JP5333653B2 - 内燃機関の排気浄化装置 - Google Patents

内燃機関の排気浄化装置 Download PDF

Info

Publication number
JP5333653B2
JP5333653B2 JP2012505389A JP2012505389A JP5333653B2 JP 5333653 B2 JP5333653 B2 JP 5333653B2 JP 2012505389 A JP2012505389 A JP 2012505389A JP 2012505389 A JP2012505389 A JP 2012505389A JP 5333653 B2 JP5333653 B2 JP 5333653B2
Authority
JP
Japan
Prior art keywords
energization
ehc
characteristic
resistance value
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012505389A
Other languages
English (en)
Other versions
JPWO2011114482A1 (ja
Inventor
衛 ▲吉▼岡
典昭 熊谷
直也 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of JPWO2011114482A1 publication Critical patent/JPWO2011114482A1/ja
Application granted granted Critical
Publication of JP5333653B2 publication Critical patent/JP5333653B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • F01N3/2026Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means directly electrifying the catalyst substrate, i.e. heating the electrically conductive catalyst substrate by joule effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/16Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an electric heater, i.e. a resistance heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/22Monitoring or diagnosing the deterioration of exhaust systems of electric heaters for exhaust systems or their power supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

本発明は、電気加熱式触媒を有する内燃機関の排気浄化装置に関する。
従来より、排気通路上に配設された電気加熱式触媒(以下、適宜「EHC(Electrically Heated Catalyst)」と呼ぶ。)を用いて排気ガスを浄化する技術が知られている。例えば、特許文献1には、触媒担体の温度変化に伴って触媒担体の通電抵抗値が変化するNTC(Negative Temperature Coefficient)特性を利用して、EHCの異常判定を行う技術が提案されている。
特開2009−191681号公報
ところで、EHCのNTC特性などは、EHCへの通電開始時の通電条件によって変化するものと考えられる。具体的には、通電開始時の通電条件に応じた温度ばらつきがEHC内部に生じることで、NTC特性が一義に決まらないものと考えられる。しかしながら、上記の特許文献1に記載された技術では、このようにEHCのNTC特性などが変わることについては考慮されていなかった。
本発明は、上記のような課題を解決するためになされたものであり、通電開始時の通電条件に基づいて、通電特性を適切に設定することが可能な内燃機関の排気浄化装置を提供することを目的とする。
本発明の1つの観点では、内燃機関の排気浄化装置は、内燃機関の排気通路に設けられ、前記排気通路に導かれた排気を浄化可能且つ通電により暖機可能に構成された電気加熱式触媒と、前記電気加熱式触媒における通電抵抗値の特性を示す通電特性を、前記電気加熱式触媒への通電開始時の通電条件に応じて設定する通電特性設定手段と、前記通電特性設定手段によって設定された前記通電特性に基づいて、前記電気加熱式触媒に対する異常判定又は通電制御を行う手段と、を備える。
上記の内燃機関の排気浄化装置は、内燃機関の排気ガスを浄化可能且つ通電により暖機可能に構成された電気加熱式触媒(EHC)を有する。通電特性設定手段は、電気加熱式触媒における通電抵抗値の特性を示す通電特性を、電気加熱式触媒への通電開始時の通電条件に応じて設定する。ここで、通電特性は、電気加熱式触媒への通電開始時の通電条件により影響を受ける傾向にある。具体的には、通電特性は、EHC内部に生じる温度ばらつきなどに起因して、通電開始時の通電条件に応じて異なる傾向にある。そのため、通電特性設定手段は、通電開始時の通電条件に基づいて通電特性を設定する。これにより、通電特性を用いた電気加熱式触媒に関する種々の判定や制御を精度良く行うことが可能となる。例えば、電気加熱式触媒の異常判定や、通電により電気加熱式触媒を昇温させる制御などを、精度良く行うことが可能となる。
なお、「通電特性」は、電気加熱式触媒へ通電するときの条件に応じた、電気加熱式触媒の通電抵抗値の変化特性を示す。また、「通電開始時の通電条件」は、電気加熱式触媒の通電特性に対して影響を与えるような因子によって規定される。
上記の内燃機関の排気浄化装置の一態様では、前記通電特性設定手段は、前記電気加熱式触媒の実際の通電抵抗値を取得し、前記実際の通電抵抗値が、前記通電開始時の通電条件に応じて設定した前記通電特性より求まる通電抵抗値よりも低い場合に、当該通電特性を補正する。
この態様では、通電特性設定手段は、実際の通電抵抗値が通電特性より求まる通電抵抗値よりも低い場合に、当該通電特性を補正する。こうするのは、例えば電気加熱式触媒の再通電時などにおいては、電気加熱式触媒内部に生じる温度ばらつきが大きくなることで、実際の通電抵抗値が、通電特性より求まる通電抵抗値よりも低くなる傾向にあるからである。当該態様によれば、通電により電気加熱式触媒を昇温させる制御を高精度に実施することができ、電気加熱式触媒の温度を目標温度に確実に到達させることが可能となる。
上記の内燃機関の排気浄化装置の他の態様では、前記通電特性設定手段が設定した前記通電特性に基づいて、前記電気加熱式触媒の実際の通電特性を判定するための許容抵抗範囲を設定する許容抵抗範囲設定手段と、前記電気加熱式触媒の実際の通電特性を取得し、前記実際の通電特性が前記許容抵抗範囲から外れた場合に、前記電気加熱式触媒の通電異常と判定する通電異常判定手段と、を更に備え、前記許容抵抗範囲設定手段は、前記電気加熱式触媒への通電開始時の通電条件に応じて、前記許容抵抗範囲を設定する。
この態様では、許容抵抗範囲設定手段は、通電特性に基づいて許容抵抗範囲を設定し、通電異常判定手段は、実際の通電特性が許容抵抗範囲から外れた場合に、電気加熱式触媒の通電異常と判定する。詳しくは、許容抵抗範囲設定手段は、電気加熱式触媒への通電開始時の通電条件に応じて許容抵抗範囲を設定する。こうするのは、通電開始時の通電条件によっては、電気加熱式触媒内部に生じる温度ばらつきが大きいために、比較的低い値を有する通電抵抗値が取得される場合があるからである。この場合には、許容抵抗範囲設定手段は、許容抵抗範囲を低抵抗側に設定する。こうすることにより、電気加熱式触媒の通電異常の判定を精度良く行うことができる。
上記の内燃機関の排気浄化装置において好適には、前記通電特性設定手段によって設定された前記通電特性に基づいて、前記電気加熱式触媒が目標温度に達したか否かを判定するための通電抵抗値を設定する手段を更に備える。これにより、電気加熱式触媒の通電完了判定を精度良く行うことができる。
好適な例では、上記の内燃機関の排気浄化装置は、前記通電開始時の通電条件として、通電開始時の前記電気加熱式触媒の温度、通電開始時の前記電気加熱式触媒への供給電力、及び通電開始時における前記電気加熱式触媒内部の温度ばらつきの程度のうちのいずれか1つ以上を用いる。こうするのは、通電開始時の電気加熱式触媒の温度、通電開始時の電気加熱式触媒への供給電力、及び通電開始時における電気加熱式触媒内部の温度ばらつきの程度は、電気加熱式触媒の通電特性に対して影響を及ぼすからである。
また、好適な例では、上記の内燃機関の排気浄化装置は、前記通電特性は、前記電気加熱式触媒の温度、前記電気加熱式触媒への供給エネルギー、及び前記電気加熱式触媒への通電時間のうちのいずれかと、前記通電抵抗値との関係で表される。
ハイブリッド車両の概略構成図を示す。 エンジンの概略構成図を示す。 EHCの概略構成図を示す。 EHC内のSiCのNTC特性の一例を示す。 EHC内の電流分布の一例を示す。 温度ばらつきによる通電抵抗値の変動及び判定抵抗値の誤差を説明するための図を示す。 第1実施形態における基準通電特性及び判定抵抗値の設定方法を具体的に説明するための図を示す。 第1実施形態における処理を示すフローチャートである。 第2実施形態における基準通電特性及び判定抵抗値の補正方法を具体的に説明するための図を示す。 第2実施形態における処理を示すフローチャートである。 第3実施形態におけるEHCの通電異常の判定方法を具体的に説明するための図を示す。 第3実施形態における許容抵抗範囲の補正方法を具体的に説明するための図を示す。 第3実施形態における処理を示すフローチャートである。
以下、図面を参照して本発明を実施するための形態について説明する。
[装置構成]
図1は、本実施形態におけるハイブリッド車両100の概略構成図を示す。なお、図1中の破線矢印は、信号の入出力を示している。
ハイブリッド車両100は、主に、エンジン(内燃機関)1と、車軸20と、駆動輪30と、第1のモータジェネレータMG1と、第2のモータジェネレータMG2と、動力分割機構40と、インバータ50と、バッテリ60と、ECU(Electronic Control Unit)70と、を備える。
車軸20は、エンジン1及び第2のモータジェネレータMG2の動力を車輪30に伝達する動力伝達系の一部である。車輪30は、ハイブリッド車両100の車輪であり、説明の簡略化のため、図1では特に左右前輪のみが表示されている。エンジン1は、例えばガソリンエンジンで構成され、ハイブリッド車両100の主たる推進力を出力する動力源として機能する。エンジン1は、ECU70によって種々の制御が行われる。
第1のモータジェネレータMG1は、主としてバッテリ60を充電するための発電機、或いは第2のモータジェネレータMG2に電力を供給するための発電機として機能するように構成されており、エンジン1の出力により発電を行う。第2のモータジェネレータMG2は、主としてエンジン1の出力をアシスト(補助)する電動機として機能するように構成されている。また、第2のモータジェネレータMG2は、エンジンブレーキ時やフットブレーキによる制動時において、回生ブレーキとして機能することにより制動力(回生製動力)を発生する。つまり、第2のモータジェネレータMG2は、運動エネルギーを電気エネルギーに変換する回生機能を有しており、回生運転を行うことで発電する。これらのモータジェネレータMG1、MG2は、例えば同期電動発電機として構成され、外周面に複数個の永久磁石を有するロータと、回転磁界を形成する三相コイルが巻回されたステータとを備える。
動力分割機構40は、サンギヤやリングギヤなどを有して構成されるプラネタリギヤ(遊星歯車機構)に相当し、エンジン1の出力を第1のモータジェネレータMG1及び車軸20へ分配することが可能に構成されている。
インバータ50は、バッテリ60と第1のモータジェネレータMG1との間の電力の入出力を制御すると共に、バッテリ60と第2のモータジェネレータMG2との間の電力の入出力を制御する直流交流変換機である。例えば、インバータ50は、第1のモータジェネレータMG1によって発電された交流電力を直流電力に変換してバッテリ60に供給したり、バッテリ60から取り出した直流電力を交流電力に変換して第2のモータジェネレータMG2に供給したりする。
バッテリ60は、第1のモータジェネレータMG1及び/又は第2のモータジェネレータMG2を駆動するための電源として機能することが可能に構成されると共に、第1のモータジェネレータMG1及び/又は第2のモータジェネレータMG2が発電した電力を充電可能に構成された蓄電池である。バッテリ60には、バッテリ60の充電状態(SOC;State Of Charge)を検出可能に構成されたSOCセンサ204が設けられている。SOCセンサ204は、検出したSOCに対応する検出信号をECU70に供給する。
なお、以下では、第1のモータジェネレータMG1及び第2のモータジェネレータMG2のことを単に「モータジェネレータMG」と表記する。
ECU70は、図示しないCPU(Central Processing Unit)、ROM(Read Only Memory)及びRAM(Random Access Memory)などを備え、ハイブリッド車両100内の各構成要素に対して種々の制御を行う。例えば、ECU70は、アクセル開度センサ201が検出したアクセル開度や、車速センサ202が検出した車速などに基づいて、制御を行う。詳細は後述するが、ECU70は、本発明における通電特性設定手段、許容抵抗範囲設定手段、及び通電異常判定手段の一例に相当する。
次に、図2を参照して、エンジン1について具体的に説明する。図2は、エンジン1の概略構成図を示す。
エンジン1は、主に、吸気通路3と、スロットルバルブ4と、燃料噴射弁5と、気筒6aと、吸気弁7と、排気弁8と、点火プラグ9と、排気通路12と、EHC(電気加熱式触媒)13と、を有する。なお、図2においては、説明の便宜上、1つの気筒6aのみを示しているが、実際にはエンジン1は複数の気筒6aを有する。
吸気通路3には外部から導入された吸気(空気)が通過し、スロットルバルブ4は吸気通路3を通過するガスの流量を調整する。吸気通路3を通過した吸気は、燃焼室6bに供給される。また、燃焼室6bには、燃料噴射弁5によって噴射された燃料が供給される。燃焼室6bには、吸気弁7と排気弁8とが設けられている。吸気弁7は、開閉することによって、吸気通路3と燃焼室6bとの導通/遮断を制御する。排気弁8は、開閉することによって、燃焼室6bと排気通路12との導通/遮断を制御する。
燃焼室6b内では、上記のように供給された吸気と燃料との混合気が、点火プラグ9によって点火されることで燃焼される。点火プラグ9は、ECU70によって点火時期などが制御される。このような燃焼によってピストン6cが往復運動し、当該往復運動がコンロッド6dを介してクランク軸(不図示)に伝達され、クランク軸が回転する。燃焼室6bでの燃焼により発生した排気ガスは、排気通路12より排出される。
排気通路12上には、排気ガスを浄化可能且つ通電により暖機可能に構成されたEHC13が設けられている。EHC13については、詳細は後述する。なお、EHC13の下流側の排気通路12上に、触媒(例えば三元触媒など)を別途設けても良い。
また、エンジン1には各種のセンサが設けられている。エアフロメータ205は、吸気通路3に設けられており、吸入空気量を検出する。水温センサ206は、エンジン1を冷却する冷却水が流れる通路上に設けられ、冷却水の温度(以下、「エンジン水温」と呼ぶ。)を検出する。空燃比センサ207は、排気通路12に設けられており、排気ガスの空燃比(A/F)を検出する。床温センサ208は、EHC13内の触媒の床温(以下、「EHC床温」と呼ぶ。)を検出する。床温センサ208は、例えばEHC13内のEHC担体(不図示)などに付設される。これらのセンサは、検出信号をECU70に供給する。
次に、図3を参照して、EHC13について具体的に説明する。図3は、EHC13の概略構成図を示す。
図3(a)は、排気通路12の伸長方向に沿ったEHC13の断面図を示しており、図3(b)は、図3(a)中の切断線X1−X2に沿ったEHC13の断面図を示している。図3(a)及び図3(b)に示すように、EHC13は、EHC担体13aと、保持マット13bと、ケース13cと、正電極13dと、負電極13eと、絶縁碍子13f、13gと、を有する。
EHC担体13aは、断面がハニカム状に構成され、触媒を担持する。例えば、EHC担体13aは、SiC(炭化ケイ素)などによって構成される。また、EHC担体13aは導電性を有する。
保持マット13bは、EHC担体13aの外周面を覆うように設置されると共に、ケース13cの内周面を覆うように設置されており、EHC担体13aを保持する。保持マット13bは、例えばアルミナなどの金属酸化物が繊維状に編み込まれることで構成されており、電気的絶縁性を有している。また、保持マット13bは断熱性も有する。
ケース13cは、例えばSUSなどの金属材料で構成されたEHC13の筐体であり、その上下流側の夫々の端部において、不図示の連結部材を介して排気通路12と接続されている。
正電極13dは、端部がEHC担体13aの外周部に固定された正電圧印加用の電極であり、負電極13eは、端部がEHC担体13aの外周部に固定された負電圧印加用の電極である。また、正電極13d及び負電極13eは、それぞれ、例えばアルミナなどの絶縁材料で構成された絶縁碍子13f、13gで覆われており、電気的絶縁状態に維持されている。
このような構成を有するEHC13では、負電極13eの電位を基準として正電極13dに正の駆動電圧が印加された場合に、導電性のEHC担体13aに電流が流れ、EHC担体13aが発熱する。この発熱によりEHC担体13aに担持された触媒の昇温が促され、EHC13は速やかに触媒活性状態に移行する。なお、このようなEHC13の構成は、一例に過ぎず、例えばEHC担体の構成及び各電極の付設態様及び制御態様等は公知の各種態様を採り得る。
ここで、上記したECU70は、EHC13を暖機するための制御、つまり触媒暖機制御を行う。具体的には、ECU70は、EHC13を通電することで触媒を加熱する制御、又はエンジン1の排気ガスによって触媒を加熱する制御を行う。以下では、EHC13を通電することで触媒を加熱する制御を「通電による触媒暖機」と呼び、エンジン1の排気ガスによって触媒を加熱する制御を「エンジン1による触媒暖機」と呼ぶ。詳しくは、ECU70は、EHC13内の触媒が最適な排気浄化性能を発揮するような温度(つまり活性温度)以上にEHC床温を維持するべく、EHC床温が所定温度以下である場合に、通電による触媒暖機又はエンジン1による触媒暖機を行う。以下では、EHC床温の判定に用いる所定温度を適宜「触媒暖機判定温度」と呼ぶ。触媒暖機判定温度は、EHC13内の触媒の活性温度に基づいて設定される。基本的には、ECU70は、EHC床温が触媒暖機判定温度以下である場合、触媒暖機を目的としたEHC13の通電要求(以下、「EHC通電要求」と呼ぶ。)を発する。
なお、ECU70は、通電による触媒暖機を行う場合には、例えば、エンジン1の出力を用いてハイブリッド車両100を走行させる制御を実行する。これに対して、ECU70は、エンジン1による触媒暖機を行う場合には、例えば、モータジェネレータMGの出力を用いてハイブリッド車両100をEV走行させる制御を実行する。この場合、ECU70は、エンジン1に対して、例えば、アイドル運転相当の運転を行わせつつ、排気ガス温度を上昇させるべく、点火時期を遅角させる制御などを行う。
以下では、ECU70が行う処理の具体的な実施形態(第1乃至第3実施形態)について説明する。
[第1実施形態]
第1実施形態では、ECU70は、EHC13の通電抵抗値の特性を示す通電特性(以下では、「基準通電特性」と呼ぶ。)を、EHC13への通電開始時の通電条件に応じて設定する。また、ECU70は、EHC13への通電開始時の通電条件に応じて、EHC床温が目標床温(つまり触媒暖機判定温度)に達したか否かを判定するための、言い換えるとEHC通電が完了したか否かを判定するための、EHC13の通電抵抗値(以下、「判定抵抗値」と呼ぶ。)を設定する。
ここで、「基準通電特性」は、EHC13へ通電するときの条件に応じたEHC13における通電抵抗値の特性に相当し、EHC13に関する種々の判定を行うために使用される通電特性である。具体的には、基準通電特性は、EHC床温、EHC13への供給エネルギー(「供給電力×通電時間」で表される。以下同様とする。)、及びEHC13への通電時間のうちのいずれかと、EHC13の通電抵抗値との関係で表される。この場合、EHC床温が高くなるほど通電抵抗値は低くなる傾向にあり、EHC13への供給エネルギーが大きくなるほど通電抵抗値は低くなる傾向にあり、EHC13への通電時間の長くなるほど通電抵抗値は低くなる傾向にある。例えば、基準通電特性は、EHC13の通電状態が正常であるか或いは異常であるかを判定するために用いられる、言い換えるとEHC13の通電異常を判定するために用いられる。
「EHC13の通電抵抗値」は、EHC13に通電した場合の、正電極13dと負電極13eとにおける端子間抵抗に相当する。詳しくは、通電抵抗値は、EHC床温によるSiC抵抗と、接触電極での接触抵抗との合計抵抗に相当する。この場合、通電抵抗値は、EHC13に通電した際の電流値と電圧値とによって求められる。当該電流値及び当該電圧値は、例えばセンサによって検出される。
「通電開始時の通電条件」は、EHC13の通電特性に影響を及ぼすパラメータ(因子)によって規定され、基準通電特性を設定するために用いられる。以下では、このようなパラメータを「通電特性設定パラメータ」と呼ぶ。具体的には、通電特性設定パラメータとしては、通電開始時のEHC床温、通電開始時のEHC13への供給電力、及び通電開始時におけるEHC13内部の温度ばらつきの程度、のうちのいずれか1つ以上が用いられる。
次に、図4乃至図6を参照して、上記のように基準通電特性及び判定抵抗値を設定する理由について説明する。
図4は、EHC13内のSiCのNTC特性の一例を示している。図4は、横軸にEHC床温を示し、縦軸にSiCの抵抗を示している。図示のように、SiCは、温度上昇に従って抵抗が低下するといったNTC特性を有している。そのため、このようなNTC特性を予め求めておくことにより、当該NTC特性に基づいてSiC抵抗からEHC床温を推定することができると言える。なお、SiC抵抗は、上記したEHC13の通電抵抗値に相当する。
図5は、EHC13内部、詳しくはEHC担体13a内部の電流分布の一例を示している。図5は、図3(b)と同様に、図3(a)中の切断線X1−X2に沿ったEHC13の断面図を示している。また、図5では、EHC担体13a内に示した矢印で、EHC担体13a内を流れる電流を模式的に表している。
図5に示すように、EHC担体13a内部において、流れる電流に偏りが生じていることがわかる。このような電流の偏りにより、EHC床温に温度分布が生じる、言い換えるとEHC13内部に温度ばらつきが生じる。具体的には、破線領域A11で示すような高温領域と、破線領域A12で示すような低温領域とが生じる。そのため、基本的には高温領域での低い抵抗値が通電抵抗値として検出されるので、検出された通電抵抗値はEHC13全体の状態を正確に表していないと言える。なお、以下では、EHC13内部に生じるEHC床温の温度ばらつきの程度を、適宜「ΔT」と表記する。
ここで、EHC床温の温度ばらつきΔTは、EHC13への供給エネルギーが大きいほど、大きくなる傾向にある。そのため、通電開始時のEHC床温が低いほど温度ばらつきΔTは大きくなる傾向にあり、また、EHC13への供給電力が大きいほど温度ばらつきΔTは大きくなる傾向にある。
なお、温度ばらつきΔTは、1つの例では、EHC13内部における最高温度と最低温度との温度差が用いられる。他の例では、温度ばらつきΔTは、EHC13内の所定位置における温度差が用いられる。例えば、EHC担体13aの中心部と端部との温度差が用いられる。
また、このような温度ばらつきΔTは、例えば予め実験やシミュレーションなどを行うことで作成されたマップに基づいて求めることができる。具体的には、通電条件に応じたEHC13内の温度分布を示すマップ、及び、通電終了後の放熱時におけるEHC13内の温度分布を示すマップを用いて、温度ばらつきΔTを求めることができる。
図6は、温度ばらつきΔTによる通電抵抗値の変動及び判定抵抗値の誤差を説明するための図を示す。図6(a)及び図6(b)は、それぞれ、横軸にEHC床温を示し、縦軸に通電抵抗値を示している。また、グラフG11は温度ばらつきΔTが小である場合の通電特性の一例を示しており、グラフG12はグラフG11よりも温度ばらつきΔTが大である場合の通電特性の一例を示している。
図6(a)中のグラフG11に示すように、温度ばらつきΔTが小である場合には、EHC床温が「T11」となった際に通電抵抗値が「R11」となっていることがわかる。一方、グラフG12に示すように、温度ばらつきΔTが大である場合には、EHC床温が「T11」となった際に通電抵抗値が「R12」となっていることがわかる。この場合、通電抵抗値R12は通電抵抗値R11よりも低い。このようなことから、同じEHC床温でも、温度ばらつきΔTによって異なる通電抵抗値が得られることがわかる。
また、図6(b)中のグラフG11に示すように、温度ばらつきΔTが小である場合には、通電抵抗値が判定抵抗値である「R13」となった際に、EHC床温が「T12」となっていることがわかる。一方、グラフG12に示すように、温度ばらつきΔTが大である場合には、通電抵抗値が判定抵抗値R13となった際に、EHC床温が「T13」となっていることがわかる。この場合、EHC床温T13はEHC床温T12よりも低い。このようなことから、温度ばらつきΔTが大である場合には、通電抵抗値が判定抵抗値R13となっても、EHC床温が目標床温に達していない可能性がある。そのため、EHC13を十分に昇温させることができない場合があると考えられる。
以上述べたように、EHC13の基準通電特性は、EHC13への通電開始時の通電条件などの影響を受け、変化する傾向にあると言える、つまり一義的に決まらないと言える。具体的には、通電開始時のEHC床温や供給電力や温度ばらつきΔTなどに応じて、基準通電特性が変化する傾向にあると考えられる。このように基準通電特性が変化することを考慮しないと、通電抵抗値を用いたEHC床温の推定や、判定抵抗値を用いたEHC13の通電完了判定や、基準通電特性を用いたEHC13の通電異常判定などを、精度良く実施できない可能性があると考えられる。
したがって、第1実施形態では、EHC13への通電開始時の通電条件に応じて、つまり基準通電特性に対して影響を及ぼすパラメータ(通電特性設定パラメータ)に応じて、基準通電特性及び判定抵抗値を設定する。具体的には、ECU70は、通電開始時のEHC床温、通電開始時のEHC13への供給電力、及び通電開始時におけるEHC13内部の温度ばらつきを通電特性設定パラメータとして用いて、基準通電特性及び判定抵抗値を設定する。詳しくは、ECU70は、所定条件(例えばEHC床温が25[℃]で供給電力が6[kW])でのEHC13の通電特性をベース特性として予め設定しておき、当該ベース特性を補正前の基準通電特性として用いて、通電特性設定パラメータに基づいて当該ベース特性を補正することで基準通電特性を設定する。例えば、ECU70は、通電開始時のEHC床温が低いほど、より低い通電抵抗値を有する基準通電特性に補正したり、通電開始時の供給電力が大きいほど、より低い通電抵抗値を有する基準通電特性に補正したり、通電開始時の温度ばらつきが大きいほど、より低い通電抵抗値を有する基準通電特性に補正したりする。そして、ECU70は、このようにして設定された基準通電特性において目標床温に対応する通電抵抗値を、判定抵抗値として設定する。
1つの例では、ECU70は、通電特性設定パラメータごとにベース特性を補正するための補正量が規定された補正量マップを用いて、補正量マップより得られる補正量によってベース特性を補正することで基準通電特性を設定する。この例では、ECU70は、通電開始時のEHC床温、通電開始時のEHC13への供給電力、及び通電開始時におけるEHC13内部の温度ばらつきのそれぞれに対して補正量が対応付けられた補正量マップを用いて、ベース特性を補正する。
なお、上記したようなベース特性及び補正量マップは、例えば予め実験やシミュレーションなどを行うことで設定される。
図7は、第1実施形態における基準通電特性及び判定抵抗値の設定方法の具体例を示す図である。図7(a)及び図7(b)は、それぞれ、横軸にEHC床温を示し、縦軸に通電抵抗値を示している。また、温度「Ta」は、目標床温を示している。
図7(a)は、通電開始時のEHC床温に応じた基準通電特性及び判定抵抗値の設定方法の具体例を示している。図7(a)では、グラフG21はベース特性の一例を示している。ここでは、通電開始時のEHC床温が低い場合(詳しくはベース特性を設定する際に用いた所定条件を規定するEHC床温よりも低い場合)を例に挙げる。この場合には、ECU70は、ベース特性G21を、グラフG22で示すような低い通電抵抗値を有する基準通電特性に補正する。つまり、ECU70は、ベース特性G21よりも低抵抗側の基準通電特性G22に設定する。そして、ECU70は、このように設定した基準通電特性G22において目標床温Taに対応する通電抵抗値R22を、判定抵抗値として設定する。つまり、ECU70は、ベース特性G21における判定抵抗値R21よりも低抵抗側の判定抵抗値R22に設定する。なお、ECU70は、基本的には、通電開始時のEHC床温が低いほど、基準通電特性及び判定抵抗値をより低抵抗側に設定する。
図7(b)は、通電開始時のEHC13への供給電力に応じた基準通電特性及び判定抵抗値の設定方法の具体例を示している。図7(b)では、グラフG31はベース特性の一例を示している。ここでは、通電開始時の供給電力が大きい場合(詳しくはベース特性を設定する際に用いた所定条件を規定する供給電力よりも大きい場合)を例に挙げる。この場合には、ECU70は、ベース特性G31を、グラフG32で示すような低い通電抵抗値を有する基準通電特性に補正する。つまり、ECU70は、ベース特性G31よりも低抵抗側の基準通電特性G32に設定する。そして、ECU70は、このように設定した基準通電特性G32において目標床温Taに対応する通電抵抗値R32を、判定抵抗値として設定する。つまり、ECU70は、ベース特性G31における判定抵抗値R31よりも低抵抗側の判定抵抗値R32に設定する。なお、ECU70は、基本的には、通電開始時の供給電力が大きいほど、基準通電特性及び判定抵抗値をより低抵抗側に設定する。
次に、図8を参照して、第1実施形態において行われる処理を具体的に説明する。図8は、第1実施形態における処理を示すフローチャートである。この処理は、基準通電特性及び判定抵抗値を設定するために行われる。また、当該処理は、ECU70によって所定の周期で繰り返し実行される。なお、当該処理は、ハイブリッド車両100が始動された後(例えばレディ・オン後)に実行される。
まず、ステップS101では、ECU70は、EHC通電要求があるか否かを判定する。具体的には、ECU70は、エンジン水温や、EHC床温や、バッテリ60のSOCなどに基づいて、EHC通電要求があるか否かを判定する。例えば、ECU70は、エンジン水温が所定温度範囲内であり、且つ、EHC床温が所定温度(触媒暖機判定温度)以下であり、尚且つ、SOCが所定量以上である場合に、EHC通電要求があると判定する。EHC通電要求がある場合(ステップS101;Yes)、処理はステップS102に進み、EHC通電要求がない場合(ステップS101;No)、処理は終了する。
ステップS102では、ECU70は、基準通電特性を設定するために用いる通電特性設定パラメータを取得する。具体的には、ECU70は、通電開始時のEHC床温、通電開始時のEHC13への供給電力、及び通電開始時におけるEHC13内部の温度ばらつきを、通電特性設定パラメータとして取得する。この場合、ECU70は、床温センサ208が検出したEHC床温を取得する、若しくは、所定のパラメータを用いてEHC床温を推定する。また、ECU70は、EHC13に通電した際の電流値及び電圧値に基づいて、EHC13への供給電力を求める。この場合、ECU70は、当該電流値及び当該電圧値をセンサなどから取得する。更に、ECU70は、前述したようなマップを参照することで、EHC13内部の温度ばらつきの程度を求める。そして、処理はステップS103に進む。
ステップS103では、ECU70は、基準通電特性におけるベース特性を補正するための補正量が規定された補正量マップを取得する。具体的には、ECU70は、EHC床温によって規定された補正量マップ、供給電力によって規定された補正量マップ、及び温度ばらつきによって規定された補正量マップを取得する。そして、処理はステップS104に進む。
ステップS104では、ECU70は、ステップS103で取得された補正量マップに基づいて基準通電特性を設定する。具体的には、ECU70は、まず、補正量マップを参照することで、ステップS102で取得された通電特性設定パラメータの値に対応する補正量を得る。例えば、ECU70は、EHC床温によって規定された補正量マップ、供給電力によって規定された補正量マップ、及び温度ばらつきによって規定された補正量マップをそれぞれ参照することで、ステップS102で取得されたEHC床温、供給電力、及び温度ばらつきのそれぞれに対応する補正量を得る。次に、ECU70は、こうして得られた補正量によってベース特性を補正することで、基準通電特性を設定する。例えば、ECU70は、EHC床温より得られた補正量、供給電力より得られた補正量、及び温度ばらつきより得られた補正量に基づいてベース特性を補正することで、基準通電特性を設定する。そして、処理はステップS105に進む。
ステップS105では、ECU70は、ステップS104で設定された基準通電特性に基づいて判定抵抗値を設定する。具体的には、ECU70は、ステップS104で設定された基準通電特性において目標床温に対応する通電抵抗値を、判定抵抗値として設定する。そして、処理は終了する。
以上説明した第1実施形態によれば、EHC13への通電開始時の通電条件に応じて、基準通電特性及び判定抵抗値を適切に設定することができる。よって、例えば、通電抵抗値を用いたEHC床温の推定や、判定抵抗値を用いたEHC13の通電完了判定や、基準通電特性を用いたEHC13の通電異常判定などを、精度良く行うことが可能となる。また、通電によりEHC13を昇温させる制御を高精度に実施することが可能となる。
以下では、第1実施形態の変形例について説明する。
上記では、通電開始時のEHC床温、通電開始時のEHC13への供給電力、及び通電開始時におけるEHC13内部の温度ばらつきの全てを通電特性設定パラメータとして用いる例を示したが、これに限定はされない。つまり、EHC床温、供給電力、及び温度ばらつきの全てに基づいて、基準通電特性及び判定抵抗値を設定することに限定はされない。他の例では、ECU70は、EHC床温、供給電力、及び温度ばらつきのうちのいずれか2つを通電特性設定パラメータとして用いて、若しくは、EHC床温、供給電力、及び温度ばらつきのうちのいずれか1つのみを通電特性設定パラメータとして用いて、基準通電特性及び判定抵抗値を設定することができる。
更に、上記では、基準通電特性を設定し、設定された基準通電特性に基づいて判定抵抗値を設定する例を示したが、これに限定はされない。例えば判定抵抗値のみが必要である場合には、基準通電特性を求めずに、判定抵抗値を直接求めても良い。この場合、上記したような基準通電特性の設定方法と同様の方法によって、判定抵抗値を設定することができる。具体的には、ECU70は、ベース特性において規定された判定抵抗値(以下、「基準判定抵抗値」と呼ぶ。)を用いると共に、通電特性設定パラメータによって規定された、基準判定抵抗値を補正するための補正量マップを用いることができる。そして、ECU70は、当該補正量マップから通電特性設定パラメータに対応する補正量を得て、得られた補正量に基づいて基準判定抵抗値を補正することで、判定抵抗値を設定することができる。なお、基準判定抵抗値及び補正量マップは、例えば予め実験やシミュレーションなどを行うことで設定される。
更に、上記では、ベース特性を補正量マップに基づいて補正することで基準通電特性及び判定抵抗値を設定する例を示したが、これに限定はされない。つまり、ベース特性を補正することで基準通電特性及び判定抵抗値を設定することに限定はされない。他の例では、ECU70は、このようなベース特性及び補正量マップを用いる代わりに、通電特性設定パラメータに対して、設定すべき基準通電特性及び判定抵抗値が直接対応付けられたマップを用いることができる。この例では、ECU70は、当該マップを参照することで、通電特性設定パラメータの値に対応する基準通電特性及び判定抵抗値を設定することができる。なお、このようなマップも、例えば予め実験やシミュレーションなどを行うことで設定される。
更に、上記では、EHC床温によって規定された基準通電特性を設定する例を示したが(図7など参照)、EHC床温の代わりに、EHC13への供給エネルギー若しくはEHC13への通電時間によって規定された基準通電特性を設定しても良い。つまり、EHC13への供給エネルギー若しくはEHC13への通電時間と、通電抵抗値との関係で表される基準通電特性を設定しても良い。この場合、ECU70は、基本的には、上述したような基準通電特性の設定方法と同様の方法によって、供給エネルギー又は通電時間によって規定された基準通電特性を設定することができる。
ここで、供給エネルギーによって規定された基準通電特性を使用する場合において判定抵抗値を設定する場合には、EHC床温を目標床温にするために必要な供給エネルギーを予め求めておき、当該基準通電特性において当該供給エネルギーに対応する通電抵抗値を判定抵抗値として設定することができる。同様に、通電時間によって規定された基準通電特性を使用する場合において判定抵抗値を設定する場合には、EHC床温を目標床温にするために必要な通電時間を予め求めておき、当該基準通電特性において当該通電時間に対応する通電抵抗値を判定抵抗値として設定することができる。
なお、上記のように供給エネルギー若しくは通電時間によって規定された基準通電特性を使用する場合における判定抵抗値の設定方法は、後述する実施形態でも同様に適用されるものとする。
[第2実施形態]
次に、第2実施形態について説明する。第2実施形態では、第1実施形態に係る方法で設定された基準通電特性を用いた場合において、EHC13の実際の通電抵抗値が当該基準通電特性より求まる通電抵抗値よりも低い場合に、当該基準通電特性及び判定抵抗値を補正する。具体的には、第2実施形態では、ECU70は、EHC13の通電開始時において、EHC13の実際の通電抵抗値(以下、「実測抵抗値」と呼ぶ。)を取得すると共に、基準通電特性を参照することで、通電開始時におけるEHC床温に対応する通電抵抗値(以下、「基準抵抗値」と呼ぶ。)を求めて、実測抵抗値が基準抵抗値よりも低い場合に基準通電特性及び判定抵抗値を補正する。詳しくは、ECU70は、基準抵抗値と実測抵抗値との差分(基準抵抗値から実測抵抗値を減算した値を意味するものとする。以下同様とする。)が大きいほど、基準通電特性及び判定抵抗値をより低抵抗側に補正する。
このような補正を行う理由は以下の通りである。EHC13を再通電した場合などにおいては、EHC13がある程度暖機している状態(以下、「半暖機状態」と呼ぶ。)となっている。このようなEHC13の半暖機状態では、EHC13がほとんど暖機していない状態と比較して、通電開始時におけるEHC床温の温度ばらつきが大きくなり、通電抵抗値が低い値を示す傾向にある。そのため、半暖機状態にあるEHC13に通電した場合には、図6(b)に示した状況と同様の状況が生じる可能性がある。つまり、EHC13内の高温領域が目標床温に達したとしても、EHC床温としては目標床温に達していないといった状況が生じ得る。
したがって、第2実施形態では、上記のようなEHC13の半暖機状態時において発生し得る不具合などを解消するべく、実測抵抗値が基準抵抗値よりも低い場合に、基準通電特性及び判定抵抗値を低抵抗側に補正する。これにより、EHC13が半暖機状態で通電開始した場合にも、判定抵抗値を用いたEHC13の通電完了判定を高精度に行うことができる、言い換えると通電によりEHC13を昇温させる制御を高精度に実施することができる。
図9は、第2実施形態における基準通電特性及び判定抵抗値の補正方法の具体例を示す図である。図9は、横軸にEHC床温を示し、縦軸に通電抵抗値を示している。また、温度「Ta」は目標床温を示し、グラフG41は第1実施形態に係る方法で設定された基準通電特性の一例を示し、通電抵抗値R43は第1実施形態に係る方法で設定された判定抵抗値の一例を示している。
ここでは、基準抵抗値として「R41」が取得され、実測抵抗値として「R42」が取得された場合を考える。基準抵抗値R41は、基準通電特性G41においてEHC床温T4に対応する通電抵抗値である。この場合には、ECU70は、基準通電特性G41を、グラフG42で示すような低い通電抵抗値を有する基準通電特性に補正する。つまり、ECU70は、基準通電特性G41よりも低抵抗側の基準通電特性G42に補正する。具体的には、ECU70は、基準抵抗値R41と実測抵抗値R42との差分に応じた補正量を用いて、基準通電特性G41から基準通電特性G42へ補正する。また、ECU70は、実測抵抗値R42がライン上に存在するような基準通電特性G42を決定する。
そして、ECU70は、このように補正した基準通電特性G42において目標床温Taに対応する通電抵抗値R44を、判定抵抗値として設定する。つまり、ECU70は、基準通電特性G41における判定抵抗値R43よりも低抵抗側の判定抵抗値R44に補正する。なお、ECU70は、基本的には、基準抵抗値と実測抵抗値との差分が大きいほど、大きな値を有する補正量を用いることで、基準通電特性及び判定抵抗値をより低抵抗側に補正する。
次に、図10を参照して、第2実施形態において行われる処理を具体的に説明する。図10は、第2実施形態における処理を示すフローチャートである。この処理は、第1実施形態に係る方法で設定された基準通電特性及び判定抵抗値を補正するために行われる。また、当該処理は、ECU70によって所定の周期で繰り返し実行される。なお、当該処理は、ハイブリッド車両100が始動された後(例えばレディ・オン後)に実行される。
まず、ステップS201では、ECU70は、EHC通電要求があるか否かを判定する。ステップS201の処理は、上記したステップS101の処理と同様であるため、詳細な説明を省略する。EHC通電要求がある場合(ステップS201;Yes)、処理はステップS202に進み、EHC通電要求がない場合(ステップS201;No)、処理は終了する。
ステップS202では、ECU70は、基準通電特性及び判定抵抗値が設定済みであるか否かを判定する。つまり、第1実施形態に係る方法によって設定された基準通電特性及び判定抵抗値が存在するか否かを判定する。基準通電特性などが設定済みである場合(ステップS202;Yes)、処理はステップS203及びS205に進み、基準通電特性などが設定済みでない場合(ステップS202;No)、処理は終了する。
ステップS203では、ECU70は、EHC床温を取得すると共に、設定済みの基準通電特性を取得する。この場合、ECU70は、床温センサ208が検出したEHC床温を取得する、若しくは、所定のパラメータを用いてEHC床温を推定する。そして、処理はステップS204に進む。ステップS204では、ECU70は、ステップS203で取得されたEHC床温及び基準通電特性に基づいて、基準抵抗値を求める。具体的には、ECU70は、当該基準通電特性において当該EHC床温に対応する通電抵抗値を、基準抵抗値として用いる。そして、処理はステップS206に進む。
ステップS205の処理は、上記のステップS203及びS204の処理と並行して行われる。ステップS205では、ECU70は、実測抵抗値を取得する。具体的には、ECU70は、EHC13に通電した際の電流値及び電圧値に基づいて実測抵抗値を求める。当該電流値及び当該電圧値は、例えばセンサによって検出される。そして、処理はステップS206に進む。
ステップS206では、ECU70は、ステップS205で取得された実測抵抗値がステップS204で求められた基準抵抗値よりも低いか否かを判定する。実測抵抗値が基準抵抗値よりも低い場合(ステップS206;Yes)、処理はステップS207に進む。これに対して、実測抵抗値が基準抵抗値以上である場合(ステップS206;No)、処理は終了する。この場合には、基準通電特性及び判定抵抗値を補正しない。
ステップS207では、ECU70は、第1実施形態に係る方法で設定された基準通電特性及び判定抵抗値を補正する。具体的には、ECU70は、基準抵抗値と実測抵抗値との差分に基づいて、基準通電特性及び判定抵抗値を補正する。例えば、ECU70は、基準抵抗値と実測抵抗値との差分に対して補正量が対応付けられたマップなどを用いて、当該マップより得られる補正量に基づいて基準通電特性を補正する。そして、ECU70は、こうして補正された基準通電特性において目標床温に対応する通電抵抗値を、判定抵抗値として設定する。なお、このようなマップは、例えば予め実験やシミュレーションなどを行うことで設定される。以上のステップS207の処理後に、処理は終了する。
以上説明した第2実施形態によれば、例えばEHC13が半暖機状態で通電開始した場合にも、通電によりEHC13を昇温させる制御を高精度に実施することができ、EHC床温を目標床温に確実に到達させることが可能となる。よって、EHC13の活性領域を確保することでエミッション性能を発揮することが可能となる。
以下では、第2実施形態の変形例について説明する。
上記では、EHC13が半暖機状態であるか否かに関わらず、基準通電特性及び判定抵抗値を補正する例を示したが、EHC13が半暖機状態であるか否かを判定し、EHC13が半暖機状態である場合にのみ、基準通電特性及び判定抵抗値を補正することとしても良い。この場合、EHC13が半暖機状態であるか否かの判定は、EHC床温の温度ばらつきに基づいて行うことができる。
更に、上記では、EHC床温によって規定された基準通電特性を補正する例を示したが(図9など参照)、EHC床温の代わりに、EHC13への供給エネルギー若しくはEHC13への通電時間によって規定された基準通電特性を補正しても良い。この場合、ECU70は、基本的には、上述したような基準通電特性の補正方法と同様の方法によって、供給エネルギー又は通電時間によって規定された基準通電特性を補正することができる。具体的には、ECU70は、実測抵抗値が基準抵抗値よりも低い場合に、このような基準通電特性を低抵抗側に補正することができる。なお、基準抵抗値は、基準通電特性において、通電開始時の供給エネルギー若しくは通電時間に対応する通電抵抗値が用いられる。
更に、上記では、基準通電特性を補正し、補正された基準通電特性に基づいて判定抵抗値を設定する例を示したが、これに限定はされない。例えば判定抵抗値のみが必要である場合には、基準通電特性を補正せずに、判定抵抗値のみを補正しても良い。この場合、上記したような基準通電特性の補正方法と同様の方法によって、判定抵抗値を補正することができる。具体的には、ECU70は、実測抵抗値が基準抵抗値よりも低い場合に、基準抵抗値と実測抵抗値との差分に基づいて、元の基準通電特性における判定抵抗値を補正する。
[第3実施形態]
次に、第3実施形態について説明する。第3実施形態では、上記のように設定された基準通電特性(第1実施形態に係る方法で設定された基準通電特性、及び第2実施形態に係る方法で補正された基準通電特性の両方を含む。)に基づいて、EHC13の通電状態が正常であるか或いは異常であるかを判定する、言い換えるとEHC13の通電異常を判定する。具体的には、第3実施形態では、ECU70は、基準通電特性に基づいて許容抵抗範囲を設定し、EHC13の実際の通電特性(以下、「実測通電特性」と呼ぶ。)が許容抵抗範囲から外れた場合にEHC13の通電異常と判定する。
許容抵抗範囲は、EHC13の実際の通電抵抗値が基準通電特性に対して許容できる値か否かを判定するための範囲である。具体的には、許容抵抗範囲は、許容できる上限の通電抵抗(以下、「許容範囲上限」と呼ぶ。)と、許容できる下限の通電抵抗(以下、「許容範囲下限」と呼ぶ。)とによって規定される。
1つの例(以下では「第1の例」と呼ぶ。)では、ECU70は、基準通電特性が有する通電抵抗値に対して所定値(以下、「許容抵抗値」と呼ぶ。)を加算することで許容範囲上限を設定すると共に、基準通電特性が有する通電抵抗値に対して許容抵抗値を減算することで許容範囲下限を設定する。他の例(以下では「第2の例」と呼ぶ。)では、ECU70は、基準通電特性が有する通電抵抗値を所定割合(以下、「許容抵抗割合」と呼ぶ。)だけ増加させることで許容範囲上限を設定すると共に、基準通電特性が有する通電抵抗値を許容抵抗割合だけ減少させることで許容範囲下限を設定する。第2の例によれば、通電抵抗値の大小を考慮した許容抵抗範囲を設定することができる。
図11は、第3実施形態におけるEHC13の通電異常の判定方法の具体例を示す図である。図11は、横軸にEHC床温を示し、縦軸に通電抵抗値を示している。また、グラフG51は基準通電特性の一例を示し、グラフG52は許容範囲上限の一例を示し、グラフG53は許容範囲下限の一例を示している。基準通電特性G51は、第1実施形態に係る方法で設定された通電特性である、若しくは、第1実施形態に係る方法で設定された通電特性を第2実施形態に係る方法によって補正した通電特性である。許容範囲上限G52及び許容範囲下限G53は、基準通電特性G51に基づいて、第1の例若しくは第2の例に係る方法によって設定されたものである。ECU70は、このような許容範囲上限G52及び許容範囲下限G53によって規定された許容抵抗範囲を用いて、EHC13の通電異常の判定を行う。
例えばEHC13の実際の通電抵抗値がグラフG54で示すようにEHC床温に応じて急増した場合には、通電抵抗値が許容範囲上限G52を超えているため、ECU70は、EHC13の通電異常と判定する。また、例えばEHC13の実際の通電抵抗値がグラフG55で示すようにEHC床温に応じて急減した場合には、通電抵抗値が許容範囲下限G53を下回っているため、ECU70は、EHC13の通電異常と判定する。ECU70は、このように通電異常と判定した場合には、EHC13への通電を停止する。
更に、第3実施形態では、ECU70は、EHC13への通電開始時の通電条件に応じて許容抵抗範囲を補正する。具体的には、ECU70は、EHC13の通電特性に影響を及ぼすパラメータ(因子)に基づいて、第1の例若しくは第2の例に係る方法によって設定された許容範囲下限を低抵抗側に補正する。以下では、このようなパラメータを「許容範囲設定パラメータ」と呼ぶ。詳しくは、許容範囲設定パラメータとしては、通電開始時のEHC床温、通電開始時のEHC13への供給電力、及び通電開始時におけるEHC13内部の温度ばらつきの程度が用いられる。つまり、許容範囲設定パラメータは、上記した通電特性設定パラメータと同様のパラメータが用いられる。
例えば、ECU70は、通電開始時のEHC床温が低いほど、許容範囲下限をより低抵抗側に補正したり、通電開始時の供給電力が大きいほど、許容範囲下限をより低抵抗側に補正したり、通電開始時の温度ばらつきが大きいほど、許容範囲下限をより低抵抗側に補正したりする。こうするのは、通電開始時のEHC床温が低い場合や、通電開始時のEHC13への供給電力が大きい場合などにおいては、EHC13内部の電流分布の偏りによりEHC床温の温度ばらつきが大きくなり、比較的低い値を有する通電抵抗値が検出される傾向にあるからである。
詳しくは、ECU70は、第1の例に係る方法を用いる場合には、許容範囲設定パラメータに応じて補正した許容抵抗値によって、許容範囲下限を設定する。他方で、ECU70は、第2の例に係る方法を用いる場合には、許容範囲設定パラメータに応じて補正した許容抵抗割合によって、許容範囲下限を設定する。より詳しくは、ECU70は、通電開始時のEHC床温、供給電力、及び温度ばらつきに応じて、許容抵抗値又は許容抵抗割合を補正する。具体的には、ECU70は、EHC床温が低いほど、及び/又は供給電力が大きいほど、及び/又は温度ばらつきが大きいほど、許容抵抗値又は許容抵抗割合が大きくなるように補正する。なお、ECU70は、第1の例に係る方法を用いる場合及び第2の例に係る方法を用いる場合のいずれにおいても、許容範囲上限については上記したような補正は行わない。つまり、元の許容抵抗値又は元の許容抵抗割合によって許容範囲上限を設定する。
図12は、第3実施形態における許容抵抗範囲の補正方法の具体例を示す図である。図12は、横軸にEHC床温を示し、縦軸に通電抵抗値を示している。また、グラフG61は基準通電特性の一例を示し、グラフG62は許容範囲上限の一例を示し、グラフG63は許容範囲下限の一例を示している。許容範囲上限G62及び許容範囲下限G63は、基準通電特性G61に基づいて、第1の例若しくは第2の例に係る方法によって設定されたものである。なお、許容範囲下限G63は、補正されていない許容範囲下限である。
一方、グラフG64は、許容範囲設定パラメータに応じて許容範囲下限G63を補正した後の許容範囲下限の一例を示している。この場合、許容範囲下限G64は、許容範囲下限G63よりも低抵抗側に補正されている。ECU70は、このような補正後の許容範囲下限G64と、許容範囲上限G62とによって規定された許容抵抗範囲を用いて、EHC13の通電異常の判定を行う。
次に、図13を参照して、第3実施形態において行われる処理を具体的に説明する。図13は、第3実施形態における処理を示すフローチャートである。この処理は、EHC13の通電異常を判定するために行われる。また、当該処理は、ECU70によって所定の周期で繰り返し実行される。
まず、ステップS301では、ECU70は、EHC通電要求があるか否かを判定する。ステップS301の処理は、上記したステップS101の処理と同様であるため、詳細な説明を省略する。EHC通電要求がある場合(ステップS301;Yes)、処理はステップS302に進み、EHC通電要求がない場合(ステップS301;No)、処理は終了する。
ステップS302では、ECU70は、基準通電特性が設定済みであるか否かを判定する。つまり、第1実施形態に係る方法によって設定された基準通電特性、若しくは第1実施形態に係る方法で設定された通電特性を第2実施形態に係る方法によって補正した基準通電特性が存在するか否かを判定する。基準通電特性が設定済みである場合(ステップS302;Yes)、処理はステップS303及びS306に進み、基準通電特性が設定済みでない場合(ステップS302;No)、処理は終了する。
ステップS303では、ECU70は、設定済みの基準通電特性を取得する。この際に、ECU70は、許容抵抗値又は許容抵抗割合も取得する。そして、処理はステップS304に進む。ステップS304では、ECU70は、許容抵抗範囲を設定するために用いる許容範囲設定パラメータを取得する。具体的には、ECU70は、通電開始時のEHC床温、通電開始時のEHC13への供給電力、及び通電開始時におけるEHC13内部の温度ばらつきを、許容範囲設定パラメータとして取得する。そして、処理はステップS305に進む。
ステップS305では、ECU70は、ステップS303及びS304で取得された基準通電特性、許容抵抗値又は許容抵抗割合、及び許容範囲設定パラメータに基づいて、許容抵抗範囲を設定する。例えば、ECU70は、以下のように許容抵抗範囲を設定する。まず、ECU70は、基準通電特性に対して許容抵抗値又は許容抵抗割合を適用することで、許容範囲上限及び許容範囲下限を求める。つまり、ECU70は、第1の例若しくは第2の例に係る方法によって許容範囲上限及び許容範囲下限を設定する。次に、ECU70は、許容範囲設定パラメータに応じて許容抵抗値又は許容抵抗割合を補正する。具体的には、ECU70は、許容範囲設定パラメータに対して、補正後の許容抵抗値又は許容抵抗割合が対応付けられたマップ、若しくは、許容範囲設定パラメータに対して、許容抵抗値又は許容抵抗割合を補正する量が対応付けられたマップを用いて、許容抵抗値又は許容抵抗割合を補正する。次に、ECU70は、補正した許容抵抗値又は許容抵抗割合によって、許容範囲下限を求める。具体的には、ECU70は、補正後の許容抵抗値又は許容抵抗割合を基準通電特性に対して適用することで許容範囲下限を求める、若しくは、補正後の許容抵抗値又は許容抵抗割合を補正していない許容範囲下限に対して適用することで許容範囲下限を求める。このようにして補正された許容範囲下限と、許容範囲上限とによって、許容抵抗範囲が設定される。そして、処理はステップS307に進む。
ステップS306の処理は、上記のステップS303〜S305の処理と並行して行われる。ステップS306では、ECU70は、EHC床温及び通電抵抗値を取得する。この場合、ECU70は、床温センサ208が検出したEHC床温を取得する、若しくは、所定のパラメータを用いてEHC床温を推定する。また、ECU70は、EHC13に通電した際の電流値及び電圧値に基づいて通電抵抗値を求める。そして、処理はステップS307に進む。
ステップS307では、ECU70は、ステップS306で取得されたEHC床温及び通電抵抗値より定まるEHC13の実測通電特性が、ステップS305で設定された許容抵抗範囲外であるか否かを判定する。具体的には、ECU70は、まず、許容範囲上限及び許容範囲下限から、ステップS306で取得されたEHC床温に対応する通電抵抗値を求める、つまり上限の通電抵抗値及び下限の通電抵抗値を求める。そして、ECU70は、ステップS306で取得された通電抵抗値が、求められた上限の通電抵抗値と下限の通電抵抗値とによって規定される範囲から外れているか否かを判定する。
実測通電特性が許容抵抗範囲外である場合(ステップS307;Yes)、処理はステップS308に進む。ステップS308では、ECU70はEHC13の通電状態が異常であると判定し、処理は終了する。この場合には、ECU70は、EHC13への通電を停止する。これに対して、実測通電特性が許容抵抗範囲内である場合(ステップS307;No)、処理はステップS309に進む。ステップS309では、ECU70はEHC13の通電状態が正常であると判定し、処理は終了する。この場合には、ECU70は、EHC13への通電を継続する。
以上説明した第3実施形態によれば、前述した実施形態で決定された基準通電特性に基づいて設定した許容抵抗範囲を用いることで、EHC13の通電異常の判定を精度良く行うことができる。また、第3実施形態によれば、通電開始時の通電条件も考慮して許容抵抗範囲を設定するため、EHC13の通電異常の判定を更に精度良く行うことができる。よって、例えばEHC13の通電異常を早期に検出することができる。
以下では、第3実施形態の変形例について説明する。
上記では、通電開始時のEHC床温、通電開始時のEHC13への供給電力、及び通電開始時におけるEHC13内部の温度ばらつきの全てを許容範囲設定パラメータとして用いる例を示したが、これに限定はされない。つまり、EHC床温、供給電力、及び温度ばらつきの全てに基づいて、許容抵抗範囲を設定することに限定はされない。他の例では、ECU70は、EHC床温、供給電力、及び温度ばらつきのうちのいずれか2つを許容範囲設定パラメータとして用いて、若しくは、EHC床温、供給電力、及び温度ばらつきのうちのいずれか1つのみを許容範囲設定パラメータとして用いて、許容抵抗範囲における許容範囲下限を補正することができる。
更に、上記では、EHC床温によって規定された許容抵抗範囲を用いる例を示したが(図11、図12など参照)、EHC床温の代わりに、EHC13への供給エネルギー若しくはEHC13への通電時間によって規定された許容抵抗範囲を用いても良い。この場合には、供給エネルギー又は通電時間によって規定された基準通電特性に基づいて、上記した方法と同様の方法により、許容抵抗範囲を設定することができる。また、当該許容抵抗範囲を用いる場合には、供給エネルギー又は通電時間によって規定されたEHC13の実測通電特性が当該許容抵抗範囲外であるか否かを判定することで、EHC13の通電異常の判定を行うことができる。つまり、供給エネルギー又は通電時間に応じた通電抵抗値に基づいて、EHC13の通電異常の判定を行うことができる。
なお、第2実施形態では、実測抵抗値が基準抵抗値よりも低い場合に、基準通電特性を補正することを述べた。しかしながら、実測抵抗値が基準抵抗値よりも低いと判定された場合に、EHC13の実測通電特性が許容抵抗範囲外であるか否かを更に判定し、実測通電特性が許容抵抗範囲外である場合には、基準通電特性を補正せずに、EHC13の通電異常と判定することとしても良い。つまり、第2実施形態における基準通電特性の補正を、EHC13の実測通電特性が許容抵抗範囲内にある場合にのみ行うこととしても良い、言い換えるとEHC13の通電状態が正常であると判定された場合にのみ行うこととしても良い。
[変形例]
本発明は、通常のハイブリッド車両への適用に限定はされず、プラグインハイブリッド車両にも適用することができる。また、本発明は、ハイブリッド車両への適用に限定はされず、ハイブリッド車両以外の通常の車両にも適用することができる。
1 エンジン
12 排気通路
13 EHC(電気加熱式触媒)
13a EHC担体
13b 保持マット
13d 正電極
13e 負電極
70 ECU
100 ハイブリッド車両

Claims (6)

  1. 内燃機関の排気通路に設けられ、前記排気通路に導かれた排気を浄化可能且つ通電により暖機可能に構成された電気加熱式触媒と、
    前記電気加熱式触媒における通電抵抗値の特性を示す通電特性を、前記電気加熱式触媒への通電開始時の通電条件に応じて設定する通電特性設定手段と、
    前記通電特性設定手段によって設定された前記通電特性に基づいて、前記電気加熱式触媒に対する異常判定又は通電制御を行う手段と、を備えることを特徴とする内燃機関の排気浄化装置。
  2. 前記通電特性設定手段は、前記電気加熱式触媒の実際の通電抵抗値を取得し、前記実際の通電抵抗値が、前記通電開始時の通電条件に応じて設定した前記通電特性から求まる通電抵抗値よりも低い場合に、当該通電特性を補正する請求項1に記載の内燃機関の排気浄化装置。
  3. 前記通電特性設定手段が設定した前記通電特性に基づいて、前記電気加熱式触媒の実際の通電特性を判定するための許容抵抗範囲を設定する許容抵抗範囲設定手段と、
    前記電気加熱式触媒の実際の通電特性を取得し、前記実際の通電特性が前記許容抵抗範囲から外れた場合に、前記電気加熱式触媒の通電異常と判定する通電異常判定手段と、を更に備え、
    前記許容抵抗範囲設定手段は、前記電気加熱式触媒への通電開始時の通電条件に応じて、前記許容抵抗範囲を設定する請求項1又は2に記載の内燃機関の排気浄化装置。
  4. 前記通電特性設定手段によって設定された前記通電特性に基づいて、前記電気加熱式触媒が目標温度に達したか否かを判定するための通電抵抗値を設定する手段を更に備える請求項1乃至3のいずれか一項に記載の内燃機関の排気浄化装置。
  5. 前記通電開始時の通電条件として、通電開始時の前記電気加熱式触媒の温度、通電開始時の前記電気加熱式触媒への供給電力、及び通電開始時における前記電気加熱式触媒内部の温度ばらつきの程度のうちのいずれか1つ以上を用いる請求項1乃至4のいずれか一項に記載の内燃機関の排気浄化装置。
  6. 前記通電特性は、前記電気加熱式触媒の温度、前記電気加熱式触媒への供給エネルギー、及び前記電気加熱式触媒への通電時間のうちのいずれかと、前記通電抵抗値との関係で表される請求項1乃至5のいずれか一項に記載の内燃機関の排気浄化装置。
JP2012505389A 2010-03-18 2010-03-18 内燃機関の排気浄化装置 Expired - Fee Related JP5333653B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/054650 WO2011114482A1 (ja) 2010-03-18 2010-03-18 内燃機関の排気浄化装置

Publications (2)

Publication Number Publication Date
JPWO2011114482A1 JPWO2011114482A1 (ja) 2013-06-27
JP5333653B2 true JP5333653B2 (ja) 2013-11-06

Family

ID=44648611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012505389A Expired - Fee Related JP5333653B2 (ja) 2010-03-18 2010-03-18 内燃機関の排気浄化装置

Country Status (5)

Country Link
US (1) US8826643B2 (ja)
EP (1) EP2549070B1 (ja)
JP (1) JP5333653B2 (ja)
CN (1) CN102803672B (ja)
WO (1) WO2011114482A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5786958B2 (ja) * 2011-12-20 2015-09-30 トヨタ自動車株式会社 電気加熱式触媒の故障検出装置
JP5765438B2 (ja) * 2011-12-21 2015-08-19 トヨタ自動車株式会社 電気加熱式触媒の異常検出装置
JP5790790B2 (ja) * 2012-01-18 2015-10-07 トヨタ自動車株式会社 内燃機関の制御装置
JP5786766B2 (ja) * 2012-03-08 2015-09-30 トヨタ自動車株式会社 通電加熱式触媒装置の異常判定システム
JP6958484B2 (ja) * 2018-05-29 2021-11-02 トヨタ自動車株式会社 車両用制御装置
JP7028140B2 (ja) * 2018-10-26 2022-03-02 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP7031616B2 (ja) * 2019-01-17 2022-03-08 トヨタ自動車株式会社 電気加熱式触媒の異常検出装置
JP7031618B2 (ja) * 2019-01-17 2022-03-08 トヨタ自動車株式会社 電気加熱式触媒の異常検出装置
JP7131402B2 (ja) * 2019-01-17 2022-09-06 トヨタ自動車株式会社 電気加熱式触媒の異常検出装置
JP7031617B2 (ja) * 2019-01-17 2022-03-08 トヨタ自動車株式会社 電気加熱式触媒の異常検出装置
DE102019204992A1 (de) * 2019-04-08 2020-10-08 Vitesco Technologies GmbH Verfahren und Vorrichtung zum Überprüfen und Sicherstellen einer Funktionsfähigkeit eines Abgasnachbehandlungssystems einer Brennkraftmaschine
DE102019210368B4 (de) * 2019-07-12 2024-05-08 Vitesco Technologies GmbH Elektrische Stromdurchführung
DE102021113204A1 (de) 2021-05-20 2022-11-24 Volkswagen Aktiengesellschaft Verfahren zur Temperatursteuerung eines elektrisch beheizbaren Katalysators
CN114542251B (zh) * 2022-03-18 2023-01-20 潍柴动力股份有限公司 一种电加热催化剂载体电阻故障诊断方法及***
WO2023188425A1 (ja) * 2022-04-01 2023-10-05 株式会社オートネットワーク技術研究所 車載用の温度推定装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0861048A (ja) * 1994-08-22 1996-03-05 Honda Motor Co Ltd 電気加熱式触媒制御装置
JPH09158718A (ja) * 1995-12-08 1997-06-17 Toyota Motor Corp 電気加熱式触媒の通電制御装置
JP2009196510A (ja) * 2008-02-22 2009-09-03 Toyota Motor Corp 電気加熱式触媒の異常判定装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5388404A (en) * 1992-06-09 1995-02-14 Mitsubishi Denki Kabushiki Kaisha Controller device for electrically heated catalyst of automotive engine
JP3019727B2 (ja) 1994-08-31 2000-03-13 三菱自動車工業株式会社 ハイブリッド用エンジンの始動制御装置
JP3602614B2 (ja) 1995-07-04 2004-12-15 本田技研工業株式会社 内燃機関の排気ガス浄化装置
JP2816393B2 (ja) * 1996-02-22 1998-10-27 本田技研工業株式会社 電気加熱式触媒の制御装置
JP3632319B2 (ja) * 1996-09-19 2005-03-23 トヨタ自動車株式会社 電力供給切換スイッチの制御装置
JP3163994B2 (ja) * 1996-10-07 2001-05-08 トヨタ自動車株式会社 内燃機関関係機器の異常検出装置およびこれを備える動力出力装置
JP2000054835A (ja) * 1998-08-07 2000-02-22 Honda Motor Co Ltd 排気浄化装置の故障検出装置
DE19943846A1 (de) * 1999-09-13 2001-03-15 Emitec Emissionstechnologie Vorrichtung mit Heizelement zur Abgasreinigung
JP4570909B2 (ja) * 2004-06-04 2010-10-27 富士重工業株式会社 電気加熱触媒の故障診断装置
JP5125576B2 (ja) 2008-02-13 2013-01-23 トヨタ自動車株式会社 通電加熱式触媒装置の異常判定システム
JP4900410B2 (ja) * 2009-03-25 2012-03-21 トヨタ自動車株式会社 車両の制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0861048A (ja) * 1994-08-22 1996-03-05 Honda Motor Co Ltd 電気加熱式触媒制御装置
JPH09158718A (ja) * 1995-12-08 1997-06-17 Toyota Motor Corp 電気加熱式触媒の通電制御装置
JP2009196510A (ja) * 2008-02-22 2009-09-03 Toyota Motor Corp 電気加熱式触媒の異常判定装置

Also Published As

Publication number Publication date
US20120247090A1 (en) 2012-10-04
EP2549070A4 (en) 2014-03-19
CN102803672A (zh) 2012-11-28
EP2549070B1 (en) 2016-12-21
CN102803672B (zh) 2014-04-16
JPWO2011114482A1 (ja) 2013-06-27
US8826643B2 (en) 2014-09-09
WO2011114482A1 (ja) 2011-09-22
EP2549070A1 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
JP5333653B2 (ja) 内燃機関の排気浄化装置
US8661796B2 (en) Vehicle control device
US8997470B2 (en) Exhaust gas purifying device for internal combustion engine
US8667781B2 (en) Vehicle control device
JP7031616B2 (ja) 電気加熱式触媒の異常検出装置
CN110872969B (zh) 车辆及车辆的控制方法
CN111102042B (zh) 内燃机的排气净化装置
JP7131402B2 (ja) 電気加熱式触媒の異常検出装置
CN110872968B (zh) 车辆和车辆的控制方法
JP2015075068A (ja) 車両の制御装置
JP5786766B2 (ja) 通電加熱式触媒装置の異常判定システム
JP6390505B2 (ja) 車両の制御装置
CN106414934B (zh) 内燃机的控制装置及方法
JP2015009670A (ja) ハイブリッド車両の制御装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130715

R151 Written notification of patent or utility model registration

Ref document number: 5333653

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees