JP5321063B2 - Non-aqueous electrolyte - Google Patents

Non-aqueous electrolyte Download PDF

Info

Publication number
JP5321063B2
JP5321063B2 JP2008551054A JP2008551054A JP5321063B2 JP 5321063 B2 JP5321063 B2 JP 5321063B2 JP 2008551054 A JP2008551054 A JP 2008551054A JP 2008551054 A JP2008551054 A JP 2008551054A JP 5321063 B2 JP5321063 B2 JP 5321063B2
Authority
JP
Japan
Prior art keywords
fluorine
carbon atoms
solvent
carbonate
electrolyte salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008551054A
Other languages
Japanese (ja)
Other versions
JPWO2008078626A1 (en
Inventor
明天 高
瞳 中澤
英郎 坂田
昭佳 山内
みちる 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2008551054A priority Critical patent/JP5321063B2/en
Publication of JPWO2008078626A1 publication Critical patent/JPWO2008078626A1/en
Application granted granted Critical
Publication of JP5321063B2 publication Critical patent/JP5321063B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/164Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0034Fluorinated solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

Disclosed is a nonaqueous electrolyte solution containing a solvent (I) for dissolving an electrolyte salt, and an electrolyte salt (II). The solvent (I) for dissolving an electrolyte salt contains a fluorine-containing solvent (A) selected from the group consisting of fluorine-containing ethers, fluorine-containing esters and fluorine-containing carbonates, a non-fluorine cyclic carbonate (B), and a non-fluorine chain carbonate (C), and further contains not more than 5% by mass of a surface active agent (D) relative to the total of the solvent (I). Consequently, phase separation does not occur in this nonaqueous electrolyte solution even at low temperatures, and the nonaqueous electrolyte solution has excellent incombustibility (flame retardancy), excellent heat resistance, high solubility of the electrolyte salt, improved battery capacity, excellent rate characteristics, and excellent charge/discharge cycle characteristics.

Description

本発明は、リチウム二次電池用に適した非水系電解液に関する。   The present invention relates to a non-aqueous electrolyte suitable for a lithium secondary battery.

リチウム二次電池用の非水系電解液に使用する電解質塩溶解用溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネートなどの非フッ素系のカーボネート類が汎用されている。しかしこれらの炭化水素系カーボネート類は引火点が低く燃焼性が高いため、特にハイブリッド自動車用や分散電源用の大型リチウム二次電池では、非水系電解液の不燃性の向上が安全確保の上で重要な課題となっている。   Non-fluorine carbonates such as ethylene carbonate, propylene carbonate, and dimethyl carbonate are widely used as solvents for dissolving electrolyte salts used in non-aqueous electrolytes for lithium secondary batteries. However, these hydrocarbon carbonates have a low flash point and high flammability. Therefore, especially in large lithium secondary batteries for hybrid vehicles and distributed power supplies, the nonflammability of non-aqueous electrolytes is improved for ensuring safety. It is an important issue.

非水系電解液としての性能を落とさずに不燃性(難燃性)を高めるために、フッ素系溶媒を添加することも提案されている(特開平08−037024号公報、特開平09−097627号公報、特開平11−026015号公報、特開2000−294281号公報、特開2001−052737号公報、特開平11−307123号公報および特開平10−112334号公報)が、不燃性(難燃性)でかつ充分な電池特性(充放電サイクル特性、高放電容量など)を有する非水系電解液は開発されていないのが現状である。   In order to improve nonflammability (flame retardancy) without degrading the performance as a non-aqueous electrolyte, it has also been proposed to add a fluorine-based solvent (Japanese Patent Laid-Open Nos. 08-037024 and 09-097627). Japanese Patent Laid-Open No. 11-026015, Japanese Patent Laid-Open No. 2000-294281, Japanese Patent Laid-Open No. 2001-052737, Japanese Patent Laid-Open No. 11-307123, and Japanese Patent Laid-Open No. 10-112334 are nonflammable (flame retardant). ) And sufficient battery characteristics (charge / discharge cycle characteristics, high discharge capacity, etc.) have not yet been developed.

本発明は、こうした従来の問題点を解決しようとするものであり、不燃性(難燃性)でかつ電池特性(充放電サイクル特性、放電容量)に優れ、リチウム二次電池用に適した非水系電解液を提供することを目的とする。   The present invention is intended to solve these conventional problems, is non-flammable (flame retardant), has excellent battery characteristics (charge / discharge cycle characteristics, discharge capacity), and is suitable for a lithium secondary battery. An object is to provide an aqueous electrolyte.

本発明者らは鋭意検討した結果、単に含フッ素有機溶媒を加えるだけでなく、含フッ素有機溶媒と非フッ素系鎖状カーボネートと非フッ素系環状カーボネートに、界面活性剤を5質量%以下という少量加えることにより、不燃性(難燃性)を有しながらも電池容量およびレート特性が向上することを見出し、本発明を完成するに至った。   As a result of intensive studies, the present inventors have not only simply added a fluorine-containing organic solvent but also a small amount of surfactant of 5% by mass or less in a fluorine-containing organic solvent, a non-fluorinated chain carbonate, and a non-fluorinated cyclic carbonate. By adding, it has been found that the battery capacity and rate characteristics are improved while having nonflammability (flame retardancy), and the present invention has been completed.

すなわち本発明は、
(I)(A)含フッ素エーテル、含フッ素エステルおよび含フッ素カーボネートよりなる群から選ばれるフッ素系溶媒、
(B)非フッ素系環状カーボネート、および
(C)非フッ素系鎖状カーボネート
を含む電解質塩溶解用溶媒、ならびに
(II)電解質塩
を含み、
電解質塩溶解用溶媒(I)が、溶媒(I)全体に対して(D)界面活性剤を5質量%以下含有する非水系電解液に関する。
That is, the present invention
(I) (A) a fluorinated solvent selected from the group consisting of fluorinated ethers, fluorinated esters and fluorinated carbonates,
(B) a non-fluorinated cyclic carbonate, and (C) a solvent for dissolving an electrolyte salt containing a non-fluorinated chain carbonate, and (II) an electrolyte salt,
The electrolyte salt dissolving solvent (I) relates to a non-aqueous electrolytic solution containing 5% by mass or less of (D) a surfactant with respect to the entire solvent (I).

本発明の非水系電解液において、電解質塩溶解用溶媒(I)が、溶媒(I)全体に対して、フッ素系溶媒(A)を20〜80体積%、非フッ素系環状カーボネート(B)を3〜40体積%および非フッ素系鎖状カーボネート(C)を10〜77体積%含むことが、放電容量、レート特性が良好な点から好ましい。   In the non-aqueous electrolyte solution of the present invention, the electrolyte salt dissolving solvent (I) is 20 to 80% by volume of the fluorine-based solvent (A) and the non-fluorinated cyclic carbonate (B) with respect to the entire solvent (I). It is preferable that 3 to 40% by volume and 10 to 77% by volume of the non-fluorine chain carbonate (C) are contained from the viewpoint of good discharge capacity and rate characteristics.

また、本発明において、(A)成分のフッ素系溶媒が、
式(A1):
Rf1ORf2
(式中、Rf1は炭素数3〜6の含フッ素アルキル基、Rf2は炭素数2〜6の含フッ素アルキル基)で示される含フッ素エーテル、
式(A2):
Rf3COORf4
(式中、Rf3は炭素数1〜2のフッ素原子を含んでいてもよいアルキル基、Rf4は炭素数1〜4のフッ素原子を含んでいてもよいアルキル基であって、Rf3およびRf4の少なくともいずれか一方は、含フッ素アルキル基である)で示される含フッ素エステル、
および
式(A3):
Rf5OCOORf6
(式中、Rf5は炭素数1〜4の含フッ素アルキル基、Rf6は炭素数1〜4のフッ素原子を含んでいてもよいアルキル基)で示される含フッ素カーボネート
よりなる群から選ばれる少なくとも1種であることが、難燃性、レート特性、耐酸化性が良好な点から好ましい。
In the present invention, the fluorine-based solvent of component (A) is
Formula (A1):
Rf 1 ORf 2
(Wherein Rf 1 is a fluorine-containing alkyl group having 3 to 6 carbon atoms, Rf 2 is a fluorine-containing alkyl group having 2 to 6 carbon atoms),
Formula (A2):
Rf 3 COORf 4
(In the formula, Rf 3 is an alkyl group which may contain a fluorine atom having 1 to 2 carbon atoms, Rf 4 is an alkyl group which may contain a fluorine atom having 1 to 4 carbon atoms, and Rf 3 and At least one of Rf 4 is a fluorine-containing alkyl group),
And formula (A3):
Rf 5 OCOORf 6
Wherein Rf 5 is a fluorine-containing alkyl group having 1 to 4 carbon atoms, and Rf 6 is an alkyl group that may contain a fluorine atom having 1 to 4 carbon atoms. At least one kind is preferable from the viewpoint of good flame retardancy, rate characteristics, and oxidation resistance.

さらに、本発明において、(B)成分の非フッ素系環状カーボネートが、エチレンカーボネート、プロピレンカーボネートおよびビニレンカーボネートよりなる群から選ばれる少なくとも1種であることが、放電特性、サイクル特性が良好な点から好ましい。   Furthermore, in the present invention, the non-fluorine-based cyclic carbonate as the component (B) is at least one selected from the group consisting of ethylene carbonate, propylene carbonate, and vinylene carbonate from the viewpoint of good discharge characteristics and cycle characteristics. preferable.

またさらに、本発明において、非フッ素系鎖状カーボネート(C)としては、式(C):
1OCOOR2
(式中、R1およびR2は同じかまたは異なり炭素数1〜4のアルキル基)で示される化合物であることが、難燃性、レート特性、サイクル特性が良好な点から好ましい。
Furthermore, in the present invention, as the non-fluorine chain carbonate (C), the formula (C):
R 1 OCOOR 2
A compound represented by the formula (wherein R 1 and R 2 are the same or different and an alkyl group having 1 to 4 carbon atoms) is preferable from the viewpoint of good flame retardancy, rate characteristics, and cycle characteristics.

界面活性剤としては、式(D1a):
RfaCOO-+
(式中、Rfaは炭素数4〜20の含フッ素アルキル基、M+はアルカリ金属カチオンまたはNHR'3 +(R'は同じかまたは異なり、いずれもHまたは炭素数が1〜3のアルキル基))で示される含フッ素カルボン酸塩、および/または
式(D2a):
RfaSO3 -+
(式中、Rfaは炭素数4〜20の含フッ素アルキル基、M+はアルカリ金属カチオンまたはNHR'3 +(R'は同じかまたは異なり、いずれもHまたは炭素数が1〜3のアルキル基))で示される含フッ素スルホン酸塩、さらには
式(D1b):
RfbCOO-+
(式中、Rfbは炭素数4〜20の含フッ素エーテル基、M+はアルカリ金属カチオンまたはNHR'3 +(R'は同じかまたは異なり、いずれもHまたは炭素数が1〜3のアルキル基))で示される含フッ素カルボン酸塩、および/または
式(D2b):
RfbSO3 -+
(式中、Rfbは炭素数4〜20の含フッ素エーテル基、M+はアルカリ金属カチオンまたはNHR'3 +(R'は同じかまたは異なり、いずれもHまたは炭素数が1〜3のアルキル基))で示される含フッ素スルホン酸塩
であることが、サイクル特性が良好な点から好ましい。
As the surfactant, the formula (D1a):
Rf a COO - M +
(Wherein, Rf a fluorine-containing alkyl group having 4 to 20 carbon atoms, M + unlike alkali metal cation or NHR '3 + (R' are the same or are both H or carbon atoms of 1 to 3 alkyl Group)) and / or formula (D2a):
Rf a SO 3 - M +
(Wherein, Rf a fluorine-containing alkyl group having 4 to 20 carbon atoms, M + unlike alkali metal cation or NHR '3 + (R' are the same or are both H or carbon atoms of 1 to 3 alkyl Group))-containing fluorine-containing sulfonate, and further formula (D1b):
Rf b COO - M +
(In the formula, Rf b is a fluorine-containing ether group having 4 to 20 carbon atoms, M + is an alkali metal cation or NHR ′ 3 + (R ′ is the same or different, both are H or alkyl having 1 to 3 carbon atoms) Group)) and / or formula (D2b):
Rf b SO 3 - M +
(In the formula, Rf b is a fluorine-containing ether group having 4 to 20 carbon atoms, M + is an alkali metal cation or NHR ′ 3 + (R ′ is the same or different, both are H or alkyl having 1 to 3 carbon atoms) The fluorine-containing sulfonate represented by the group)) is preferable from the viewpoint of good cycle characteristics.

本発明において、電解質塩(II)が、LiPF6、LiN(SO2CF32およびLiN(SO2252よりなる群から選ばれる少なくとも1種であることが、サイクル特性が良好な点から好ましい。In the present invention, the cycle characteristics are such that the electrolyte salt (II) is at least one selected from the group consisting of LiPF 6 , LiN (SO 2 CF 3 ) 2 and LiN (SO 2 C 2 F 5 ) 2. It is preferable from a favorable point.

本発明において、電解質塩(II)が、LiPF6および/またはLiN(SO2CF32からなり、電解質塩(II)の濃度が0.5〜1.5モル/リットルであることが好ましい。In the present invention, the electrolyte salt (II) is preferably composed of LiPF 6 and / or LiN (SO 2 CF 3 ) 2 , and the concentration of the electrolyte salt (II) is preferably 0.5 to 1.5 mol / liter. .

電解質塩(II)におけるLiPF6が0.1〜0.9モル/リットルおよびLiN(SO2CF32が0.1〜0.9モル/リットルであって、LiPF6/LiN(SO2CF32が1/9〜9/1であることが好ましい。In the electrolyte salt (II), LiPF 6 is 0.1 to 0.9 mol / liter and LiN (SO 2 CF 3 ) 2 is 0.1 to 0.9 mol / liter, and LiPF 6 / LiN (SO 2 CF 3 ) 2 is preferably 1/9 to 9/1.

本発明の非水系電解液は、リチウム二次電池用の非水系電解液として好適である。   The non-aqueous electrolyte solution of the present invention is suitable as a non-aqueous electrolyte solution for a lithium secondary battery.

また、本発明は、正極、負極、セパレータおよび本発明の非水系電解液を備え、該正極に使用する正極活物質が、コバルト系複合酸化物、ニッケル系複合酸化物、マンガン系複合酸化物、鉄系複合酸化物およびバナジウム系複合酸化物よりなる群から選ばれる少なくとも1種であるリチウム二次電池に関する。   The present invention also includes a positive electrode, a negative electrode, a separator, and the non-aqueous electrolyte solution of the present invention. The positive electrode active material used for the positive electrode is a cobalt-based composite oxide, a nickel-based composite oxide, a manganese-based composite oxide, The present invention relates to a lithium secondary battery that is at least one selected from the group consisting of iron-based composite oxides and vanadium-based composite oxides.

正極活物質と負極活物質との組合せとしては、正極活物質がコバルト酸リチウムで負極活物質が黒鉛の組合せ、正極活物質がニッケル系複合酸化物で負極活物質が黒鉛の組合せが、容量が増大する点から好ましい。   As a combination of the positive electrode active material and the negative electrode active material, the positive electrode active material is a combination of lithium cobaltate and the negative electrode active material is graphite. The positive electrode active material is a nickel-based composite oxide and the negative electrode active material is graphite. It is preferable from the viewpoint of increasing.

本発明の試験例1で測定した電池の内部インピーダンスの値の実部(Z’)をX軸に、内部インピーダンスの値の虚部(Z’’)をY軸にプロットしたグラフである。4 is a graph in which the real part (Z ′) of the internal impedance value of the battery measured in Test Example 1 of the present invention is plotted on the X axis and the imaginary part (Z ″) of the internal impedance value is plotted on the Y axis.

本発明の非水系電解液は、特定の成分を含む電解質塩溶解用溶媒(I)と電解質塩(II)とを含有する。   The nonaqueous electrolytic solution of the present invention contains an electrolyte salt dissolving solvent (I) containing a specific component and an electrolyte salt (II).

電解質塩溶解用溶媒(I)は、
(A)含フッ素エーテル、含フッ素エステルおよび含フッ素カーボネートよりなる群から選ばれる少なくとも1種のフッ素系溶媒、
(B)非フッ素系環状カーボネート、および
(C)非フッ素系鎖状カーボネート
を含む。
Solvent for dissolving electrolyte salt (I)
(A) at least one fluorine-based solvent selected from the group consisting of fluorine-containing ethers, fluorine-containing esters, and fluorine-containing carbonates,
(B) a non-fluorinated cyclic carbonate, and (C) a non-fluorinated chain carbonate.

以下、各溶媒成分(A)〜(C)について説明する。   Hereinafter, each solvent component (A)-(C) is demonstrated.

(A)含フッ素エーテル、含フッ素エステルおよび含フッ素カーボネートよりなる群から選ばれる少なくとも1種のフッ素系溶媒:
フッ素系溶媒を含有させることにより、電解液を難燃化する作用や、低温特性を改善する作用、さらには耐酸化性の向上といった効果が得られる。
(A) At least one fluorine-based solvent selected from the group consisting of fluorine-containing ethers, fluorine-containing esters, and fluorine-containing carbonates:
By containing a fluorinated solvent, an effect of making the electrolyte solution flame-retardant, an effect of improving low-temperature characteristics, and an effect of improving oxidation resistance can be obtained.

含フッ素エーテル(A1)としては、たとえば特開平08−037024号公報、特開平09−097627号公報、特開平11−026015号公報、特開2000−294281号公報、特開2001−052737号公報、特開平11−307123号公報などに記載された化合物が例示できる。   Examples of the fluorinated ether (A1) include Japanese Patent Application Laid-Open Nos. 08-037024, 09-097627, 11-026015, 2000-294281, and 2001-052737. Examples thereof include compounds described in JP-A-11-307123.

なかでも、式(A1):
Rf1ORf2
(式中、Rf1は炭素数3〜6の含フッ素アルキル基、Rf2は炭素数2〜6の含フッ素アルキル基)で示される含フッ素エーテルが、他溶媒との相溶性が良好で適切な沸点を有する点から好ましい。
Among them, the formula (A1):
Rf 1 ORf 2
(Wherein Rf 1 is a fluorine-containing alkyl group having 3 to 6 carbon atoms, Rf 2 is a fluorine-containing alkyl group having 2 to 6 carbon atoms), and the fluorine-containing ether represented by Rf 1 is suitably compatible with other solvents. From the point of having a large boiling point.

特にRf1としては、たとえばHCF2CF2CH2−、HCF2CF2CF2CH2−、HCF2CF2CF2CF2CH2−、CF3CF2CH2−、CF3CFHCF2CH2−、HCF2CF(CF3)CH2−、CF3CF2CH2CH2−、CF3CH2CH2−などの炭素数3〜6の含フッ素アルキル基が例示でき、また、Rf2としてはたとえば−CF2CF2H、−CF2CFHCF3、−CF2CF2CF2H、−CH2CH2CF3、−CH2CFHCF3、−CH2CH2CF2CF3などの炭素数2〜6の含フッ素アルキル基が例示できる。なかでもRf1は炭素数3〜4の含フッ素アルキル基であり、Rf2は炭素数2〜3の含フッ素アルキル基であることが、イオン伝導性が良好な点から特に好ましい。Particularly Rf 1, for example, HCF 2 CF 2 CH 2 -, HCF 2 CF 2 CF 2 CH 2 -, HCF 2 CF 2 CF 2 CF 2 CH 2 -, CF 3 CF 2 CH 2 -, CF 3 CFHCF 2 CH Examples thereof include fluorine-containing alkyl groups having 3 to 6 carbon atoms such as 2- , HCF 2 CF (CF 3 ) CH 2 —, CF 3 CF 2 CH 2 CH 2 —, CF 3 CH 2 CH 2 —, and Rf the 2 for example -CF 2 CF 2 H, -CF 2 CFHCF 3, -CF 2 CF 2 CF 2 H, -CH 2 CH 2 CF 3, -CH 2 CFHCF 3, such as -CH 2 CH 2 CF 2 CF 3 And a fluorine-containing alkyl group having 2 to 6 carbon atoms. Among these, it is particularly preferable that Rf 1 is a fluorinated alkyl group having 3 to 4 carbon atoms and Rf 2 is a fluorinated alkyl group having 2 to 3 carbon atoms from the viewpoint of good ion conductivity.

含フッ素エーテル(A1)の具体例としては、たとえばHCF2CF2CH2OCF2CF2H、CF3CF2CH2OCF2CF2H、HCF2CF2CH2OCF2CFHCF3、CF3CF2CH2OCF2CFHCF3、CF3CFHCF2CH2OCF2CF2H、HCF2CF2CH2OCH2CFHCF3、CF3CF2CH2OCH2CFHCF3などの1種または2種以上が例示でき、なかでもHCF2CF2CH2OCF2CF2H、CF3CF2CH2OCF2CF2H、HCF2CF2CH2OCF2CFHCF3、CF3CF2CH2OCF2CFHCF3が、他溶媒との相溶性が良好でレート特性も良好な点から特に好ましい。Specific examples of the fluorine-containing ether (A1) include, for example, HCF 2 CF 2 CH 2 OCF 2 CF 2 H, CF 3 CF 2 CH 2 OCF 2 CF 2 H, HCF 2 CF 2 CH 2 OCF 2 CFHCF 3 , CF 3 One or more of CF 2 CH 2 OCF 2 CFHCF 3 , CF 3 CFHCF 2 CH 2 OCF 2 CF 2 H, HCF 2 CF 2 CH 2 OCH 2 CFHCF 3 , CF 3 CF 2 CH 2 OCH 2 CFHCF 3 Among them, HCF 2 CF 2 CH 2 OCF 2 CF 2 H, CF 3 CF 2 CH 2 OCF 2 CF 2 H, HCF 2 CF 2 CH 2 OCF 2 CFHCF 3 , CF 3 CF 2 CH 2 OCF 2 CFHCF 3 is particularly preferred from the viewpoints of good compatibility with other solvents and good rate characteristics.

含フッ素エステル(A2)としては、式(A2):
Rf3COORf4
(式中、Rf3は炭素数1〜2のフッ素原子を含んでいてもよいアルキル基、Rf4は炭素数1〜4のフッ素原子を含んでいてもよいアルキル基であって、Rf3およびRf4の少なくともいずれか一方は、含フッ素アルキル基である)で示される含フッ素エステルが、難燃性が高く、かつ他溶媒との相溶性が良好な点から好ましい。
As the fluorine-containing ester (A2), the formula (A2):
Rf 3 COORf 4
(In the formula, Rf 3 is an alkyl group which may contain a fluorine atom having 1 to 2 carbon atoms, Rf 4 is an alkyl group which may contain a fluorine atom having 1 to 4 carbon atoms, and Rf 3 and A fluorine-containing ester represented by (at least one of Rf 4 is a fluorine-containing alkyl group) is preferable from the viewpoint of high flame retardancy and good compatibility with other solvents.

Rf3としては、たとえばHCF2−、CF3−、CF3CF2−、HCF2CF2−、CH3CF2−、CF3CH2−などの含フッ素アルキル基、CH3−、CH3CH2−などの非フッ素系アルキル基が例示でき、なかでもHCF2−、CF3−が、レート特性が良好な点から特に好ましい。Examples of Rf 3 include fluorine-containing alkyl groups such as HCF 2 —, CF 3 —, CF 3 CF 2 —, HCF 2 CF 2 —, CH 3 CF 2 —, CF 3 CH 2 —, CH 3 —, CH 3 and the like. Non-fluorinated alkyl groups such as CH 2 — can be exemplified, and HCF 2 — and CF 3 — are particularly preferable from the viewpoint of good rate characteristics.

Rf4としては、たとえば−CF3、−CF2CF3、−CH2CF3、−CH2CH2CF3、−CH(CF32、−CH2CF2CFHCF3、−CH2CF2CF3、−CH2CF2CF2H、−CH2CH2CF2CF3、−CH2CF2CF2CF3などの含フッ素アルキル基、−CH3、−CH2CH3、−CH2CH2CH3、−CH(CH3)CH3などの非フッ素系アルキル基が例示でき、なかでも−CH2CF3、−CH2CF2CF3、−CH(CF32、−CH2CF2CF2H、−CH3、−CH2CH3が、他溶媒との相溶性が良好な点から特に好ましい。The Rf 4, for example -CF 3, -CF 2 CF 3, -CH 2 CF 3, -CH 2 CH 2 CF 3, -CH (CF 3) 2, -CH 2 CF 2 CFHCF 3, -CH 2 CF 2 CF 3, -CH 2 CF 2 CF 2 H, -CH 2 CH 2 CF 2 CF 3, -CH 2 CF 2 CF 2 CF 3 fluorinated alkyl group such as, -CH 3, -CH 2 CH 3 , - Non-fluorinated alkyl groups such as CH 2 CH 2 CH 3 and —CH (CH 3 ) CH 3 can be exemplified, among which —CH 2 CF 3 , —CH 2 CF 2 CF 3 , —CH (CF 3 ) 2 , —CH 2 CF 2 CF 2 H, —CH 3 , and —CH 2 CH 3 are particularly preferred from the viewpoint of good compatibility with other solvents.

含フッ素エステル(A2)の具体例としては、
1.両方が含フッ素アルキル基であるもの:
CF3COOCH2CF3、CF3COOCH2CF2CF3、CF3COOCH2CF2CF2H、HCF2COOCH2CF3、HCF2COOCH2CF2CF3、HCF2COOCH2CF2CF2
2.Rf3が含フッ素アルキル基であるもの:
CF3COOCH3、CF3COOCH2CH3、HCF2COOCH3、HCF2COOCH2CH3、CH3CF2COOCH3、CH3CF2COOCH2CH3、CF3CF2COOCH3、CF3CF2COOCH2CH3
3.Rf4が含フッ素アルキル基であるもの:
CH3COOCH2CF3、CH3COOCH2CF2CF3、CH3COOCH2CF2CF2H、CH3CH2COOCH2CF3、CH3CH2COOCH2CF2CF3、CH3CH2COOCH2CF2CF2
などの1種または2種以上が例示でき、なかでも、前記2.Rf3が含フッ素アルキル基であるもの、および3.Rf4が含フッ素アルキル基であるものが好ましく、なかでも、CF3COOCH3、CF3COOCH2CH3、HCF2COOCH3、HCF2COOCH2CH3、CH3COOCH2CF3、CH3COOCH2CF2CF3が、他溶媒との相溶性およびレート特性が良好な点から特に好ましい。
As a specific example of the fluorine-containing ester (A2),
1. Those in which both are fluorine-containing alkyl groups:
CF 3 COOCH 2 CF 3 , CF 3 COOCH 2 CF 2 CF 3 , CF 3 COOCH 2 CF 2 CF 2 H, HCF 2 COOCH 2 CF 3 , HCF 2 COOCH 2 CF 2 CF 3 , HCF 2 COOCH 2 CF 2 CF 2 H
2. Rf 3 is a fluorine-containing alkyl group:
CF 3 COOCH 3 , CF 3 COOCH 2 CH 3 , HCF 2 COOCH 3 , HCF 2 COOCH 2 CH 3 , CH 3 CF 2 COOCH 3 , CH 3 CF 2 COOCH 2 CH 3 , CF 3 CF 2 COOCH 3 , CF 3 CF 2 COOCH 2 CH 3
3. Rf 4 is a fluorine-containing alkyl group:
CH 3 COOCH 2 CF 3 , CH 3 COOCH 2 CF 2 CF 3 , CH 3 COOCH 2 CF 2 CF 2 H, CH 3 CH 2 COOCH 2 CF 3 , CH 3 CH 2 COOCH 2 CF 2 CF 3 , CH 3 CH 2 COOCH 2 CF 2 CF 2 H
1 type or 2 types or more can be illustrated, and among these, 2. 2. Rf 3 is a fluorine-containing alkyl group, and Rf 4 is preferably a fluorine-containing alkyl group. Among them, CF 3 COOCH 3 , CF 3 COOCH 2 CH 3 , HCF 2 COOCH 3 , HCF 2 COOCH 2 CH 3 , CH 3 COOCH 2 CF 3 , CH 3 COOCH 2 CF 2 CF 3 is particularly preferable from the viewpoint of good compatibility with other solvents and good rate characteristics.

含フッ素カーボネート(A3)としては、たとえば式(A3):
Rf5OCOORf6
(式中、Rf5は炭素数1〜4の含フッ素アルキル基、Rf6は炭素数1〜4のフッ素原子を含んでいてもよいアルキル基)で示される含フッ素カーボネートが、難燃性が高く、かつレート特性が良好な点から好ましい。
As the fluorine-containing carbonate (A3), for example, the formula (A3):
Rf 5 OCOORf 6
(Wherein, Rf 5 is a fluorine-containing alkyl group having 1 to 4 carbon atoms, and Rf 6 is an alkyl group that may contain a fluorine atom having 1 to 4 carbon atoms). It is preferable from the viewpoint of high and good rate characteristics.

Rf5としては、たとえばCF3−、C25−、(CF32CH−、CF3CH2−、C25CH2−、HCF2CF2CH2−、CF2CFHCF2CH2−などが例示でき、Rf6としては、たとえばCF3−、C25−、(CF32CH−、CF3CH2−、C25CH2−、HCF2CF2CH2−、CF2CFHCF2CH2−などの含フッ素アルキル基、−CH3、−C25、−C37、−CH(CH3)CH3などの非フッ素系アルキル基が例示できる。なかでもRf5としてはCF3CH2−、C25CH2−が、Rf6としてはCF3CH2−、C25CH2−、−CH3、−C25が、粘性が適切で、他溶媒との相溶性およびレート特性が良好な点から特に好ましい。The Rf 5, for example, CF 3 -, C 2 F 5 -, (CF 3) 2 CH-, CF 3 CH 2 -, C 2 F 5 CH 2 -, HCF 2 CF 2 CH 2 -, CF 2 CFHCF 2 CH 2 — and the like can be exemplified, and examples of Rf 6 include CF 3 —, C 2 F 5 —, (CF 3 ) 2 CH—, CF 3 CH 2 —, C 2 F 5 CH 2 —, HCF 2 CF 2. Fluorine-containing alkyl groups such as CH 2 — and CF 2 CFHCF 2 CH 2 —, and non-fluorinated alkyl groups such as —CH 3 , —C 2 H 5 , —C 3 H 7 , —CH (CH 3 ) CH 3 It can be illustrated. Among them as Rf 5 is CF 3 CH 2 -, C 2 F 5 CH 2 - is, CF 3 CH 2 as Rf 6 -, C 2 F 5 CH 2 -, - CH 3, is -C 2 H 5, This is particularly preferable from the viewpoints of suitable viscosity, good compatibility with other solvents, and good rate characteristics.

含フッ素カーボネート(A3)の具体例としては、たとえばCF3CH2OCOOCH2CF3、CF3CF2CH2OCOOCH2CF2CF3、CF3CF2CH2OCOOCH3、CF3CH2OCOOCH3、CF3CH2OCOOCH2CH3などの含フッ素鎖状カーボネートの1種または2種以上が例示でき、なかでもCF3CH2OCOOCH2CF3、CF3CF2CH2OCOOCH2CF2CF3、CF3CH2OCOOCH3、CF3CH2OCOOCH2CH3が、粘性が適切で、難燃性、他溶媒との相溶性およびレート特性が良好な点から特に好ましい。また、たとえば特開平06−21992号公報、特開2000−327634号公報、特開2001−256983号公報などに記載された化合物も例示できる。Specific examples of the fluorine-containing carbonate (A3) include, for example, CF 3 CH 2 OCOOCH 2 CF 3 , CF 3 CF 2 CH 2 OCOOCH 2 CF 2 CF 3 , CF 3 CF 2 CH 2 OCOOCH 3 , and CF 3 CH 2 OCOOCH 3. 1 or 2 or more of fluorine-containing chain carbonates such as CF 3 CH 2 OCOOCH 2 CH 3 , CF 3 CH 2 OCOOCH 2 CF 3 , CF 3 CF 2 CH 2 OCOOCH 2 CF 2 CF 3 , CF 3 CH 2 OCOOCH 3 and CF 3 CH 2 OCOOCH 2 CH 3 are particularly preferred from the viewpoints of suitable viscosity, flame retardancy, compatibility with other solvents, and good rate characteristics. Further, for example, compounds described in JP-A-06-21992, JP-A-2000-327634, JP-A-2001-256983 and the like can also be exemplified.

フッ素系溶媒(A)のうち、粘性が適切で、電解質塩の溶解性、レート特性が良好な点から含フッ素エーテル(A1)および含フッ素エステル(A2)が好ましく、とくに、難燃性が良好な点から、含フッ素エーテル(A1)が好ましい。   Of the fluorine-based solvents (A), the fluorine-containing ether (A1) and the fluorine-containing ester (A2) are preferred from the viewpoints of suitable viscosity, good solubility of the electrolyte salt, and good rate characteristics, and particularly good flame retardancy. From this point, fluorine-containing ether (A1) is preferable.

含フッ素エーテル(A1)、含フッ素エステル(A2)および含フッ素カーボネート(A3)は単独でも、併用してもよい。併用する場合、(A1)と(A2)の組合せ、(A1)と(A3)の組合せが、低粘性、他溶媒との相溶性が良好な点から好ましい。   The fluorine-containing ether (A1), fluorine-containing ester (A2) and fluorine-containing carbonate (A3) may be used alone or in combination. When used in combination, the combination of (A1) and (A2) and the combination of (A1) and (A3) are preferred from the viewpoint of low viscosity and good compatibility with other solvents.

(B)非フッ素系環状カーボネート:
非フッ素系環状カーボネート(B)は、本発明において必須の成分である。非フッ素系環状カーボネート(B)を含有させることにより、電解質塩(II)の溶解性の向上、イオン解離性の向上といった効果が得られる。
(B) Non-fluorinated cyclic carbonate:
The non-fluorinated cyclic carbonate (B) is an essential component in the present invention. By including the non-fluorinated cyclic carbonate (B), effects such as improvement of solubility of the electrolyte salt (II) and improvement of ion dissociation can be obtained.

非フッ素系環状カーボネート(B)としては、エチレンカーボネート、プロピレンカーボネートおよびビニレンカーボネートよりなる群から選ばれる少なくとも1種が、イオン解離性、低粘性、誘電率が良好な点から好ましい。また、これらのうち、ビニレンカーボネートは負極の炭素表面の被膜形成材料として添加され、その添加量は5容量%以下であることが好ましい。   As the non-fluorine-based cyclic carbonate (B), at least one selected from the group consisting of ethylene carbonate, propylene carbonate, and vinylene carbonate is preferable from the viewpoints of ion dissociation, low viscosity, and good dielectric constant. Of these, vinylene carbonate is added as a film forming material on the carbon surface of the negative electrode, and the amount added is preferably 5% by volume or less.

(C)非フッ素系鎖状カーボネート:
非フッ素系鎖状カーボネート(C)を含有させることにより、電解質塩(II)のレート特性の向上、低温特性の向上といった効果が得られる。
(C) Non-fluorine chain carbonate:
By including the non-fluorinated chain carbonate (C), effects such as improvement of the rate characteristics and low temperature characteristics of the electrolyte salt (II) can be obtained.

非フッ素系鎖状カーボネート(C)としては、式(C):
1OCOOR2
(式中、R1およびR2は同じかまたは異なり炭素数1〜4のアルキル基)で示される化合物が、低粘性、他溶媒との相溶性が良好な点から好ましい。
As the non-fluorine chain carbonate (C), the formula (C):
R 1 OCOOR 2
A compound represented by the formula (wherein R 1 and R 2 are the same or different and an alkyl group having 1 to 4 carbon atoms) is preferred from the viewpoint of low viscosity and good compatibility with other solvents.

具体例としては、たとえばジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネートなどがあげられ、なかでもジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネートが、他溶媒との相溶性、レート特性が良好な点から好ましい。   Specific examples include, for example, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, etc. Among them, diethyl carbonate, dimethyl carbonate, and ethyl methyl carbonate have good compatibility with other solvents and good rate characteristics. To preferred.

本発明の非水系電解液において、フッ素系溶媒(A)は、電解質塩溶解用溶媒(I)全体に対して、20〜80体積%含まれることが好ましい。フッ素系溶媒(A)の量が少なくなると不燃性などが低下する傾向にあり、多くなると相分離したり放電容量が低下したりする傾向にある。難燃性とレート特性のバランスが良好な点から、さらには25〜75体積%、特に30〜55体積%含まれることが好ましい。含フッ素系溶媒(A)の含有量は、(A1)〜(A3)の合計量である。   In the nonaqueous electrolytic solution of the present invention, the fluorine-based solvent (A) is preferably contained in an amount of 20 to 80% by volume with respect to the entire electrolyte salt dissolving solvent (I). When the amount of the fluorinated solvent (A) decreases, nonflammability and the like tend to decrease. When the amount increases, the phase separation and the discharge capacity tend to decrease. In view of a good balance between flame retardancy and rate characteristics, it is preferably contained in an amount of 25 to 75% by volume, particularly 30 to 55% by volume. The content of the fluorinated solvent (A) is the total amount of (A1) to (A3).

本発明の非水系電解液において、非フッ素系環状カーボネート(B)は、電解質塩溶解用溶媒(I)全体に対して、3〜40体積%含まれることが好ましい。非フッ素系環状カーボネート(B)の量が少なくなると放電容量、サイクル特性などが低下する傾向にあり、多くなると相分離する傾向にある。放電容量、サイクル特性が良好な点から、さらには5〜35体積%、特に8〜30体積%含まれることが好ましい。   In the non-aqueous electrolyte solution of the present invention, the non-fluorinated cyclic carbonate (B) is preferably contained in an amount of 3 to 40% by volume with respect to the entire electrolyte salt dissolving solvent (I). When the amount of the non-fluorinated cyclic carbonate (B) decreases, the discharge capacity and cycle characteristics tend to decrease, and when it increases, the phase tends to separate. From the viewpoint of good discharge capacity and cycle characteristics, it is further preferably contained in an amount of 5 to 35% by volume, particularly 8 to 30% by volume.

本発明の非水系電解液において、非フッ素系鎖状カーボネート(C)は、電解質塩溶解用溶媒(I)全体に対して、10〜77体積%含まれることが好ましい。非フッ素系鎖状カーボネート(C)の量が少なくなると放電容量、サイクル特性、低温特性などが低下する傾向にあり、多くなるとサイクル特性が低下する傾向にある。放電容量、レート特性、低温特性のバランスが良好な点から、さらには20〜70体積%、特に30〜60体積%含まれることが好ましい。   In the non-aqueous electrolyte solution of the present invention, the non-fluorine chain carbonate (C) is preferably contained in an amount of 10 to 77% by volume with respect to the entire electrolyte salt dissolving solvent (I). When the amount of the non-fluorinated chain carbonate (C) decreases, the discharge capacity, cycle characteristics, low temperature characteristics and the like tend to decrease, and when the amount increases, the cycle characteristics tend to decrease. In view of a good balance of discharge capacity, rate characteristics, and low temperature characteristics, it is further preferably contained in an amount of 20 to 70% by volume, particularly 30 to 60% by volume.

本発明において、必要に応じて有機溶媒として、過充電防止作用を有するヘキサフルオロベンゼン、フルオロベンゼン、トルエン、シクロヘキシルベンゼンなども使用できるが、その場合、上記フッ素系溶媒(A)、非フッ素系環状カーボネート(B)、非フッ素系鎖状カーボネート(C)の各成分によってもたらされる利点および改善を排除しない量であることが好ましい。その量は電解液全体に対して0.5〜10質量%の範囲で使用できる。また、サイクル特性向上作用を有するモノフルオロエチレンカーボネートを本発明の効果を阻害しない量、たとえば電解液全体に対して0.1〜10重量%の範囲で使用してもよいし、難燃性向上作用を有するリン酸エステル類を本発明の効果を阻害しない量、たとえば電解液全体に対して0.1〜10質量%の範囲で使用してもよい。   In the present invention, hexafluorobenzene, fluorobenzene, toluene, cyclohexylbenzene and the like having an anti-overcharge action can be used as the organic solvent as necessary. In that case, the above-mentioned fluorinated solvent (A), non-fluorinated cyclic The amount is preferably such that the advantages and improvements brought about by the components of the carbonate (B) and the non-fluorinated chain carbonate (C) are not excluded. The amount can be used in the range of 0.5 to 10% by mass with respect to the entire electrolyte. In addition, monofluoroethylene carbonate having an effect of improving the cycle characteristics may be used in an amount that does not inhibit the effect of the present invention, for example, in the range of 0.1 to 10% by weight with respect to the entire electrolytic solution, and flame retardancy is improved. You may use the phosphate ester which has an effect | action in the quantity which does not inhibit the effect of this invention, for example, 0.1-10 mass% with respect to the whole electrolyte solution.

つぎに電解質塩(II)について説明する。   Next, the electrolyte salt (II) will be described.

本発明の非水系電解液に使用する電解質塩(II)としては、たとえばLiBF4、LiAsF6、LiClO4、LiPF6、LiBF4、LiN(SO2F)2、LiN(SO2CF32、LiN(SO2252

Figure 0005321063
またはこれらの組合せがあげられ、LiPF6、LiN(SO2F)2、LiN(SO2CF32、LiN(SO2252および
Figure 0005321063
よりなる群から選ばれる少なくとも1種が、さらにはLiPF6、LiN(SO2F)2、LiN(SO2CF32および
Figure 0005321063
よりなる群から選ばれる少なくとも1種が、サイクル寿命を向上させるという観点から好ましい。Examples of the electrolyte salt (II) used in the nonaqueous electrolytic solution of the present invention include LiBF 4 , LiAsF 6 , LiClO 4 , LiPF 6 , LiBF 4 , LiN (SO 2 F) 2 , LiN (SO 2 CF 3 ) 2. , LiN (SO 2 C 2 F 5 ) 2 ,
Figure 0005321063
Or combinations thereof, LiPF 6 , LiN (SO 2 F) 2 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 and
Figure 0005321063
At least one selected from the group consisting of LiPF 6 , LiN (SO 2 F) 2 , LiN (SO 2 CF 3 ) 2 and
Figure 0005321063
At least one selected from the group consisting of these is preferable from the viewpoint of improving the cycle life.

電解質塩(II)の濃度は、要求される電池特性を達成するためには、0.5モル/リットル以上、さらには0.8モル/リットル以上、特には1.0モル/リットル以上が必要である。上限は電解質塩溶解用有機溶媒(I)にもよるが、通常1.5モル/リットルである。   The concentration of the electrolyte salt (II) must be 0.5 mol / liter or more, more preferably 0.8 mol / liter or more, particularly 1.0 mol / liter or more in order to achieve the required battery characteristics. It is. The upper limit is usually 1.5 mol / liter although it depends on the organic solvent (I) for dissolving the electrolyte salt.

また、電解質塩(II)が、LiPF6および/またはLiN(SO2CF32からなる場合、電解質塩(II)の濃度は0.5〜1.5モル/リットルであることが好ましい。Further, the electrolyte salt (II) is, if consisting of LiPF 6 and / or LiN (SO 2 CF 3) 2 , it is preferable that the concentration of the electrolyte salt (II) is 0.5 to 1.5 mol / liter.

さらに、電解質塩(II)が、LiPF6およびLiN(SO2CF32からなる場合、LiPF6の濃度は0.1〜0.9モル/リットルが好ましく、また、LiN(SO2CF32の濃度は0.1〜0.9モル/リットルであることが好ましい。さらに、LiPF6/LiN(SO2CF32の比率は、1/9〜9/1であることが好ましい。Furthermore, when the electrolyte salt (II) is composed of LiPF 6 and LiN (SO 2 CF 3 ) 2 , the concentration of LiPF 6 is preferably 0.1 to 0.9 mol / liter, and LiN (SO 2 CF 3 The concentration of 2 is preferably 0.1 to 0.9 mol / liter. Furthermore, the ratio of LiPF 6 / LiN (SO 2 CF 3 ) 2 is preferably 1/9 to 9/1.

さらに電池の高容量化を図るために、界面活性剤(D)を配合する。界面活性剤(D)の配合量は、充放電サイクル特性を低下させずに電解液の表面張力を低下させるという点から、溶媒(I)全体に対して5質量%以下であり、さらには3質量%以下、特に0.05〜2質量%が好ましい。   Further, in order to increase the capacity of the battery, a surfactant (D) is blended. The blending amount of the surfactant (D) is 5% by mass or less based on the total amount of the solvent (I) from the viewpoint of reducing the surface tension of the electrolytic solution without reducing the charge / discharge cycle characteristics, and further 3 Less than mass%, especially 0.05-2 mass% is preferable.

界面活性剤(D)としては、カチオン性界面活性剤、アニオン性界面活性剤、非イオン性界面活性剤、両性界面活性剤のいずれでもよいが、含フッ素界面活性剤が、サイクル特性、レート特性が良好な点から好ましい。   As the surfactant (D), any of a cationic surfactant, an anionic surfactant, a nonionic surfactant, and an amphoteric surfactant may be used. However, the fluorine-containing surfactant has cycle characteristics and rate characteristics. Is preferable from the viewpoint of good.

たとえば、式(D1a):
RfaCOO-+
(式中、Rfaは炭素数4〜20の含フッ素アルキル基、M+はアルカリ金属カチオンまたはNHR'3 +(R'は同じかまたは異なり、いずれもHまたは炭素数が1〜3のアルキル基))で示される含フッ素カルボン酸塩、および/または
式(D2a):
RfaSO3 -+
(式中、Rfaは炭素数4〜20の含フッ素アルキル基、M+はアルカリ金属カチオンまたはNHR'3 +(R'は同じかまたは異なり、いずれもHまたは炭素数が1〜3のアルキル基))で示される含フッ素スルホン酸塩、さらには
式(D1b):
RfbCOO-+
(式中、Rfbは炭素数4〜20の含フッ素エーテル基、M+はアルカリ金属カチオンまたはNHR'3 +(R'は同じかまたは異なり、いずれもHまたは炭素数が1〜3のアルキル基))で示される含フッ素カルボン酸塩、および/または
式(D2b):
RfbSO3 -+
(式中、Rfbは炭素数4〜20の含フッ素エーテル基、M+はアルカリ金属カチオンまたはNHR'3 +(R'は同じかまたは異なり、いずれもHまたは炭素数が1〜3のアルキル基))で示される含フッ素スルホン酸塩
の1種または2種以上が好ましく例示できる。
For example, the formula (D1a):
Rf a COO - M +
(Wherein, Rf a fluorine-containing alkyl group having 4 to 20 carbon atoms, M + unlike alkali metal cation or NHR '3 + (R' are the same or are both H or carbon atoms of 1 to 3 alkyl Group)) and / or formula (D2a):
Rf a SO 3 - M +
(Wherein, Rf a fluorine-containing alkyl group having 4 to 20 carbon atoms, M + unlike alkali metal cation or NHR '3 + (R' are the same or are both H or carbon atoms of 1 to 3 alkyl Group))-containing fluorine-containing sulfonate, and further formula (D1b):
Rf b COO - M +
(In the formula, Rf b is a fluorine-containing ether group having 4 to 20 carbon atoms, M + is an alkali metal cation or NHR ′ 3 + (R ′ is the same or different, both are H or alkyl having 1 to 3 carbon atoms) Group)) and / or formula (D2b):
Rf b SO 3 - M +
(In the formula, Rf b is a fluorine-containing ether group having 4 to 20 carbon atoms, M + is an alkali metal cation or NHR ′ 3 + (R ′ is the same or different, both are H or alkyl having 1 to 3 carbon atoms) One or more of the fluorine-containing sulfonates represented by the group)) can be preferably exemplified.

Rfaとしては炭素数4〜20の含フッ素アルキル基が、Rfbとしては炭素数4〜20の含フッ素エーテル基が、電解液の表面張力を低下させる度合いが良好な点から好ましく、特に炭素数4〜8の含フッ素アルキル基が溶解性に優れる点から好ましい。The Rf a fluorine-containing alkyl group having 4 to 20 carbon atoms, and Rf b is a fluorine-containing ether group having 4 to 20 carbon atoms, preferably from the degree of lowering the surface tension of the electrolytic solution good points, particularly carbon The fluorine-containing alkyl group of several 4-8 is preferable from the point which is excellent in solubility.

+のアルカリ金属としては、Li、Na、Kが好ましく、M+のNHR'3 +としては特にNH4 +が好ましい。As the M + alkali metal, Li, Na, and K are preferable, and as the M + NHR ′ 3 + , NH 4 + is particularly preferable.

含フッ素カルボン酸塩(D1a)の具体例としては、たとえばC49COO-NH4 +、C511COO-NH4 +、C613COO-NH4 +、C715COO-NH4 +、C817COO-NH4 +、C919COO-NH4 +、C49COO-NH(CH33 +、C511COO-NH(CH33 +、C613COO-NH(CH33 +、C715COO-NH(CH33 +、C817COO-NH(CH33 +、C919COO-NH(CH33 +、C49COO-Li+、C511COO-Li+、C613COO-Li+、C715COO-Li+、C817COO-Li+、C919COO-Li+、C49COO-Na+、C511COO-Na+、C613COO-Na+、C715COO-Na+、C817COO-Na+、C919COO-Na+などがあげられ、なかでも電解液への溶解性、表面張力の低下効果が良好な点から、C511COO-NH4 +、C715COO-NH4 +、C49COO-Li+、C511COO-Li+、C613COO-Li+、C511COO-Na+、C613COO-Na+が好ましい。Specific examples of the fluorine-containing carboxylate (D1a) include, for example, C 4 F 9 COO NH 4 + , C 5 F 11 COO NH 4 + , C 6 F 13 COO NH 4 + , C 7 F 15 COO - NH 4 +, C 8 F 17 COO - NH 4 +, C 9 F 19 COO - NH 4 +, C 4 F 9 COO - NH (CH 3) 3 +, C 5 F 11 COO - NH (CH 3) 3 +, C 6 F 13 COO - NH (CH 3) 3 +, C 7 F 15 COO - NH (CH 3) 3 +, C 8 F 17 COO - NH (CH 3) 3 +, C 9 F 19 COO - NH (CH 3) 3 + , C 4 F 9 COO - Li +, C 5 F 11 COO - Li +, C 6 F 13 COO - Li +, C 7 F 15 COO - Li +, C 8 F 17 COO - Li +, C 9 F 19 COO - Li +, C 4 F 9 COO - Na +, C 5 F 11 COO - Na +, C 6 F 13 COO - Na +, C 7 F 15 COO - N +, C 8 F 17 COO - Na +, C 9 F 19 COO - Na + , and the like, among others solubility in the electrolyte, the effect of lowering surface tension in terms of good, C 5 F 11 COO - NH 4 +, C 7 F 15 COO - NH 4 +, C 4 F 9 COO - Li +, C 5 F 11 COO - Li +, C 6 F 13 COO - Li +, C 5 F 11 COO - Na +, C 6 F 13 COO Na + is preferred.

含フッ素カルボン酸塩(D1b)の具体例としては、C37OCF(CF3)COO-NH4 +、C37OCF(CF3)CF2OCF(CF3)COO-NH4 +、C37OCF(CF3)COO-NH(CH33 +、C37OCF(CF3)CF2OCF(CF3)COO-NH(CH33 +、C37OCF(CF3)COO-Li+、C37OCF(CF3)CF2OCF(CF3)COO-Li+などがあげられる。他にも、含フッ素カルボン酸塩(D1b)としては、C37O(CF2CF2CF2O)nCF2CF2COO-+、CF3O(CH2CF2CF2O)n−CH2CF2COO-+、CF3O(CF2CF2CF2O)n−CF2CF2COO-+、CF3O(CF2O)n−CF2OCOO-+、CF3O(CF2O)n−CF(CF3)COO-+、CF3O[CF(CF3)CF2O]n−CF(CF3)COO-+(nは0〜3の整数;M+はNH4 +、Li+、Na+)なども使用できる。なかでも電解液への溶解性、表面張力の低下効果が良好な点から、C37OCF(CF3)COO-NH4 +、C37OCF(CF3)CF2OCF(CF3)COO-NH4 +、CF3O(CF2O)n−CF2COO-NH4 +、C37OCF(CF3)COO-Li+、C37OCF(CF3)CF2OCF(CF3)COO-Li+、CF3O(CF2O)n−CF2COO-Li+、CF3O(CF2O)n−CF2COO-Na+が好ましい。Specific examples of the fluorine-containing carboxylate (D1b) include C 3 F 7 OCF (CF 3 ) COO NH 4 + , C 3 F 7 OCF (CF 3 ) CF 2 OCF (CF 3 ) COO NH 4 + , C 3 F 7 OCF (CF 3) COO - NH (CH 3) 3 +, C 3 F 7 OCF (CF 3) CF 2 OCF (CF 3) COO - NH (CH 3) 3 +, C 3 F 7 OCF (CF 3 ) COO Li + , C 3 F 7 OCF (CF 3 ) CF 2 OCF (CF 3 ) COO Li + and the like can be mentioned. In addition, as the fluorine-containing carboxylate (D1b), C 3 F 7 O (CF 2 CF 2 CF 2 O) n CF 2 CF 2 COO M + , CF 3 O (CH 2 CF 2 CF 2 O) ) n -CH 2 CF 2 COO - M +, CF 3 O (CF 2 CF 2 CF 2 O) n -CF 2 CF 2 COO - M +, CF 3 O (CF 2 O) n -CF 2 OCOO - M +, CF 3 O (CF 2 O) n -CF (CF 3) COO - M +, CF 3 O [CF (CF 3) CF 2 O] n -CF (CF 3) COO - M + (n 0 An integer of ˜3; M + may be NH 4 + , Li + , Na + ). Of these, C 3 F 7 OCF (CF 3 ) COO NH 4 + , C 3 F 7 OCF (CF 3 ) CF 2 OCF (CF 3 ) COO - NH 4 +, CF 3 O (CF 2 O) n -CF 2 COO - NH 4 +, C 3 F 7 OCF (CF 3) COO - Li +, C 3 F 7 OCF (CF 3) CF 2 OCF (CF 3) COO - Li +, CF 3 O (CF 2 O) n -CF 2 COO - Li +, CF 3 O (CF 2 O) n -CF 2 COO - Na + are preferred.

含フッ素スルホン酸塩(D2a)の具体例としては、たとえばC49SO3 -NH4 +、C511SO3 -NH4 +、C613SO3 -NH4 +、C715SO3 -NH4 +、C817SO3 -NH4 +、C919SO3 -NH4 +、C49SO3 -NH(CH33 +、C511SO3 -NH(CH33 +、C613SO3 -NH(CH33 +、C715SO3 -NH(CH33 +、C817SO3 -NH(CH33 +、C919SO3 -NH(CH33 +、C49SO3 -Li+、C511SO3 -Li+、C613SO3 -Li+、C715SO3 -Li+、C817SO3 -Li+、C919SO3 -Li+、C49SO3 -Na+、C511SO3 -Na+、C613SO3 -Na+、C715SO3 -Na+、C817SO3 -Na+、C919SO3 -Na+などがあげられ、なかでも電解液への溶解性、表面張力の低下効果が良好な点から、C49SO3 -NH4 +、C511SO3 -NH4 +、C613SO3 -NH4 +、C715SO3 -NH4 +、C817SO3 -NH4 +、C49SO3 -Li+、C511SO3 -Li+、C613SO3 -Li+、C817SO3 -Li+、C49SO3 -Na+、C511SO3 -Na+、C613SO3 -Na+が好ましい。Specific examples of the fluorine-containing sulfonate (D2a), for example, C 4 F 9 SO 3 - NH 4 +, C 5 F 11 SO 3 - NH 4 +, C 6 F 13 SO 3 - NH 4 +, C 7 F 15 SO 3 - NH 4 + , C 8 F 17 SO 3 - NH 4 +, C 9 F 19 SO 3 - NH 4 +, C 4 F 9 SO 3 - NH (CH 3) 3 +, C 5 F 11 SO 3 - NH (CH 3) 3 +, C 6 F 13 SO 3 - NH (CH 3) 3 +, C 7 F 15 SO 3 - NH (CH 3) 3 +, C 8 F 17 SO 3 - NH ( CH 3 ) 3 + , C 9 F 19 SO 3 - NH (CH 3 ) 3 + , C 4 F 9 SO 3 - Li + , C 5 F 11 SO 3 - Li + , C 6 F 13 SO 3 - Li + , C 7 F 15 SO 3 - Li +, C 8 F 17 SO 3 - Li +, C 9 F 19 SO 3 - Li +, C 4 F 9 SO 3 - Na +, C 5 F 11 SO 3 - Na + , C 6 F 13 SO 3 - Na +, C 7 F 15 SO 3 - Na +, C 8 F 17 O 3 - Na +, C 9 F 19 SO 3 - Na + and the like, among others solubility in the electrolyte, the effect of lowering surface tension in terms of good, C 4 F 9 SO 3 - NH 4 + , C 5 F 11 SO 3 - NH 4 +, C 6 F 13 SO 3 - NH 4 +, C 7 F 15 SO 3 - NH 4 +, C 8 F 17 SO 3 - NH 4 +, C 4 F 9 SO 3 - Li + , C 5 F 11 SO 3 - Li + , C 6 F 13 SO 3 - Li + , C 8 F 17 SO 3 - Li + , C 4 F 9 SO 3 - Na + , C 5 F 11 SO 3 - Na + and C 6 F 13 SO 3 - Na + are preferred.

含フッ素スルホン酸塩(D2b)の具体例としては、たとえばC37OC(CF3)FCF2OC(CF3)FSO3 -NH4 +、C37OC(CF3)FCF2OC(CF3)FCF2OC(CF3)FSO3 -NH4 +、HCF2CF2OCF2CF2SO3 -NH4 +、CF3CFHCF2OCF2CF2SO3 -NH4 +、C37OC(CF3)FSO3 -NH4 +、C37OC(CF3)FCF2OC(CF3)FSO3 -NH(CH33 +、C37OC(CF3)FCF2OC(CF3)FCF2OC(CF3)FSO3 -NH(CH33 +、HCF2CF2OCF2CF2SO3 -NH(CH33 +、CF3CFHCF2OCF2CF2SO3 -NH(CH33 +、C37OC(CF3)FSO3 -NH(CH33 +、C37OC(CF3)FCF2OC(CF3)FSO3 -Li+、C37OC(CF3)FCF2OC(CF3)FCF2OC(CF3)FSO3 -Li+、HCF2CF2OCF2CF2SO3 -Li+、CF3CFHCF2OCF2CF2SO3 -Li+、C37OC(CF3)FSO3 -Li+などがあげられ、なかでも電解液への溶解性、表面張力の低下効果が良好な点から、C37OC(CF3)FCF2OC(CF3)FSO3 -NH4 +、C37OC(CF3)FCF2OC(CF3)FSO3 -Li+、C37OC(CF3)FSO3 -NH4 +、C37OC(CF3)FSO3 -Li+が好ましい。Specific examples of the fluorine-containing sulfonate (D2b), for example, C 3 F 7 OC (CF 3 ) FCF 2 OC (CF 3) FSO 3 - NH 4 +, C 3 F 7 OC (CF 3) FCF 2 OC (CF 3) FCF 2 OC ( CF 3) FSO 3 - NH 4 +, HCF 2 CF 2 OCF 2 CF 2 SO 3 - NH 4 +, CF 3 CFHCF 2 OCF 2 CF 2 SO 3 - NH 4 +, C 3 F 7 OC (CF 3) FSO 3 - NH 4 +, C 3 F 7 OC (CF 3) FCF 2 OC (CF 3) FSO 3 - NH (CH 3) 3 +, C 3 F 7 OC (CF 3) FCF 2 OC (CF 3) FCF 2 OC (CF 3) FSO 3 - NH (CH 3) 3 +, HCF 2 CF 2 OCF 2 CF 2 SO 3 - NH (CH 3) 3 +, CF 3 CFHCF 2 OCF 2 CF 2 SO 3 - NH (CH 3) 3 +, C 3 F 7 OC (CF 3) FSO 3 - NH (CH 3) 3 + , C 3 F 7 OC (CF 3) FCF 2 OC (CF 3) FSO 3 - Li +, C 3 F 7 OC (CF 3) FCF 2 OC (CF 3) FCF 2 OC (CF 3) FSO 3 - Li +, HCF 2 CF 2 OCF 2 CF 2 SO 3 - Li +, CF 3 CFHCF 2 OCF 2 CF 2 SO 3 - Li +, C 3 F 7 OC (CF 3) FSO 3 - Li + and the like, Naka But solubility in the electrolyte, the effect of lowering surface tension in terms of good, C 3 F 7 OC (CF 3) FCF 2 OC (CF 3) FSO 3 - NH 4 +, C 3 F 7 OC (CF 3 ) FCF 2 OC (CF 3) FSO 3 - Li +, C 3 F 7 OC (CF 3) FSO 3 - NH 4 +, C 3 F 7 OC (CF 3) FSO 3 - Li + is preferred.

本発明の非水系電解液は、以上のような構成を備えることから、不燃性(難燃性)と電池特性(充放電サイクル特性、放電容量)のバランスに優れる。さらに本発明の非水系電解液によれば、低温でも相分離し難いこと、耐熱性に優れること、電解質塩の溶解性が高いこと、電池容量が向上し、レート特性のいずれかに優れることを期待することもできる。   Since the non-aqueous electrolyte solution of the present invention has the above-described configuration, it has an excellent balance between non-flammability (flame retardancy) and battery characteristics (charge / discharge cycle characteristics, discharge capacity). Furthermore, according to the non-aqueous electrolyte of the present invention, it is difficult to separate phases even at low temperatures, excellent heat resistance, high solubility of electrolyte salt, improved battery capacity, and excellent rate characteristics. You can also expect.

以上説明したような本発明の非水系電解液は、たとえば、電解コンデンサー、電気二重層キャパシタ、イオンの電荷移動により充電/放電される電池、エレクトロルミネッセンスなどの固体表示素子、電流センサーやガスセンサーなどのセンサーなどに代表される電気化学デバイスに使用することができる。   The non-aqueous electrolyte of the present invention as described above includes, for example, an electrolytic capacitor, an electric double layer capacitor, a battery charged / discharged by charge transfer of ions, a solid display element such as electroluminescence, a current sensor, a gas sensor, etc. It can be used for electrochemical devices represented by such sensors.

そのなかでも、本発明の非水系電解液は、容量やレート特性を向上させる点から、リチウム二次電池用として好適であり、具体的には、本発明の非水系電解液を備えるリチウム二次電池、とくには正極、負極、セパレータと本発明の非水系電解液を備えるリチウム二次電池が好ましく、さらには、正極に使用する正極活物質が、コバルト系複合酸化物、ニッケル系複合酸化物、マンガン系複合酸化物、鉄系複合酸化物およびバナジウム系複合酸化物よりなる群から選ばれる少なくとも1種であることがエネルギー密度の高く、高出力な二次電池となることから好ましい。   Among these, the non-aqueous electrolyte solution of the present invention is suitable for a lithium secondary battery from the viewpoint of improving capacity and rate characteristics, and specifically, a lithium secondary battery provided with the non-aqueous electrolyte solution of the present invention. Batteries, in particular, lithium secondary batteries including the positive electrode, the negative electrode, the separator and the non-aqueous electrolyte solution of the present invention are preferable. Further, the positive electrode active material used for the positive electrode is a cobalt-based composite oxide, a nickel-based composite oxide, At least one selected from the group consisting of manganese-based composite oxides, iron-based composite oxides, and vanadium-based composite oxides is preferable because a secondary battery with high energy density and high output is obtained.

そして、本発明は正極、負極、セパレータおよび以上説明した非水系電解液を備え、該正極に使用する正極活物質が、コバルト系複合酸化物、ニッケル系複合酸化物、マンガン系複合酸化物、鉄系複合酸化物およびバナジウム系複合酸化物よりなる群から選ばれる少なくとも1種であるリチウム二次電池にも関する。   And this invention is equipped with a positive electrode, a negative electrode, a separator, and the non-aqueous electrolyte solution demonstrated above, The positive electrode active material used for this positive electrode is cobalt type complex oxide, nickel type complex oxide, manganese type complex oxide, iron The present invention also relates to a lithium secondary battery that is at least one selected from the group consisting of a lithium complex oxide and a vanadium complex oxide.

コバルト系複合酸化物としては、LiCoO2が例示され、ニッケル系複合酸化物としては、LiNiO2が例示され、マンガン系複合酸化物としては、LiMnO2が例示される。また、LiCoxNi1-x2(0<x<1)やLiCoxMn1-x2(0<x<1)、LiNixMn1-x2(0<x<1)、LiNixMn2-x4(0<x<2)、LiNi1-x-yCoxMny2(0<x<1、0<y<1、0<x+y<1)で表されるCoNi、CoMn、NiMn、NiCoMnの複合酸化物でも良い。これらのリチウム含有複合酸化物は、Co、Ni、Mnなどの金属元素の一部が、Mg、Al、Zr、Ti、Crなどの1種以上の金属元素で置換されたものであってもよい。An example of the cobalt-based composite oxide is LiCoO 2 , an example of the nickel-based composite oxide is LiNiO 2 , and an example of the manganese-based composite oxide is LiMnO 2 . LiCo x Ni 1-x O 2 (0 <x <1), LiCo x Mn 1-x O 2 (0 <x <1), LiNi x Mn 1-x O 2 (0 <x <1), LiNi x Mn 2-x O 4 (0 <x <2), CoNi represented by LiNi 1-xy Co x Mn y O 2 (0 <x <1,0 <y <1,0 <x + y <1) , CoMn, NiMn, and NiCoMn composite oxides may be used. In these lithium-containing composite oxides, a part of metal elements such as Co, Ni, and Mn may be substituted with one or more metal elements such as Mg, Al, Zr, Ti, and Cr. .

また、鉄系複合酸化物としては、たとえばLiFeO2、LiFePO4が例示され、バナジウム系複合酸化物としては、たとえばV25が例示される。In addition, examples of the iron-based composite oxide include LiFeO 2 and LiFePO 4 , and examples of the vanadium-based composite oxide include V 2 O 5 .

正極活物質として、上記の複合酸化物のなかでも、容量を高くすることができる点から、ニッケル系複合酸化物またはコバルト系複合酸化物が好ましい。特に小型リチウム二次電池では、コバルト系複合酸化物を用いることはエネルギー密度が高い点と安全性の面から望ましい。本発明において特にハイブリッド自動車用や分散電源用の大型リチウム二次電池に使用される場合は、高出力が要求されるため、正極活物質の粒子は二次粒子が主体となり、その二次粒子の平均粒子径が40μm以下で平均一次粒子径1μm以下の微粒子を0.5〜7.0体積%含有することが好ましい。   As the positive electrode active material, among the above complex oxides, a nickel complex oxide or a cobalt complex oxide is preferable because the capacity can be increased. In particular, in a small lithium secondary battery, it is desirable to use a cobalt-based composite oxide from the viewpoint of high energy density and safety. In the present invention, particularly when used in a large-sized lithium secondary battery for a hybrid vehicle or a distributed power source, a high output is required, so the particles of the positive electrode active material are mainly secondary particles, and the secondary particles It is preferable to contain 0.5 to 7.0% by volume of fine particles having an average particle size of 40 μm or less and an average primary particle size of 1 μm or less.

平均一次粒子径が1μm以下の微粒子を含有させることにより非水系電解液との接触面積が大きくなり電極と非水系電解液の間でのリチウムイオンの拡散をより早くすることができ出力性能を向上させることができる。   Inclusion of fine particles with an average primary particle size of 1 μm or less increases the contact area with the non-aqueous electrolyte and enables faster diffusion of lithium ions between the electrode and the non-aqueous electrolyte to improve output performance. Can be made.

本発明で負極に使用する負極活物質は炭素材料があげられ、リチウムイオンを挿入可能な金属酸化物や金属窒化物などもあげられる。炭素材料としては天然黒鉛、人造黒鉛、熱分解炭素類、コークス類、メソカーボンマイクロビーズ、炭素ファイバー、活性炭、ピッチ被覆黒鉛などがあげられ、リチウムイオンを挿入可能な金属酸化物としては、スズやケイ素を含む金属化合物、例えば酸化スズ、酸化ケイ素等があげられ金属窒化物としては、Li2.6Co0.4N等が挙げられる。Examples of the negative electrode active material used for the negative electrode in the present invention include carbon materials, and also include metal oxides and metal nitrides into which lithium ions can be inserted. Examples of carbon materials include natural graphite, artificial graphite, pyrolytic carbons, cokes, mesocarbon microbeads, carbon fibers, activated carbon, and pitch-coated graphite. Metal oxides capable of inserting lithium ions include tin and Metal compounds containing silicon, such as tin oxide and silicon oxide, can be mentioned, and examples of metal nitrides include Li 2.6 Co 0.4 N.

正極活物質と負極活物質との組合せとしては、正極活物質がコバルト酸リチウムで負極活物質が黒鉛の組合せ、正極活物質がニッケル系複合酸化物で負極活物質が黒鉛の組合せが容量が増大する点から好ましい。   As a combination of the positive electrode active material and the negative electrode active material, the positive electrode active material is lithium cobaltate and the negative electrode active material is graphite. The positive electrode active material is nickel-based composite oxide and the negative electrode active material is graphite. This is preferable.

本発明に使用できるセパレータは特に制限はなく、微孔性ポリエチレンフィルム、微孔性ポリプロピレンフィルム、微孔性エチレン−プロピレンコポリマーフィルム、微孔性ポリプロピレン/ポリエチレン2層フィルム、微孔性ポリプロピレン/ポリエチレン/ポリプロピレン3層フィルムなどがあげられる。   The separator that can be used in the present invention is not particularly limited, and is a microporous polyethylene film, a microporous polypropylene film, a microporous ethylene-propylene copolymer film, a microporous polypropylene / polyethylene bilayer film, a microporous polypropylene / polyethylene / Examples thereof include a polypropylene three-layer film.

また、本発明の非水系電解液は、不燃性であることから、上記のハイブリッド自動車用や分散電源用の大型リチウム二次電池用の電解液として特に有用であるが、そのほか小型のリチウムイオン電池、アルミニウム電解コンデンサ用電解液、電気二重層キャパシタ用電解液などの非水系電解液としても有用である。   In addition, since the non-aqueous electrolyte of the present invention is nonflammable, it is particularly useful as an electrolyte for large lithium secondary batteries for hybrid vehicles and distributed power supplies. It is also useful as a nonaqueous electrolytic solution such as an electrolytic solution for an aluminum electrolytic capacitor and an electrolytic solution for an electric double layer capacitor.

そのほか、本発明の非水系電解液は、たとえば電解コンデンサ、エレクトロルミネッセンスなどの固体表示素子、電流センサーなどのセンサーなどにも使用することができる。   In addition, the nonaqueous electrolytic solution of the present invention can be used for, for example, an electrolytic capacitor, a solid display element such as electroluminescence, a sensor such as a current sensor, and the like.

つぎに本発明を実施例に基づいて具体的に説明するが、本発明はかかる実施例のみに限定されるものではない。   Next, the present invention will be specifically described based on examples, but the present invention is not limited to such examples.

なお、本発明で採用した測定法は以下のとおりである。   In addition, the measuring method employ | adopted by this invention is as follows.

(1)NMR:BRUKER社製のAC−300を使用。
19F−NMR:
測定条件:282MHz(トリクロロフルオロメタン=0ppm)
1H−NMR:
測定条件:300MHz(テトラメチルシラン=0ppm)
(2)IR分析:Perkin Elmer社製フーリエ変換赤外分光光度計1760Xで室温にて測定する。
(3)フッ素含有率
酸素フラスコ燃焼法により試料10mgを燃焼し、分解ガスを脱イオン水20mlに吸収させ、吸収液中のフッ素イオン濃度をフッ素選択電極法(フッ素イオンメーター、オリオン社製 901型)で測定することにより求める(質量%)。
(1) NMR: AC-300 manufactured by BRUKER is used.
19 F-NMR:
Measurement conditions: 282 MHz (trichlorofluoromethane = 0 ppm)
1 H-NMR:
Measurement conditions: 300 MHz (tetramethylsilane = 0 ppm)
(2) IR analysis: Measured with a Fourier transform infrared spectrophotometer 1760X manufactured by Perkin Elmer at room temperature.
(3) Fluorine content 10 mg of the sample is burned by the oxygen flask combustion method, the decomposition gas is absorbed in 20 ml of deionized water, and the fluorine ion concentration in the absorption liquid is determined by the fluorine selective electrode method (fluorine ion meter, model 901 manufactured by Orion). ) To obtain (mass%).

合成例1
窒素雰囲気下、2リットル四つ口フラスコに無水トリフルオロ酢酸(1a):
(CF3CO)2
を500g(2.38mol)入れ、40℃にて2,2,3,3−テトラフルオロプロパノール(2a):
HCF2CF2CH2OH
394g(2.86mol)を滴下ロートを用いて還流下に、少しずつ加えていった。2,2,3,3−テトラフルオロプロパノール(2a)の添加量が1.2当量になった時点で、80℃で0.5時間反応させた。反応終了後室温に戻し、水洗を繰り返し、蒸留生成を行い、含フッ素エステル(A2a):

Figure 0005321063
488g(2.19mol)を得た(収率92%)。Synthesis example 1
In a 2 liter four-necked flask under a nitrogen atmosphere, trifluoroacetic anhydride (1a):
(CF 3 CO) 2 O
500 g (2.38 mol), and 2,2,3,3-tetrafluoropropanol (2a) at 40 ° C .:
HCF 2 CF 2 CH 2 OH
394 g (2.86 mol) was added little by little under reflux using a dropping funnel. When the amount of 2,2,3,3-tetrafluoropropanol (2a) added reached 1.2 equivalents, the reaction was carried out at 80 ° C. for 0.5 hours. After completion of the reaction, the temperature is returned to room temperature, washing with water is repeated, distillation is performed, and the fluorinated ester (A2a):
Figure 0005321063
488 g (2.19 mol) were obtained (yield 92%).

この生成物を19F−NMR、1H−NMR分析、IR分析により分析したところ、上記の構造の含フッ素エステル(A2a)であることが確認された。When this product was analyzed by 19 F-NMR, 1 H-NMR analysis, and IR analysis, it was confirmed to be a fluorinated ester (A2a) having the above structure.

19F−NMR:(neat):−76.63(3F)、−125.23〜−125.280ppm(2F)、−138.74〜138.99ppm(2F)
1H−NMR:(neat):3.29〜3.48ppm(2H)、4.38〜4.81ppm(1H)
IR:(KBr):1805cm-1
19 F-NMR: (neat): −76.63 (3F), −125.23 to −125.280 ppm (2F), −138.74 to 138.999 ppm (2F)
1 H-NMR: (neat): 3.29 to 3.48 ppm (2H), 4.38 to 4.81 ppm (1H)
IR: (KBr): 1805 cm −1

この含フッ素エステル(A2a)のフッ素含有率は58.31質量%であった。   The fluorine content of this fluorine-containing ester (A2a) was 58.31% by mass.

合成例2
窒素雰囲気下、2リットル四つ口フラスコに無水トリフルオロ酢酸(1a):
(CF3CO)2
を500g(2.38mol)入れ、40℃にて、ペンタフルオロプロパノール(2b):
CF3CF2CH2OH
428g(2.86mol)を滴下ロートを用いて還流下、少しずつ加えていった。ペンタフルオロプロパノール(2b)の添加量が1.2当量になった時点から、80℃で0.5時間反応させた。反応終了後室温に戻し、水洗を繰り返し、蒸留生成を行い、含フッ素エステル(A2b):

Figure 0005321063
509g(2.07mol)を得た(収率87%)。Synthesis example 2
In a 2 liter four-necked flask under a nitrogen atmosphere, trifluoroacetic anhydride (1a):
(CF 3 CO) 2 O
In an amount of 500 g (2.38 mol) and pentafluoropropanol (2b) at 40 ° C .:
CF 3 CF 2 CH 2 OH
428 g (2.86 mol) was added little by little under reflux using a dropping funnel. From the time when the amount of pentafluoropropanol (2b) added reached 1.2 equivalents, the reaction was carried out at 80 ° C. for 0.5 hours. After completion of the reaction, the temperature is returned to room temperature, washing with water is repeated, distillation is performed, and a fluorine-containing ester (A2b):
Figure 0005321063
509 g (2.07 mol) was obtained (yield 87%).

この生成物を19F−NMR、1H−NMR分析、IR分析により分析したところ、含フッ素エステル(A2b)であることが確認された。When this product was analyzed by 19 F-NMR, 1 H-NMR analysis, and IR analysis, it was confirmed to be a fluorinated ester (A2b).

19F−NMR:(neat):−69.57〜−70.68ppm(3F)、−78.79〜−79.7ppm(3F)、−118.3〜−121.34ppm(2F)
1H−NMR:(neat):4.207〜4.298ppm(2H)
IR:(KBr):1809cm-1
19 F-NMR: (neat): −69.57 to −70.68 ppm (3F), −78.79 to −79.7 ppm (3F), −118.3 to −121.34 ppm (2F)
1 H-NMR: (neat): 4.207 to 4.298 ppm (2H)
IR: (KBr): 1809 cm −1

この含フッ素エステル(A2b)のフッ素含有率は61.7質量%であった。   This fluorine-containing ester (A2b) had a fluorine content of 61.7% by mass.

合成例3
窒素雰囲気下、2リットル四つ口フラスコに2,2,3,3−テトラフルオロプロパノール(2a):
HCF2CF2CH2OH
140g(1.00mol)を入れ、続いて、ピリジン119g(1.5当量:1.5mol)、および溶媒としてテトラグライム300mlを加え、氷浴下で撹拌した。続いて、滴下ロートからトリホスゲン:

Figure 0005321063
50g(0.17mol)のテトラグライム溶液を、滴下ロートを用いて少しずつ、2時間かけて加えた。反応温度は10℃を保つようにした。反応終了後室温に戻し、1N塩酸で3回分液し、下層の蒸留生成を行い、含フッ素カーボネート(A3a):
Figure 0005321063
150g(0.52mol)を得た(収率34%)。このものの沸点は105℃(100mmHg)であった。Synthesis example 3
2,2,3,3-tetrafluoropropanol (2a) in a 2 liter four neck flask under nitrogen atmosphere:
HCF 2 CF 2 CH 2 OH
140 g (1.00 mol) was added, and then 119 g of pyridine (1.5 equivalents: 1.5 mol) and 300 ml of tetraglyme as a solvent were added and stirred in an ice bath. Subsequently, triphosgene from the dropping funnel:
Figure 0005321063
50 g (0.17 mol) of tetraglyme solution was added little by little using a dropping funnel over 2 hours. The reaction temperature was kept at 10 ° C. After completion of the reaction, the temperature is returned to room temperature, and the mixture is separated three times with 1N hydrochloric acid, and the lower layer is distilled to form a fluorine-containing carbonate (A3a):
Figure 0005321063
150 g (0.52 mol) was obtained (34% yield). The boiling point of this product was 105 ° C. (100 mmHg).

この生成物を19F−NMR、1H−NMR分析、IR分析により分析したところ、含フッ素カーボネート(A3a)であることが確認された。When this product was analyzed by 19 F-NMR, 1 H-NMR analysis, and IR analysis, it was confirmed to be a fluorinated carbonate (A3a).

19F−NMR:(neat):−124.61〜−124.710ppm(2F)、−137.74〜138.69ppm(2F)
1H−NMR:(neat):3.26〜3.36ppm(2H)、4.45〜4.89ppm(1H)
IR:(KBr):1787cm-1
19 F-NMR: (neat): -124.61 to -124.710 ppm (2F), -137.74 to 138.69 ppm (2F)
1 H-NMR: (neat): 3.26 to 3.36 ppm (2H), 4.45 to 4.89 ppm (1H)
IR: (KBr): 1787 cm −1

この含フッ素カーボネート(A3a)のフッ素含有率は52.89質量%であった。   This fluorine-containing carbonate (A3a) had a fluorine content of 52.89% by mass.

合成例4
窒素雰囲気下、2リットル四つ口フラスコにペンタフルオロプロパノール(2b):
CF3CF2CH2OH
150g(1.00mol)を入れ、続いて、ピリジン119g(1.5当量:1.5mol)、および溶媒としてテトラグライム200mlを加え、氷浴下で撹拌した。続いて、滴下ロートからトリホスゲン:

Figure 0005321063
50g(0.17mol)のテトラグライム溶液を、滴下ロートを用いて少しずつ、1.5時間かけて加えた。反応温度は10℃を保つようにした。反応終了後室温に戻し、1N塩酸で3回分液し、下層の蒸留生成を行い含フッ素カーボネート(A3c):
Figure 0005321063
100g(2.19mol)を得た(収率30%)。このものの沸点は65℃(200mmHg)であった。Synthesis example 4
Pentafluoropropanol (2b) in a 2 liter four neck flask under nitrogen atmosphere:
CF 3 CF 2 CH 2 OH
150 g (1.00 mol) was added, and then 119 g of pyridine (1.5 equivalents: 1.5 mol) and 200 ml of tetraglyme as a solvent were added and stirred in an ice bath. Subsequently, triphosgene from the dropping funnel:
Figure 0005321063
50 g (0.17 mol) of tetraglyme solution was added little by little using a dropping funnel over 1.5 hours. The reaction temperature was kept at 10 ° C. After completion of the reaction, the temperature is returned to room temperature, and the mixture is separated three times with 1N hydrochloric acid, and the lower layer is distilled to produce fluorine-containing carbonate (A3c):
Figure 0005321063
100 g (2.19 mol) was obtained (yield 30%). The boiling point of this product was 65 ° C. (200 mmHg).

この生成物を19F−NMR、1H−NMR分析、IR分析により分析したところ、含フッ素カーボネート(A3c)であることが確認された。When this product was analyzed by 19 F-NMR, 1 H-NMR analysis, and IR analysis, it was confirmed to be a fluorinated carbonate (A3c).

19F−NMR:(neat):−84.27〜−85.39(3F)、−124.36〜−125.36ppm(2F)
1H−NMR:(neat):3.67〜4.24ppm(2H)
IR:(KBr):1784cm-1
19 F-NMR: (neat): −84.27 to −85.39 (3F), −124.36 to −125.36 ppm (2F)
1 H-NMR: (neat): 3.67 to 4.24 ppm (2H)
IR: (KBr): 1784 cm −1

この含フッ素カーボネート(A3c)のフッ素含有率は58.26質量%であった。   The fluorine content of this fluorine-containing carbonate (A3c) was 58.26% by mass.

合成例5
窒素雰囲気下、3リットル四つ口フラスコにトリフルオロエタノール(2c):
CF3CH2OH
300g(3.00mol)を入れ、続いて、ピリジン355g(1.5当量:3.0mol)、および溶媒としてテトラグライム600mlを加え、氷浴下で撹拌した。続いて、滴下ロートからトリホスゲン:

Figure 0005321063
150g(0.57mol)のテトラグライム溶液を滴下ロートを用いて少しずつ、4時間かけて加えた。反応温度は10℃を保つようにした。反応終了後室温に戻し、1N塩酸で3回分液し、下層の蒸留生成を行い、含フッ素カーボネート(A3b):
Figure 0005321063
270g(2.19mol)を得た(収率40%)。このものの沸点は103℃(760mmHg)であった。Synthesis example 5
Trifluoroethanol (2c) in a 3 liter four neck flask under nitrogen atmosphere:
CF 3 CH 2 OH
300 g (3.00 mol) was added, and subsequently 355 g of pyridine (1.5 equivalents: 3.0 mol) and 600 ml of tetraglyme as a solvent were added and stirred in an ice bath. Subsequently, triphosgene from the dropping funnel:
Figure 0005321063
150 g (0.57 mol) of tetraglyme solution was added little by little using a dropping funnel over 4 hours. The reaction temperature was kept at 10 ° C. After completion of the reaction, the temperature is returned to room temperature, and the mixture is separated three times with 1N hydrochloric acid, and the lower layer is distilled to produce a fluorine-containing carbonate (A3b):
Figure 0005321063
270 g (2.19 mol) was obtained (yield 40%). The boiling point of this product was 103 ° C. (760 mmHg).

この生成物を19F−NMR、1H−NMR分析、IR分析により分析したところ、含フッ素カーボネート(A3b)であることが確認された。When this product was analyzed by 19 F-NMR, 1 H-NMR analysis, and IR analysis, it was confirmed to be a fluorinated carbonate (A3b).

19F−NMR:(neat):−82.3(3F)
1H−NMR:(neat):3.91〜3.98ppm(2H)
IR:(KBr):1784cm‐1
19 F-NMR: (neat): -82.3 (3F)
1 H-NMR: (neat): 3.91 to 3.98 ppm (2H)
IR: (KBr): 1784 cm -1

この含フッ素カーボネート(A3b)のフッ素含有率は50.42質量%であった。   The fluorine content of this fluorine-containing carbonate (A3b) was 50.42% by mass.

合成例6(成分A1a)
3Lオートクレーブに、KOH84g(1.35mol)、H2O800mL、2,2,3,3−テトラフルオロプロパノール(2a):
HCF2CF2CH2OH
600g(4.5mol)を入れた。そこに、ヘキサフルオロプロペン:
CF2=CFCF3
681g(4.5mol)を導入した。反応後、液は二層分離しており、下層を水で3回洗浄、分液を行った。その後精留精製を行い、含フッ素エーテル(A1a):
HCF2CF2CH2OCF2CFHCF3
を1015g(3.6mol)得た(収率80%)。
Synthesis Example 6 (component A1a)
In a 3 L autoclave, 84 g (1.35 mol) KOH, 800 mL H 2 O, 2,2,3,3-tetrafluoropropanol (2a):
HCF 2 CF 2 CH 2 OH
600 g (4.5 mol) was added. There, hexafluoropropene:
CF 2 = CFCF 3
681 g (4.5 mol) was introduced. After the reaction, the liquid was separated into two layers, and the lower layer was washed with water three times and separated. Thereafter, rectification purification is performed, and fluorine-containing ether (A1a):
HCF 2 CF 2 CH 2 OCF 2 CFHCF 3
1015 g (3.6 mol) was obtained (yield 80%).

この生成物を19F−NMR、1H−NMR分析により分析したところ、上記構造を有する含フッ素エーテル(A1a)であることが確認された。When this product was analyzed by 19 F-NMR and 1 H-NMR analysis, it was confirmed to be a fluorinated ether (A1a) having the above structure.

19F−NMR:(neat):−77.8ppm(3F)、−83.6〜−88.7ppm(2F)、−128.9ppm(2F)、−143.0ppm(2F)、−215.2ppm(1F)
1H−NMR:(neat):3.62〜3.95ppm(2H)、4.31〜4.49ppm(1H)、5.03〜5.62ppm(1H)
19 F-NMR: (neat): -77.8 ppm (3F), -83.6 to -88.7 ppm (2F), -128.9 ppm (2F), -143.0 ppm (2F), -215.2 ppm (1F)
1 H-NMR: (neat): 3.62 to 3.95 ppm (2H), 4.31 to 4.49 ppm (1H), 5.03 to 5.62 ppm (1H)

この含フッ素エーテル(A1a)のフッ素含有率は67.4質量%であった。   The fluorine content of this fluorine-containing ether (A1a) was 67.4% by mass.

合成例7(成分A1b)
3Lオートクレーブに、KOH84g(1.35mol)、H2O800mL、ヘキサフルオロプロパノール(2c):
CF3CF2CH2OH
675g(4.5mol)を入れた。そこに、ヘキサフルオロプロペン:
CF2=CFCF3
681g(4.5mol)を導入した。反応後、液は二層分離しており、下層を水で3回洗浄、分液を行った。その後精留精製を行い、含フッ素エーテル(A1b):
CF3CF2CH2OCF2CFHCF3
を1080g(3.6mol)得た(収率83%)。
Synthesis Example 7 (component A1b)
In a 3 L autoclave, KOH 84 g (1.35 mol), H 2 O 800 mL, hexafluoropropanol (2c):
CF 3 CF 2 CH 2 OH
675 g (4.5 mol) was added. There, hexafluoropropene:
CF 2 = CFCF 3
681 g (4.5 mol) was introduced. After the reaction, the liquid was separated into two layers, and the lower layer was washed with water three times and separated. Thereafter, rectification purification is performed, and fluorine-containing ether (A1b):
CF 3 CF 2 CH 2 OCF 2 CFHCF 3
Was obtained (yield 83%).

この生成物を19F−NMR、1H−NMR分析により分析したところ、上記構造を有する含フッ素エーテル(A1b)であることが確認された。When this product was analyzed by 19 F-NMR and 1 H-NMR analysis, it was confirmed to be a fluorinated ether (A1b) having the above structure.

19F−NMR:(neat):−69.9ppm(3F)、−76.1〜−76.7ppm(3F)、−78.3〜79.1ppm(2F)、−118.4ppm(2F)、−206.6ppm(1F)
1H−NMR:(neat):4.50〜4.71ppm(2H)、4.82〜5.07ppm(1H)
19 F-NMR: (neat): -69.9 ppm (3F), -76.1 to -76.7 ppm (3F), -78.3 to 79.1 ppm (2F), -118.4 ppm (2F), -206.6 ppm (1F)
1 H-NMR: (neat): 4.50 to 4.71 ppm (2H), 4.82 to 5.07 ppm (1H)

この含フッ素エーテル(A1b)のフッ素含有率は69.6質量%であった。   The fluorine content of this fluorine-containing ether (A1b) was 69.6% by mass.

合成例8(成分A1c)
3Lオートクレーブに、KOH170g(3.03mol)、2,2,3,3−テトラフルオロプロパノール(2a):
HCF2CF2CH2OH
1188g(9.0mol)を入れた。そこに、テトラフルオロエチレン:
CF2=CF3
900g(9.0mol)を導入した。反応後、水を加えて析出したKOHの固体を溶かし、二層分離した下層を3回洗浄、分液を行った。その後精留精製を行い、含フッ素エーテル(A1c):
HCF2CF2CH2OCF2CF2
を2010g(8.55mol)得た(収率95%)。
Synthesis Example 8 (Component A1c)
In a 3 L autoclave, KOH 170 g (3.03 mol), 2,2,3,3-tetrafluoropropanol (2a):
HCF 2 CF 2 CH 2 OH
1188 g (9.0 mol) was added. There, tetrafluoroethylene:
CF 2 = CF 3
900 g (9.0 mol) was introduced. After the reaction, water was added to dissolve the precipitated KOH solid, and the lower layer separated into two layers was washed three times and separated. Thereafter, rectification is performed, and fluorine-containing ether (A1c):
HCF 2 CF 2 CH 2 OCF 2 CF 2 H
2010 g (8.55 mol) was obtained (yield 95%).

この生成物を19F−NMR、1H−NMR分析により分析したところ、上記構造を有する含フッ素エーテル(A1c)であることが確認された。When this product was analyzed by 19 F-NMR and 1 H-NMR analysis, it was confirmed to be a fluorinated ether (A1c) having the above structure.

19F−NMR:(neat):−82.92ppm(2F)、−115.36ppm(2F)、−127.14〜−127.35ppm(2F)、−128.74〜−128.95ppm(2F)
1H−NMR:(neat):4.47〜4.57ppm(2H)、5.72〜6.27ppm(2H)
19 F-NMR: (neat): −82.92 ppm (2F), −115.36 ppm (2F), −127.14 to −127.35 ppm (2F), −128.74 to −128.95 ppm (2F)
1 H-NMR: (neat): 4.47 to 4.57 ppm (2H), 5.72 to 6.27 ppm (2H)

この含フッ素エーテル(A1c)のフッ素含有率は65.49質量%であった。   The fluorine content of this fluorine-containing ether (A1c) was 65.49% by mass.

つぎに非水系電解液および二次電池の実施例について説明するが、本発明はこれらの実施例に限定されるものではない。   Next, examples of the non-aqueous electrolyte and the secondary battery will be described, but the present invention is not limited to these examples.

なお、以下の実施例および比較例で使用した各化合物は以下のとおりである。また、成分(A)と成分(B)と成分(C)の合計体積%は100体積%である。
成分(A)
(A1a):HCF2CF2CH2OCF2CFHCF3 (合成例6)
(A1b):CF3CF2CH2OCF2CFHCF3 (合成例7)
(A1c):HCF2CF2CH2OCF2CF2H (合成例8)
(A2a):CF3COOCH2CF2CF2H (合成例1)
(A2b):CF3COOCH2CF2CF3 (合成例2)
(A3a):HCF2CF2CH2OCOOCH2CF2CF2H (合成例3)
(A3b):CF3CH2OCOOCH2CF3 (合成例5)
(A3c):CF3CF2CH2OCOOCH2CF2CF3 (合成例4)
成分(B)
(B1):エチレンカーボネート
(B2):プロピレンカーボネート
(B3):ビニレンカーボネート
成分(C)
(C1):ジエチルカーボネート
(C2):ジメチルカーボネート
(C3):エチルメチルカーボネート
成分(D)
(D1):パーフルオロオクタン酸アンモニウム
(D2):パーフルオロヘキシル酸アンモニウム
(D3):パーフルオロオクタンスルホン酸アンモニウム
(D4):C49COO-Li+
(D5):C511COO-Li+
(D6):CF3CF2CF2OCF(CF3)CF2OCF(CF3)COO-NH4 +
(D7):CF3CF2CF2OCF(CF3)CF2OCF(CF3)COO-Li+
(D8):C613SO3 -NH4 +
(D9):CF3O(CF2O)3CF2COO-Li+
(D10):CF3O(CF2O)3CF2COO-NH4 +
(D11):CF3O(CF2O)3CF2COO-Na+
成分(E)((A)〜(D)以外の成分)
(E1):(CH3O)3P=O
In addition, each compound used in the following Examples and Comparative Examples is as follows. Moreover, the total volume% of a component (A), a component (B), and a component (C) is 100 volume%.
Ingredient (A)
(A1a): HCF 2 CF 2 CH 2 OCF 2 CFHCF 3 (Synthesis Example 6)
(A1b): CF 3 CF 2 CH 2 OCF 2 CFHCF 3 (Synthesis Example 7)
(A1c): HCF 2 CF 2 CH 2 OCF 2 CF 2 H (Synthesis Example 8)
(A2a): CF 3 COOCH 2 CF 2 CF 2 H (Synthesis Example 1)
(A2b): CF 3 COOCH 2 CF 2 CF 3 (Synthesis Example 2)
(A3a): HCF 2 CF 2 CH 2 OCOOCH 2 CF 2 CF 2 H (Synthesis Example 3)
(A3b): CF 3 CH 2 OCOOCH 2 CF 3 (Synthesis Example 5)
(A3c): CF 3 CF 2 CH 2 OCOOCH 2 CF 2 CF 3 (Synthesis Example 4)
Ingredient (B)
(B1): Ethylene carbonate (B2): Propylene carbonate (B3): Vinylene carbonate component (C)
(C1): Diethyl carbonate (C2): Dimethyl carbonate (C3): Ethyl methyl carbonate component (D)
(D1): Ammonium perfluorooctanoate (D2): Ammonium perfluorohexylate (D3): Ammonium perfluorooctanesulfonate (D4): C 4 F 9 COO - Li +
(D5): C 5 F 11 COO - Li +
(D6): CF 3 CF 2 CF 2 OCF (CF 3) CF 2 OCF (CF 3) COO - NH 4 +
(D7): CF 3 CF 2 CF 2 OCF (CF 3) CF 2 OCF (CF 3) COO - Li +
(D8): C 6 F 13 SO 3 - NH 4 +
(D9): CF 3 O (CF 2 O) 3 CF 2 COO - Li +
(D10): CF 3 O (CF 2 O) 3 CF 2 COO NH 4 +
(D11): CF 3 O (CF 2 O) 3 CF 2 COO Na +
Component (E) (components other than (A) to (D))
(E1): (CH 3 O) 3 P═O

実施例1
成分(A)としてHCF2CF2CH2OCF2CFHCF3(A1a)を、成分(B)としてエチレンカーボネート(B1)を、成分(C)としてジメチルカーボネート(C2)を(A)/(B)/(C)が40/10/50体積%比となるように混合し、これに成分(D1)を0.6質量%添加し、電解質塩溶解用有機溶媒を調製した。
Example 1
HCF 2 CF 2 CH 2 OCF 2 CFHCF 3 (A1a) as component (A), ethylene carbonate (B1) as component (B), dimethyl carbonate (C2) as component (C) (A) / (B) / (C) was mixed so as to have a ratio of 40/10/50% by volume, and 0.6% by mass of component (D1) was added thereto to prepare an organic solvent for dissolving an electrolyte salt.

実施例2〜15
実施例1と同様にして、成分(A)、成分(B)、成分(C)、成分(D)を表1に示す組成の電解質塩溶解用有機溶媒を調製した。
Examples 2-15
In the same manner as in Example 1, an organic salt for dissolving an electrolyte salt having components (A), (B), (C), and (D) shown in Table 1 was prepared.

比較例1〜3
成分(D)を配合せずに、表1に示す組成の電解質塩溶解用有機溶媒を調製した。
Comparative Examples 1-3
An organic solvent for dissolving an electrolyte salt having the composition shown in Table 1 was prepared without blending the component (D).

試験1(表面張力測定)
実施例1〜15および比較例1〜3でそれぞれ調製した電解質塩溶解用有機溶媒の表面張力測定をウィルヘルミー法で調べた。この場合、電解質塩は溶解させず、電解質塩溶解用有機溶媒のみでの測定を行った。結果を表1に示す
Test 1 (surface tension measurement)
The surface tension measurement of the organic solvent for dissolving an electrolyte salt prepared in each of Examples 1 to 15 and Comparative Examples 1 to 3 was examined by the Wilhelmy method. In this case, the electrolyte salt was not dissolved, and the measurement was performed only with the organic solvent for dissolving the electrolyte salt. The results are shown in Table 1.

(試験方法)
ウィルヘルミー法の測定条件
液量:10ml
測定温度:25℃
測定回数:3回(採用した値は3回の平均値)
装置名:協和界面科学(株)製の「CBVP−A3」
(Test method)
Measurement conditions for Wilhelmy method Liquid volume: 10 ml
Measurement temperature: 25 ° C
Number of measurements: 3 times (the value adopted is the average of 3 times)
Device name: “CBVP-A3” manufactured by Kyowa Interface Science Co., Ltd.

Figure 0005321063
Figure 0005321063

表1の結果から明らかなように、成分(D)を入れた場合、表面張力が下がることがわかる。   As is clear from the results in Table 1, it can be seen that when the component (D) is added, the surface tension decreases.

実施例16
成分(A)としてHCF2CF2CH2OCF2CFHCF3(A1a)を、成分(B)としてエチレンカーボネート(B1)を、成分(C)としてジメチルカーボネート(C2)を(A)/(B)/(C)が40/10/50体積%比となるように混合し、これに成分(D1)を0.05質量%添加し、この電解質塩溶解用有機溶媒にさらに電解質塩としてLiN(SO2252を1.0モル/リットルの濃度となるように加え、25℃にて充分に撹拌し、本発明の非水系電解液を調製した。
Example 16
HCF 2 CF 2 CH 2 OCF 2 CFHCF 3 (A1a) as component (A), ethylene carbonate (B1) as component (B), dimethyl carbonate (C2) as component (C) (A) / (B) / (C) is mixed at a volume ratio of 40/10/50, 0.05% by mass of component (D1) is added thereto, and LiN (SO 2 C 2 F 5 ) 2 was added to a concentration of 1.0 mol / liter, and the mixture was sufficiently stirred at 25 ° C. to prepare the nonaqueous electrolytic solution of the present invention.

実施例17〜27
実施例16と同様にして、表2に示す成分(A)、成分(B)、成分(C)、成分(D)、電解質塩を混合し、本発明の非水系電解液を調製した。
Examples 17-27
In the same manner as in Example 16, the component (A), component (B), component (C), component (D) and electrolyte salt shown in Table 2 were mixed to prepare a nonaqueous electrolytic solution of the present invention.

比較例4〜8
実施例16と同様にして、表2に示す成分(A)、成分(B)、成分(C)、成分(D)、電解質塩を混合し、比較用の非水系電解液を調製した。
Comparative Examples 4-8
In the same manner as in Example 16, the component (A), the component (B), the component (C), the component (D), and the electrolyte salt shown in Table 2 were mixed to prepare a comparative nonaqueous electrolytic solution.

試験2(電解質塩の溶解性)
実施例16〜27および比較例4〜8でそれぞれ製造した電解液6mlを9ml容のサンプル瓶に取り出し、25℃にて8時間静置して液の状態を目視で観察した。結果を表2に示す。
Test 2 (Solubility of electrolyte salt)
6 ml of the electrolytic solution produced in each of Examples 16 to 27 and Comparative Examples 4 to 8 was taken out into a 9 ml sample bottle, allowed to stand at 25 ° C. for 8 hours, and the state of the liquid was visually observed. The results are shown in Table 2.

(評価基準)
○:均一溶液である。
×:電解質塩が溶解せず。
(Evaluation criteria)
○: A uniform solution.
X: The electrolyte salt does not dissolve.

試験3(低温安定性)
実施例16〜27および比較例4〜8でそれぞれ製造した電解液6mlを9ml容のサンプル瓶に取り出し、−20℃の冷凍庫内に8時間静置した後の状態を目視で観察した。結果を表2に示す。
Test 3 (low temperature stability)
6 ml of the electrolytic solution produced in each of Examples 16 to 27 and Comparative Examples 4 to 8 was taken out into a 9 ml sample bottle, and the state after standing for 8 hours in a −20 ° C. freezer was visually observed. The results are shown in Table 2.

(評価基準)
○:均一溶液である。
×:液が固化する。
(Evaluation criteria)
○: A uniform solution.
X: The liquid solidifies.

次に表面張力が下がった効果を確認するために実際にコイン型リチウム二次電池を作成し電池特性を評価した。   Next, in order to confirm the effect of lowering the surface tension, a coin-type lithium secondary battery was actually created and the battery characteristics were evaluated.

試験4(充放電特性)
次の方法でコイン型リチウム二次電池を作製した。
Test 4 (charge / discharge characteristics)
A coin-type lithium secondary battery was produced by the following method.

(正極の作製)
LiCoO2とカーボンブラックとポリフッ化ビニリデン(呉羽化学(株)製。商品名KF−1000)を85/7/8(質量%比)で混合した正極活物質をN−メチル−2−ピロリドンに分散してスラリー状としたものを正極集電体(厚さ15μmのアルミニウム箔)上に均一に塗布し、乾燥後、直径13.0mmの円盤に打ち抜いて正極を作製した。
(Preparation of positive electrode)
A positive electrode active material prepared by mixing LiCoO 2 , carbon black, and polyvinylidene fluoride (manufactured by Kureha Chemical Co., Ltd., trade name KF-1000) at 85/7/8 (mass% ratio) is dispersed in N-methyl-2-pyrrolidone. Then, the slurry was applied uniformly on a positive electrode current collector (aluminum foil having a thickness of 15 μm), dried, and then punched into a disc having a diameter of 13.0 mm to produce a positive electrode.

(負極の作製)
人造黒鉛粉末(テイムカル社製。商品名KS−44)に、蒸留水で分散させたスチレン−ブタジエンゴムを固形分で6質量%となるように加え、ディスパーザーで混合してスラリー状としたものを負極集電体(厚さ10μmの銅箔)上に均一に塗布し、乾燥後、直径13.0mmの円盤に打ち抜いて負極を作製した。
(Preparation of negative electrode)
Styrene-butadiene rubber dispersed with distilled water added to artificial graphite powder (manufactured by Temcal Co., Ltd., trade name KS-44) so that the solid content is 6% by mass, and mixed with a disperser to form a slurry. Was uniformly coated on a negative electrode current collector (copper foil having a thickness of 10 μm), dried, and then punched into a disk having a diameter of 13.0 mm to produce a negative electrode.

(コイン型リチウム二次電池の作製)
正極集電体を兼ねるステンレススチール製の缶体に上記正極を収容し、その上に直径17mmのポリエチレン製のセパレータ(セルガード(株)製。商品名セルガード3501)を重ねさらに上記負極を載置し、表2の実施例または比較例で製造した電解液を含浸させる。この缶体と負極集電体を兼ねる封口板とを絶縁用ガスケットを介してかしめて密封し、コイン型リチウム二次電池を作製した。
(Production of coin-type lithium secondary battery)
The positive electrode is housed in a stainless steel can that also serves as a positive electrode current collector, and a polyethylene separator having a diameter of 17 mm (manufactured by Celgard Co., Ltd., trade name Celguard 3501) is layered thereon, and the negative electrode is further placed thereon. The electrolytic solution produced in the example of Table 2 or the comparative example is impregnated. The can body and a sealing plate serving also as a negative electrode current collector were caulked and sealed through an insulating gasket to produce a coin-type lithium secondary battery.

(放電容量)
充放電電流をCで表示した場合、3.5mAを1Cとして下記の充放電測定条件で測定を行った。評価は、比較例4の放電容量の結果を100とした指数で行う。結果を表2に示す。
(Discharge capacity)
When the charge / discharge current was indicated by C, measurement was performed under the following charge / discharge measurement conditions with 3.5 mA as 1C. The evaluation is performed using an index with the result of the discharge capacity of Comparative Example 4 as 100. The results are shown in Table 2.

充放電条件
充電:0.5C、4.2Vにて充電電流が1/10Cになるまでを保持(CC・CV充電)
放電:1C 2.5Vcut(CC放電)
Charge / Discharge Condition Charging: Holds the charge current at 1 / 10C at 0.5C / 4.2V (CC / CV charge)
Discharge: 1C 2.5Vcut (CC discharge)

(レート特性)
充電については上記の条件で0.5C・4.2Vで充電電流が1/10Cになるまで充電し0.3C相当の電流で2.5Vまで放電し、放電容量を求めた。引き続き、0.5C・4.2Vで充電電流が1/10Cになるまで充電し、2C相当の電流で2.5Vになるまで放電し、放電容量を求めた。この2Cでの放電容量と、上記の0.3Cでの放電容量との比から、レート特性を評価した。レート特性は下記の計算式で求められた値をレート特性として記載する。
レート特性(%)=2C放電容量(mAh)/0.3C放電容量(mAh)×100
(Rate characteristics)
Regarding charging, the battery was charged at 0.5 C · 4.2 V under the above conditions until the charging current became 1/10 C, discharged to 2.5 V at a current equivalent to 0.3 C, and the discharge capacity was determined. Subsequently, the battery was charged at 0.5 C · 4.2 V until the charging current became 1/10 C, and discharged at a current equivalent to 2 C until it reached 2.5 V, and the discharge capacity was determined. The rate characteristics were evaluated from the ratio between the discharge capacity at 2C and the discharge capacity at 0.3C. For the rate characteristic, a value obtained by the following calculation formula is described as the rate characteristic.
Rate characteristics (%) = 2C discharge capacity (mAh) /0.3C discharge capacity (mAh) × 100

(サイクル特性)
サイクル特性については上記の充放電条件で充放電試験を行い50サイクルの放電容量を測定した。サイクル特性については下記の計算式で求められた値をサイクル維持率として記載する。
サイクル維持率(%)=50サイクル放電容量(mAh)/1サイクル放電容量(mAh)×100
(Cycle characteristics)
Regarding the cycle characteristics, a charge / discharge test was performed under the above charge / discharge conditions, and a discharge capacity of 50 cycles was measured. For the cycle characteristics, the value obtained by the following calculation formula is described as the cycle retention rate.
Cycle maintenance ratio (%) = 50 cycle discharge capacity (mAh) / 1 cycle discharge capacity (mAh) × 100

Figure 0005321063
Figure 0005321063

表2より、フッ素系溶媒(A)を20〜60体積%、非フッ素系環状カーボネート(B)を3〜40体積%および非フッ素系鎖状カーボネート(C)を20〜77体積%含み電解質塩としてLiPF6、LiN(SO2CF32およびLiN(SO2252を使用した場合、均一溶液であったが、比較例8のように本発明の範囲外のものに対しては電解質塩が溶解しないことがわかる。From Table 2, electrolyte salt containing 20 to 60% by volume of fluorinated solvent (A), 3 to 40% by volume of non-fluorinated cyclic carbonate (B) and 20 to 77% by volume of non-fluorinated chain carbonate (C). When LiPF 6 , LiN (SO 2 CF 3 ) 2 and LiN (SO 2 C 2 F 5 ) 2 were used, the solution was uniform, but as in Comparative Example 8, it was outside the scope of the present invention. It can be seen that the electrolyte salt does not dissolve.

表2の結果より、表面張力の下がった非水系電解液を使用した場合、放電容量、レート特性およびサイクル特性が向上することがわかる。   From the results in Table 2, it can be seen that the discharge capacity, rate characteristics, and cycle characteristics are improved when a non-aqueous electrolyte having a reduced surface tension is used.

実施例28〜31
表3に示す非水系電解液の難燃性をつぎの方法で調べた。結果を表3に示す。
Examples 28-31
The flame retardancy of the non-aqueous electrolyte shown in Table 3 was examined by the following method. The results are shown in Table 3.

試験5(難燃性試験)
(サンプルの調製)
試験4と同様にして作製した正極および負極をそれぞれ50mm×100mmの長方形に切り取り、これらでポリエチレン製のセパレータ(セルガード(株)製。商品名セルガード3501)を挟んで積層体とする。正極および負極に幅5mm長さ150mmのアルミニウム箔をリード線として溶接したのち、この積層体を上記実施例または比較例で製造した非水系電解液に浸漬し、ついでラミネータで密封してラミネートセルを作製する。
Test 5 (flame retardant test)
(Sample preparation)
A positive electrode and a negative electrode manufactured in the same manner as in Test 4 are cut into rectangles of 50 mm × 100 mm, and a polyethylene separator (manufactured by Celgard Co., Ltd., trade name Celgard 3501) is sandwiched between them to form a laminate. After welding an aluminum foil having a width of 5 mm and a length of 150 mm as a lead wire to the positive electrode and the negative electrode, this laminate was immersed in the non-aqueous electrolyte prepared in the above-mentioned example or comparative example, and then sealed with a laminator to form a laminate cell. Make it.

(試験方法)
ラミネートセルについて、つぎの3種類の難燃性試験を行う。
[釘刺し試験]
4.3Vまでラミネートセルを充電したのち、直径3mmの釘をラミネートセルに貫通させて、ラミネートセルの発火・破裂の有無を調べる。
[加熱試験]
4.25Vまでラミネートセルを充電したのち、5℃/分で室温から150℃まで上げその後、150℃で放置させラミネートセルの発火・破裂の有無を調べる。
[短絡試験]
4.3Vまでラミネートセルを充電した後、正極と負極を銅線で短絡させ、ラミネートセルの発火の有無を調べる。
(Test method)
The laminate cell is subjected to the following three types of flame retardancy tests.
[Nail penetration test]
After charging the laminate cell to 4.3 V, a nail having a diameter of 3 mm is passed through the laminate cell, and the laminate cell is examined for ignition or rupture.
[Heating test]
After charging the laminate cell to 4.25 V, the temperature is raised from room temperature to 150 ° C. at 5 ° C./min, and then allowed to stand at 150 ° C. for the presence or absence of ignition / rupture of the laminate cell.
[Short-circuit test]
After charging the laminate cell to 4.3 V, the positive electrode and the negative electrode are short-circuited with a copper wire, and the presence or absence of ignition of the laminate cell is examined.

評価は、いずれの試験においても、発火(破裂)がない場合を○、発火(破裂)した場合を×とする。   In any of the tests, the case where there is no ignition (rupture) is indicated by ◯, and the case where ignition (explosion) is indicated by x.

比較例9
成分(B)としてエチレンカーボネート(B1)を、成分(C)としてジメチルカーボネート(C2)を(B)/(C)が50/50体積%比となるように混合し、この電解質塩溶解用有機溶媒にさらに電解質塩としてLiN(SO2252を1.0モル/リットルの濃度となるように加え、25℃にて充分に撹拌し、比較用の電解液を調製した。この比較用の非水系電解液について、実施例28と同様にして難燃性(試験5)を調べた。結果を表3に示す。
Comparative Example 9
Ethylene carbonate (B1) as component (B) and dimethyl carbonate (C2) as component (C) are mixed so that the ratio (B) / (C) is 50/50% by volume. LiN (SO 2 C 2 F 5 ) 2 as an electrolyte salt was further added to the solvent so as to have a concentration of 1.0 mol / liter, and the mixture was sufficiently stirred at 25 ° C. to prepare a comparative electrolyte. The non-aqueous electrolyte solution for comparison was examined for flame retardancy (Test 5) in the same manner as in Example 28. The results are shown in Table 3.

Figure 0005321063
Figure 0005321063

表3からわかるように、比較例9の電池は釘刺し試験、加熱試験、短絡試験のいずれの試験でも発火したが、実施例の電池についてはすべて発火しなかった。   As can be seen from Table 3, the battery of Comparative Example 9 ignited in any of the nail penetration test, heating test, and short circuit test, but all of the batteries of the examples did not ignite.

実施例32〜34および比較例10
表4に示す非水系電解液の着火性をつぎの方法で調べた。結果を表4に示す。
Examples 32-34 and Comparative Example 10
The ignitability of the non-aqueous electrolyte shown in Table 4 was examined by the following method. The results are shown in Table 4.

試験6(着火試験)
(サンプルの調製)
セルロース紙(幅15mm、長さ320mm、厚さ0.04mm)の短冊を上記実施例または比較例で製造した非水系電解液に充分に浸漬したのち取り出し、サンプルとする。
Test 6 (Ignition test)
(Sample preparation)
A strip of cellulose paper (width 15 mm, length 320 mm, thickness 0.04 mm) is sufficiently immersed in the non-aqueous electrolyte solution produced in the above-mentioned example or comparative example and then taken out to obtain a sample.

(試験方法)
サンプルを金属製の台に固定し、サンプルの一端にライターの火を近づけ1秒間保持し、着火の有無を調べる。
(Test method)
The sample is fixed on a metal table, and a lighter is brought close to one end of the sample and held for 1 second to check for ignition.

評価は、着火しない場合(不燃性)の場合は○、着火してもすぐに火が消える(自己消火性)の場合は△、着火し燃え続ける場合は×とする。   The evaluation is ○ when not igniting (nonflammable), △ when fire extinguishes immediately after ignition (self-extinguishing), and × when igniting and continuing to burn.

Figure 0005321063
Figure 0005321063

表4から、比較例9のように本発明の範囲外のものに対しては簡単に引火し燃焼し続けることがわかった。しかし、本発明の範囲内のものに対しては自己消火性あるいは不燃性の効果が見られた。   From Table 4, it was found that a material outside the range of the present invention as in Comparative Example 9 was easily ignited and continued to burn. However, self-extinguishing or non-flammable effects were seen for those within the scope of the present invention.

実施例35〜47および比較例11、12
表5に示す非水系電解液(電解質塩としてはLiPF6を1.0モル/リットルを使用した)の表面張力、電解質塩溶解性、低温安定性、ならびに試験4と同様にして作製したリチウム二次電池の放電容量、レート特性、サイクル特性、安全性(釘刺し試験、加熱試験、短絡試験)および難燃性(着火試験)を上記と同様に調べた。結果を表5に示す。
Examples 35 to 47 and Comparative Examples 11 and 12
The surface tension, electrolyte salt solubility, low temperature stability of the nonaqueous electrolyte solution (1.0 mol / liter of LiPF 6 was used as the electrolyte salt) shown in Table 5, and lithium The discharge capacity, rate characteristics, cycle characteristics, safety (nail penetration test, heating test, short circuit test) and flame retardance (ignition test) of the secondary battery were examined in the same manner as described above. The results are shown in Table 5.

Figure 0005321063
Figure 0005321063

表5から、界面活性剤を加えたものは、レート特性およびサイクル特性が向上していることがわかる。   It can be seen from Table 5 that the rate characteristics and the cycle characteristics are improved when the surfactant is added.

実施例48〜53および比較例13
表6に示す非水系電解液の表面張力、電解質塩溶解性、低温安定性、ならびに以下に示す製法で正極を作製した以外は、試験4と同様にして作製したリチウム二次電池の放電容量、レート特性、サイクル特性、安全性(釘刺し試験、加熱試験、短絡試験)および難燃性(着火試験)を上記と同様に調べた。結果を表6に示す。
Examples 48-53 and Comparative Example 13
The discharge capacity of the lithium secondary battery produced in the same manner as in Test 4 except that the positive electrode was produced by the surface tension, the electrolyte salt solubility, the low-temperature stability, and the production method shown below, as shown in Table 6. Rate characteristics, cycle characteristics, safety (nail penetration test, heating test, short circuit test) and flame retardancy (ignition test) were examined in the same manner as described above. The results are shown in Table 6.

(正極の作製)
リチウムニッケル複合酸化物正極の作製
Li(NiCoAl)O2(戸田工業製)とアセチレンブラック(電気化学工業(株)製のデンカブラック(商品名))をニーダー(小池鉄工製のLDS−05(商品名))で撹拌し、その後、N−メチル−2−ピロリドンにポリフッ化ビニリデン(呉羽化学(株)製のKF−1000(商品名))を8質量%溶解させた溶液を徐々に投入しさらに撹拌する。比率は、活物質/導電助剤/バインダー=90/5/5(質量%比)になるように投入する。その後、撹拌機(アルカム社製のNCG−002(商品名))で撹拌しながらN−メチル−2−ピロリドンで粘度調整しスラリーを作製する。得られたスラリーを集電体(厚さ15μmのアルミニウム箔)上に均一に塗布し、乾燥して正極剤層を形成し、その後、ローラプレス機により圧縮成形して正極を作製する。
(Preparation of positive electrode)
Preparation of Lithium Nickel Composite Oxide Positive Electrode Li (NiCoAl) O 2 (manufactured by Toda Kogyo) and acetylene black (Denka Black (trade name) manufactured by Denki Kagaku Kogyo Co., Ltd.) kneader (LDS-05 made by Koike Tekko Co., Ltd.) After that, a solution prepared by dissolving 8% by mass of polyvinylidene fluoride (KF-1000 (trade name) manufactured by Kureha Chemical Co., Ltd.) in N-methyl-2-pyrrolidone was gradually added. Stir. The ratio is added so that the active material / conductive aid / binder = 90/5/5 (mass% ratio). Then, the viscosity is adjusted with N-methyl-2-pyrrolidone while stirring with a stirrer (NCG-002 (trade name) manufactured by Alcam Co.) to prepare a slurry. The obtained slurry is uniformly applied on a current collector (15 μm thick aluminum foil), dried to form a positive electrode layer, and then compression molded by a roller press to produce a positive electrode.

Figure 0005321063
Figure 0005321063

実施例54〜55
表7に示す非水系電解液の試験4と同様にして作製したリチウム二次電池の安全性(釘刺し試験、加熱試験、短絡試験)および難燃性(着火試験)を上記と同様に調べた。結果を表7に示す。
Examples 54-55
The safety (nail penetration test, heating test, short circuit test) and flame retardance (ignition test) of the lithium secondary battery produced in the same manner as in test 4 of the nonaqueous electrolyte shown in Table 7 were examined in the same manner as described above. . The results are shown in Table 7.

Figure 0005321063
Figure 0005321063

実施例56〜58
表8に示す非水系電解液の試験4と同様にして作製したリチウム二次電池の放電容量、レート特性およびサイクル特性を上記と同様に調べた。結果を表8に示す。
Examples 56-58
The discharge capacity, rate characteristics, and cycle characteristics of the lithium secondary battery produced in the same manner as in Test 4 of the nonaqueous electrolytic solution shown in Table 8 were examined in the same manner as described above. The results are shown in Table 8.

Figure 0005321063
Figure 0005321063

試験例1
実施例40、42、44および47、ならびに比較例11および12で調製した非水系電解液を用い、試験4と同様にして作製したリチウム二次電池について、充放電する前の内部(交流)インピーダンスを測定した。結果を図1に示す(□は実施例40、◇は実施例42、○は実施例44、●は実施例47、×は比較例11、▲は比較例12)。
Test example 1
Internal (alternating current) impedance before charging / discharging of the lithium secondary battery produced in the same manner as in Test 4 using the nonaqueous electrolytic solutions prepared in Examples 40, 42, 44 and 47 and Comparative Examples 11 and 12. Was measured. The results are shown in FIG. 1 (□ is Example 40, ◇ is Example 42, ○ is Example 44, ● is Example 47, × is Comparative Example 11, and ▲ is Comparative Example 12).

図1は、内部インピーダンスの値の実部(Z’)をX軸に、内部インピーダンスの値の虚部(Z’’)をY軸にプロットしたグラフであり、内部抵抗の大きさがわかる。たとえば、比較例12(含フッ素エーテル系溶媒入りで界面活性剤なし:▲)では界面抵抗が大きくなっていることから、内部抵抗が大きいことがわかる。一方、界面活性剤をさらに加えた実施例40、42、44および47の場合、界面抵抗が小さくなり、内部抵抗が下がることがわかる。   FIG. 1 is a graph in which the real part (Z ′) of the internal impedance value is plotted on the X axis and the imaginary part (Z ″) of the internal impedance value is plotted on the Y axis, and the magnitude of the internal resistance can be seen. For example, in Comparative Example 12 (containing a fluorine-containing ether solvent and no surfactant: ▲), the interfacial resistance is large, indicating that the internal resistance is large. On the other hand, in Examples 40, 42, 44 and 47 to which a surfactant was further added, it can be seen that the interface resistance is reduced and the internal resistance is lowered.

(内部インピーダンスの測定)
周波数アナライザー(ソーラトロン社製の1260型)とポテンシオ−ガルバノスタッド(ソートランド社製の1287型)を用い、振幅±10mVで周波数0.1Hz〜2kHzにて測定する。
(Measurement of internal impedance)
Using a frequency analyzer (model 1260 manufactured by Solartron) and potentio-galvano stud (model 1287 manufactured by Sortland), measurement is performed at an amplitude of ± 10 mV and a frequency of 0.1 Hz to 2 kHz.

本発明によれば、不燃性(難燃性)でかつ電池特性(充放電サイクル特性、放電容量)に優れた非水系電解液を提供することができる。   According to the present invention, it is possible to provide a non-aqueous electrolyte solution that is nonflammable (flame retardant) and excellent in battery characteristics (charge / discharge cycle characteristics, discharge capacity).

Claims (15)

(I)(A)含フッ素エーテル、含フッ素エステルおよび含フッ素カーボネートよりなる群から選ばれるフッ素系溶媒、
(B)非フッ素系環状カーボネート、および
(C)非フッ素系鎖状カーボネート
を含む電解質塩溶解用溶媒、ならびに
(II)電解質塩
を含み、
電解質塩溶解用溶媒(I)が、溶媒(I)全体に対して(D)界面活性剤を5質量%以下含有し、
界面活性剤(D)が、式(D1b):
RfCOO
(式中、Rfは炭素数4〜20の含フッ素エーテル基、Mはアルカリ金属カチオンまたはNHR’ (R’は同じかまたは異なり、いずれもHまたは炭素数が1〜3のアルキル基))で示される含フッ素カルボン酸塩、および/または
式(D2b):
RfSO
(式中、Rfは炭素数4〜20の含フッ素エーテル基、Mはアルカリ金属カチオンまたはNHR’ (R’は同じかまたは異なり、いずれもHまたは炭素数が1〜3のアルキル基))で示される含フッ素スルホン酸塩である非水系電解液。
(I) (A) a fluorinated solvent selected from the group consisting of fluorinated ethers, fluorinated esters and fluorinated carbonates,
(B) a non-fluorinated cyclic carbonate, and (C) a solvent for dissolving an electrolyte salt containing a non-fluorinated chain carbonate, and (II) an electrolyte salt,
The electrolyte salt dissolving solvent (I) contains 5% by mass or less of (D) surfactant with respect to the entire solvent (I),
Surfactant (D) is represented by formula (D1b):
Rf b COO M +
(In the formula, Rf b is a fluorine-containing ether group having 4 to 20 carbon atoms, M + is an alkali metal cation or NHR ′ 3 + (R ′ is the same or different, and both are H or alkyl having 1 to 3 carbon atoms. Group)) and / or formula (D2b):
Rf b SO 3 M +
(In the formula, Rf b is a fluorine-containing ether group having 4 to 20 carbon atoms, M + is an alkali metal cation or NHR ′ 3 + (R ′ is the same or different, and both are H or alkyl having 1 to 3 carbon atoms. Nonaqueous electrolyte solution which is a fluorine-containing sulfonate represented by the following group)).
(A)成分のフッ素系溶媒が、
式(A1):
RfORf
(式中、Rfは炭素数3〜6の含フッ素アルキル基、Rfは炭素数2〜6の含フッ素アルキル基)で示される含フッ素エーテル、
式(A2):
RfCOORf
(式中、Rfは炭素数1〜2のフッ素原子を含んでいてもよいアルキル基、Rfは炭素数1〜4のフッ素原子を含んでいてもよいアルキル基であって、RfおよびRfの少なくともいずれか一方は、含フッ素アルキル基である)で示される含フッ素エステル、
および
式(A3):
RfOCOORf
(式中、Rfは炭素数1〜4の含フッ素アルキル基、Rfは炭素数1〜4のフッ素原子を含んでいてもよいアルキル基)で示される含フッ素カーボネート
よりなる群から選ばれる少なくとも1種である請求項1記載の非水系電解液。
(A) component fluorine-based solvent is
Formula (A1):
Rf 1 ORf 2
(Wherein Rf 1 is a fluorine-containing alkyl group having 3 to 6 carbon atoms, Rf 2 is a fluorine-containing alkyl group having 2 to 6 carbon atoms),
Formula (A2):
Rf 3 COORf 4
(Wherein Rf 3 is an alkyl group which may contain a fluorine atom having 1 to 2 carbon atoms, Rf 4 is an alkyl group which may contain a fluorine atom having 1 to 4 carbon atoms, and Rf 3 and At least one of Rf 4 is a fluorine-containing alkyl group),
And formula (A3):
Rf 5 OCOORf 6
Wherein Rf 5 is a fluorine-containing alkyl group having 1 to 4 carbon atoms, and Rf 6 is an alkyl group that may contain a fluorine atom having 1 to 4 carbon atoms. The non-aqueous electrolyte solution according to claim 1, which is at least one kind.
電解質塩溶解用溶媒(I)が、溶媒(I)全体に対して、フッ素系溶媒(A)を20〜80体積%、非フッ素系環状カーボネート(B)を3〜40体積%および非フッ素系鎖状カーボネート(C)を10〜77体積%含む請求項1または2記載の非水系電解液。 The solvent (I) for dissolving the electrolyte salt is 20 to 80% by volume of the fluorine-based solvent (A), 3 to 40% by volume of the non-fluorinated cyclic carbonate (B) and non-fluorine based on the whole solvent (I). The non-aqueous electrolyte solution according to claim 1 or 2, comprising 10 to 77% by volume of the chain carbonate (C). (B)成分の非フッ素系環状カーボネートが、エチレンカーボネート、プロピレンカーボネートおよびビニレンカーボネートよりなる群から選ばれる少なくとも1種である請求項1〜のいずれかに記載の非水系電解液。 The non-aqueous electrolyte solution according to any one of claims 1 to 3 , wherein the non-fluorine-type cyclic carbonate as the component (B) is at least one selected from the group consisting of ethylene carbonate, propylene carbonate, and vinylene carbonate. 非フッ素系鎖状カーボネート(C)が、式(C):
OCOOR
(式中、RおよびRは同じかまたは異なり、炭素数1〜4のアルキル基)で示される化合物である請求項1〜のいずれかに記載の非水系電解液。
The non-fluorine chain carbonate (C) has the formula (C):
R 1 OCOOR 2
(In the formula, R 1 and R 2 are the same or different, an alkyl group having 1 to 4 carbon atoms) nonaqueous electrolytic solution according to any one of claims 1 to 4 which is a compound represented by.
電解質塩(II)が、LiPF、LiN(SOCFおよびLiN(SOよりなる群から選ばれる少なくとも1種である請求項1〜のいずれかに記載の非水系電解液。 Electrolyte salt (II) is, according to any one of LiPF 6, LiN (SO 2 CF 3) 2 and LiN (SO 2 C 2 F 5 ) is at least one selected from the group consisting of 2 claims 1 to 5 Non-aqueous electrolyte. 電解質塩(II)が、LiPFおよび/またはLiN(SOCFからなり、電解質塩(II)の濃度が0.5〜1.5モル/リットルである請求項1〜のいずれかに記載の非水系電解液。 Electrolyte salt (II) is, LiPF 6 and / or LiN (SO 2 CF 3) 2 consists of any of claims 1-6 concentrations of the electrolyte salt (II) is 0.5 to 1.5 mol / l A non-aqueous electrolyte solution according to claim 1. 電解質塩(II)におけるLiPFが0.1〜0.9モル/リットルおよびLiN(SOCFが0.1〜0.9モル/リットルであって、LiPF/LiN(SOCFが1/9〜9/1である請求項1〜のいずれかに記載の非水系電解液。 In the electrolyte salt (II), LiPF 6 is 0.1 to 0.9 mol / liter and LiN (SO 2 CF 3 ) 2 is 0.1 to 0.9 mol / liter, and LiPF 6 / LiN (SO 2 CF 3) 2 is a non-aqueous electrolyte solution according to any one of claims 1 to 6, which is 1 / 9-9 / 1. リチウム二次電池用である請求項1〜のいずれかに記載の非水系電解液。 The nonaqueous electrolytic solution according to any one of claims 1 to 8 , which is used for a lithium secondary battery. 請求項1〜のいずれかに記載の非水系電解液を備える電気化学デバイス。 Electrochemical device comprising a non-aqueous electrolyte solution according to any one of claims 1-8. 請求項1〜のいずれかに記載の非水系電解液を備えるリチウム二次電池。 A lithium secondary battery comprising the non-aqueous electrolyte solution according to any one of claims 1 to 9 . さらに、正極、負極およびセパレータを備える請求項11記載のリチウム二次電池。 The lithium secondary battery according to claim 11 , further comprising a positive electrode, a negative electrode, and a separator. 正極に使用する正極活物質が、コバルト系複合酸化物、ニッケル系複合酸化物、マンガン系複合酸化物、鉄系複合酸化物およびバナジウム系複合酸化物よりなる群から選ばれる少なくとも1種である請求項12記載のリチウム二次電池。 The positive electrode active material used for the positive electrode is at least one selected from the group consisting of cobalt-based composite oxide, nickel-based composite oxide, manganese-based composite oxide, iron-based composite oxide, and vanadium-based composite oxide. Item 13. A lithium secondary battery according to Item 12 . 正極活物質がコバルト酸リチウムであり、負極活物質が黒鉛である請求項12または13記載のリチウム二次電池。 The lithium secondary battery according to claim 12 or 13 , wherein the positive electrode active material is lithium cobaltate and the negative electrode active material is graphite. 正極活物質がニッケル系複合酸化物であり、負極活物質が黒鉛である請求項12または13記載のリチウム二次電池。 The lithium secondary battery according to claim 12 or 13 , wherein the positive electrode active material is a nickel-based composite oxide and the negative electrode active material is graphite.
JP2008551054A 2006-12-22 2007-12-19 Non-aqueous electrolyte Expired - Fee Related JP5321063B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008551054A JP5321063B2 (en) 2006-12-22 2007-12-19 Non-aqueous electrolyte

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2006346665 2006-12-22
JP2006346665 2006-12-22
JP2007026915 2007-02-06
JP2007026915 2007-02-06
JP2007238390 2007-09-13
JP2007238390 2007-09-13
JP2008551054A JP5321063B2 (en) 2006-12-22 2007-12-19 Non-aqueous electrolyte
PCT/JP2007/074432 WO2008078626A1 (en) 2006-12-22 2007-12-19 Nonaqueous electrolyte solution

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013094489A Division JP5716789B2 (en) 2006-12-22 2013-04-26 Non-aqueous electrolyte

Publications (2)

Publication Number Publication Date
JPWO2008078626A1 JPWO2008078626A1 (en) 2010-04-22
JP5321063B2 true JP5321063B2 (en) 2013-10-23

Family

ID=39562419

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2008551054A Expired - Fee Related JP5321063B2 (en) 2006-12-22 2007-12-19 Non-aqueous electrolyte
JP2013094489A Expired - Fee Related JP5716789B2 (en) 2006-12-22 2013-04-26 Non-aqueous electrolyte

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2013094489A Expired - Fee Related JP5716789B2 (en) 2006-12-22 2013-04-26 Non-aqueous electrolyte

Country Status (4)

Country Link
JP (2) JP5321063B2 (en)
KR (1) KR101099182B1 (en)
CN (1) CN101584075B (en)
WO (1) WO2008078626A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9673450B2 (en) 2011-09-02 2017-06-06 Solvay Sa Lithium ion battery
US9979050B2 (en) 2011-09-02 2018-05-22 Solvay Sa Fluorinated electrolyte compositions
US10044066B2 (en) 2012-06-01 2018-08-07 Solvary SA Fluorinated electrolyte compositions
US10074874B2 (en) 2012-06-01 2018-09-11 Solvay Sa Additives to improve electrolyte performance in lithium ion batteries
US10686220B2 (en) 2013-04-04 2020-06-16 Solvay Sa Nonaqueous electrolyte compositions

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101159001B1 (en) * 2007-09-12 2012-06-21 다이킨 고교 가부시키가이샤 Electrolyte solution
JP5360463B2 (en) * 2008-05-28 2013-12-04 株式会社Gsユアサ Non-aqueous electrolyte secondary battery
WO2010004952A1 (en) * 2008-07-09 2010-01-14 ダイキン工業株式会社 Nonaqueous electrolyte solution
US20100028784A1 (en) * 2008-07-29 2010-02-04 3M Innovative Properties Company Electrolyte composition, lithium-containing electrochemical cell, battery pack, and device including the same
CN102113160A (en) * 2008-07-30 2011-06-29 大金工业株式会社 Solvent for dissolution of electrolytic salt of lithium secondary battery
JP5424011B2 (en) * 2008-08-13 2014-02-26 ソニー株式会社 SECONDARY BATTERY AND ITS MANUFACTURING METHOD, SECONDARY BATTERY ANODE AND SECONDARY BATTERY POSITIVE
WO2010055762A1 (en) * 2008-11-14 2010-05-20 ダイキン工業株式会社 Electrical double layer capacitor
JP2010123287A (en) * 2008-11-17 2010-06-03 Panasonic Corp Nonaqueous electrolytic solution and nonaqueous electrolytic solution secondary battery
CN101714657A (en) * 2009-11-30 2010-05-26 东莞市杉杉电池材料有限公司 Novel multifunctional lithium ion battery electrolyte
WO2011099585A1 (en) * 2010-02-12 2011-08-18 三菱化学株式会社 Nonaqueous electrolyte solution, and nonaqueous electrolyte secondary battery
CN102074733A (en) * 2010-12-29 2011-05-25 珠海市赛纬电子材料有限公司 Non-aqueous electrolyte and lithium ion battery
CN102456922A (en) * 2011-03-18 2012-05-16 深圳市海盈科技有限公司 Fluorocarbon surfactant-containing electrolyte and lithium ion battery
WO2012132060A1 (en) 2011-03-28 2012-10-04 日本電気株式会社 Secondary battery and electrolyte
CN103460496B (en) 2011-03-31 2016-11-16 大金工业株式会社 Lithium rechargeable battery and lithium rechargeable battery nonaqueous electrolytic solution
JP5328952B2 (en) * 2011-03-31 2013-10-30 ダイキン工業株式会社 Electric double layer capacitor and non-aqueous electrolyte for electric double layer capacitor
CN103733415B (en) 2011-07-18 2016-09-14 株式会社Lg化学 Nonaqueous electrolyte and use its lithium secondary battery
CN102496737A (en) * 2011-12-30 2012-06-13 天津力神电池股份有限公司 Lithium ion battery electrolyte and lithium ion battery prepared therefrom
KR101520158B1 (en) * 2012-09-21 2015-05-13 주식회사 엘지화학 Electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
JP5942892B2 (en) * 2013-02-21 2016-06-29 日立化成株式会社 Non-aqueous electrolyte, non-aqueous electrolyte secondary battery using the same, and secondary battery system using the non-aqueous electrolyte secondary battery
JP5842873B2 (en) * 2013-07-12 2016-01-13 株式会社Gsユアサ Non-aqueous electrolyte secondary battery
JP2015138717A (en) 2014-01-23 2015-07-30 トヨタ自動車株式会社 lithium secondary battery
CN104934637A (en) * 2014-03-21 2015-09-23 思伊纳化学科技(北京)有限公司 High voltage lithium ion battery nonaqueous electrolytic solution
JP6387692B2 (en) * 2014-06-11 2018-09-12 株式会社ジェイテクト Nonaqueous storage device separator drying method, and storage device manufacturing method
KR102460967B1 (en) * 2016-07-15 2022-11-01 솔베이(소시에떼아노님) Non-aqueous electrolyte composition
CN106602142A (en) * 2017-02-16 2017-04-26 湖南锂顺能源科技有限公司 Electrolyte used for lithium ion battery
KR102259744B1 (en) * 2018-03-06 2021-06-02 주식회사 엘지에너지솔루션 Nonaqueous electrolyte and lithium secondary battery comprising the same
WO2019215786A1 (en) * 2018-05-07 2019-11-14 三菱電機株式会社 Cell degradation detection device and cell temperature estimation device
JP7272044B2 (en) * 2019-03-25 2023-05-12 株式会社Gsユアサ Non-aqueous electrolyte, non-aqueous electrolyte storage element, water-solubilizing agent for non-aqueous electrolyte, and method for producing non-aqueous electrolyte
CN111864253B (en) * 2019-04-24 2023-05-09 惠州比亚迪实业有限公司 Lithium ion battery electrolyte and lithium ion battery
KR102417211B1 (en) 2020-07-08 2022-07-04 충남대학교산학협력단 Non-flammable electrolyte for lithium secondary batteries, and lithium secondary batteries comprising the same
KR20230064618A (en) * 2020-09-08 2023-05-10 다이킨 고교 가부시키가이샤 Fluorine-Containing Carboxylate Compounds
WO2022169347A1 (en) * 2021-02-08 2022-08-11 충남대학교산학협력단 Flame retardant or nonflammable electrolytic solution, and lithium secondary battery comprising same
JPWO2022215160A1 (en) * 2021-04-06 2022-10-13
KR102559718B1 (en) * 2022-08-05 2023-07-25 충남대학교산학협력단 Electrolyte for fast charging of lithium secondary battery for fast charging lithium secondary battery, lithium secondary battery including same, and method for manufacturing lithium secondary battery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08298134A (en) * 1995-04-25 1996-11-12 Sony Corp Nonaqueous electrolyte
JPH10116630A (en) * 1996-10-15 1998-05-06 Toray Ind Inc Non-aqueous electrolyte secondary battery
JP2001060464A (en) * 1999-08-20 2001-03-06 Japan Storage Battery Co Ltd Electrolytic solution for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using same
JP2002033119A (en) * 2000-07-17 2002-01-31 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2002343424A (en) * 2001-05-15 2002-11-29 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2004055471A (en) * 2002-07-23 2004-02-19 Mitsui Chemicals Inc Non-aqueous electrolytic solution and secondary battery using it
JP2006086134A (en) * 2005-12-01 2006-03-30 Daikin Ind Ltd Electrolyte for nonaqueous electrolyte solution battery and nonaqueous electrolyte solution battery using the same
WO2006088009A1 (en) * 2005-02-16 2006-08-24 Daikin Industries, Ltd. Electrolyte solution

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19619233A1 (en) * 1996-05-13 1997-11-20 Hoechst Ag Fluorine-containing solvents for lithium batteries with increased security
JPH11126633A (en) * 1997-08-30 1999-05-11 Samsung Display Devices Co Ltd Electrolyte for lithium ion battery and lithium ion battery using it
JP4328915B2 (en) * 1997-09-10 2009-09-09 ダイキン工業株式会社 Non-aqueous electrolyte for secondary battery and secondary battery using the same
JP4392726B2 (en) * 1998-04-23 2010-01-06 三井化学株式会社 Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP2002033120A (en) * 2000-07-17 2002-01-31 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
KR100756812B1 (en) * 2000-07-17 2007-09-07 마츠시타 덴끼 산교 가부시키가이샤 Non-aqueous electrochemical apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08298134A (en) * 1995-04-25 1996-11-12 Sony Corp Nonaqueous electrolyte
JPH10116630A (en) * 1996-10-15 1998-05-06 Toray Ind Inc Non-aqueous electrolyte secondary battery
JP2001060464A (en) * 1999-08-20 2001-03-06 Japan Storage Battery Co Ltd Electrolytic solution for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using same
JP2002033119A (en) * 2000-07-17 2002-01-31 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2002343424A (en) * 2001-05-15 2002-11-29 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2004055471A (en) * 2002-07-23 2004-02-19 Mitsui Chemicals Inc Non-aqueous electrolytic solution and secondary battery using it
WO2006088009A1 (en) * 2005-02-16 2006-08-24 Daikin Industries, Ltd. Electrolyte solution
JP2006086134A (en) * 2005-12-01 2006-03-30 Daikin Ind Ltd Electrolyte for nonaqueous electrolyte solution battery and nonaqueous electrolyte solution battery using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9673450B2 (en) 2011-09-02 2017-06-06 Solvay Sa Lithium ion battery
US9979050B2 (en) 2011-09-02 2018-05-22 Solvay Sa Fluorinated electrolyte compositions
US10044066B2 (en) 2012-06-01 2018-08-07 Solvary SA Fluorinated electrolyte compositions
US10074874B2 (en) 2012-06-01 2018-09-11 Solvay Sa Additives to improve electrolyte performance in lithium ion batteries
US10686220B2 (en) 2013-04-04 2020-06-16 Solvay Sa Nonaqueous electrolyte compositions
US10916805B2 (en) 2013-04-04 2021-02-09 Solvay Sa Nonaqueous electrolyte compositions

Also Published As

Publication number Publication date
JP5716789B2 (en) 2015-05-13
CN101584075B (en) 2011-10-12
KR20090102821A (en) 2009-09-30
WO2008078626A1 (en) 2008-07-03
KR101099182B1 (en) 2011-12-27
JPWO2008078626A1 (en) 2010-04-22
JP2013168384A (en) 2013-08-29
CN101584075A (en) 2009-11-18

Similar Documents

Publication Publication Date Title
JP5716789B2 (en) Non-aqueous electrolyte
JP5223919B2 (en) Non-aqueous electrolyte
JP5401836B2 (en) Solvent for dissolving electrolyte salt of lithium secondary battery
JP5234000B2 (en) Electrolyte
JP5444717B2 (en) Non-aqueous electrolyte
CN102077406B (en) Lithium secondary cell
JP5382183B2 (en) Non-aqueous electrolyte and battery
JP2008218387A (en) Non-aqueous electrolytic solution
JP5454650B2 (en) Battery and non-aqueous electrolyte
JP2008192504A (en) Nonaqueous electrolyte
JP5545291B2 (en) Non-aqueous electrolyte for lithium secondary battery
JP2008257988A (en) Non-aqueous electrolytic solution
JP2010086914A (en) Nonaqueous electrolytic solution
JP5573639B2 (en) Non-aqueous electrolyte for lithium secondary battery
JP5309704B2 (en) Solvent for non-aqueous electrolyte of lithium secondary battery
JP5321685B2 (en) Solvent for non-aqueous electrolyte of lithium secondary battery
JP5382248B2 (en) Overcharge prevention agent, non-aqueous electrolyte, and lithium ion secondary battery

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100514

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20101020

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130701

R151 Written notification of patent or utility model registration

Ref document number: 5321063

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees