JP5321751B2 - Rubber composition for tire, pneumatic tire, and method for producing rubber composition for tire - Google Patents

Rubber composition for tire, pneumatic tire, and method for producing rubber composition for tire Download PDF

Info

Publication number
JP5321751B2
JP5321751B2 JP2012539902A JP2012539902A JP5321751B2 JP 5321751 B2 JP5321751 B2 JP 5321751B2 JP 2012539902 A JP2012539902 A JP 2012539902A JP 2012539902 A JP2012539902 A JP 2012539902A JP 5321751 B2 JP5321751 B2 JP 5321751B2
Authority
JP
Japan
Prior art keywords
weight
rubber
tan
rubber composition
unit content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012539902A
Other languages
Japanese (ja)
Other versions
JPWO2013001826A1 (en
Inventor
幹裕 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2012539902A priority Critical patent/JP5321751B2/en
Application granted granted Critical
Publication of JP5321751B2 publication Critical patent/JP5321751B2/en
Publication of JPWO2013001826A1 publication Critical patent/JPWO2013001826A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L57/00Compositions of unspecified polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C08L57/02Copolymers of mineral oil hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)

Description

本発明は、タイヤ用ゴム組成物、空気入りタイヤ、及びタイヤ用ゴム組成物の製造方法に関する。   The present invention relates to a tire rubber composition, a pneumatic tire, and a method for producing a tire rubber composition.

空気入りタイヤには、地球環境に配慮した製品であることが求められ、特に燃費性能が優れることが要求されている。同時に加速性能やブレーキ性能に代表されるグリップ性能やタイヤ寿命を左右する耐摩耗性といったタイヤの基本特性についても従来と同等以上の性能を有することが必要である。   Pneumatic tires are required to be products that are friendly to the global environment, and are particularly required to have excellent fuel efficiency. At the same time, the basic characteristics of the tire, such as grip performance represented by acceleration performance and braking performance, and wear resistance that affects tire life, must be equal to or higher than those of conventional tires.

しかし、低転がり抵抗性とグリップ性能とは相反する特性であり、両者を高いレベルで両立させることは一般に困難であり、更に低転がり抵抗性とグリップ性能との最適化を試みると耐摩耗性が悪化するという問題があった。   However, low rolling resistance and grip performance are contradictory properties, and it is generally difficult to achieve both at a high level. Furthermore, when trying to optimize both low rolling resistance and grip performance, wear resistance is reduced. There was a problem of getting worse.

特許文献1は、特定の構造特性を有する溶液重合スチレンブタジエンゴム、ポリブタジエンゴム、レジン、カーボンブラック及びシリカを含むゴム組成物により、耐摩耗性とグリップ性能を改良することを提案している。しかし、このゴム組成物は転がり抵抗を低減する効果が不十分であり、また耐摩耗性及びグリップ性能についても更なる向上が必要であり改善の余地があった。   Patent Document 1 proposes to improve wear resistance and grip performance by a rubber composition containing solution-polymerized styrene butadiene rubber, polybutadiene rubber, resin, carbon black and silica having specific structural characteristics. However, this rubber composition has an insufficient effect of reducing rolling resistance, and further improvement is required for wear resistance and grip performance, and there is room for improvement.

特開2006−249403号公報JP 2006-249403 A

本発明の目的は、低転がり抵抗性、グリップ性能及び耐摩耗性を従来レベル以上に向上するようにしたタイヤ用ゴム組成物、空気入りタイヤ、及びタイヤ用ゴム組成物の製造方法を提供することにある。   An object of the present invention is to provide a rubber composition for a tire, a pneumatic tire, and a method for producing a tire rubber composition, in which low rolling resistance, grip performance and wear resistance are improved to a conventional level or higher. It is in.

上記目的を達成する本発明のタイヤ用ゴム組成物は、溶液重合スチレンブタジエンゴム70〜95重量%及びブタジエンゴム5〜20重量%を含むジエン系ゴム100重量部と、芳香族変性テルペン樹脂1〜20重量部と、BET比表面積が100〜200m2/gであるシリカ45〜100重量部と、を含有するゴム組成物であって、
前記芳香族変性テルペン樹脂を構成する芳香族化合物が、スチレン、α−メチルスチレン、ビニルトルエンから選ばれる少なくとも1種であり、
前記溶液重合スチレンブタジエンゴムの、スチレン単位含有量(S)が35〜45重量%、ビニル単位含有量(V)が35重量%以上、前記スチレン単位含有量(S)とビニル単位含有量(V)の比(V/S)が0.75以上2.00以下であると共に、
前記ゴム組成物の0℃のtanδと60℃のtanδの比(tanδ(0℃)/tanδ(60℃))が2.50〜2.78であることを特徴とする。
本発明の空気入りタイヤは、上記タイヤ用ゴム組成物からなるトレッド部を備える。
本発明のタイヤ用ゴム組成物の製造方法は、
溶液重合スチレンブタジエンゴム70〜95重量%及びブタジエンゴム5〜20重量%を含むジエン系ゴム100重量部と、芳香族変性テルペン樹脂1〜20重量部と、BET比表面積が100〜200m2/gであるシリカ45〜100重量部と、を準備する工程と、
硫黄及び加硫促進剤を含む加硫系配合剤を除いて前記ジエン系ゴム、前記芳香族変性テルペン樹脂、及び前記シリカを149〜160℃で混練する工程と、を含むタイヤ用ゴム組成物の製造方法であって、
前記芳香族変性テルペン樹脂を構成する芳香族化合物が、スチレン、α−メチルスチレン、ビニルトルエンから選ばれる少なくとも1種であり、
前記溶液重合スチレンブタジエンゴムの、スチレン単位含有量(S)が35〜45重量%、ビニル単位含有量(V)が35重量%以上、前記スチレン単位含有量(S)に対するビニル単位含有量(V)の比(V/S)が0.75以上2.00以下であり、
前記ゴム組成物の0℃のtanδと60℃のtanδの比(tanδ(0℃)/tanδ(60℃))が2.50〜2.78である、ことを特徴とする。
The rubber composition for a tire of the present invention that achieves the above object comprises 100 parts by weight of a diene rubber containing 70 to 95% by weight of a solution-polymerized styrene butadiene rubber and 5 to 20% by weight of a butadiene rubber, and 1 to 1 of an aromatic modified terpene resin. A rubber composition containing 20 parts by weight and 45 to 100 parts by weight of silica having a BET specific surface area of 100 to 200 m 2 / g,
The aromatic compound constituting the aromatic modified terpene resin is at least one selected from styrene, α-methylstyrene, vinyltoluene,
The solution-polymerized styrene-butadiene rubber has a styrene unit content (S) of 35 to 45% by weight, a vinyl unit content (V) of 35% by weight or more, the styrene unit content (S) and a vinyl unit content (V ) Ratio (V / S) is 0.75 or more and 2.00 or less,
The rubber composition has a ratio of tan δ at 0 ° C. to tan δ at 60 ° C. (tan δ (0 ° C.) / Tan δ (60 ° C.)) of 2.50 to 2.78 .
The pneumatic tire of the present invention includes a tread portion made of the tire rubber composition.
The method for producing the tire rubber composition of the present invention comprises:
100 parts by weight of a diene rubber containing 70 to 95% by weight of solution-polymerized styrene butadiene rubber and 5 to 20% by weight of butadiene rubber, 1 to 20 parts by weight of an aromatic modified terpene resin, and a BET specific surface area of 100 to 200 m 2 / g. A step of preparing 45 to 100 parts by weight of silica,
A step of kneading the diene rubber, the aromatic modified terpene resin, and the silica at 149 to 160 ° C. except for a vulcanizing compound containing sulfur and a vulcanization accelerator . A manufacturing method comprising:
The aromatic compound constituting the aromatic modified terpene resin is at least one selected from styrene, α-methylstyrene, vinyltoluene,
The solution-polymerized styrene butadiene rubber has a styrene unit content (S) of 35 to 45% by weight, a vinyl unit content (V) of 35% by weight or more, and a vinyl unit content (V) relative to the styrene unit content (S). ) Ratio (V / S) is 0.75 or more and 2.00 or less,
The rubber composition has a ratio of tan δ at 0 ° C. to tan δ at 60 ° C. (tan δ (0 ° C.) / Tan δ (60 ° C.)) of 2.50 to 2.78 .

本発明のタイヤ用ゴム組成物は、タイヤに用いられた場合に、低転がり抵抗性、グリップ性能及び耐摩耗性を従来レベル以上に向上することができる。   When used in tires, the rubber composition for tires of the present invention can improve the low rolling resistance, grip performance and wear resistance to the conventional level or more.

本発明のタイヤ用ゴム組成物を使用した空気入りタイヤは、低転がり抵抗性、グリップ性能及び耐摩耗性を従来レベルよりも向上することができる。   The pneumatic tire using the rubber composition for tires of the present invention can improve the low rolling resistance, grip performance and wear resistance from the conventional level.

本発明のタイヤ用ゴム組成物において、ゴム成分は、ジエン系ゴムからなり、溶液重合スチレンブタジエンゴム(以下、「S−SBR」という。)を70〜95重量%、ブタジエンゴムを5〜20重量%必ず含有する。また、ジエン系ゴムは、S−SBR、ブタジエンゴム以外の他のジエン系ゴムを含有してもよい。他のジエン系ゴムとしては、例えば天然ゴム、イソプレンゴム、乳化重合スチレンブタジエンゴム、ブチルゴム、プロピレン−エチレン−ジエンゴム等を例示することができる。なかでも天然ゴム、イソプレンゴムが好ましい。他のジエン系ゴムの配合量は、ジエン系ゴム100重量%中0〜25重量%、好ましくは0〜20重量%にするとよい。   In the rubber composition for tires of the present invention, the rubber component is composed of a diene rubber, 70 to 95% by weight of solution-polymerized styrene butadiene rubber (hereinafter referred to as “S-SBR”), and 5 to 20% by weight of butadiene rubber. % Must be contained. The diene rubber may contain other diene rubbers other than S-SBR and butadiene rubber. Examples of other diene rubbers include natural rubber, isoprene rubber, emulsion-polymerized styrene butadiene rubber, butyl rubber, and propylene-ethylene-diene rubber. Of these, natural rubber and isoprene rubber are preferable. The blending amount of the other diene rubber is 0 to 25% by weight, preferably 0 to 20% by weight, in 100% by weight of the diene rubber.

S−SBRの含有量は、ジエン系ゴム100重量%中、70〜95重量%、好ましくは72〜95重量%、より好ましくは75〜80重量%である。S−SBRの含有量が70重量%未満であると、グリップ性能を向上させる効果が十分ではない。また、S−SBRの含有量が95重量%を超えると、耐摩耗性が悪化する。   The content of S-SBR is 70 to 95% by weight, preferably 72 to 95% by weight, and more preferably 75 to 80% by weight in 100% by weight of the diene rubber. When the content of S-SBR is less than 70% by weight, the effect of improving grip performance is not sufficient. Moreover, when content of S-SBR exceeds 95 weight%, abrasion resistance will deteriorate.

本発明のゴム組成物において、S−SBRは、スチレン単位含有量が35〜45重量%、好ましくは35〜44重量%、より好ましくは40〜41重量%である。S−SBRのスチレン単位含有量が35重量%未満であると、グリップ性能が十分なレベルまで向上しない。またS−SBRのスチレン単位含有量が45重量%を超えると、混合加工性が悪化する。なおS−SBRのスチレン単位含有量は赤外分光分析(ハンプトン法)により測定するものとする。   In the rubber composition of the present invention, S-SBR has a styrene unit content of 35 to 45% by weight, preferably 35 to 44% by weight, and more preferably 40 to 41% by weight. When the styrene unit content of S-SBR is less than 35% by weight, grip performance is not improved to a sufficient level. On the other hand, if the styrene unit content of S-SBR exceeds 45% by weight, the mixing processability is deteriorated. In addition, styrene unit content of S-SBR shall be measured by infrared spectroscopy (Hampton method).

S−SBRのビニル単位含有量は35重量%以上、好ましくは36〜80重量%、より好ましくは38〜71重量%にする。S−SBRのビニル単位含有量が35重量%未満であると、シリカの分散性が悪化することにより、結果として耐摩耗性が悪化する。ビニル単位含有量の下限は、後述する比(V/S)が0.75〜2.0になるように決められる。なおS−SBRのビニル単位含有量は赤外分光分析(ハンプトン法)により測定される。   The vinyl unit content of S-SBR is 35% by weight or more, preferably 36 to 80% by weight, more preferably 38 to 71% by weight. When the vinyl unit content of S-SBR is less than 35% by weight, the dispersibility of silica is deteriorated, resulting in deterioration of wear resistance. The lower limit of the vinyl unit content is determined so that the ratio (V / S) described later is 0.75 to 2.0. The vinyl unit content of S-SBR is measured by infrared spectroscopic analysis (Hampton method).

本発明において、S−SBRのスチレン単位含有量(S)とビニル単位含有量(V)の比(V/S)が0.75〜2.00、好ましくは0.77〜2.00、より好ましくは0.93〜1.00であることが必要である。比(V/S)が0.75未満であると、良好なグリップ性能が得られない。また比(V/S)が2.00を超えるとゴムの破断物性(特に破断伸び)が悪化することにより、耐摩耗性が悪化する。   In the present invention, the ratio (V / S) of styrene unit content (S) and vinyl unit content (V) of S-SBR is 0.75 to 2.00, preferably 0.77 to 2.00, Preferably it is 0.93-1.00. When the ratio (V / S) is less than 0.75, good grip performance cannot be obtained. On the other hand, if the ratio (V / S) exceeds 2.00, the rubber's fracture property (particularly, elongation at break) deteriorates, and wear resistance deteriorates.

本発明のゴム組成物は、ジエン系ゴム100重量%中ブタジエンゴムを5〜20重量%、好ましくは7〜20重量%、より好ましくは10〜20重量%含有する。ブタジエンゴムの含有量が5重量%未満であると耐摩耗性が悪化する。またブタジエンゴムの含有量が20重量%を超えるとグリップ性能の向上が難しくなる。   The rubber composition of the present invention contains 5 to 20% by weight, preferably 7 to 20% by weight, more preferably 10 to 20% by weight of butadiene rubber in 100% by weight of the diene rubber. When the content of butadiene rubber is less than 5% by weight, the wear resistance is deteriorated. If the content of butadiene rubber exceeds 20% by weight, it is difficult to improve grip performance.

本発明において、芳香族変性テルペン樹脂を配合することにより、低転がり抵抗性及びグリップ性能のバランスを向上することができる。芳香族変性テルペン樹脂は、テルペン類と芳香族化合物とを共重合させたものである。芳香族化合物はスチレン、α−メチルスチレン、ビニルトルエンから選ばれる少なくとも1種である。またテルペン類としては例えばα−ピネン、β−ピネン、ジペンテン、リモネン、カンフェンなどを例示することができる。芳香族変性テルペン樹脂としては、例えばヤスハラケミカル社製YSレジンTO−125,同TO−115,同TO−105,同TO−85,同TR−105などの市販品を用いることができる。   In the present invention, the balance between low rolling resistance and grip performance can be improved by blending the aromatic modified terpene resin. The aromatic modified terpene resin is obtained by copolymerizing a terpene and an aromatic compound. The aromatic compound is at least one selected from styrene, α-methylstyrene, and vinyl toluene. Examples of terpenes include α-pinene, β-pinene, dipentene, limonene, camphene and the like. Commercially available products such as YS resin TO-125, TO-115, TO-105, TO-105, TO-85 and TR-105 manufactured by Yasuhara Chemical Co., Ltd. can be used as the aromatic modified terpene resin.

芳香族変性テルペン樹脂の配合量は、ジエン系ゴム100重量部に対し1〜20重量部、好ましくは1〜18重量部、より好ましくは5〜15重量部である。芳香族変性テルペン樹脂の配合量が1重量部未満では、低転がり抵抗性及びグリップ性能のバランスを十分に高くすることができない。また、芳香族変性テルペン樹脂の配合量が20重量部を超えると、転がり抵抗が却って悪化する。また耐摩耗性が低下する。   The compounding amount of the aromatic modified terpene resin is 1 to 20 parts by weight, preferably 1 to 18 parts by weight, more preferably 5 to 15 parts by weight with respect to 100 parts by weight of the diene rubber. When the blending amount of the aromatic modified terpene resin is less than 1 part by weight, the balance between low rolling resistance and grip performance cannot be sufficiently increased. Moreover, when the compounding quantity of aromatic modified terpene resin exceeds 20 weight part, rolling resistance will deteriorate on the contrary. In addition, wear resistance is reduced.

本発明のタイヤ用ゴム組成物は、特定の粒子性状を有するシリカが配合される。シリカを配合することにより、ゴム組成物の発熱性を抑制し、タイヤに用いた場合の転がり抵抗を低減すると共に、ウェットグリップ性能を改良する。シリカのBET比表面積は100〜200m2/g、好ましくは110〜200m2/gにする。シリカのBET比表面積が100m2/g未満であると、ゴム組成物に対する補強性が不十分となって耐摩耗性が不足し、グリップ性能も低下する。またシリカのBET比表面積が200m2/gを超えると、ジエン系ゴムに対するシリカの分散性が低下するため耐摩耗性が悪化すると共に、転がり抵抗が大きくなる。なおシリカのBET比表面積は、ASTM D1993−03に準拠して求められる。The rubber composition for tires of the present invention is blended with silica having specific particle properties. By blending silica, the exothermic property of the rubber composition is suppressed, rolling resistance when used in a tire is reduced, and wet grip performance is improved. BET specific surface area of silica is 100 to 200 m 2 / g, preferably in 110~200m 2 / g. When the BET specific surface area of silica is less than 100 m 2 / g, the rubber composition is insufficiently reinforced and wear resistance is insufficient, and grip performance is also deteriorated. On the other hand, when the BET specific surface area of silica exceeds 200 m 2 / g, the dispersibility of the silica with respect to the diene rubber decreases, so that the wear resistance deteriorates and the rolling resistance increases. In addition, the BET specific surface area of a silica is calculated | required based on ASTMD1993-03.

本発明において、シリカの配合量は、ジエン系ゴム100重量部に対し45〜100重量部、好ましくは50〜100重量部にする。シリカの配合量が45重量部未満であると、グリップ性能を改良する効果が十分に得られない。シリカの配合量が100重量部を超えるとゴム粘度が増大しシリカの分散が悪化するため耐摩耗性が悪化する。   In the present invention, the amount of silica is 45 to 100 parts by weight, preferably 50 to 100 parts by weight, per 100 parts by weight of the diene rubber. If the blending amount of silica is less than 45 parts by weight, the effect of improving grip performance cannot be obtained sufficiently. When the amount of silica exceeds 100 parts by weight, the rubber viscosity increases and the silica dispersion deteriorates, so that the wear resistance deteriorates.

本発明で使用するシリカは、上述した特性を有するシリカであればよく、市販のものを適宜用いることができる。また、通常の方法で、上述した特性を有するように製造してもよい。シリカの種類としては、例えば湿式法シリカ、乾式法シリカあるいは表面処理シリカなどを使用することができる。   The silica used by this invention should just be a silica which has the characteristic mentioned above, and can use a commercially available thing suitably. Moreover, you may manufacture by the normal method so that it may have the characteristic mentioned above. As the type of silica, for example, wet method silica, dry method silica, or surface-treated silica can be used.

本発明のゴム組成物において、シリカと共にシランカップリング剤を配合することが好ましく、シリカの分散性を向上しジエン系ゴムに対する補強性をより高くすることができる。シランカップリング剤は、シリカ配合量に対して好ましくは3〜15重量%、より好ましくは5〜12重量%配合される。シランカップリング剤がシリカ重量の3重量%未満の場合、シリカの分散性を向上する効果が十分に得られない。また、シランカップリング剤が15重量%を超えると、シランカップリング剤同士が縮合してしまい、所望の効果を得ることができなくなる。   In the rubber composition of the present invention, it is preferable to blend a silane coupling agent together with silica, so that the dispersibility of silica can be improved and the reinforcement to the diene rubber can be further enhanced. The silane coupling agent is preferably added in an amount of 3 to 15% by weight, more preferably 5 to 12% by weight, based on the amount of silica. When the silane coupling agent is less than 3% by weight of the silica weight, the effect of improving the dispersibility of silica cannot be sufficiently obtained. On the other hand, when the silane coupling agent exceeds 15% by weight, the silane coupling agents are condensed with each other, and a desired effect cannot be obtained.

シランカップリング剤としては、特に制限されるものではないが、硫黄含有シランカップリング剤が好ましく、例えばビス−(3−トリエトキシシリルプロピル)テトラサルファイド、ビス(3−トリエトキシシリルプロピル)ジサルファイド、3−トリメトキシシリルプロピルベンゾチアゾールテトラサルファイド、γ−メルカプトプロピルトリエトキシシラン、3−オクタノイルチオプロピルトリエトキシシラン等を例示することができる。   Although it does not restrict | limit especially as a silane coupling agent, A sulfur containing silane coupling agent is preferable, for example, bis- (3-triethoxysilylpropyl) tetrasulfide, bis (3-triethoxysilylpropyl) disulfide. , 3-trimethoxysilylpropylbenzothiazole tetrasulfide, γ-mercaptopropyltriethoxysilane, 3-octanoylthiopropyltriethoxysilane, and the like.

本発明のタイヤ用ゴム組成物は、シリカ以外の他の充填剤を配合することによりゴムの強度を高くすることができる。他の充填剤としては、例えばカーボンブラック、クレー、マイカ、タルク、炭酸カルシウム、水酸化アルミニウム、酸化アルミニウム等が例示される。なかでもカーボンブラックが好ましい。カーボンブラックを配合することにより、ゴム硬度を高くしてグリップ性能を確保すると共に、ゴム組成物の耐摩耗性を改良することができる。   The rubber composition for tires of the present invention can increase the strength of rubber by blending other fillers than silica. Examples of other fillers include carbon black, clay, mica, talc, calcium carbonate, aluminum hydroxide, and aluminum oxide. Of these, carbon black is preferred. By blending carbon black, the rubber hardness can be increased to ensure grip performance, and the wear resistance of the rubber composition can be improved.

本発明のタイヤ用ゴム組成物では、0℃のtanδと60℃のtanδの比(tanδ(0℃)/tanδ(60℃))が2.50以上、好ましくは2.51以上であることが必要である。比(tanδ(0℃)/tanδ(60℃))が2.50未満であると、低転がり抵抗性、グリップ性能及び耐摩耗性の3つの性能のバランスを改良することができない。なお、比(tanδ(0℃)/tanδ(60℃))は、tanδ(60℃)が0になることはないため、無限に大きい値になることはない。例えば、tanδ(0℃)=1.00、tanδ(60℃)=0.05である仮想のゴムであっても、比(tanδ(0℃)/tanδ(60℃))は20を超えることはない。比(tanδ(0℃)/tanδ(60℃))が2.50以上であるゴム組成物は、シリカの粒子径及び配合量を調節したり、ゴム組成物の混練条件を調節したりすることによっても製造することができる。ゴム組成物の混練条件としては、最終の組成から硫黄、加硫促進剤などの加硫系配合剤を除いたゴム組成物を混練するときの温度を比較的高くして混練し、冷却した後に加硫系配合剤を添加して混合するという混練・混合方法が挙げられる。加硫系配合剤を除いたゴム組成物を混練するときの温度は、好ましくは149〜160℃、より好ましくは150〜160℃である。   In the tire rubber composition of the present invention, the ratio of tan δ at 0 ° C. to tan δ at 60 ° C. (tan δ (0 ° C.) / Tan δ (60 ° C.)) is 2.50 or more, preferably 2.51 or more. is necessary. If the ratio (tan δ (0 ° C.) / Tan δ (60 ° C.)) is less than 2.50, the balance of the three performances of low rolling resistance, grip performance and wear resistance cannot be improved. Note that the ratio (tan δ (0 ° C.) / Tan δ (60 ° C.)) is never infinitely large because tan δ (60 ° C.) never becomes 0. For example, the ratio (tan δ (0 ° C.) / Tan δ (60 ° C.)) exceeds 20 even if the virtual rubber is tan δ (0 ° C.) = 1.00 and tan δ (60 ° C.) = 0.05. There is no. For a rubber composition having a ratio (tan δ (0 ° C.) / Tan δ (60 ° C.)) of 2.50 or more, adjust the particle size and blending amount of silica, or adjust the kneading conditions of the rubber composition. Can also be manufactured. As the kneading conditions of the rubber composition, after kneading at a relatively high temperature when kneading the rubber composition excluding vulcanizing compounding agents such as sulfur and vulcanization accelerator from the final composition, and after cooling A kneading / mixing method in which a vulcanizing compounding agent is added and mixed may be mentioned. The temperature when kneading the rubber composition excluding the vulcanizing compounding agent is preferably 149 to 160 ° C, more preferably 150 to 160 ° C.

タイヤ用ゴム組成物には、上述した充填剤以外にも、加硫又は架橋剤、加硫促進剤、老化防止剤、可塑剤、加工助剤などの、タイヤ用ゴム組成物に一般的に使用される各種添加剤を配合することができ、かかる添加剤は一般的な方法で混練してゴム組成物に配合し、加硫又は架橋するのに使用することができる。これらの添加剤の配合量は本発明の目的に反しない限り、従来の一般的な配合量とすることができる。このようなゴム組成物は、公知のゴム用混練機械、例えば、バンバリーミキサー、ニーダー、ロール等を使用して、上記各成分を混合することによって製造することができる。   In addition to the fillers described above, tire rubber compositions generally used for tire rubber compositions such as vulcanization or crosslinking agents, vulcanization accelerators, anti-aging agents, plasticizers, processing aids, etc. These additives can be blended, and such additives can be kneaded by a general method, blended into a rubber composition, and used for vulcanization or crosslinking. As long as the amount of these additives is not contrary to the object of the present invention, a conventional general amount can be used. Such a rubber composition can be produced by mixing each of the above components using a known rubber kneading machine, for example, a Banbury mixer, a kneader, a roll or the like.

本発明のタイヤ用ゴム組成物は、空気入りタイヤ、特に空気入りタイヤのトレッドゴムとして好適に使用することができる。このゴム組成物を使用した空気入りタイヤは、転がり抵抗が低く燃費性能が優れることに加え、耐摩耗性が優れタイヤ寿命を長くすると共に、グリップ性能が優れる。   The rubber composition for tires of the present invention can be suitably used as a tread rubber for pneumatic tires, particularly pneumatic tires. A pneumatic tire using this rubber composition has a low rolling resistance and an excellent fuel economy performance, an excellent wear resistance and a long tire life, and an excellent grip performance.

以下、実施例によって本発明を更に説明するが、本発明の範囲はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further, the scope of the present invention is not limited to these Examples.

表4に示す配合剤を共通配合とし、表1〜3に示す配合からなる25種類のタイヤ用ゴム組成物(実施例1〜11、比較例1〜5及び8〜16)を、硫黄、加硫促進剤を除く他の共通配合成分を1.8Lの密閉型ミキサーで5分間混練し、温度150℃で放出したマスターバッチに、空冷後、硫黄、加硫促進剤を加えてオープンロールで混練することにより調製した。また、比較例6及び7のタイヤ用ゴム組成物は、硫黄、加硫促進剤を除く成分を1.8Lの密閉型ミキサーで5分間混練し、温度140℃で放出したマスターバッチに、空冷後、硫黄、加硫促進剤を加えてオープンロールで混練することにより調製した。   Using the compounding agents shown in Table 4 as a common compounding, 25 types of tire rubber compositions (Examples 1 to 11, Comparative Examples 1 to 5 and 8 to 16) having the compositions shown in Tables 1 to 3 were added to sulfur, The other common ingredients except the sulfur accelerator are kneaded for 5 minutes with a 1.8 L closed mixer, air-cooled to the master batch released at 150 ° C, sulfur and vulcanization accelerator are added and kneaded with an open roll. It was prepared by doing. In addition, the rubber compositions for tires of Comparative Examples 6 and 7 were prepared by kneading the components excluding sulfur and vulcanization accelerator for 5 minutes with a 1.8 L closed mixer and releasing them at a temperature of 140 ° C. , Sulfur and a vulcanization accelerator were added and kneaded with an open roll.

なお、表1〜3中、S−SBR1〜4,E−SBRが37.5重量部の油展オイルを含むため、配合量の欄に実際の配合量と共に、油展オイルを除いたそれぞれのSBR正味の配合量を括弧内に示した。また、表4に記載した配合剤の量は、表1〜3に記載したジエン系ゴム100重量部(正味のゴム量)に対する重量部で示した。   In Tables 1 to 3, since S-SBR1 to 4 and E-SBR contain 37.5 parts by weight of oil-extended oil, each of the amounts excluding oil-extended oil as well as the actual amount in the column of amount The SBR net compounding amount is shown in parentheses. Moreover, the quantity of the compounding agent described in Table 4 was shown in the weight part with respect to 100 weight part (net rubber amount) of the diene rubber described in Tables 1-3.

得られた27種類のタイヤ用ゴム組成物(実施例1〜11、比較例1〜16)を、所定形状の金型中で、160℃、20分間プレス加硫して加硫ゴムサンプルを作製し、下記に示す方法でtanδ(0℃)及びtanδ(60℃)並びに耐摩耗性を測定した。   The 27 types of tire rubber compositions (Examples 1 to 11 and Comparative Examples 1 to 16) thus obtained were press vulcanized at 160 ° C. for 20 minutes in a mold having a predetermined shape to produce a vulcanized rubber sample. Then, tan δ (0 ° C.) and tan δ (60 ° C.) and wear resistance were measured by the method described below.

(グリップ性能:tanδ(0℃)、低転がり抵抗性:tanδ(60℃))
得られた加硫ゴムサンプルのtanδ(0℃)及びtanδ(60℃)を、東洋精機製作所社製粘弾性スペクトロメーターを用いて、初期歪み10%、振幅±2%、周波数20Hzの条件下で、温度0℃及び60℃の条件で測定した。得られた結果は、比較例1をそれぞれ100とする指数として、表1〜3の「グリップ性能」及び「転がり抵抗」の欄に示した。グリップ性能の指数が大きいほどtanδ(0℃)が大きく、グリップ性能が優れることを意味する。また、転がり抵抗の指数が小さいほどtanδ(60℃)が小さく、低発熱で、タイヤにしたときの転がり抵抗が低く、燃費性能が優れることを意味する。またtanδ(0℃)とtanδ(60℃)の比(tanδ(0℃)/tanδ(60℃))を表1〜3の「0℃tanδ/60℃tanδ」の欄に示した。
(Grip performance: tan δ (0 ° C.), low rolling resistance: tan δ (60 ° C.))
Using the viscoelasticity spectrometer made by Toyo Seiki Seisakusho, tan δ (0 ° C.) and tan δ (60 ° C.) of the obtained vulcanized rubber sample were subjected to the conditions of initial strain 10%, amplitude ± 2%, and frequency 20 Hz. The temperature was measured at 0 ° C. and 60 ° C. The obtained results are shown in the columns of “Grip performance” and “Rolling resistance” in Tables 1 to 3 with the index of Comparative Example 1 being 100. As the index of grip performance is larger, tan δ (0 ° C.) is larger, which means that grip performance is superior. Also, the smaller the rolling resistance index, the smaller the tan δ (60 ° C.), the lower the heat generation, the lower the rolling resistance when made into a tire, and the better the fuel efficiency. The ratio of tan δ (0 ° C.) to tan δ (60 ° C.) (tan δ (0 ° C.) / Tan δ (60 ° C.)) is shown in the column of “0 ° C. tan δ / 60 ° C. tan δ” in Tables 1-3.

(耐摩耗性)
得られた試験片をJIS K6264−2に準拠して、ランボーン摩耗試験機(岩本製作所社製)を使用して、温度20℃、荷重15N、スリップ率50%、時間10分の条件で摩耗量を測定した。得られた結果は、比較例1の値の逆数が100とする指数として、表1〜3の「耐摩耗性」の欄に示した。この指数が大きいほど摩耗量が少なく、耐摩耗性に優れることを意味する。
(Abrasion resistance)
The amount of wear of the obtained test piece was measured in accordance with JIS K6264-2 using a Lambourne abrasion tester (manufactured by Iwamoto Seisakusho Co., Ltd.) at a temperature of 20 ° C., a load of 15 N, a slip rate of 50%, and a time of 10 minutes. Was measured. The obtained results are shown in the column of “Abrasion resistance” in Tables 1 to 3 as an index where the reciprocal of the value of Comparative Example 1 is 100. The larger the index, the smaller the amount of wear and the better the wear resistance.

Figure 0005321751
Figure 0005321751

Figure 0005321751
Figure 0005321751

Figure 0005321751
Figure 0005321751

なお、表1〜3において使用した原材料の種類を下記に示す。
・S−SBR1:溶液重合スチレンブタジエンゴム、旭化成ケミカルズ社製タフデン1834、スチレン単位含有量(S)が19重量%、ビニル単位含有量(V)が10重量%、比(V/S)が0.53、ゴム成分100重量部に対しオイル分37.5重量部を含む油展品
・S−SBR2:溶液重合スチレンブタジエンゴム、JSR社製HP755B、スチレン単位含有量(S)が41重量%、ビニル単位含有量(V)が41重量%、比(V/S)が1.00、ゴム成分100重量部に対しオイル分37.5重量部を含む油展品
・S−SBR3:溶液重合スチレンブタジエンゴム、LANXESS社製BUNA VSL 2438−2 HM、スチレン単位含有量(S)が41重量%、ビニル単位含有量(V)が38重量%、比(V/S)が0.93、ゴム成分100重量部に対しオイル分37.5重量部を含む油展品
・S−SBR4:溶液重合スチレンブタジエンゴム、日本ゼオン社製社製Nipol NS460、スチレン単位含有量(S)が27重量%、ビニル単位含有量(V)が71重量%、比(V/S)が2.63、ゴム成分100重量部に対しオイル分37.5重量部を含む油展品
・E−SBR:乳化重合スチレンブタジエンゴム、日本ゼオン社製Nipol 1739、スチレン単位含有量(S)が40重量%、ビニル単位含有量(V)が13重量%、比(V/S)が0.33、ゴム成分100重量部に対しオイル分37.5重量部を含む油展品
・BR:ブタジエンゴム、日本ゼオン社製Nipol BR1220
・NR:天然ゴム、KIRANA SAPTA社製SIR20
・カーボンブラック:東海カーボン社製シースト7HM
・シリカ1:エボニックデグサ社製ULTRASIL VN3GR、BET比表面積が171m2/g
・シリカ2:ローディア社製Zeosil 215GR、BET比表面積が220m2/g
・シリカ3:ローディア社製Zeosil 1115MP、BET比表面積が95m2/g
・カップリング剤:硫黄含有シランカップリング剤、エボニックデグサ社製Si69
・テルペン樹脂1:芳香族変性(スチレン変性)テルペン樹脂、ヤスハラケミカル社製YSレジンTO125
・テルペン樹脂2:未変性テルペン樹脂、ヤスハラケミカル社製YSレジンPX200
・テルペン樹脂3:フェノール変性テルペン樹脂、ヤスハラケミカル社製YSポリスターT−130
・アロマオイル:昭和シェル石油社製エキストラクト4号S
In addition, the kind of raw material used in Tables 1-3 is shown below.
S-SBR1: Solution-polymerized styrene butadiene rubber, Toughden 1834 manufactured by Asahi Kasei Chemicals Co., Ltd., styrene unit content (S) 19% by weight, vinyl unit content (V) 10% by weight, ratio (V / S) 0 .53, Oil-extended product containing 37.5 parts by weight of oil with respect to 100 parts by weight of rubber component. S-SBR2: Solution-polymerized styrene butadiene rubber, HP755B manufactured by JSR, 41% by weight of styrene unit content (S), vinyl Oil-extended product containing unit content (V) of 41% by weight, ratio (V / S) of 1.00, and 37.5 parts by weight of oil to 100 parts by weight of rubber component. S-SBR3: solution polymerized styrene butadiene rubber , LANXESS BUNA VSL 2438-2 HM, styrene unit content (S) 41 wt%, vinyl unit content (V) 38 wt%, ratio (V / S) 0. 3. Oil-extended product containing 37.5 parts by weight of oil with respect to 100 parts by weight of rubber component. S-SBR4: Solution-polymerized styrene butadiene rubber, Nipol NS460 manufactured by Nippon Zeon Co., Ltd., 27 weight of styrene unit content (S) %, Vinyl unit content (V) is 71% by weight, ratio (V / S) is 2.63, and the oil component contains 37.5 parts by weight of oil with respect to 100 parts by weight of the rubber component. Styrene butadiene rubber, Nipol 1739 manufactured by Nippon Zeon Co., Ltd., styrene unit content (S) 40% by weight, vinyl unit content (V) 13% by weight, ratio (V / S) 0.33, rubber component 100% Oil containing 37.5 parts by weight of oil with respect to parts. BR: Butadiene rubber, Nipol BR1220 manufactured by Nippon Zeon Co., Ltd.
・ NR: Natural rubber, SIR20 manufactured by KIRANA SAPTA
・ Carbon black: Toast carbon company's seast 7HM
Silica 1: ULTRASIL VN3GR manufactured by Evonik Degussa, BET specific surface area of 171 m 2 / g
Silica 2: Zeosil 215GR manufactured by Rhodia, BET specific surface area is 220 m 2 / g
Silica 3: Zeosil 1115MP manufactured by Rhodia, BET specific surface area of 95 m 2 / g
Coupling agent: Sulfur-containing silane coupling agent, Si69 manufactured by Evonik Degussa
Terpene resin 1: aromatic modified (styrene modified) terpene resin, YS resin TO125 manufactured by Yasuhara Chemical Co., Ltd.
-Terpene resin 2: Unmodified terpene resin, YS resin PX200 manufactured by Yasuhara Chemical Co., Ltd.
Terpene resin 3: Phenol-modified terpene resin, YS Polystar T-130 manufactured by Yasuhara Chemical
Aroma oil: Showa Shell Sekiyu Extract No. 4 S

Figure 0005321751
Figure 0005321751

表4において使用した原材料の種類を下記に示す。
・酸化亜鉛:正同化学工業社製酸化亜鉛3種
・ステアリン酸:日油社製ビーズステアリン酸YR
・老化防止剤:フレキシス社製サントフレックス6PPD
・ワックス:大内新興化学工業社製サンノック
・硫黄:鶴見化学工業社製金華印油入微粉硫黄
・加硫促進剤:加硫促進剤CBS、大内新興化学工業社製ノクセラーCZ−G
The types of raw materials used in Table 4 are shown below.
・ Zinc oxide: 3 types of zinc oxide manufactured by Shodo Chemical Co., Ltd. ・ Stearic acid: Beads stearic acid YR manufactured by NOF Corporation
Anti-aging agent: Santoflex 6PPD manufactured by Flexis
・ Wax: Sunnock made by Ouchi Shinsei Chemical Co., Ltd. ・ Sulfur: Fine powder sulfur with Jinhua seal oil made by Tsurumi Chemical Co., Ltd. ・ Vulcanization accelerator: CBS vulcanization accelerator, Noxeller CZ-G made by Ouchi Shinsei Chemical Co., Ltd.

表1〜3から明らかなように実施例1〜12のタイヤ用ゴム組成物は、グリップ性能(0℃のtanδ)、低転がり抵抗性(60℃のtanδ)及び耐摩耗性が維持・向上することが確認された。   As apparent from Tables 1 to 3, the rubber compositions for tires of Examples 1 to 12 maintain and improve the grip performance (tan δ at 0 ° C.), the low rolling resistance (tan δ at 60 ° C.), and the wear resistance. It was confirmed.

比較例2のゴム組成物は、シリカ1の配合量が45重量部未満であるので、グリップ性能を改良する効果が十分に得られない。比較例3のゴム組成物は、テルペン樹脂1の配合量が1重量部未満であるので、低転がり抵抗性及びグリップ性能のバランスを十分に高くすることができない。比較例4のゴム組成物は、ブタジエンゴムの配合量が20重量%を超えるので、グリップ性能の向上が難しくなる。
比較例6及び7のゴム組成物は、混練条件により0℃tanδ/60℃tanδが2.50未満であるので、低転がり抵抗性、グリップ性能及び耐摩耗性の3つの性能をバランスさせて改良することができない。
In the rubber composition of Comparative Example 2, since the amount of silica 1 is less than 45 parts by weight, the effect of improving the grip performance cannot be sufficiently obtained. In the rubber composition of Comparative Example 3, since the blending amount of the terpene resin 1 is less than 1 part by weight, the balance between the low rolling resistance and the grip performance cannot be sufficiently increased. In the rubber composition of Comparative Example 4, since the blending amount of butadiene rubber exceeds 20% by weight, it is difficult to improve grip performance.
The rubber compositions of Comparative Examples 6 and 7 have 0 ° C. tan δ / 60 ° C. tan δ of less than 2.50 depending on the kneading conditions, and therefore improved by balancing the three performances of low rolling resistance, grip performance, and wear resistance. Can not do it.

表3から明らかなように比較例8のゴム組成物は、S−SBRの代わりにE−SBRを配合したので、転がり抵抗及び耐摩耗性を改良することができない。比較例9のゴム組成物は、S−SBR4の比(V/S)が2.00を超えるので、耐摩耗性が悪化する。   As is apparent from Table 3, the rubber composition of Comparative Example 8 cannot improve rolling resistance and wear resistance because E-SBR is blended in place of S-SBR. Since the rubber composition of Comparative Example 9 has an S-SBR4 ratio (V / S) exceeding 2.00, the wear resistance is deteriorated.

比較例10のゴム組成物は、S−SBR2の配合量が70重量部未満であるので、グリップ性能を向上させることができない。比較例11のゴム組成物は、シリカ3のBET比表面積が100未満であるので、耐摩耗性が不足し、グリップ性能も低下する。比較例12のゴム組成物は、シリカ2のBET比表面積が200m2/gを超えるので、転がり抵抗が悪化する。The rubber composition of Comparative Example 10 cannot improve the grip performance because the amount of S-SBR2 is less than 70 parts by weight. In the rubber composition of Comparative Example 11, since the BET specific surface area of silica 3 is less than 100, the wear resistance is insufficient and the grip performance is also lowered. In the rubber composition of Comparative Example 12, since the BET specific surface area of silica 2 exceeds 200 m 2 / g, the rolling resistance is deteriorated.

比較例13のゴム組成物は、テルペン樹脂1(芳香族変性テルペン樹脂)の代わりに、テルペン樹脂2(未変性テルペン樹脂)を配合したのでグリップ性能を向上させることができず、耐摩耗性も悪化する。比較例14のゴム組成物は、テルペン樹脂1(芳香族変性テルペン樹脂)の代わりに、テルペン樹脂3(フェノール変性テルペン樹脂)を配合したのでグリップ性能は大きく向上するものの、転がり抵抗および耐摩耗性が悪化する。   Since the rubber composition of Comparative Example 13 was blended with terpene resin 2 (unmodified terpene resin) instead of terpene resin 1 (aromatic modified terpene resin), the grip performance could not be improved and the wear resistance was also improved. Getting worse. Although the rubber composition of Comparative Example 14 was blended with terpene resin 3 (phenol-modified terpene resin) instead of terpene resin 1 (aromatic-modified terpene resin), the grip performance was greatly improved, but rolling resistance and abrasion resistance were improved. Gets worse.

比較例15のゴム組成物は、テルペン樹脂1の配合量が20重量部を超えるので、転がり抵抗が悪化する。また耐摩耗性を改良することができない。比較例16のゴム組成物は、シリカ1の配合量が100重量部を超えるので、耐摩耗性が悪化する。   In the rubber composition of Comparative Example 15, since the blending amount of the terpene resin 1 exceeds 20 parts by weight, the rolling resistance is deteriorated. Also, the wear resistance cannot be improved. In the rubber composition of Comparative Example 16, since the compounding amount of silica 1 exceeds 100 parts by weight, the wear resistance is deteriorated.

Claims (4)

溶液重合スチレンブタジエンゴム70〜95重量%及びブタジエンゴム5〜20重量%を含むジエン系ゴム100重量部と、芳香族変性テルペン樹脂1〜20重量部と、BET比表面積が100〜200m2/gであるシリカ45〜100重量部と、を含有するゴム組成物であって、
前記芳香族変性テルペン樹脂を構成する芳香族化合物が、スチレン、α−メチルスチレン、ビニルトルエンから選ばれる少なくとも1種であり、
前記溶液重合スチレンブタジエンゴムの、スチレン単位含有量(S)が35〜45重量%、ビニル単位含有量(V)が35重量%以上、前記スチレン単位含有量(S)に対するビニル単位含有量(V)の比(V/S)が0.75以上2.00以下であり、
前記ゴム組成物の0℃のtanδと60℃のtanδの比(tanδ(0℃)/tanδ(60℃))が2.50〜2.78であることを特徴とするタイヤ用ゴム組成物。
100 parts by weight of a diene rubber containing 70 to 95% by weight of solution-polymerized styrene butadiene rubber and 5 to 20% by weight of butadiene rubber, 1 to 20 parts by weight of an aromatic modified terpene resin, and a BET specific surface area of 100 to 200 m 2 / g. A rubber composition containing 45 to 100 parts by weight of silica,
The aromatic compound constituting the aromatic modified terpene resin is at least one selected from styrene, α-methylstyrene, vinyltoluene,
The solution-polymerized styrene butadiene rubber has a styrene unit content (S) of 35 to 45% by weight, a vinyl unit content (V) of 35% by weight or more, and a vinyl unit content (V) relative to the styrene unit content (S). ) Ratio (V / S) is 0.75 or more and 2.00 or less,
A rubber composition for tires, wherein a ratio of tan δ at 0 ° C. to tan δ at 60 ° C. (tan δ (0 ° C.) / Tan δ (60 ° C.)) of the rubber composition is 2.50 to 2.78 .
請求項1に記載のタイヤ用ゴム組成物からなるトレッド部を備える空気入りタイヤ。   A pneumatic tire provided with a tread portion comprising the rubber composition for a tire according to claim 1. 溶液重合スチレンブタジエンゴム70〜95重量%及びブタジエンゴム5〜20重量%を含むジエン系ゴム100重量部と、芳香族変性テルペン樹脂1〜20重量部と、BET比表面積が100〜200m2/gであるシリカ45〜100重量部と、を準備する工程と、
硫黄及び加硫促進剤を含む加硫系配合剤を除いて前記ジエン系ゴム、前記芳香族変性テルペン樹脂、及び前記シリカを149〜160℃で混練する工程と、を含むタイヤ用ゴム組成物の製造方法であって、
前記芳香族変性テルペン樹脂を構成する芳香族化合物が、スチレン、α−メチルスチレン、ビニルトルエンから選ばれる少なくとも1種であり、
前記溶液重合スチレンブタジエンゴムの、スチレン単位含有量(S)が35〜45重量%、ビニル単位含有量(V)が35重量%以上、前記スチレン単位含有量(S)に対するビニル単位含有量(V)の比(V/S)が0.75以上2.00以下であり、
前記ゴム組成物の0℃のtanδと60℃のtanδの比(tanδ(0℃)/tanδ(60℃))が2.50〜2.78である、ことを特徴とするタイヤ用ゴム組成物の製造方法。
100 parts by weight of a diene rubber containing 70 to 95% by weight of solution-polymerized styrene butadiene rubber and 5 to 20% by weight of butadiene rubber, 1 to 20 parts by weight of an aromatic modified terpene resin, and a BET specific surface area of 100 to 200 m 2 / g. A step of preparing 45 to 100 parts by weight of silica,
A step of kneading the diene rubber, the aromatic modified terpene resin, and the silica at 149 to 160 ° C. except for a vulcanizing compound containing sulfur and a vulcanization accelerator . A manufacturing method comprising:
The aromatic compound constituting the aromatic modified terpene resin is at least one selected from styrene, α-methylstyrene, vinyltoluene,
The solution-polymerized styrene butadiene rubber has a styrene unit content (S) of 35 to 45% by weight, a vinyl unit content (V) of 35% by weight or more, and a vinyl unit content (V) relative to the styrene unit content (S). ) Ratio (V / S) is 0.75 or more and 2.00 or less,
A ratio of tan δ at 0 ° C. to tan δ at 60 ° C. (tan δ (0 ° C.) / Tan δ (60 ° C.)) of the rubber composition is from 2.50 to 2.78 . Manufacturing method.
前記混練する工程の後、前記混練により得られた混練物を冷却し、冷却後前記加硫系配合剤を添加する工程をさらに含む請求項3に記載のタイヤ用ゴム組成物の製造方法。  The manufacturing method of the rubber composition for tires of Claim 3 which further includes the process of cooling the kneaded material obtained by the said kneading | mixing after the said kneading | mixing process and adding the said vulcanization | cure type compounding agent after cooling.
JP2012539902A 2011-06-28 2012-06-28 Rubber composition for tire, pneumatic tire, and method for producing rubber composition for tire Active JP5321751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012539902A JP5321751B2 (en) 2011-06-28 2012-06-28 Rubber composition for tire, pneumatic tire, and method for producing rubber composition for tire

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011143261 2011-06-28
JP2011143261 2011-06-28
JP2012539902A JP5321751B2 (en) 2011-06-28 2012-06-28 Rubber composition for tire, pneumatic tire, and method for producing rubber composition for tire
PCT/JP2012/004211 WO2013001826A1 (en) 2011-06-28 2012-06-28 Rubber composition for tires, pneumatic tire, and method for producing rubber composition for tires

Publications (2)

Publication Number Publication Date
JP5321751B2 true JP5321751B2 (en) 2013-10-23
JPWO2013001826A1 JPWO2013001826A1 (en) 2015-02-23

Family

ID=47423743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012539902A Active JP5321751B2 (en) 2011-06-28 2012-06-28 Rubber composition for tire, pneumatic tire, and method for producing rubber composition for tire

Country Status (2)

Country Link
JP (1) JP5321751B2 (en)
WO (1) WO2013001826A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6496520B2 (en) * 2014-10-27 2019-04-03 株式会社ブリヂストン Method for producing rubber composition, rubber composition and tire
CN106674658A (en) * 2016-12-08 2017-05-17 赛轮金宇集团股份有限公司 Tire tread rubber produced by utilizing renewable rice husk source white carbon black and preparation process of tire tread rubber
JP7251071B2 (en) * 2018-08-08 2023-04-04 住友ゴム工業株式会社 Rubber composition for tread and pneumatic tire
CN115667410A (en) 2020-06-08 2023-01-31 哈利玛化成株式会社 Rubber modifier for tire and rubber composition for tire
JP2021073134A (en) * 2021-02-03 2021-05-13 住友ゴム工業株式会社 Rubber composition for tire and tire
CN114316393B (en) * 2021-12-28 2023-09-12 中策橡胶集团股份有限公司 Rubber composition special for RFT tire tread, mixing method and tire
JP7397362B2 (en) 2022-03-16 2023-12-13 横浜ゴム株式会社 Rubber composition for tires
WO2023176832A1 (en) * 2022-03-16 2023-09-21 横浜ゴム株式会社 Rubber composition for tires
WO2023176831A1 (en) * 2022-03-16 2023-09-21 横浜ゴム株式会社 Tire rubber composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004091505A (en) * 2002-08-29 2004-03-25 Bridgestone Corp Rubber composition for tire tread and tire using the same
JP2006249403A (en) * 2005-02-10 2006-09-21 Sumitomo Rubber Ind Ltd Rubber composition and tyre having tread using the same
JP2008297493A (en) * 2007-06-01 2008-12-11 Yokohama Rubber Co Ltd:The Rubber composition for tire

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004091505A (en) * 2002-08-29 2004-03-25 Bridgestone Corp Rubber composition for tire tread and tire using the same
JP2006249403A (en) * 2005-02-10 2006-09-21 Sumitomo Rubber Ind Ltd Rubber composition and tyre having tread using the same
JP2008297493A (en) * 2007-06-01 2008-12-11 Yokohama Rubber Co Ltd:The Rubber composition for tire

Also Published As

Publication number Publication date
JPWO2013001826A1 (en) 2015-02-23
WO2013001826A1 (en) 2013-01-03

Similar Documents

Publication Publication Date Title
JP5376008B2 (en) Rubber composition for tire
JP5234203B2 (en) Rubber composition for tire
JP5321751B2 (en) Rubber composition for tire, pneumatic tire, and method for producing rubber composition for tire
JP5737324B2 (en) Rubber composition for tire
JP5381332B2 (en) Rubber composition for tire tread
JP5999167B2 (en) Rubber composition for tire tread
JP4835769B2 (en) Rubber composition for tire tread
JP4788843B1 (en) Rubber composition for tire
JP5900036B2 (en) Rubber composition for tire tread
JP4294070B2 (en) Rubber composition for tire
JP4372171B2 (en) Rubber composition for tire tread
JP5626494B2 (en) Rubber composition for tire for construction vehicle and pneumatic tire for construction vehicle using the same
JP5597959B2 (en) Rubber composition for tire
JP6420203B2 (en) Method for producing rubber composition
JP2015209540A (en) Rubber composition for tire tread
JP2013227400A (en) Rubber composition for tire tread
US20180362740A1 (en) Rubber composition for tire, tread and tire
JP2017008169A (en) Rubber composition
JP5920544B2 (en) Rubber composition for tire
JP6172307B1 (en) Rubber composition for tire
JP2019026773A (en) Rubber composition for tire
JP6657761B2 (en) Rubber composition for tire
JP2015174950A (en) Rubber composition for tire
JP2006152197A (en) Rubber composition for tire
JP2022164149A (en) Rubber composition and method for producing the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130701

R150 Certificate of patent or registration of utility model

Ref document number: 5321751

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350