as a shear flow field and a high pressure field is added to the polymer blend system. From the analysis results, it was predicted that nano-dispersion of incompatible polymer blend could be realized by high shear flow field. A molding machine that has been available on the market has not been able to obtain a sufficient shear rate. Therefore, a molding apparatus that can generate a high shear rate of 1,000 sec −1 or higher has been developed. So far, we have completed a prototype micro-high shear molding machine that reaches a maximum screw speed of 3,000 rpm, and have been conducting research while improving the details of the equipment, including the introduction of a cooling mechanism. In this molding machine, a shear rate of 4,400 sec -1 is reached when the highest screw speed is 3,000 rpm. That is, in this machine, when the gap is 1 mm, it is possible to generate a shear rate corresponding to a value about 1.5 times the screw rotation speed. In this machine, a sample is put into a cylinder equipped with a screw from a feeding part provided at the end of a melt-kneading part having a heating part and a sealing part, and is arranged so as to face the tip surface of the screw and the tip surface. The gap (gap) with the sealing surface can be set between 0.5 mm and 5 mm. Therefore, since the gap is normally set to 1 mm, the corresponding shear rate is defined as about 1.5 times the screw rotation speed. However, when the gap is set to 3 mm, the shear rate is set compared to the case where the gap is set to 1 mm. Is 1/3, the corresponding shear rate is 500 sec -1 at a screw speed of 1000 rpm. Another major feature is that the use of a feedback screw makes it possible to arbitrarily set the kneading time while rotating the screw at high speed. In other words, in this molding machine, the sample can be retained for a long time under a high shear flow state.

(1−2)ナノ分散構造の構築
当該高せん断成形加工機を用いることにより、例えば、従来ナノレベルで混ぜ合わすことのできなかった非相溶性のポリフッ化ビニリデン(PVDF)とポリアミド11(PA11)とを添加剤を使わずに混合し、十〜数十nmのサイズのPA11がPVDF中に均一に分散しているブレンドを作製することができる。ここでの試料混練条件は、樹脂温度230℃、スクリュー回転数1,200rpm、混練時間4分である。従来の成形加工機を用いたのでは、このようなナノ分散構造を構築することはできず、また高せん断成形加工機を用いても低いせん断条件下では、ナノドメインを高密度で形成させることができなかった。しかしながら、非相溶性ポリマーブレンドを高せん断速度下で混練することにより、従来機械的混合だけでは350nmが限界とされた分散相サイズを一桁以上も上回ることができる。
(1-2) Construction of nano-dispersed structure By using the high shear molding machine, for example, incompatible polyvinylidene fluoride (PVDF) and polyamide 11 (PA11), which could not be mixed at the nano-level conventionally, Can be mixed without using an additive, and a blend in which PA11 having a size of 10 to several tens of nm is uniformly dispersed in PVDF can be produced. The sample kneading conditions here are a resin temperature of 230 ° C., a screw rotation speed of 1,200 rpm, and a kneading time of 4 minutes. Such a nano-dispersed structure cannot be constructed using a conventional molding machine, and even with a high shear molding machine, nanodomains can be formed at high density under low shear conditions. I could not. However, by kneading the incompatible polymer blend at a high shear rate, it is possible to exceed the dispersed phase size, which is limited to 350 nm by conventional mechanical mixing alone, by an order of magnitude or more.

(1−3)ナノ構造に由来する物性の向上
低せん断成形したブレンド試料は破断伸びが悪いが、高せん断成形したブレンド試料は非常に優れた破断伸び(280%)を示す。低せん断成形試料は電界強度180MV/mで飽和してしまい、その残留分極(電界強度0における電気変位の大きさ)も極めて小さいが、高せん断成形加工により作製したブレンド試量では低せん断成形試料の倍以上の残留分極を有する強誘電性ヒステリシスとなる。このように、ブレンドを高せん断成形加工により作製することにより機械的伸び等の性質が著しく改善されただけでなく、電気的性質を維持することとなり、高付加価値材料を創出することができる。高せん断成形加工法を多様な高分子ブレンド系に適用し、相溶化、ナノブレンド化による新規な材料創出を目指すものである。さらに、クレイ(層状ケイ酸塩)やカーボンブラック、カーボンナノチューブ等の充てん材の分散性を良くするのに高せん断流動場が極めて有効であるためナノコンポジット材料創製技術としても展開していくことができる。特に、相容化剤等の余分な添加物を一切使用せずにナノレベルの分散化が図れるクリーンな手法として医薬品・化粧品等の調合・製造にも展開可能である。また、高せん断流動場と動的架橋等反応場とを同時に与える手法としても利用できることから,エラストマー等の創出にも活用していくことができる。つまり、新規材料の創出から実用化までを目指していくことができる。
(1-3) Improvement of physical properties derived from nanostructures Although the low shear molded blend sample has poor elongation at break, the high shear molded blend sample exhibits very excellent elongation at break (280%). The low shear molded sample is saturated at an electric field strength of 180 MV / m and its remanent polarization (the magnitude of electrical displacement at an electric field strength of 0) is extremely small. However, the blend sample prepared by high shear molding processing is a low shear molded sample. It becomes a ferroelectric hysteresis having a remanent polarization more than twice. Thus, by producing the blend by high shear molding, not only properties such as mechanical elongation are remarkably improved, but also electrical properties are maintained, and a high value-added material can be created. By applying the high shear molding method to various polymer blend systems, we aim to create new materials by compatibilization and nano blending. Furthermore, the high shear flow field is extremely effective in improving the dispersibility of fillers such as clay (layered silicate), carbon black, and carbon nanotubes. it can. In particular, the present invention can be applied to the preparation and production of pharmaceuticals and cosmetics as a clean technique that can achieve nano-level dispersion without using any extra additives such as compatibilizers. In addition, since it can be used as a method for simultaneously providing a high shear flow field and a reaction field such as dynamic cross-linking, it can also be used to create elastomers and the like. In other words, it is possible to aim from creation of new materials to practical use.

なお、籠状ポリシルセスキオキサン化合物が分散したゴム組成物を高せん断混練機で混練することについては、例えば特開2005−313608号公報を参考にすることができる。   In addition, about kneading | mixing the rubber composition in which the cage-like polysilsesquioxane compound was disperse | distributed with a high shear kneading machine, Unexamined-Japanese-Patent No. 2005-313608 can be referred, for example.

本発明のゴム組成物は、さらに溶融混練機で混合することが好ましい。溶融混練機としては、プラストミル、バンバリーミキサー、一軸混練機、二軸混練機、ロールミルなどが挙げられる。   The rubber composition of the present invention is preferably further mixed with a melt kneader. Examples of the melt kneader include a plast mill, a Banbury mixer, a uniaxial kneader, a biaxial kneader, and a roll mill.

プラストミルとはスクリューのクリアランスが狭く設定されており、強いせん断力がかかるように設定されている。プラストミルは通常二軸スクリューの混練機である。2本スクリューを同期モーターにて定速回転させ、スクリュー間およびスクリューとミキサー内壁との間で混練する。プラストミルは実験室(ラボ)で試験できる小型機で低速回転する。二軸混練機は工場などで使う大型機で低速回転する。そして、高せん断混練機はラボで試験できる小型機で高速回転する。   The plast mill is set so that the clearance of the screw is narrow and a strong shearing force is applied. A plast mill is usually a twin screw kneader. Two screws are rotated at a constant speed by a synchronous motor and kneaded between the screws and between the screw and the mixer inner wall. Plast mill is a small machine that can be tested in the laboratory (lab) and rotates at low speed. The twin-screw kneader is a large machine used in factories and the like and rotates at a low speed. The high shear kneader rotates at a high speed with a small machine that can be tested in a laboratory.

溶融混練機は、樹脂を溶融させて混練する装置である。通常、樹脂をホッパーから添加し、高温の内部で溶融させながらスクリューで混ぜ合わせる。本発明の溶融混練機は、スクリューの内部が空洞になっており、スクリュー内部と外部を循環することにより、より高いせん断の効果を発揮できる。また、回転数も通常の混練機よりも高く設定できる。本発明の一軸混練機では、スクリュー内部が中空になっており、先端部に押し流された樹脂がスクリュー先端部の穴を通して再び後部に押し流される。すなわち、樹脂はスクリューの内部と外部を循環する。この際に通常の混練機と比べて大きなせん断力を加えることができる。さらには、通常のプラストミルでは回転数が150rpmまでなのに対し、スクリューの回転数が3000rpmまで設定できることから、通常用いられる混練機より高いせん断能を有している。   The melt kneader is an apparatus for melting and kneading a resin. Usually, the resin is added from a hopper and mixed with a screw while melting inside a high temperature. In the melt kneader of the present invention, the inside of the screw is hollow, and a higher shearing effect can be exhibited by circulating between the inside and the outside of the screw. Also, the rotational speed can be set higher than that of a normal kneader. In the uniaxial kneader of the present invention, the inside of the screw is hollow, and the resin swept to the tip portion is again pushed to the rear portion through the hole at the screw tip portion. That is, the resin circulates inside and outside the screw. At this time, a larger shearing force can be applied as compared with a normal kneader. Furthermore, since the rotation speed of a normal plast mill is up to 150 rpm, the rotation speed of the screw can be set up to 3000 rpm, so that it has a higher shearing ability than a kneader that is usually used.

本発明のゴム組成物は、溶融時の粘度が高いことが特徴である。そこで、高せん断により、ゴム成分中にPOSS化合物を微分散させるためには、溶融混練機のトルク範囲は高いほうが好ましく、加えて、充分な高速撹拌能力を備えた溶融混練機を使用することが好ましい。高速撹拌の範囲は600〜2400rpmが好ましい。高速撹拌が前記範囲を満たさないと、ゴム成分中にPOSS化合物を単粒子に近い状態で分散させることができなくなる傾向がある。つまり、前記POSS化合物の分散径において述べたように、長径が1μmを超えるPOSS化合物またはPOSS化合物凝集体が生成されると、そこが力学的な破壊開始点になるので、POSS化合物を微分散することで得られる耐熱性、破壊特性の向上、あるいは光学的な透明性などの特性を失う。   The rubber composition of the present invention is characterized by a high viscosity at the time of melting. Therefore, in order to finely disperse the POSS compound in the rubber component by high shear, it is preferable that the torque range of the melt kneader is high, and in addition, it is possible to use a melt kneader having sufficient high-speed stirring ability. preferable. The range of high-speed stirring is preferably 600 to 2400 rpm. If the high-speed stirring does not satisfy the above range, there is a tendency that the POSS compound cannot be dispersed in the rubber component in a state close to single particles. That is, as described in the dispersion diameter of the POSS compound, when a POSS compound or a POSS compound aggregate having a major axis exceeding 1 μm is generated, it becomes a mechanical fracture starting point, so that the POSS compound is finely dispersed. It loses the characteristics such as heat resistance, improved fracture characteristics, and optical transparency.

また、本発明のゴム組成物は粘度が高いので、混練中に温度が上昇することが予測される。このことから混練機には冷却機能が付与されていることが好ましい。混練中のゴム成分の温度としては280℃以下で混練することが好ましい。ゴム成分の温度が280℃をこえると、ゴム成分が熱分解し、火災の可能性もあり安全性の観点からも好ましくない。より好ましい混練温度は250℃以下である。この仕様にあった混練機としては、例えば(株)井元製作所製の高せん断成形加工機HSE3000miniなどが挙げられる。   Moreover, since the rubber composition of the present invention has a high viscosity, it is expected that the temperature will increase during kneading. For this reason, the kneader is preferably provided with a cooling function. The temperature of the rubber component during kneading is preferably kneaded at 280 ° C. or lower. If the temperature of the rubber component exceeds 280 ° C., the rubber component is thermally decomposed, and there is a possibility of fire, which is not preferable from the viewpoint of safety. A more preferable kneading temperature is 250 ° C. or less. An example of a kneading machine that meets this specification is a high shear molding machine HSE3000mini manufactured by Imoto Seisakusho Co., Ltd.

本発明のゴム組成物の混練は、高せん断混練機として溶融混練機を用い、スクリュー回転数1000〜3000rpm(ここではギャップを3mmに設定しているので相当するせん断速度は500〜1500sec-1)、混練温度100〜230℃、混練時間1〜5分の混練条件で混練してすることが好ましい。 For kneading the rubber composition of the present invention, a melt kneader is used as a high shear kneader, and the screw rotation speed is 1000 to 3000 rpm (here, since the gap is set to 3 mm, the corresponding shear rate is 500 to 1500 sec −1 ). The kneading is preferably carried out under kneading conditions of 100 to 230 ° C. and kneading time of 1 to 5 minutes.

スクリュー回転数が3000rpmを超えるとせん断力が高く、ゴムの分子鎖が切断される傾向がある。また、スクリュー回転数が1000rpm未満であれば高分散が期待できない。スクリュー回転数のより好ましい上限は2400rpmであり、より好ましい下限は1200rpmである。スクリュー回転数1000〜3000rpmに相当するせん断速度は、500〜1500sec-1である。 When the screw rotation speed exceeds 3000 rpm, the shearing force is high and the rubber molecular chain tends to be broken. Further, if the screw rotation speed is less than 1000 rpm, high dispersion cannot be expected. A more preferable upper limit of the screw rotation speed is 2400 rpm, and a more preferable lower limit is 1200 rpm. The shear rate corresponding to a screw rotation speed of 1000 to 3000 rpm is 500 to 1500 sec −1 .

混練温度は230℃以下が好ましい。混練温度が230℃を超えると高せん断による発熱でゴムの分子鎖が熱分解され、期待する物性を発現することができない傾向がある。また、混練温度は100℃以上が好ましい。混練温度が100℃未満であると粘度が高すぎて高せん断をかけることができない傾向がある。混練温度のより好ましい範囲は150℃以上、200℃以下である。   The kneading temperature is preferably 230 ° C. or lower. When the kneading temperature exceeds 230 ° C., the rubber molecular chains are thermally decomposed due to heat generated by high shear, and the expected physical properties tend not to be exhibited. The kneading temperature is preferably 100 ° C. or higher. If the kneading temperature is less than 100 ° C., the viscosity tends to be too high and high shear cannot be applied. A more preferable range of the kneading temperature is 150 ° C. or higher and 200 ° C. or lower.

装置としては株式会社井元製作所からHSE3000miniとして市販されている。   The apparatus is commercially available as HSE3000mini from Imoto Seisakusho.

本発明のゴム組成物の製造方法としては、混練中に摩擦力により高温になる可能性があるので耐熱性の高いゴム成分を用いることが好ましい。そこで、POSS化合物を耐熱性の低いゴム成分中に分散させる場合は、例えば混練機を用いて予め耐熱性が高く、溶融粘度が高い樹脂組成物にPOSS化合物を練りこみ、その後、通常の混練方法で耐熱性の低いゴムに練りこむ方法がある。また、耐熱性の低いゴム成分を用いて本発明のゴム組成物を作製する方法としては、耐熱性の低いゴム成分とともに本発明の粘度範囲内になるように可塑剤などを混合し、発熱を抑える方法がある。   As a method for producing the rubber composition of the present invention, it is preferable to use a rubber component having high heat resistance because there is a possibility of high temperature due to frictional force during kneading. Therefore, when the POSS compound is dispersed in a rubber component having low heat resistance, the POSS compound is kneaded into a resin composition having high heat resistance and high melt viscosity in advance using, for example, a kneader, and then a normal kneading method. And kneading into rubber with low heat resistance. In addition, as a method for producing the rubber composition of the present invention using a rubber component having low heat resistance, a plasticizer or the like is mixed with the rubber component having low heat resistance so as to be within the viscosity range of the present invention to generate heat. There is a way to suppress it.

本発明のゴム組成物は、POSS化合物以外に老化防止剤、酸化防止剤、可塑剤、カーボンブラックやシリカなどのフィラー、架橋剤、ラジカル開始剤、着色剤などの各種添加剤が共存してもかまわない。   In the rubber composition of the present invention, in addition to the POSS compound, various additives such as an antioxidant, an antioxidant, a plasticizer, a filler such as carbon black and silica, a crosslinking agent, a radical initiator, and a colorant may coexist. It doesn't matter.

本発明の、POSS化合物を微分散したゴム組成物を各種ゴム製品に用いることで、ゴム製品の耐熱性や力学特性、寸法安定性などの向上が望まれる。さらに、この性質を利用して、安全性が高く、長期耐久性に優れたゴム組成物が得られることから、タイヤ用ゴム組成物または免震材料用ゴム組成物を提供することができる。   By using the rubber composition finely dispersed in the POSS compound of the present invention for various rubber products, it is desired to improve the heat resistance, mechanical properties, dimensional stability, etc. of the rubber product. Furthermore, by utilizing this property, a rubber composition having high safety and excellent long-term durability can be obtained. Therefore, a rubber composition for tires or a rubber composition for seismic isolation materials can be provided.

本発明のタイヤは、本発明のゴム組成物を用いて、通常の方法により製造することができる。すなわち、必要に応じて前記配合剤を配合した本発明のゴム組成物を用いて、未加硫タイヤを形成し、加硫機中で加熱加圧することにより、本発明のタイヤを製造することができる。   The tire of the present invention can be produced by a usual method using the rubber composition of the present invention. That is, the tire of the present invention can be produced by forming an unvulcanized tire using the rubber composition of the present invention blended with the above-described compounding agents as necessary and heating and pressing in a vulcanizer. it can.

また、本発明の免震材料は、本発明のゴム組成物を用いて、通常の方法により製造することができる。すなわち、鋼板とゴムを加硫接着剤で接着した後、この複合体を何層かに積層した後、さらにプレス加硫を行うことで、本発明の免震材料を製造することができる。   Moreover, the seismic isolation material of this invention can be manufactured by a normal method using the rubber composition of this invention. That is, after the steel plate and the rubber are bonded with a vulcanizing adhesive, the composite is laminated in several layers, and further press vulcanized to produce the seismic isolation material of the present invention.

実施例に基づいて本発明を具体的に説明するが、本発明はこれらのみに制限されるものではない。以下、実施例および比較例で使用した各種薬品および試験方法をまとめて説明する。   The present invention will be specifically described based on examples, but the present invention is not limited to these examples. Hereinafter, various chemicals and test methods used in Examples and Comparative Examples will be described together.

(ゴム組成物の配合剤)
EPDM505A:エチレン−プロピレン−ジエンゴム、住友化学(株)製のエチレンプロピレンジエン3次元共重合体
フェニル基含有籠状ポリシルセスキオキサン(Octaphenyl−POSS化合物):ハイブリッドプラスチック社製のMS0840(オクタフェニルPOSS)
官能基なし籠状ポリシルセスキオキサン(官能基なしPOSS化合物):ハイブリッドプラスチック社製のMS0830(オクタメチルPOSS)
ステアリン酸:日本油脂(株)製のつばき
酸化亜鉛:三井金属鉱業(株)製
硫黄:鶴見化学工業(株)製(200メッシュ)
加硫促進剤CZ:大内新興化学工業(株)製のノクセラーCZ(N−シクロヘキシル−2−ベンゾチアゾリルスルフェンアミド)
(Rubber composition compounding agent)
EPDM505A: Ethylene-propylene-diene rubber, ethylene propylene diene three-dimensional copolymer phenyl group-containing polysilsesquioxane (Octaphenyl-POSS compound) manufactured by Sumitomo Chemical Co., Ltd .: MS0840 (octaphenyl POSS compound) manufactured by Hybrid Plastics Co., Ltd. )
Functional group-free cage-like polysilsesquioxane (functional group-free POSS compound): MS0830 (octamethyl POSS) manufactured by Hybrid Plastics
Stearic acid: Tsubaki zinc oxide manufactured by Nippon Oil & Fats Co., Ltd .: Mitsui Metal Mining Co., Ltd. Sulfur: Tsurumi Chemical Co., Ltd. (200 mesh)
Vulcanization accelerator CZ: Noxeller CZ (N-cyclohexyl-2-benzothiazolylsulfenamide) manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.

(測定方法)
(複素弾性率(E*))
(株)UBM社製のRheogel E−4000を用いて、温度23℃、初期歪み10%、動歪み0.1%の条件下で各配合短冊形試験片(長さ20mm、幅4mm、厚2mm)の複素弾性率を測定した。この値(E*)が小さいほどPOSS化合物の分散が良好で有り、POSS化合物の分散が良好なゴム組成物は破壊に対する耐性が強く、また、変形量に対する弾性率の変化が小さい。この事から、本発明のゴム組成物を、例えばタイヤトレッド部に用いると、走行安定性が良好になることが期待できる。
(Measuring method)
(Complex elastic modulus (E *))
Using a Rheogel E-4000 manufactured by UBM Co., Ltd., each compounded strip-shaped test piece (length 20 mm, width 4 mm, thickness 2 mm) under conditions of a temperature of 23 ° C., an initial strain of 10%, and a dynamic strain of 0.1% ) Was measured. The smaller this value (E *), the better the dispersion of the POSS compound, and the rubber composition with good dispersion of the POSS compound is more resistant to breakage, and the change in the elastic modulus with respect to the deformation is small. From this, when the rubber composition of the present invention is used, for example, in a tire tread portion, it can be expected that the running stability is improved.

(引張試験)
JIS K 6251「加硫ゴム及び熱可塑性ゴム−引張特性の求め方」に準じて、前記加硫ゴムシートからなる3号ダンベル型試験片を用いて、引張試験を実施し、引張速度500mm/min、23℃における100%伸張時の応力(M100(MPa))を測定した。この値が小さいほどPOSS化合物の分散が良好で有り、POSS化合物の分散が良好なゴム組成物は破壊に対する耐性が強く、また、変形量に対する弾性率の変化が小さい。この事から、本発明のゴム組成物を、例えばタイヤトレッド部に用いると、走行安定性が良好になることが期待できる。
(Tensile test)
In accordance with JIS K 6251 “Vulcanized Rubber and Thermoplastic Rubber-Determination of Tensile Properties”, a tensile test was carried out using a No. 3 dumbbell-shaped specimen made of the vulcanized rubber sheet, and a tensile speed of 500 mm / min. The stress at 100% elongation at 23 ° C. (M100 (MPa)) was measured. The smaller this value is, the better the dispersion of the POSS compound is. The rubber composition with good dispersion of the POSS compound is more resistant to breakage, and the change in the elastic modulus with respect to the deformation is small. From this, when the rubber composition of the present invention is used, for example, in a tire tread portion, it can be expected that the running stability is improved.

実施例1
Octaphenyl−POSS化合物(Ph−POSS)含有ゴム組成物について説明する。
Example 1
The rubber composition containing Octaphenyl-POSS compound (Ph-POSS) will be described.

EPDM505A100重量部に対して、Ph−POSS化合物100重量部を配合し、プラストミル:高せん断混練成形機HSE3000mini((株)井元製作所製)を用いて、195℃、1200rpm(ここではギャップを3mmに設定しているので相当するせん断速度は600sec-1)の条件で2分間混練した。冷却の後、2本ロールミルでステアリン酸1重量部、酸化亜鉛5重量部と硫黄1重量部および加硫促進剤4.5重量部を混練し、その後170℃で13分間プレス架橋を行ない、2mm厚さのゴムシートを得た。 100 parts by weight of EPDM505A is blended with 100 parts by weight of Ph-POSS compound, and plast mill: high shear kneading and forming machine HSE3000mini (manufactured by Imoto Seisakusho Co., Ltd.), 195 ° C., 1200 rpm (here, the gap is set to 3 mm) Therefore, the corresponding shear rate was kneaded for 2 minutes under the condition of 600 sec −1 ). After cooling, 1 part by weight of stearic acid, 5 parts by weight of zinc oxide and 1 part by weight of sulfur and 4.5 parts by weight of a vulcanization accelerator were kneaded in a two-roll mill, and then press-crosslinked at 170 ° C. for 13 minutes, and 2 mm A thick rubber sheet was obtained.

得られた架橋ゴムシートについて、複素弾性率(E*)(Mpa)および100%伸張時の応力(M100)(MPa)を測定した。   About the obtained crosslinked rubber sheet, the complex elastic modulus (E *) (Mpa) and the stress at 100% elongation (M100) (MPa) were measured.

また、得られた架橋ゴムシートから任意の5か所をミクロトームで薄片に切削して透過型電子顕微鏡用の試料を得た。得られた試料について、透過型電子顕微鏡(日立製作所社製のH−7100型)(TEM)を用いて、分散径に応じて倍率(例えば3000倍)を設定し、400μm2程度の範囲を観察し、ささらに倍率を10万倍に設定し、1μm2の範囲を観察した。 Further, a sample for a transmission electron microscope was obtained by cutting any five portions from the obtained crosslinked rubber sheet into thin pieces with a microtome. About the obtained sample, the magnification (for example, 3000 times) is set according to the dispersion diameter using a transmission electron microscope (H-7100 type manufactured by Hitachi, Ltd.) (TEM), and the range of about 400 μm 2 is observed. Further, the magnification was set to 100,000 times, and the range of 1 μm 2 was observed.

撮影したTEM写真を図1に示す。   The photographed TEM photograph is shown in FIG.

図1からわかるように、Ph−POSSのサイズが80nm以下で均一分散している。   As can be seen from FIG. 1, the Ph-POSS size is uniformly dispersed at 80 nm or less.

比較例1
官能基なしPOSS化合物含有ゴム組成物について説明する。
Comparative Example 1
The rubber composition containing no functional group POSS compound will be described.

実施例1で使用したOctaphenyl−POSS化合物を官能基なしPOSS化合物100重量部に変え、2軸ロール(中田エンジニアリング社製)を用いて、80℃、5分間、前ロール回転数20rpm、後ロール回転数24rpmの条件で混練したほかは、実施例と同様にして行い、ゴムシートを得た。   The Octaphenyl-POSS compound used in Example 1 was changed to 100 parts by weight of POSS compound having no functional group, and a biaxial roll (manufactured by Nakata Engineering Co., Ltd.) was used at 80 ° C. for 5 minutes, the front roll rotation speed was 20 rpm, and the rear roll rotation was performed. A rubber sheet was obtained in the same manner as in Example except that the kneading was performed under the condition of several 24 rpm.

得られた架橋ゴムシートについて、複素弾性率(E*)(Mpa)および100%伸張時の応力(M100)(MPa)を測定した。   About the obtained crosslinked rubber sheet, the complex elastic modulus (E *) (Mpa) and the stress at 100% elongation (M100) (MPa) were measured.

比較例2
Octaphenyl−POSS化合物含有ゴム組成物について説明する。
Comparative Example 2
The rubber composition containing Octaphenyl-POSS compound will be described.

実施例1において、2軸ロール(中田エンジニアリング社製)を用いて、80℃、5分間、前ロール回転数20rpm、後ロール回転数24rpmの条件で混練したほかは、実施例と同様にして行い、ゴムシートを得た。   In Example 1, a biaxial roll (manufactured by Nakata Engineering Co., Ltd.) was used in the same manner as in Example except that kneading was performed at 80 ° C. for 5 minutes under the conditions of a front roll rotation speed of 20 rpm and a rear roll rotation speed of 24 rpm. A rubber sheet was obtained.

得られた架橋ゴムシートについて、複素弾性率(E*)(Mpa)および100%伸張時の応力(M100)(MPa)を測定した。   About the obtained crosslinked rubber sheet, the complex elastic modulus (E *) (Mpa) and the stress at 100% elongation (M100) (MPa) were measured.

また、得られたゴムシートについて、実施例と同様に、透過型電子顕微鏡(日立製作所社製のH−7100型)(TEM)を用いて、観察した。   Further, the obtained rubber sheet was observed using a transmission electron microscope (H-7100 type manufactured by Hitachi, Ltd.) (TEM) in the same manner as in the Examples.

撮影したTEM写真を図2に示す。   The photographed TEM photograph is shown in FIG.

図2では、Ph−POSSのサイズが数μmレベルで凝集していることがわかる。   In FIG. 2, it can be seen that the size of Ph-POSS is aggregated at a level of several μm.

前記評価結果を表1に示す。   The evaluation results are shown in Table 1.

実施例は、複素弾性率(E*)の値が小さく、POSS化合物の分散が良好であることがわかる。そして、複素弾性率(E*)の値が小さいことで、グリップ性の優れたゴム組成物を得ることが期待できる。   In the examples, the value of the complex elastic modulus (E *) is small, and it can be seen that the dispersion of the POSS compound is good. And since the value of complex elastic modulus (E *) is small, it can be expected to obtain a rubber composition having excellent grip properties.

実施例のゴムシートの分散状態を表すTEM写真である。It is a TEM photograph showing the dispersion state of the rubber sheet of an Example. 比較例2のサンプルシートの分散状態を表すTEM写真である。10 is a TEM photograph showing a dispersion state of a sample sheet of Comparative Example 2.

Claims (3)

未架橋状態で170℃、10Hzにおける複素弾性率が1×10 3 〜8×10 5 Pa・sであるゴム成分100重量部に対して、
フェニル基、ハロゲン基、アクリル基、メタアクリロイル基および炭素数18以下のアルキル基よりなる群から選ばれる少なくとも1種の官能基を有し、1分子当たりの珪素原子数が7〜20である籠状ポリシルセスキオキサン化合物1〜150重量部を高せん断混練機で混練する工程によって得られる、
前記籠状ポリシルセスキオキサン化合物がゴム成分中に分散し、該化合物の平均分散径が300nm以下であるゴム組成物であり、
前記高せん断混練機として溶融混練機を用い、
前記混練する工程の混練条件が、スクリュー回転数1000〜3000rpm、せん断速度500〜1500sec -1 、混練温度100〜230℃、混練時間1〜5分であるゴム組成物
With respect to 100 parts by weight of a rubber component having a complex elastic modulus of 1 × 10 3 to 8 × 10 5 Pa · s at 170 ° C. and 10 Hz in an uncrosslinked state ,
Phenyl group, a halogen group, acryl group, have at least one functional group selected from methacryloyl groups Contact and the group consisting of alkyl group having 18 or less carbon atoms, the number of silicon atoms per molecule is 7-20 Obtained by a step of kneading 1 to 150 parts by weight of a cage polysilsesquioxane compound with a high shear kneader,
The rubber-like polysilsesquioxane compound is dispersed in a rubber component, and the average dispersion diameter of the compound is a rubber composition of 300 nm or less ,
Using a melt kneader as the high shear kneader,
A rubber composition in which the kneading conditions in the kneading step are a screw rotation speed of 1000 to 3000 rpm, a shear rate of 500 to 1500 sec −1 , a kneading temperature of 100 to 230 ° C., and a kneading time of 1 to 5 minutes .
請求項1に記載のゴム組成物を用いたタイヤ。 A tire using the rubber composition according to claim 1 . 請求項1に記載のゴム組成物を用いた免震材料。 A seismic isolation material using the rubber composition according to claim 1 .
JP2008189915A 2008-07-23 2008-07-23 Rubber composition Expired - Fee Related JP5333723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008189915A JP5333723B2 (en) 2008-07-23 2008-07-23 Rubber composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008189915A JP5333723B2 (en) 2008-07-23 2008-07-23 Rubber composition

Publications (2)

Publication Number Publication Date
JP2010024400A JP2010024400A (en) 2010-02-04
JP5333723B2 true JP5333723B2 (en) 2013-11-06

Family

ID=41730516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008189915A Expired - Fee Related JP5333723B2 (en) 2008-07-23 2008-07-23 Rubber composition

Country Status (1)

Country Link
JP (1) JP5333723B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11773240B2 (en) 2019-10-06 2023-10-03 Silpara Technologies LLC Molecular composites of functional silica and natural rubber

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5764563B2 (en) * 2010-08-25 2015-08-19 株式会社ブリヂストン Fluororubber composition and tire manufacturing bladder
CN103298878B (en) * 2010-08-25 2015-09-23 株式会社普利司通 Fluoro-rubber composite and bladder for use in manufacturing tires
JP6060751B2 (en) * 2013-03-18 2017-01-18 日本ゼオン株式会社 Method for producing hot melt adhesive
WO2016133108A1 (en) * 2015-02-20 2016-08-25 国立大学法人秋田大学 Composition and molded article
JP6789521B2 (en) * 2016-08-10 2020-11-25 国立大学法人秋田大学 Dendrimer, composition and molded product
IT201600108121A1 (en) * 2016-10-26 2018-04-26 Pirelli New reinforcing materials, elastomeric compositions and tires for vehicle wheels that include them
JP7165338B2 (en) * 2018-12-28 2022-11-04 国立大学法人秋田大学 Compositions and articles
CN111269362B (en) * 2020-03-19 2022-08-05 浙江龙圣华橡胶股份有限公司 Rubber molding method and rubber
WO2022202800A1 (en) * 2021-03-25 2022-09-29 株式会社日本触媒 Polysilsesquioxane composition and cured product
CN114874509A (en) * 2022-05-06 2022-08-09 青岛双星轮胎工业有限公司 Rubber composition and preparation method thereof
CN114920936B (en) * 2022-06-17 2023-04-14 中国科学院长春应用化学研究所 Low-shrinkage room-temperature curing silicone rubber and preparation method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5488081A (en) * 1993-11-04 1996-01-30 Lord Corporation Highly damped organic elastomer composition
ES2246319T3 (en) * 2000-03-24 2006-02-16 Hybrid Plastics Llp NANO-STRUCTURED CHEMICALS AS ALLOY AGENTS IN POLYMERS.
JP2002322370A (en) * 2001-04-24 2002-11-08 Asahi Kasei Corp Silsesquioxane-containing resin composition
JP4745684B2 (en) * 2004-03-31 2011-08-10 独立行政法人産業技術総合研究所 Method for producing polymer blend material
JP2008530312A (en) * 2005-02-14 2008-08-07 ハイブリッド・プラスティックス・インコーポレイテッド Porosity control by polyhedral oligomeric silsesquioxane
RU2415881C2 (en) * 2005-03-24 2011-04-10 Бриджстоун Корпорейшн Preparing rubber mixture reinforced with silicon dioxide with low level of releasing volatile organic compounds (voc)
JP4708881B2 (en) * 2005-06-28 2011-06-22 住友ゴム工業株式会社 Resin composition
CN101389701A (en) * 2006-02-27 2009-03-18 联合碳化化学及塑料技术有限责任公司 Polyolefin-based high dielectric strength (hds) nanocomposites

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11773240B2 (en) 2019-10-06 2023-10-03 Silpara Technologies LLC Molecular composites of functional silica and natural rubber

Also Published As

Publication number Publication date
JP2010024400A (en) 2010-02-04

Similar Documents

Publication Publication Date Title
JP5333723B2 (en) Rubber composition
Abdul Salim et al. A review on hybrid fillers in rubber composites
Goettler et al. Layered silicate reinforced polymer nanocomposites: development and applications
Chen et al. Effect of nano-CaCO3 on mechanical properties of PVC and PVC/Blendex blend
Hamed Reinforcement of rubber
Teh et al. Physical properties of natural rubber/organoclay nanocomposites compatibilized with epoxidized natural rubber
Moussaif et al. Nanocomposites based on layered silicate and miscible PVDF/PMMA blends: melt preparation, nanophase morphology and rheological behaviour
Khodabandelou et al. Effect of localization of carbon nanotubes on fracture behavior of un-vulcanized and dynamically vulcanized PP/EPDM/MWCNT blend-nanocomposites
Barghamadi et al. Effects of two types of nanoparticles on the cure, rheological, and mechanical properties of rubber nanocomposites based on the NBR/PVC blends
Mohamad et al. The effect of filler on epoxidised natural rubber-alumina nanoparticles composites
JP2010222582A (en) Method for preparing elastomeric composite material with high nanotube content
Tang et al. Nanostructured thermoplastic vulcanizates by selectively cross-linking a thermoplastic blend with similar chemical structures
JP2006097006A (en) Method for producing electrically conductive resin composition and application thereof
Hanim et al. The effect of calcium carbonate nanofiller on the mechanical properties and crystallisation behaviour of polypropylene
Tiggemann et al. Effect of commercial clays on the properties of SEBS/PP/oil thermoplastic elastomers. Part 1. Physical, mechanical and thermal properties
Razmjooei et al. Preparation of dynamically vulcanized thermoplastic elastomer nanocomposites based on LLDPE/reclaimed rubber
Doagou-Rad et al. Influence of processing conditions on the mechanical behavior of MWCNT reinforced thermoplastic nanocomposites
Lee et al. Optimization of dispersion of nanosilica particles in a PP matrix and their effect on foaming
Ali et al. Viscoelastic, thermal, and morphological analysis of HDPE/EVA/CaCO 3 ternary blends
Avazverdi et al. Evaluation of the effect of clay nanoparticles on mechanical properties of recycled polyethylene
Bhattacharya et al. Correlation of vulcanization and viscoelastic properties of nanocomposites based on natural rubber and different nanofillers, with molecular and supramolecular structure
Ansari et al. Effect of multi-walled carbon nanotubes on mechanical properties of feldspar filled polypropylene composites
JPWO2004072158A1 (en) Polymer composite material and method for producing the same
Wang et al. Toughening polypropylene by tiny amounts of fillers
Wang et al. Preparation and properties of nano‐CaCO3/acrylonitrile‐butadiene‐styrene composites

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100527

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130716

R150 Certificate of patent or registration of utility model

Ref document number: 5333723

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees