JP5320919B2 - Hot rolled shape steel for crude oil tank and method for producing the same - Google Patents

Hot rolled shape steel for crude oil tank and method for producing the same Download PDF

Info

Publication number
JP5320919B2
JP5320919B2 JP2008236029A JP2008236029A JP5320919B2 JP 5320919 B2 JP5320919 B2 JP 5320919B2 JP 2008236029 A JP2008236029 A JP 2008236029A JP 2008236029 A JP2008236029 A JP 2008236029A JP 5320919 B2 JP5320919 B2 JP 5320919B2
Authority
JP
Japan
Prior art keywords
mass
steel
crude oil
hot
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008236029A
Other languages
Japanese (ja)
Other versions
JP2009097083A (en
Inventor
達己 木村
和彦 塩谷
眞司 三田尾
伸夫 鹿内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008236029A priority Critical patent/JP5320919B2/en
Priority to TW097136408A priority patent/TWI460285B/en
Priority to CN2008801012545A priority patent/CN101765673B/en
Priority to KR1020127033612A priority patent/KR20130006546A/en
Priority to KR1020107001674A priority patent/KR101241932B1/en
Priority to PCT/JP2008/067780 priority patent/WO2009041703A1/en
Publication of JP2009097083A publication Critical patent/JP2009097083A/en
Application granted granted Critical
Publication of JP5320919B2 publication Critical patent/JP5320919B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Metal Rolling (AREA)

Description

本発明は、原油タンクに用いられる熱間圧延形鋼に関し、特に、原油タンクの縦通材(ロンジ材)などに用いた場合に、裸状態およびプライマー塗布状態での局部腐食や全面腐食を大幅に低減できる優れた耐食性を有すると共に、降伏応力YPが315MPa以上で引張強さTSが440MPa以上の高強度を有する原油タンク用熱間圧延形鋼とその製造方法に関するものである。ここで、本発明における原油タンクとは、オイルタンカーの油倉や、原油を輸送するためのタンク、原油を貯蔵するためのタンクなどを総称したものである。また、熱間圧延形鋼とは、熱間圧延によって最終形状に成形された形鋼を指し、具体的には、熱間圧延により製造された等辺山形鋼や不等辺山形鋼、不等辺不等厚山形鋼、溝形鋼、球平形鋼、T形鋼などをいう。   The present invention relates to a hot rolled steel used for a crude oil tank, and particularly, when used as a longitudinal material (longi material) for a crude oil tank, local corrosion and general corrosion in a bare state and a primer application state are greatly reduced. The present invention relates to a hot rolled section steel for a crude oil tank having excellent corrosion resistance that can be reduced to a high level, high yield strength YP of 315 MPa or more, and tensile strength TS of 440 MPa or more, and a method for producing the same. Here, the crude oil tank in the present invention is a general term for an oil tanker depot, a tank for transporting crude oil, a tank for storing crude oil, and the like. The hot rolled section steel refers to a section steel formed into a final shape by hot rolling, and specifically, an equilateral angle steel, an unequal angle iron, an unequal edge inequality manufactured by hot rolling. Thick angle steel, groove steel, spherical flat steel, T-shaped steel, etc.

タンカーの原油タンクには、防爆のため、イナートガス(O:5vol%、CO:13vol%、SO:0.01vol%、残部Nを代表組成とするボイラーあるいはエンジン等の排ガス)が封入される。そのため、原油タンクの上部内面(上甲板裏面)には、イナートガス中に含まれるO,CO,SOや、原油から揮発するHS等の腐食性ガスにより、全面腐食が発生することが知られている。 Tanker crude oil tanks contain inert gas (O 2 : 5 vol%, CO 2 : 13 vol%, SO 2 : 0.01 vol%, exhaust gas from boilers, engines, etc. with the balance of N 2 as a representative composition) for explosion protection. Is done. Therefore, the upper inner surface (back of the upper deck) of the crude oil tank may be corroded entirely by corrosive gases such as O 2 , CO 2 , SO 2 contained in the inert gas and H 2 S volatilized from the crude oil. It has been known.

さらに、上記HSは、腐食によって生成した鉄錆の触媒作用により酸化されて固体Sを生成し、これが鉄錆中に層状に存在するようになる。そして、これらの腐食生成物は、容易に剥離を起こして原油タンクの底に堆積する。そのため、2.5年毎に行われるタンカーのドック検査では、多大な労力と費用をかけて、タンク上部の補修や堆積物の除去を行っている。 Further, the H 2 S is oxidized by the catalytic action of iron rust generated by corrosion to generate solid S, which is present in a layered manner in the iron rust. These corrosion products easily peel off and accumulate on the bottom of the crude oil tank. For this reason, tanker dock inspections carried out every 2.5 years require much labor and cost to repair the upper part of the tank and remove deposits.

一方、タンカーの原油タンクの底板に使用される鋼材は、従来、原油そのものの腐食抑制作用や原油タンク内面に生成される原油由来の保護性フィルム(原油保護フィルム)の腐食抑制作用により、腐食は生じないものと考えられていた。しかし、近年では、タンク底板の鋼材には、お椀型の局部腐食が生じることが明らかとなっている。   On the other hand, the steel used for the bottom plate of a tanker's crude oil tank has traditionally been corroded due to the corrosion-inhibiting action of crude oil itself and the corrosion-inhibiting action of a protective film (crude oil protective film) derived from crude oil produced on the inside of the crude oil tank. It was thought not to occur. However, in recent years, it has been clarified that bowl-shaped local corrosion occurs in the steel material of the tank bottom plate.

斯かるお椀型の局部腐食が起こる原因としては、
(1)塩化ナトリウムを代表とする塩類が高濃度に溶解した凝集水の存在、
(2)過剰な洗浄による原油保護フィルムの離脱、
(3)原油中に含まれる硫化物の高濃度化、
(4)防爆用のイナートガス中に含まれるO、CO、SOの高濃度化、
(5)微生物の関与、
などが挙げられているが、いずれも推定の域を出ず、明確な原因は判明していない。
As the cause of such bowl-shaped local corrosion,
(1) presence of condensed water in which salts represented by sodium chloride are dissolved at a high concentration;
(2) Separation of crude oil protective film due to excessive washing,
(3) High concentration of sulfides contained in crude oil,
(4) High concentration of O 2 , CO 2 , SO 2 contained in the inert gas for explosion prevention,
(5) Microbial involvement,
However, none of them are within the scope of estimation, and no clear cause has been found.

上記のような腐食を抑制する最も有効な方法は、鋼材表面に重塗装を施し、鋼材を腐食環境から遮断することである。しかし、原油タンクに塗装を施すことは、その施工面積が膨大であり、また約10年に1度は塗り替える必要があるため、施工や検査に多大な労力と費用を要すること、また、原油タンクの腐食環境下では、重塗装した場合には、塗膜損傷部分の腐食が却って助長されることが指摘されている。   The most effective method for suppressing such corrosion is to apply heavy coating on the surface of the steel material to shield the steel material from the corrosive environment. However, painting a crude oil tank requires an enormous construction area, and it is necessary to repaint it once every 10 years, which requires a lot of labor and cost for construction and inspection. In the corrosive environment, it has been pointed out that when heavy coating is applied, corrosion of the damaged portion of the coating film is promoted.

そこで、原油タンクのような腐食環境下でも、優れた耐食性を有する鋼が提案されている。例えば、特許文献1には、C:0.01〜0.3mass%の鋼に、適正量のSi,Mn,P,Sを添加し、さらにNi:0.05〜3mass%、選択的にMo,Cu,Cr,W,Ca,Ti,Nb,V,Bを添加した耐全面腐食性と耐局部腐食性に優れる耐食鋼が開示されている。   Therefore, steel having excellent corrosion resistance has been proposed even in a corrosive environment such as a crude oil tank. For example, in Patent Document 1, an appropriate amount of Si, Mn, P, S is added to steel of C: 0.01 to 0.3 mass%, and Ni: 0.05 to 3 mass%, selectively Mo. , Cu, Cr, W, Ca, Ti, Nb, V, and B are added, and corrosion resistant steel excellent in overall corrosion resistance and local corrosion resistance is disclosed.

また、特許文献2には、C:0.001〜0.2mass%の鋼に、適正量のSi,Mn,P,Sと、Cu:0.01〜1.5mass%、Al:0.001〜0.3mass%、N:0.001〜0.01mass%を添加し、さらにMo:0.01〜0.2mass%またはW:0.01〜0.5mass%の少なくとも一方を添加した、優れた耐全面腐食性、耐局部腐食性を有すると共に、固体Sを含む腐食生成物の生成をも抑制できる耐食鋼が開示されている。
特開2003−082435号公報 特開2004−204344号公報
Patent Document 2 discloses that C: 0.001 to 0.2 mass% of steel, appropriate amounts of Si, Mn, P, S, Cu: 0.01 to 1.5 mass%, Al: 0.001. -0.3 mass%, N: 0.001-0.01 mass% was added, and at least one of Mo: 0.01-0.2 mass% or W: 0.01-0.5 mass% was further added. Further, there is disclosed a corrosion resistant steel which has a general corrosion resistance and a local corrosion resistance and can suppress the formation of a corrosion product containing solid S.
Japanese Patent Laid-Open No. 2003-082435 JP 2004-204344 A

しかしながら、上記特許文献1および2の鋼を原油タンク用鋼材として使用した場合には、原油タンク上部で起こる全面腐食には優れた抑制効果を発揮するものの、原油タンク底板で起こる局部腐食に対する抵抗性(以下「耐局部腐食性」と称す)については、まだ十分とは言い難いのが実情である。   However, when the steels of Patent Documents 1 and 2 are used as a steel material for a crude oil tank, they exhibit an excellent inhibitory effect on the overall corrosion that occurs at the top of the crude oil tank, but are resistant to local corrosion that occurs at the bottom plate of the crude oil tank. As for (hereinafter referred to as “local corrosion resistance”), the actual situation is still not enough.

また、船舶に用いられる鋼材は、使用量の低減によるコスト削減および安全性確保の観点から、高強度化が進められており、例えば、厚鋼板では、降伏応力YPが315MPa以上でかつ好ましくは引張強さTSが440MPa以上の高強度材が使用されるようになってきている。斯かる厚鋼板の場合、強度と靭性の制御は、制御圧延・加速冷却プロセス(TMCP)の条件を適正範囲に調整することにより達成されるのが一般的である。   In addition, steel materials used in ships have been increased in strength from the viewpoint of cost reduction and safety assurance by reducing the amount of use. For example, in a thick steel plate, the yield stress YP is preferably 315 MPa or more and preferably tensile. High strength materials having a strength TS of 440 MPa or more have been used. In the case of such thick steel plates, control of strength and toughness is generally achieved by adjusting the conditions of the controlled rolling / accelerated cooling process (TMCP) to an appropriate range.

一方、ロンジ材等に使用される熱間圧延形鋼、例えば、不等辺不等厚山形鋼やT形鋼は、厚鋼板などと比較して断面形状・寸法が複雑であるため、強度と靭性の制御方法として、厚鋼板と同様のTMCPを採用することは困難である。特に、圧延途中での曲がりや反りに配慮しながら、材質の造り込みを行う必要があるため、降伏応力YPが315MPa以上に高強度化するためには、形鋼独自の製造方法を検討する必要がある。   On the other hand, hot-rolled steel shapes used for longages, such as unequal sides, unequal thick angle steels and T-shaped steels, are more complex in cross-sectional shape and dimensions than thick steel plates, so strength and toughness As a control method, it is difficult to employ the same TMCP as that of the thick steel plate. In particular, since it is necessary to build in materials while considering bending and warping during rolling, in order to increase the yield stress YP to 315 MPa or more, it is necessary to study a manufacturing method unique to shape steel There is.

そこで、本発明の目的は、タンカーの原油タンクのような厳しい腐食環境下においても、塗膜の存在状態に左右されることなく、全面腐食や局部腐食に対して優れた耐食性を有すると共に、YPが315MPa以上の強度を有する原油タンク用熱間圧延形鋼とその製造方法を提案することにある。   Therefore, an object of the present invention is to have excellent corrosion resistance against general corrosion and local corrosion without affecting the state of the coating film even in a severe corrosive environment such as a crude oil tank of a tanker. Is to propose a hot rolled section steel for crude oil tanks having a strength of 315 MPa or more and a method for producing the same.

発明者らは、上記課題を解決するために、まず、原油タンク底板の局部腐食に関与すると考えられる因子を種々抽出し、それらの因子を組み合わせて、各種の腐食試験を行った。その結果、原油タンク底板で生じる局部腐食を再現することに成功し、局部腐食の支配因子および腐食機構について、以下の知見を得た。   In order to solve the above problems, the inventors first extracted various factors considered to be involved in local corrosion of the bottom plate of the crude oil tank, and performed various corrosion tests by combining these factors. As a result, we succeeded in reproducing the local corrosion that occurs in the bottom plate of the crude oil tank, and obtained the following knowledge about the controlling factors and corrosion mechanism of local corrosion.

実の原油タンク底板で発生するお椀型の局部腐食では、液中に含まれているO(酸素)およびHS(硫化水素)が、腐食の支配因子として重要な働きをしており、特に、OとHSが共存し、かつ、O分圧とHS分圧の両方が低い腐食環境下、具体的には、O分圧:2〜8vol%、HS分圧:5〜20vol%のガスを飽和させた水溶液中では局部腐食が生じ易い。つまり、低O分圧かつ低HS分圧の腐食環境下では、HSが酸化されて固体Sが析出し、原油タンク底板と固体Sとの間に局部電池が形成されて、鋼材表面に局部腐食が発生する。特に、塩化物イオン(Cl)の存在する酸性環境下では、局部腐食が促進され、成長することを見出した。 In the bowl-shaped local corrosion that occurs in the actual crude oil tank bottom plate, O 2 (oxygen) and H 2 S (hydrogen sulfide) contained in the liquid play an important role as the controlling factors of corrosion, In particular, in a corrosive environment in which O 2 and H 2 S coexist and both the O 2 partial pressure and H 2 S partial pressure are low, specifically, O 2 partial pressure: 2 to 8 vol%, H 2 S Partial pressure: Local corrosion tends to occur in an aqueous solution saturated with a gas of 5 to 20 vol%. That is, in a corrosive environment with low O 2 partial pressure and low H 2 S partial pressure, H 2 S is oxidized and solid S is deposited, and a local battery is formed between the crude oil tank bottom plate and the solid S, Local corrosion occurs on the steel surface. In particular, the present inventors have found that local corrosion is promoted and grows in an acidic environment where chloride ions (Cl ) are present.

そこで、発明者らは、前記低O分圧および低HS分圧の環境下で起こる局部腐食に及ぼす各種合金元素の影響について調査した。その結果、WとCrの添加によって、原油タンク用鋼材の使用環境下で鋼材表面に形成される錆層が緻密化し、耐局部腐食性および耐全面腐食性が向上すること、さらに、Sn,SbあるいはMoの添加は、Wを含む緻密な錆層の生成を助け、耐局部腐食性および耐全面腐食性をより向上させる。すなわち、主にWとCr、さらにはSn,Sb,Moの含有量を適正化することにより、耐局部腐食性と耐全面腐食性のいずれにも優れる原油タンク用鋼材が得られることを見出した。 Therefore, the inventors investigated the influence of various alloy elements on the local corrosion occurring under the low O 2 partial pressure and low H 2 S partial pressure environments. As a result, the addition of W and Cr densifies the rust layer formed on the surface of the steel material in the environment where the steel material for the crude oil tank is used, improving local corrosion resistance and overall corrosion resistance, and Sn, Sb Or addition of Mo helps the production | generation of the precise | minute rust layer containing W, and improves a local corrosion resistance and a general corrosion resistance more. That is, it has been found that by optimizing the contents of mainly W and Cr, and further Sn, Sb, and Mo, a steel material for a crude oil tank that is excellent in both local corrosion resistance and overall corrosion resistance can be obtained. .

さらに、上記鋼材を、その表面にZnを含有するプライマーを塗布した状態で使用する場合には、該塗装寿命が著しく延びるとともに、耐局部腐食性および耐全面腐食性も向上することを見出した。
またさらに、生産性や溶接性等を害することなく、熱間圧延形鋼の高強度化を図るには、(α+γ)2相域圧延によって加工フェライトを導入することが有効であることを見出した。
本発明は、上記知見に基づき、さらに検討を加えて完成したものである。
Furthermore, when using the said steel material in the state which apply | coated the primer containing Zn on the surface, it discovered that this coating life extended remarkably and local corrosion resistance and overall corrosion resistance were also improved.
Furthermore, it has been found that it is effective to introduce a processed ferrite by (α + γ) two-phase rolling in order to increase the strength of the hot rolled shape steel without impairing productivity or weldability. .
The present invention has been completed based on the above findings and further studies.

すなわち、本発明は、C:0.001〜0.16mass%、Si:0.01〜1.5mass%、Mn:0.1〜2.5mass%、P:0.025mass%以下、S:0.01mass%以下、Al:0.005〜0.1mass%、N:0.001〜0.008mass%、W:0.001〜0.5mass%およびCr:0.06mass%以上0.20mass%未満を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、加工フェライトを全組織に対して面積率で10%以上含むフェライトとパーライトとからなるミクロ組織を有する原油タンク用熱間圧延形鋼である。   That is, the present invention includes C: 0.001 to 0.16 mass%, Si: 0.01 to 1.5 mass%, Mn: 0.1 to 2.5 mass%, P: 0.025 mass% or less, S: 0 .01 mass% or less, Al: 0.005 to 0.1 mass%, N: 0.001 to 0.008 mass%, W: 0.001 to 0.5 mass%, and Cr: 0.06 mass% or more and less than 0.20 mass% Hot-rolling for crude oil tanks, which has a component composition consisting of Fe and inevitable impurities, and has a microstructure comprising ferrite and pearlite containing processed ferrite in an area ratio of 10% or more with respect to the entire structure Shape steel.

本発明の上記原油タンク用熱間圧延形鋼は、上記成分組成に加えてさらに、下記A〜D群のうちの少なくとも1群に属する成分を含有することが好ましい。
A群;Sn:0.005〜0.3mass%およびSb:0.005〜0.3mass%のうちから選ばれる1種または2種
B群;Mo:0.001〜0.5mass%
C群;Nb:0.001〜0.1mass%、V:0.002〜0.1mass%、Ti:0.001〜0.1mass%およびB:0.01mass%以下のうちから選ばれる1種または2種以上
D群;Ca:0.0002〜0.005mass%およびREM:0.0005〜0.015mass%のうちから選ばれる1種または2種
In addition to the above component composition, it is preferable that the hot rolled steel for a crude oil tank of the present invention further contains a component belonging to at least one of the following groups A to D.
Group A; Sn: 0.005 to 0.3 mass% and Sb: 0.005 to 0.3 mass%, one or two types selected from Group B; Mo: 0.001 to 0.5 mass%
Group C; Nb: 0.001 to 0.1 mass%, V: 0.002 to 0.1 mass%, Ti: 0.001 to 0.1 mass%, and B: 0.01 mass% or less Or 2 or more types D group; 1 type or 2 types chosen from Ca: 0.0002-0.005mass% and REM: 0.0005-0.015mass%

また、本発明の上記原油タンク用熱間圧延形鋼は、降伏応力YPが315MPa以上、引張強さTSが440MPa以上の強度を有することが好ましい。   Moreover, it is preferable that the hot-rolled section steel for crude oil tanks of the present invention has a yield stress YP of 315 MPa or more and a tensile strength TS of 440 MPa or more.

また、本発明は、上記成分組成を有する鋼素材を1000〜1350℃に加熱後、熱間圧延して形鋼を製造する方法において、前記熱間圧延を、Ar変態点以下での累積圧下率を10〜80%、圧延仕上温度を(Ar変態点−30℃)〜(Ar変態点−180℃)とする条件にて施し、その後、放冷することを特徴とする原油タンク用熱間圧延形鋼の製造方法である。 Further, the present invention provides a method of manufacturing a shaped steel by heating a steel material having the above-described composition to 1000 to 1350 ° C. and then hot-rolling, and performing the hot rolling at a cumulative reduction below the Ar 3 transformation point. For crude oil tank, characterized in that the rate is 10 to 80%, the rolling finishing temperature is (Ar 3 transformation point −30 ° C.) to (Ar 3 transformation point −180 ° C.), and then allowed to cool. It is a manufacturing method of a hot rolled shape steel.

また、本発明の製造方法は、上記熱間圧延において、圧延途中の形鋼の部位による温度差を表面温度差で50℃以内にしてから、Ar変態点以下での累積圧下率を10〜80%、圧延仕上温度を(Ar変態点−30℃)〜(Ar変態点−180℃)とする前記熱間圧延を施すことが好ましい。 Further, in the manufacturing method of the present invention, in the above hot rolling, the temperature difference due to the portion of the shape steel in the middle of rolling is set to 50 ° C. or less at the surface temperature difference, and the cumulative reduction ratio below the Ar 3 transformation point is 10 to 10 ° C. It is preferable to perform the hot rolling at 80% and a rolling finishing temperature of (Ar 3 transformation point −30 ° C.) to (Ar 3 transformation point −180 ° C.).

本発明によれば、高強度でかつ裸状態のみならずプライマー塗布状態においても優れた耐全面腐食性および耐局部腐食性を発揮する熱間圧延形鋼を安価に提供することができる。従って、本発明の熱間圧延形鋼を原油タンクのロンジ材等として用いた場合には、原油タンク上部(上甲板および側板)での全面腐食や原油タンク底板での局部腐食を大幅に軽減できるので、補修塗装までの期間の延長が可能となり、ひいては補修作業の軽減や補修コストの低減を図ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the hot rolled shape steel which exhibits high intensity | strength and the outstanding general corrosion resistance and local corrosion resistance not only in a bare state but in a primer application state can be provided at low cost. Therefore, when the hot-rolled section steel of the present invention is used as a longage material for a crude oil tank, it is possible to significantly reduce the overall corrosion at the upper part of the crude oil tank (upper deck and side plates) and the local corrosion at the bottom plate of the crude oil tank. Therefore, it is possible to extend the period until the repair coating, and as a result, the repair work can be reduced and the repair cost can be reduced.

本発明に係る原油タンク用熱間圧延形鋼の成分組成の限定理由について説明する。
C:0.001〜0.16mass%
Cは、鋼の強度を高める元素であり、本発明では、YP:315MPa以上の所望の強度を得るために、0.001mass%以上含有する必要がある。しかし、0.16mass%を超える含有は、溶接性および溶接熱影響部の靭性を低下させる。よって、Cは0.001〜0.16mass%の範囲とする。なお、強度と靭性の両特性を兼備するためには、0.01〜0.15mass%の範囲が好ましい。
The reason for limiting the component composition of the hot-rolled section steel for crude oil tanks according to the present invention will be described.
C: 0.001 to 0.16 mass%
C is an element that increases the strength of steel, and in the present invention, in order to obtain a desired strength of YP: 315 MPa or more, it is necessary to contain 0.001 mass% or more. However, the content exceeding 0.16 mass% decreases the weldability and the toughness of the heat affected zone. Therefore, C is in the range of 0.001 to 0.16 mass%. In order to combine both properties of strength and toughness, a range of 0.01 to 0.15 mass% is preferable.

Si:0.01〜1.5mass%
Siは、通常、脱酸剤として添加されるが、鋼の強度を高める元素でもあり、本発明では0.01mass%以上の含有を必要とする。しかし、1.5mass%を超える添加は、鋼の靭性を低下させる。よって、Siは0.01〜1.5mass%の範囲とする。なお、Siは、酸性環境下で、防食皮膜を形成して耐食性を向上する効果がある。この効果を得るためには、0.2〜1.5mass%の範囲が好ましい。
Si: 0.01-1.5 mass%
Si is usually added as a deoxidizer, but is also an element that enhances the strength of steel. In the present invention, it is necessary to contain 0.01 mass% or more. However, addition exceeding 1.5 mass% reduces the toughness of the steel. Therefore, Si is set to a range of 0.01 to 1.5 mass%. Si has the effect of improving the corrosion resistance by forming an anticorrosion film in an acidic environment. In order to acquire this effect, the range of 0.2-1.5 mass% is preferable.

Mn:0.1〜2.5mass%
Mnは、鋼材の強度を高める元素であり、本発明では、所望の強度を得るために、0.1mass%以上添加する。しかし、2.5mass%を超える添加は、鋼の靭性および溶接性を低下させる。このため、Mnは0.1〜2.5mass%の範囲で添加する。なお、強度の確保および耐食性を劣化させる介在物の形成を抑制する観点からは、0.5〜1.6mass%の範囲が好ましく、より好ましくは0.8〜1.4mass%である。
Mn: 0.1 to 2.5 mass%
Mn is an element that increases the strength of the steel material, and in the present invention, 0.1 mass% or more is added in order to obtain a desired strength. However, addition exceeding 2.5 mass% decreases the toughness and weldability of the steel. For this reason, Mn is added in the range of 0.1 to 2.5 mass%. In addition, from the viewpoint of ensuring the strength and suppressing the formation of inclusions that deteriorate the corrosion resistance, the range of 0.5 to 1.6 mass% is preferable, and more preferably 0.8 to 1.4 mass%.

P:0.025mass%以下
Pは、結晶粒界に偏析して、鋼の靭性を低下させる有害な元素であり、できるだけ低減するのが望ましい。特に、Pは0.025mass%を超えて含有すると、靭性が大きく低下するので、0.025mass%以下とする。なお、0.005mass%未満への低減は、製造コストの上昇を招くので、Pの下限は0.005mass%程度とするのが好ましい。
P: 0.025 mass% or less P is a harmful element that segregates at the grain boundaries and lowers the toughness of the steel, and is desirably reduced as much as possible. In particular, if P is contained in excess of 0.025 mass%, the toughness is greatly reduced, so the content is set to 0.025 mass% or less. In addition, since the reduction to less than 0.005 mass% causes an increase in manufacturing cost, the lower limit of P is preferably about 0.005 mass%.

S:0.01mass%以下
Sは、Mnと結合して非金属介在物であるMnSを形成し、局部腐食の起点になって耐局部腐食性を低下させる有害な元素であり、できるだけ低減するのが望ましい。特に、Sの0.01mass%を超える含有は、耐局部腐食性の顕著な低下を招くので、上限は0.01mass%とする。なお、Sの0.002mass%未満への低減は、製造コストの上昇を招くので、下限は0.002mass%程度とするのが好ましい。
S: 0.01 mass% or less S is a harmful element that combines with Mn to form MnS, which is a non-metallic inclusion, and is a starting point for local corrosion and reduces local corrosion resistance. Is desirable. In particular, when the content of S exceeds 0.01 mass%, the local corrosion resistance is remarkably lowered, so the upper limit is made 0.01 mass%. In addition, since the reduction to less than 0.002 mass% of S causes an increase in manufacturing cost, the lower limit is preferably about 0.002 mass%.

Al:0.005〜0.1mass%
Alは、脱酸剤として添加される元素であり、本発明では0.005mass%以上添加する。しかし、Alは0.1mass%を超えて添加すると、鋼の靭性を低下させるので、上限は0.1mass%とする。好ましくは、0.01〜0.05mass%の範囲である。
Al: 0.005 to 0.1 mass%
Al is an element added as a deoxidizer, and 0.005 mass% or more is added in the present invention. However, if Al is added in excess of 0.1 mass%, the toughness of the steel is lowered, so the upper limit is made 0.1 mass%. Preferably, it is the range of 0.01-0.05 mass%.

N:0.001〜0.008mass%
Nは、靭性を低下させる元素であり、できる限り低減するのが好ましい。特に、Nを0.008mass%を超えて含有すると、靭性の低下が大きくなるので、上限は0.008mass%とする。しかし、工業的には、0.001mass%未満に低減するのは困難である。よって、Nは、0.001〜0.008mass%の範囲とする。
N: 0.001 to 0.008 mass%
N is an element that lowers toughness, and is preferably reduced as much as possible. In particular, when N is contained in excess of 0.008 mass%, the decrease in toughness increases, so the upper limit is made 0.008 mass%. However, industrially, it is difficult to reduce it to less than 0.001 mass%. Therefore, N is set to a range of 0.001 to 0.008 mass%.

W:0.001〜0.5mass%
Wは、本発明においては、耐食性向上に必須の重要な元素である。Wを添加することによって、腐食環境で形成されるWO 2−イオンが、塩化物イオン等の陰イオンに対するバリア効果を発揮するとともに、不溶性のFeWOを形成して腐食の進行を抑制する。さらに、鋼板表面に形成される錆層は、Wを含むことにより非常に緻密化される。Wの添加は、このような化学的および物理的な作用によって、HSおよびClの存在する腐食環境における全面腐食の進行および局部腐食の成長を抑制する。そのため、耐局部腐食性と耐全面腐食性に優れる原油タンク用鋼材が得られるのである。
さらに、本発明の鋼材の表面に、Zn含有プライマー(ジンクプライマー)を塗布した場合には、Wを含む緻密化した錆層中に、プライマー中のZnが取り込まれて、Feを中心としたWやZnの複合酸化物を形成し、長期間に亘って鋼板表面にZnを存続させることができる。そのため、Wを含まない鋼材と比較して、局部腐食の発生を長期間に亘り抑制することができる。
上記のようなWの耐食性向上効果は、0.001mass%よりも少ないと十分に発現せず、一方、0.5mass%を超えると、その効果が飽和するとともに、コスト上昇を招く。よって、本発明においては、Wは0.001〜0.5mass%の範囲とする。
W: 0.001 to 0.5 mass%
In the present invention, W is an important element essential for improving corrosion resistance. By adding W, WO 4 2− ions formed in a corrosive environment exert a barrier effect against anions such as chloride ions, and form insoluble FeWO 4 to suppress the progress of corrosion. Furthermore, the rust layer formed on the steel plate surface is very densified by containing W. The addition of W suppresses the progress of general corrosion and the growth of local corrosion in a corrosive environment in which H 2 S and Cl are present due to such chemical and physical effects. Therefore, the steel material for crude oil tanks excellent in local corrosion resistance and overall corrosion resistance can be obtained.
Further, when a Zn-containing primer (zinc primer) is applied to the surface of the steel material of the present invention, Zn in the primer is taken into the densified rust layer containing W, and W centered on Fe. Zn composite oxide can be formed, and Zn can be kept on the steel sheet surface for a long period of time. Therefore, compared with the steel material which does not contain W, generation | occurrence | production of local corrosion can be suppressed over a long period of time.
The effect of improving the corrosion resistance of W as described above is not sufficiently exhibited when the content is less than 0.001 mass%. On the other hand, when the content exceeds 0.5 mass%, the effect is saturated and the cost is increased. Therefore, in the present invention, W is in the range of 0.001 to 0.5 mass%.

Cr:0.06mass%以上0.20mass%未満
Crは、腐食が進行するのに伴い、錆層中に移行してClの錆層への侵入を遮断して、錆層と地鉄の界面におけるClの濃縮を抑制する。また、Zn含有プライマーを塗布した場合には、Feを中心としたCrやZnの複合酸化物を形成することにより、長期間に亘り、鋼板表面にZnを存続させることができる。その結果、Crを含まない鋼材と比較して、局部腐食の発生を長時間に亘り抑制することができる。しかし、この効果は、0.06mass%よりも少ないと十分に得られず、一方、0.20mass%以上では、溶接部靭性を劣化させる。よって、Crは0.06mass%以上0.20mass%未満の範囲とする。
Cr: 0.06 mass% or more 0.20mass less% Cr, the corrosion is due to the progress, the process moves to rust layer Cl - by blocking the entry into the rust layer, the interface between the rust layer and base iron suppressing concentration - Cl in. In addition, when a Zn-containing primer is applied, by forming a complex oxide of Cr or Zn centering on Fe, Zn can be kept on the steel sheet surface for a long period of time. As a result, it is possible to suppress the occurrence of local corrosion for a long time as compared with a steel material not containing Cr. However, if this effect is less than 0.06 mass%, the effect cannot be obtained sufficiently, while if it is 0.20 mass% or more, the weld zone toughness is deteriorated. Therefore, Cr is made into the range of 0.06 mass% or more and less than 0.20 mass%.

本発明の熱間圧延形鋼は、上記基本成分の他に、さらに、耐食性の向上を図るために、Sn,SbおよびMoのうちから選ばれる1種または2種以上を、下記の範囲で含有することができる。
Sn:0.005〜0.3mass%
Snは、WとCrとの複合効果によって、形成された緻密な錆層の耐酸性を向上し、腐食を抑制する作用がある。しかし、0.005mass%未満の添加では、上記効果は得られず、一方、0.3mass%を超える添加は、熱間加工性および靭性の低下を招く。よって、Snは、0.005〜0.3mass%の範囲で添加するのが好ましい。
In addition to the above basic components, the hot rolled steel of the present invention further contains one or more selected from Sn, Sb and Mo in the following range in order to improve corrosion resistance. can do.
Sn: 0.005-0.3 mass%
Sn has the effect of suppressing the corrosion by improving the acid resistance of the dense rust layer formed by the combined effect of W and Cr. However, when the amount is less than 0.005 mass%, the above effect cannot be obtained. On the other hand, when the amount exceeds 0.3 mass%, hot workability and toughness are deteriorated. Therefore, it is preferable to add Sn in the range of 0.005 to 0.3 mass%.

Sb:0.005〜0.3mass%
Sbは、Snと同様、WとCrとの複合効果によって、形成された緻密な錆層の耐酸性を向上し、腐食を抑制する作用がある。しかし、0.005mass%未満の添加では、上記効果が得られず、一方、0.3mass%を超える添加は、上記効果が飽和するととともに加工性を低下させる。よって、Sbは0.005〜0.3mass%の範囲で添加するのが好ましい。
Sb: 0.005 to 0.3 mass%
Similar to Sn, Sb improves the acid resistance of the dense rust layer formed and suppresses corrosion by the combined effect of W and Cr. However, when the addition is less than 0.005 mass%, the above effect cannot be obtained. On the other hand, when the addition exceeds 0.3 mass%, the above effect is saturated and the workability is lowered. Therefore, Sb is preferably added in the range of 0.005 to 0.3 mass%.

Mo:0.001〜0.5mass%
Moは、WやCrと共に添加した場合には、耐全面腐食性および耐局部腐食性を向上すると共に、W,CrとSnおよび/またはSbとの複合効果によって、緻密な錆層の形成を促進し、さらに耐食性を向上する作用がある。上記効果は、0.001mass%以上の添加で得られるが、0.5mass%を超えると、その効果が飽和するとともにコストの上昇を招く。よって、Moを添加する場合は、0.001〜0.5mass%の範囲が好ましい。
Mo: 0.001 to 0.5 mass%
When Mo is added together with W or Cr, it improves overall corrosion resistance and local corrosion resistance, and promotes the formation of a dense rust layer by the combined effect of W, Cr and Sn and / or Sb. In addition, it has the effect of improving the corrosion resistance. The above effect can be obtained by adding 0.001 mass% or more. However, if it exceeds 0.5 mass%, the effect is saturated and the cost is increased. Therefore, when adding Mo, the range of 0.001-0.5 mass% is preferable.

本発明の熱間圧延形鋼は、上記成分に加えてさらに、鋼強度の向上を目的として、Nb,V,TiおよびBのうちから選ばれる1種または2種以上を、下記の範囲で添加することができる。
Nb:0.001〜0.1mass%
Nbは、鋼の強度向上を目的として添加する元素である。0.001mass%未満ではその効果が小さく、一方、0.1mass%超えでは、靭性が低下する。よって、Nbを添加する場合は、0.001〜0.1mass%の範囲とするのが好ましい。
In addition to the above components, the hot rolled steel of the present invention is further added with one or more selected from Nb, V, Ti and B within the following range for the purpose of improving the steel strength. can do.
Nb: 0.001 to 0.1 mass%
Nb is an element added for the purpose of improving the strength of steel. If it is less than 0.001 mass%, the effect is small, while if it exceeds 0.1 mass%, the toughness decreases. Therefore, when adding Nb, it is preferable to set it as the range of 0.001-0.1 mass%.

V:0.002〜0.1mass%
Vは、鋼の強度向上を目的として添加する元素である。0.002mass%未満では強度向上効果が小さく、一方、0.1mass%超えでは、靭性が低下する。よって、Vを添加する場合は、0.002〜0.1mass%の範囲とするのが好ましい。
V: 0.002-0.1 mass%
V is an element added for the purpose of improving the strength of steel. If it is less than 0.002 mass%, the effect of improving the strength is small, whereas if it exceeds 0.1 mass%, the toughness is lowered. Therefore, when adding V, it is preferable to set it as the range of 0.002-0.1 mass%.

Ti:0.001〜0.1mass%
Tiは、鋼の強度および靭性の向上を目的として添加する元素である。0.001mass%未満では上記効果が小さく、一方、0.1mass%を超えると、その効果が飽和する。よって、Tiを添加する場合は、0.001〜0.1mass%の範囲とするのが好ましい。
Ti: 0.001 to 0.1 mass%
Ti is an element added for the purpose of improving the strength and toughness of steel. If the amount is less than 0.001 mass%, the above effect is small. On the other hand, if it exceeds 0.1 mass%, the effect is saturated. Therefore, when adding Ti, it is preferable to set it as the range of 0.001-0.1 mass%.

B:0.01mass%以下
Bは、鋼の強度向上を目的として添加する元素である。しかし、Bを0.01mass%超え添加すると、靭性が低下する。したがって、Bを添加する場合は、0.01mass%以下とするのが好ましい。なお、上記目的でBを添加する場合は、0.0003mass%以上添加するのが好ましい。
B: 0.01 mass% or less B is an element added for the purpose of improving the strength of steel. However, when B is added in an amount exceeding 0.01 mass%, the toughness decreases. Therefore, when adding B, it is preferable to set it as 0.01 mass% or less. In addition, when adding B for the said objective, it is preferable to add 0.0003 mass% or more.

本発明の熱間圧延形鋼は、上記成分に加えてさらに、延性および靭性の向上を目的として、CaおよびREMのうちから選ばれる1種または2種を、下記範囲で含有することができる。
Ca:0.0002〜0.005mass%
Caは、介在物の形態制御を介して鋼の延性および靭性を向上させる作用がある。しかし、Caは、含有量が0.0002mass%未満ではその効果がなく、一方、0.005mass%を超えると靭性の低下を招く。よって、Caを添加する場合には、0.0002〜0.005mass%の範囲とするのが好ましい。
In addition to the above components, the hot rolled steel of the present invention can further contain one or two selected from Ca and REM in the following range for the purpose of improving ductility and toughness.
Ca: 0.0002 to 0.005 mass%
Ca has the effect | action which improves the ductility and toughness of steel through the form control of an inclusion. However, when Ca content is less than 0.0002 mass%, the effect is not obtained. On the other hand, when Ca content exceeds 0.005 mass%, the toughness is reduced. Therefore, when adding Ca, it is preferable to set it as the range of 0.0002-0.005 mass%.

REM:0.0005〜0.015mass%
REMは、介在物の形態制御を介して延性および靭性を向上させる作用がある。しかし、REMは、0.0005mass%未満ではその効果が小さく、一方、0.015mass%超えでは靭性が低下する。よって、REMを添加する場合は、0.0005〜0.015mass%の範囲が好ましい。
REM: 0.0005 to 0.015 mass%
REM has the effect | action which improves ductility and toughness through the form control of an inclusion. However, when REM is less than 0.0005 mass%, the effect is small, whereas when it exceeds 0.015 mass%, the toughness decreases. Therefore, when adding REM, the range of 0.0005-0.015 mass% is preferable.

本発明の熱間圧延形鋼は、上記成分以外の残部は、Feおよび不可避的不純物である。ただし、本発明の作用効果を害さない範囲であれば、上記以外の成分を含むことを拒むものではなく、例えば、Oは0.008mass%以下、Cuは0.05mass%以下、Niは0.05mass%以下であれば許容できる。すなわち、Cuは、硫化水素を含む腐食環境では、全面腐食性の向上に寄与するとされているが、耐局部腐食性の向上効果が限定的であるばかりでなく、熱間加工性の著しい低下を招くので、本発明では積極的には添加しない。しかし、不可避的不純物として0.05mass%以下であれば含有してもよい。また、Niは、耐全面腐食性および耐局部腐食性の向上作用は認められず、コスト上昇要因となるだけなので本発明鋼では積極的には添加しないが、不可避的不純物として0.05mass%以下であれば含有してもよい。   In the hot rolled shape steel of the present invention, the balance other than the above components is Fe and inevitable impurities. However, as long as the effects of the present invention are not impaired, it does not refuse to contain components other than those described above. For example, O is 0.008 mass% or less, Cu is 0.05 mass% or less, and Ni is 0.00. If it is 05 mass% or less, it is permissible. That is, Cu is said to contribute to the improvement of overall corrosion in a corrosive environment containing hydrogen sulfide, but not only the effect of improving local corrosion resistance is limited, but also a significant decrease in hot workability. Therefore, it is not actively added in the present invention. However, as long as it is 0.05 mass% or less as an unavoidable impurity, you may contain. In addition, Ni does not improve the overall corrosion resistance and local corrosion resistance, and only increases costs, so it is not actively added to the steel of the present invention, but 0.05 mass% or less as an unavoidable impurity. If it is, you may contain.

次に、本発明に係る高強度で耐食性に優れる原油タンク用熱間圧延形鋼が有すべきミクロ組織について説明する。
船舶用鋼板、とりわけ、降伏応力YPが315MPa以上の高強度厚鋼板では、一般に、炭素当量を低く制御して高い溶接性を付与した鋼素材を、制御圧延と制御冷却を組み合わせたTMCPを採用し鋼板組織中に第2相として硬質のベイナイトを導入することで高強度化を達成している。そして、低温靭性が求められる場合や、厚肉化への要求に対しては、上記制御圧延および制御冷却の条件を最適化することで対応している。したがって、この場合、鋼板のミクロ組織は、通常、フェライト+ベイナイト組織である。
Next, the microstructure that the hot rolled steel for crude oil tanks having high strength and excellent corrosion resistance according to the present invention should be described.
For steel plates for ships, especially high-strength thick steel plates with a yield stress YP of 315 MPa or higher, TMCP, which combines controlled rolling and controlled cooling, is generally used for steel materials that have been provided with high weldability by controlling the carbon equivalent low. High strength is achieved by introducing hard bainite as the second phase in the steel sheet structure. And the case where low temperature toughness is calculated | required and the request | requirement to thickening respond | correspond by optimizing the conditions of the said controlled rolling and controlled cooling. Therefore, in this case, the microstructure of the steel sheet is usually a ferrite + bainite structure.

一方、熱間圧延形鋼の場合、短辺と長辺の幅や厚さが異なる場合が多く、例えば、断面が矩形ではない不等辺不等厚山形鋼の場合には、必然的に圧延時や冷却時に温度の不均一が生ずる。特に、制御冷却(加速冷却)を適用した強度調整では、残留応力が不均一となり、ねじれや曲がり、反りを誘発し、寸法精度の低下を招くため、圧延後の形状矯正負荷が増大する。そのため、第2相として硬質のベイナイト組織を導入して高強度化するこの方法を熱間圧延形鋼に適用することは難しい。このことは、T形鋼など他の熱間圧延形鋼全般にいえることである。   On the other hand, in the case of hot-rolled section steel, the width and thickness of the short side and long side are often different. And non-uniform temperature during cooling. In particular, in the strength adjustment using controlled cooling (accelerated cooling), the residual stress becomes non-uniform, causing twisting, bending, warping, and a decrease in dimensional accuracy, resulting in an increase in shape correction load after rolling. Therefore, it is difficult to apply this method of increasing the strength by introducing a hard bainite structure as the second phase to the hot rolled shape steel. This is true for other hot rolled steel shapes such as T-shape steel in general.

したがって、船舶用形鋼において、圧延後の加速冷却を行うことなく、降伏応力YP:315MPa以上、好ましくはさらに引張強さTS:440MPa以上の高強度を達成することが求められる。このためには、通常の熱間圧延組織であるフェライト+パーライト組織で高強度化を図る必要がある。フェライト+パーライト組織で高強度化を実現する手段としては、第2相のパーライト分率を増やす方法、フェライト組織を細粒化する方法、フェライトを固溶強化や析出強化して硬くする方法、あるいは(γ+α)2相域で熱間圧延してフェライトの一部を加工フェライトとする方法等が考えられる。   Therefore, it is required to achieve high strength of yield stress YP: 315 MPa or higher, preferably tensile strength TS: 440 MPa or higher, without performing accelerated cooling after rolling in marine shaped steel. For this purpose, it is necessary to increase the strength with a ferrite + pearlite structure which is a normal hot rolled structure. As a means to achieve high strength in the ferrite + pearlite structure, a method of increasing the pearlite fraction of the second phase, a method of refining the ferrite structure, a method of hardening the ferrite by solid solution strengthening or precipitation strengthening, or A method in which a part of ferrite is processed into ferrite by hot rolling in a (γ + α) two-phase region is conceivable.

上記方法のうち、フェライトを細粒化する方法は、YPを上昇させるには有効な手段であるが、TSの上昇が小さいため、この方法のみでは十分な高強度化は図れない。また、パーライト分率を増加する方法は、Cを多量に添加する必要がある。しかし、Cの過度な添加は、溶接性の低下を招くため好ましくない。また、固溶強化元素や析出強化元素を添加してフェライトを強化する方法は、合金元素の多量の添加により溶接性の低下を招いたり、素材コストの上昇を招いたりする。一方、加工フェライトを活用する方法は、Cや合金元素の添加を最小限に抑制し、溶接性を維持した状態で、YPおよびTSを上昇させることができる。すなわち、加工フェライトを利用する方法は、熱間圧延後、制御冷却(加速冷却)することなく高強度化を図ることができるので、形鋼製造時の固有の問題である圧延、冷却時の曲がりや反りの発生を抑えながら、高強度化することが可能である。そこで、本発明においては、原油タンク用熱間圧延形鋼の高強度化手段として、鋼のミクロ組織を、加工フェライトを含むフェライト+パーライト組織とする方法を採用することとした。   Of the above methods, the method of refining ferrite is an effective means for increasing YP. However, since the increase in TS is small, sufficient strength cannot be achieved by this method alone. Further, the method for increasing the pearlite fraction requires the addition of a large amount of C. However, excessive addition of C is not preferable because it causes a decrease in weldability. In addition, the method of strengthening ferrite by adding a solid solution strengthening element or a precipitation strengthening element causes a decrease in weldability or an increase in material cost due to the addition of a large amount of alloy elements. On the other hand, the method of utilizing processed ferrite can increase YP and TS in a state where the addition of C and alloy elements is minimized and weldability is maintained. In other words, the method using processed ferrite can increase the strength after hot rolling without controlled cooling (accelerated cooling). It is possible to increase the strength while suppressing the occurrence of warping. Therefore, in the present invention, as a means for increasing the strength of the hot rolled steel for crude oil tanks, a method is adopted in which the microstructure of the steel is made of ferrite containing processed ferrite + pearlite structure.

上記加工フェライトは、面積率にして鋼組織全体の10%以上であることが必要である。加工フェライトが10%未満では、鋼の強化が十分に得られない。なお、上限は特に規定しないが、70%超えでは、強度上昇が飽和すると共に、(α+γ)の2相域圧延時の荷重増大に伴うロール割損リスクが増加するため、上限は70%とするのが好ましい。ここで、上記加工フェライトとは、Ar変態点以下の(α+γ)2相域での熱間圧延によって形成された転位密度の高いフェライトのことであり、その分率は、扁平化した加工フェライトをトレースし、ミクロ組織中に占める面積を画像解析して定量化し、その分率を測定することで得られる。ミクロ組織の測定位置は、最も板厚の厚い部位における板厚1/4部が好ましい。残部は、フェライト(加工フェライト以外)およびパーライト組織である。パーライト組織は、面積率で20%以下であることが好ましい。なお、フェライト・パーライト以外の組織、例えばベイナイト等は、面積率で20%以下存在してもよい。 The processed ferrite needs to be 10% or more of the entire steel structure in terms of area ratio. If the processed ferrite is less than 10%, the steel cannot be sufficiently strengthened. The upper limit is not particularly specified, but if it exceeds 70%, the increase in strength is saturated and the risk of roll breakage accompanying an increase in load during two-phase rolling of (α + γ) increases, so the upper limit is set to 70%. Is preferred. Here, the processed ferrite is ferrite having a high dislocation density formed by hot rolling in the (α + γ) two-phase region below the Ar 3 transformation point, and the fraction is flattened processed ferrite. The area occupied in the microstructure is image-analyzed and quantified, and the fraction is measured. The measurement position of the microstructure is preferably a ¼ part thickness at the thickest part. The balance is ferrite (other than processed ferrite) and pearlite structure. The pearlite structure is preferably 20% or less in terms of area ratio. Note that a structure other than ferrite and pearlite, such as bainite, may be present in an area ratio of 20% or less.

次に、上記加工フェライトを含むフェライト+パーライト組織を有する原油タンク用熱間圧延形鋼を製造する方法について説明する。
本発明の原油タンク用熱間圧延形鋼の製造に当たっては、先ず、上記した成分組成を有する鋼を転炉、電気炉等通常公知の方法で溶製し、連続鋳造法、造塊法等通常公知の方法でスラブやブルーム、ビレット等の鋼素材とするのが好ましい。なお、溶製後、取鍋精錬や真空脱ガス等の処理を付加しても良い。
Next, a method for producing a hot rolled steel for a crude oil tank having a ferrite + pearlite structure containing the processed ferrite will be described.
In the production of the hot rolled steel for crude oil tank of the present invention, first, steel having the above component composition is melted by a generally known method such as a converter, an electric furnace, etc. It is preferable to use a steel material such as slab, bloom or billet by a known method. In addition, after melting, treatment such as ladle refining or vacuum degassing may be added.

次いで、上記鋼素材を、加熱炉に装入して再加熱後、熱間圧延して所望の寸法、所望のミクロ組織および機械的特性を有する原油タンク用形鋼とする。この際、鋼素材の再加熱温度は1000〜1350℃の範囲とする必要がある。加熱温度が1000℃未満では変形抵抗が大きく、熱間圧延が難しくなる。一方、1350℃を超える加熱は、表面痕の発生原因となったり、スケールロスや燃料原単位が増加したりする。好ましくは、1100〜1300℃の範囲である。   Next, the steel material is charged into a heating furnace, reheated, and hot-rolled to obtain a crude steel tank shape having desired dimensions, desired microstructure and mechanical properties. At this time, the reheating temperature of the steel material needs to be in the range of 1000 to 1350 ° C. When the heating temperature is less than 1000 ° C., the deformation resistance is large and hot rolling becomes difficult. On the other hand, heating exceeding 1350 ° C. causes generation of surface marks, or increases scale loss and fuel consumption rate. Preferably, it is the range of 1100-1300 degreeC.

続く熱間圧延は、Ar変態点以下での累積圧下率を10〜80%とする必要がある。圧延温度がAr変態点以上では、鋼のミクロ組織が加工フェライトを含まないものとなり、必要な強度、靭性を確保することができない。同様に、Ar変態点以下での累積圧下率が10%未満では、加工フェライトの生成量が少ないため、強靭化効果が小さい。逆に、80%を超える圧下率になると、圧延荷重が増大して圧延が困難となったり、圧延のパス回数が増えて生産性の低下を招いたりする。よって、Ar変態点以下での累積圧下率は10〜80%とする。好ましくは、10〜60%の範囲である。なお、Ar変態点以下での圧延は、少なくとも1パス以上行えばよく、複数パスとなっても構わない。ここで、Ar変態点以下での累積圧下率とは、Ar変態点における圧延材の断面積(A)に対する圧延終了後の圧延材の断面積(B)の断面減面率のことを指し、以下の式で表される。
(Ar変態点以下での累積圧下率〔%〕)=100×(A−B)/A
In the subsequent hot rolling, it is necessary to set the cumulative rolling reduction below the Ar 3 transformation point to 10 to 80%. If the rolling temperature is not lower than the Ar 3 transformation point, the microstructure of the steel does not contain processed ferrite, and the required strength and toughness cannot be ensured. Similarly, when the cumulative rolling reduction below the Ar 3 transformation point is less than 10%, the toughening effect is small because the amount of processed ferrite produced is small. Conversely, when the rolling reduction exceeds 80%, the rolling load increases and rolling becomes difficult, or the number of rolling passes increases, leading to a decrease in productivity. Therefore, the cumulative rolling reduction below the Ar 3 transformation point is 10 to 80%. Preferably, it is 10 to 60% of range. Note that the rolling below the Ar 3 transformation point may be performed at least one pass or more, and may be a plurality of passes. Here, the cumulative reduction ratio below the Ar 3 transformation point refers to the cross-sectional area reduction ratio of the cross-sectional area (B) of the rolled material after rolling with respect to the cross-sectional area (A) of the rolled material at the Ar 3 transformation point. It is expressed by the following formula.
(Cumulative rolling reduction [Ar] below Ar 3 transformation point) = 100 × (A−B) / A

また、上記熱間圧延は、圧延仕上温度を(Ar変態点−30℃)〜(Ar変態点−180℃)とする条件で行う必要がある。圧延仕上温度が、(Ar変態点−30℃)超えでは、2相域圧延による転位密度の高い加工フェライト導入による強靭化効果が十分に得られず、一方、(Ar変態点−180℃)未満では、変形抵抗の増大により圧延荷重が増加し、圧延することが困難となるからである。 Further, the hot rolling must be performed under conditions in which the rolling finishing temperature and (Ar 3 transformation point -30 ℃) ~ (Ar 3 transformation point -180 ° C.). When the rolling finishing temperature exceeds (Ar 3 transformation point −30 ° C.), the effect of toughening due to the introduction of processed ferrite having a high dislocation density by two-phase rolling cannot be obtained sufficiently, while (Ar 3 transformation point −180 ° C.). This is because the rolling load increases due to an increase in deformation resistance, and it becomes difficult to perform rolling.

さらに、上記熱間圧延は、Ar変態点以下での圧延を行う前に、圧延途中の形鋼の部位(長辺、短辺、ウエブ、フランジなど)による温度差(すなわち、圧延途中の熱間圧延形鋼素材全体における温度差)を50℃以内としておくことが好ましい。例えば、長辺と短辺とで肉厚に差のある不等辺不等厚山形鋼については、肉厚の薄い長辺側よりも肉厚の厚い短辺側を圧延機の前後で水冷して、長辺側と短辺側の温度差を50℃以内に抑えておくことが好ましい。温度差が50℃を超えると、短辺側と長辺側の強度、靭性特性のばらつきが大きくなるばかりでなく、圧延後の冷却工程での曲がりや反りが大きくなり、矯正に要する負担が大きくなって生産性を低下させる。なお、形鋼の各部位の温度差は、圧延途中の形鋼のほぼ同じ断面位置(長手位置)における各部位(ウエブ、フランジなど)の表面温度を放射温度計で測定し、得られた最高温度と最低温度の差より求める。 Further, the above hot rolling is performed before the rolling at an Ar 3 transformation point or less, and a temperature difference (that is, heat during rolling) due to a portion of the shape steel (long side, short side, web, flange, etc.) during rolling. It is preferable that the temperature difference in the entire hot-rolled section steel material is within 50 ° C. For example, for an unequal side unequal thick angle steel that has a difference in wall thickness between the long side and the short side, water-cool the thick side of the short side before and after the rolling mill. The temperature difference between the long side and the short side is preferably kept within 50 ° C. If the temperature difference exceeds 50 ° C, not only will the strength and toughness characteristics vary between the short side and the long side, but also bending and warping will increase in the cooling process after rolling, and the burden required for correction will be large. And reduce productivity. The temperature difference of each part of the shape steel is the highest obtained by measuring the surface temperature of each part (web, flange, etc.) at the same cross-sectional position (longitudinal position) of the shape steel during rolling with a radiation thermometer. Obtained from the difference between temperature and minimum temperature.

形鋼の各部位(例えば、短辺側と長辺側)の温度差を50℃以内に抑える手段としては、粗圧延機の前後に配置された冷却設備を用いて制御する方法が好ましい。具体的には、上記冷却設備により、肉厚の厚い短辺側を重点的に水冷し温度差を解消する方法が好ましい。この際の水冷は、圧延機前後の前面のみ、後面のみあるいは、前後の両方で行ってもよく、また、熱間圧延する形鋼の寸法や要求精度に応じて、複数回に分けて行ってもよい。なお、水冷の際の水量密度は、1m/m・min以上であることが好ましい。 As a means for suppressing the temperature difference between each part of the shape steel (for example, the short side and the long side) within 50 ° C., a method of controlling using cooling equipment disposed before and after the roughing mill is preferable. Specifically, a method of eliminating the temperature difference by intensively water-cooling the thicker short side with the cooling facility is preferable. Water cooling at this time may be performed only on the front and back of the rolling mill, only on the rear surface, or both on the front and back, and may be performed in multiple times depending on the dimensions and required accuracy of the shape steel to be hot rolled. Also good. The water density at the time of water cooling is preferably 1 m 3 / m 2 · min or more.

熱間圧延に続く冷却は、空冷(放冷)とする。これにより、圧延後の冷却不均一から生じる曲がりや反りといった形状変化を低減することができ、圧延後の製品に対する矯正負担を軽減することができる。放冷の際の冷却速度は、板厚にもよるが、0.4〜1.0℃/s程度である。上記冷却速度の範囲内で冷却を加減速する措置(強制冷却、保温など)を施すことは、実質的に放冷と同じなので、特にこれを除外しない。   Cooling subsequent to hot rolling is air cooling (cooling). Thereby, shape changes such as bending and warping caused by uneven cooling after rolling can be reduced, and the correction burden on the product after rolling can be reduced. The cooling rate during cooling is about 0.4 to 1.0 ° C./s, although it depends on the plate thickness. Applying measures for accelerating / decelerating the cooling within the range of the cooling rate (forced cooling, heat retention, etc.) is substantially the same as that for cooling, so this is not particularly excluded.

上記のようにして得た本発明の熱間圧延形鋼は、原油タンク用熱間圧延形鋼として使用する場合、Znを含むプライマーを塗布することにより、耐局部腐食性および耐全面腐食性を大きく向上させることができる。一般に、鋼材は、その表面にショットブラスト処理を施してから、プライマー塗装されるが、鋼材の表面全体を均一に覆うためには、ある一定以上の塗膜厚さが必要であり、耐局部腐食性および耐全面腐食性を向上させるためには、Znを含むプライマーの塗布する厚さを5μm以上とするのが好ましい。なお、耐局部腐食性および耐全面腐食性を改善するという観点からは、塗布量の上限に制限はないが、プライマーが厚くなり過ぎると、切断性、溶接性および経済性が悪くなるため、上限は100μm程度とするのが好ましい。   When the hot-rolled section steel of the present invention obtained as described above is used as a hot-rolled section steel for crude oil tanks, by applying a primer containing Zn, local corrosion resistance and overall corrosion resistance are improved. It can be greatly improved. Generally, steel is shot-blasted on the surface and then primer-coated. However, in order to cover the entire surface of the steel uniformly, a certain coating thickness is required and local corrosion resistance is required. In order to improve the property and overall corrosion resistance, it is preferable that the thickness of the primer containing Zn is 5 μm or more. From the viewpoint of improving local corrosion resistance and overall corrosion resistance, the upper limit of the coating amount is not limited, but if the primer becomes too thick, the cutting performance, weldability and economic efficiency will deteriorate, so the upper limit Is preferably about 100 μm.

表1に示した成分組成を有する鋼を真空溶解炉または転炉で溶製してブルームとし、このブルームを加熱炉に装入して表2−1,2に示した温度に加熱後、熱間圧延し、同表に示した断面寸法の不等辺不等厚山形鋼(NAB)および圧延T形鋼を製造した。なお、表2−1,2において、不等辺不等厚山形鋼(NAB)については、長辺側をウエブ、短辺側をフランジとして示している。不等辺不等厚山形鋼については短辺側から、T形鋼についてはフランジからJIS1A号引張試験片を採取し、引張特性(降伏応力YP,引張強さTS,伸びEl)を測定した。また、不等辺不等厚山形鋼については短辺を、T形鋼についてはフランジを20kJ/cmの入熱で突合せ多層盛り溶接(GMAW)したHAZ中央部のそれぞれからシャルピー衝撃試験片(2mmVノッチ試験片)を採取し、−20℃におけるシャルピー衝撃試験の吸収エネルギーを測定した。また、不等辺不等厚山形鋼については短辺から、T形鋼についてはフランジから組織観察用の試料を採取し、板厚1/4部の組織を顕微鏡で倍率200倍にて観察し、2相域圧延で生成した扁平化した加工フェライトをトレースし、ミクロ組織中に占める面積を画像解析により定量化し、加工フェライトの面積率を求めた。なお、加工フェライトを有する鋼(圧延No.1E以外)において、加工フェライト以外の主要な相は、パーライト(圧延No.1G以外)あるいはベイナイト(圧延No.1G以外)と熱間圧延終了後に生成した非加工フェライトであった。なお、本発明例においては、パーライトは、面積率で3〜20%存在した。   Steel having the composition shown in Table 1 is melted in a vacuum melting furnace or converter to form a bloom, and this bloom is charged into a heating furnace and heated to the temperatures shown in Tables 2-1 and 2, and then heated. Rolling was performed to produce unequal side unequal thick angle steel (NAB) and rolled T-section steel having the cross-sectional dimensions shown in the same table. In Tables 2-1 and 2, for the unequal side unequal thick angle steel (NAB), the long side is shown as the web and the short side is shown as the flange. JIS1A tensile test specimens were taken from the short side for unequal side unequal thickness angle steel and from the flange for T-section steel, and tensile properties (yield stress YP, tensile strength TS, elongation El) were measured. In addition, Charpy impact test pieces (2 mmV notch) are formed from the center of HAZ where the short side is used for unequal sides and unequal thickness angle steel, and the flange for T-type steel is butt multi-layer welded (GMAW) with a heat input of 20 kJ / cm. Test piece) was collected, and the absorbed energy of the Charpy impact test at −20 ° C. was measured. In addition, samples for observing the structure from the short side for the unequal side unequal thickness angle steel, from the flange for the T shape steel, and observing the structure of 1/4 part thickness with a microscope at a magnification of 200 times, The flattened processed ferrite produced by the two-phase rolling was traced, and the area occupied in the microstructure was quantified by image analysis to determine the area ratio of the processed ferrite. In addition, in steels having processed ferrite (other than rolled No. 1E), the main phases other than processed ferrite were generated after completion of hot rolling with pearlite (other than rolled No. 1G) or bainite (other than rolled No. 1G). It was unprocessed ferrite. In the examples of the present invention, pearlite was present in an area ratio of 3 to 20%.

Figure 0005320919
Figure 0005320919

Figure 0005320919
Figure 0005320919

Figure 0005320919
Figure 0005320919

表3に、上記引張試験、シャルピー衝撃試験およびミクロ組織調査の結果を示した。表3から、本発明に適合する成分組成とミクロ組織を有する熱間圧延形鋼、特に、加工フェライトを全組織に対して10%以上含むフェライト+パーライトのミクロ組織からなる形鋼では、本発明が所期した強度以上のYP:315MPa以上、TS:440MPa以上が得られており、しかも、母材および溶接部とも−20℃で34J以上の衝撃吸収エネルギーを示しており、衝撃特性に優れている。
これに対して、本発明の成分組成を満たし、ミクロ組織がフェライト+パーライトであっても、加工フェライトを含まない形鋼(圧延No.1E)あるいは加工フェライトの分率が低い形鋼(圧延No.1F)は、本発明が目的とする強度(YP:315MPa以上、TS:440MPa以上)を確保できていない。また、本発明の成分組成を満たしていても、熱間圧延後、水冷して加速冷却し、ミクロ組織をフェライト+ベイナイトとした形鋼(圧延No.1G)では、高強度ではあるものの、ねじれ、反り、曲がりなどによる形状変化が大きく、工程的に生産を行うことは難しいことがわかった。また、Ar変態点以下で熱間圧延を行う際の表面温度差が50℃を超える圧延No.1Iでも、機械的特性は問題ないものの、形鋼に反りや曲がりが発生した。
Table 3 shows the results of the tensile test, Charpy impact test, and microstructure investigation. From Table 3, the present invention is applied to a hot-rolled section steel having a component composition and microstructure suitable for the present invention, particularly a section steel having a ferrite + pearlite microstructure containing 10% or more of processed ferrite in the entire structure. YP: 315 MPa or more and TS: 440 MPa or more, which are higher than the expected strength, and the base material and the welded part show an impact absorption energy of 34 J or more at −20 ° C., and have excellent impact characteristics. Yes.
On the other hand, even if the composition of the present invention is satisfied and the microstructure is ferrite + pearlite, a section steel not containing processed ferrite (rolling No. 1E) or a section steel having a low fraction of processed ferrite (rolling No. .1F) does not ensure the intended strength (YP: 315 MPa or more, TS: 440 MPa or more). Further, even when the composition of the present invention is satisfied, the shape steel (rolling No. 1G) in which the microstructure is ferrite + bainite after hot rolling and water-cooled to accelerate cooling is twisted although it has high strength. It was found that the shape change due to warping, bending, etc. is large and it is difficult to carry out production in a process. In addition, rolling No. in which the surface temperature difference at the time of hot rolling below the Ar 3 transformation point exceeds 50 ° C. Even with 1I, although the mechanical characteristics were not a problem, the shape steel was warped and bent.

Figure 0005320919
Figure 0005320919

さらに、製造したそれぞれの熱間圧延形鋼について、不等辺不等厚山形鋼については短辺側から、T形鋼についてはフランジから、厚さ10mm×幅50mm×長さ50mmの正方形の小片を切り出し、その表面にショットブラストを施してから、無機系ジンクプライマーの塗膜厚を0μm(無塗布)、5〜10μm、15〜25μm、50〜70μmの4レベルに塗り分けた試験片を作製した。次いで、上記試験片の端面および裏面に防食性のある塗料でマスキングを行うと共に、被試験面となる上面のみに、実のタンカーから採取した原油成分を含むスラッジを均一に塗布し、腐食試験片とした。
なお、上記腐食試験片は、表面状態の異なる2種類の試験片を作製した。1つは、被試験面にスラッジを均一に塗布した試験片(試験片1)であり、他の1つは、被試験面の中央部2mmφの部分には、スラッジに硫黄を50mass%混合した硫黄混合スラッジを塗布し、その他の部分には、スラッジのみを均一に塗布した試験片(試験片2)である。この試験片2では、硫黄混合スラッジが局部腐食の起点となり、腐食を促進することから、この試験片2の試験結果から、局部腐食抑制に及ぼす鋼材成分の影響、プライマーの影響およびそれらの組み合わせの影響を的確に把握することが可能となる。また、発明者らの研究結果では、試験片2を用いた腐食試験の方が、試験片1を用いた試験よりも、実船における暴露試験との相関がよいことが明らかとなっている。
Furthermore, for each of the hot rolled steel shapes produced, square pieces of 10 mm in thickness x 50 mm in width x 50 mm in length were formed from the short side for unequal unequal thickness mountain steel and from the flange for T-shape steel. Cut out and shot blasted on the surface, and then prepared a test piece in which the coating thickness of the inorganic zinc primer was divided into four levels of 0 μm (no coating), 5 to 10 μm, 15 to 25 μm, and 50 to 70 μm. . Next, the end face and the back face of the test piece are masked with an anticorrosive paint, and the sludge containing the crude oil component collected from the actual tanker is uniformly applied only to the upper face to be the test face. It was.
In addition, the said corrosion test piece produced two types of test pieces from which a surface state differs. One is a test piece (test piece 1) in which sludge is uniformly applied to the surface to be tested, and the other is 50 mass% of sulfur mixed with sludge in the central portion of 2 mmφ of the surface to be tested. A test piece (test piece 2) in which sulfur-mixed sludge was applied and only the sludge was uniformly applied to the other portions. In this test piece 2, since the sulfur mixed sludge becomes a starting point of local corrosion and promotes corrosion, from the test results of this test piece 2, the influence of the steel material component on the local corrosion control, the influence of the primer and the combination thereof It is possible to accurately grasp the impact. Further, the inventors' research results show that the corrosion test using the test piece 2 has a better correlation with the exposure test on the actual ship than the test using the test piece 1.

これらの試験片は、その後、図1に示した腐食試験装置の試験液6中に1ケ月間浸漬する腐食試験に供した。この腐食試験装置は、腐食試験槽2、恒温槽3の二重型の装置で、腐食試験槽2には実の原油タンク底板で生じるのと同様の局部腐食を発生させることができる試験液6が入れられている。上記試験液6には、ASTMD1141に規定される人工海水を試験母液とし、この液中に、5vol%O+10vol%HSの分圧比に調整し、残部Nガスからなる混合ガス(導入ガス4)を導入したものを使用した。また、試験液6の温度は、恒温槽3に入れた水7の温度を調整することにより50℃に保持した。なお、試験液6は、導入ガス4が連続して供給されるため、常に攪拌されている。図1中、5は試験槽からの排出ガスを示す。 These test pieces were then subjected to a corrosion test that was immersed in the test solution 6 of the corrosion test apparatus shown in FIG. 1 for one month. This corrosion test apparatus is a double type apparatus consisting of a corrosion test tank 2 and a thermostatic tank 3, and a test liquid 6 capable of generating local corrosion similar to that generated in an actual crude oil tank bottom plate is provided in the corrosion test tank 2. It is put. In the test solution 6, artificial seawater specified in ASTM D1141 is used as a test mother liquor, and in this solution, a partial pressure ratio of 5 vol% O 2 +10 vol% H 2 S is adjusted, and a mixed gas (introduction) consisting of the remaining N 2 gas is introduced. A gas into which gas 4) was introduced was used. Moreover, the temperature of the test solution 6 was maintained at 50 ° C. by adjusting the temperature of the water 7 placed in the thermostat 3. The test solution 6 is constantly stirred because the introduction gas 4 is continuously supplied. In FIG. 1, 5 indicates the exhaust gas from the test tank.

上記腐食試験後、試験片表面に生成した錆を除去してから、腐食形態を目視で観察するとともに、ディップメーターで局部腐食発生部の腐食深さを測定し、以下の基準で耐局部腐食性をランク分けした。
<耐局部腐食性ランク>
1:局部腐食無し
2:局部腐食深さ0.1mm未満
3:局部腐食深さ0.1mm以上0.2mm未満
4:局部腐食深さ0.2mm以上0.6mm未満
5:局部腐食深さ0.6mm以上1.0mm未満
6:局部腐食深さ1.0mm以上1.5mm未満
7:局部腐食深さ1.5mm以上
After removing the rust generated on the surface of the test piece after the above corrosion test, visually observe the form of corrosion and measure the corrosion depth of the local corrosion occurrence part with a dip meter. Was ranked.
<Local corrosion resistance rank>
1: No local corrosion 2: Local corrosion depth less than 0.1 mm 3: Local corrosion depth 0.1 mm or more and less than 0.2 mm 4: Local corrosion depth 0.2 mm or more and less than 0.6 mm 5: Local corrosion depth 0 .6 mm or more and less than 1.0 mm 6: Local corrosion depth of 1.0 mm or more and less than 1.5 mm 7: Local corrosion depth of 1.5 mm or more

上記局部腐食試験の結果を表4に示した。試験片1を用いた試験では、本発明に適合する成分組成を有する鋼No.1〜26を素材とした熱間圧延形鋼は、耐局部腐食性の評価が全てランク1〜3で、局部腐食深さが0.2mm未満に抑えられている。特に、ジンクプライマーを5μm以上塗布したものは、耐局部腐食性の評価が全てランク1であり、局部腐食の発生が有効に抑制されている。一方、本発明の成分組成から外れる鋼No.27〜33を素材とした熱間圧延形鋼は、No.32の形鋼を除いて、いずれも本発明の熱間圧延形鋼よりも耐局部腐食性が劣っている。
また、試験片2を用いた試験では、局部腐食の進行が、試験片1を用いた場合よりも促進される結果となっているが、鋼種間の差、特に、ジンクプライマー塗布状態での鋼種間の差を明確に知ることができる。すなわち、発明例の鋼No.1〜26を素材とした熱間圧延形鋼の耐局部腐食性は、ジンクプライマー無塗布状態、塗布状態のいずれにおいても、比較例の鋼No.27〜33を素材とした熱間圧延形鋼よりも抑制されている。注目すべきは、比較例の鋼No.32を素材とする熱間圧延形鋼では、試験片1を用いた試験では本発明例と同レベルの耐局部腐食性を示しているが、試験片2を用いた試験では、本発明例より明らかに耐局部腐食性が劣っており、その差が明確になっている。
以上の結果から、本発明に適合した熱間圧延形鋼は、耐局部腐食性に優れていることがわかる。
The results of the local corrosion test are shown in Table 4. In the test using the test piece 1, the steel No. having a component composition suitable for the present invention was used. The hot-rolled section steels made from 1 to 26 are all evaluated for local corrosion resistance in ranks 1 to 3, and the local corrosion depth is suppressed to less than 0.2 mm. In particular, when the zinc primer is applied to 5 μm or more, the evaluation of local corrosion resistance is all rank 1, and the occurrence of local corrosion is effectively suppressed. On the other hand, steel No. deviating from the component composition of the present invention. No. 27-33 is a hot rolled shape steel. Except for the 32 section steel, all have lower local corrosion resistance than the hot rolled section steel of the present invention.
Further, in the test using the test piece 2, the progress of local corrosion is accelerated as compared with the case where the test piece 1 is used, but the difference between the steel types, particularly the steel type in the zinc primer application state. You can clearly see the difference between them. That is, the steel No. of the invention example. The local corrosion resistance of the hot-rolled section steels made from 1 to 26 is the same as that of the steel No. of the comparative example in both the zinc primer uncoated state and the coated state. It is suppressed more than the hot rolled shape steel made of 27-33. It should be noted that the steel No. of the comparative example. In the hot-rolled shape steel made of 32, the test using the test piece 1 shows the same level of local corrosion resistance as that of the example of the present invention, but the test using the test piece 2 is more than the example of the present invention. Clearly, the local corrosion resistance is inferior, and the difference is clear.
From the above results, it can be seen that the hot-rolled section steel suitable for the present invention is excellent in local corrosion resistance.

Figure 0005320919
Figure 0005320919

実施例1で用いたのと同じ鋼No.1〜33を素材とした熱間圧延形鋼から、厚さ4mm×幅25mm×長さ48mmの矩形の小片を切り出し、その表面に、ショットブラストを施してから無機系ジンクプライマーの塗膜厚を0μm(無塗布)、5〜10μm、15〜25μm、50〜70μmに塗り分けた4種類の腐食試験片を作製した。次いで、腐食試験を加速するため、上記塗膜面に、鋼材表面に達するX字型のカッター傷を損傷面積率が1.0%となるように付けてから、下記の全面腐食試験に供した。   The same steel No. used in Example 1 was used. Cut out a rectangular piece of 4mm thickness x width 25mm x length 48mm from hot rolled steel shapes 1 to 33, and after shot blasting the surface, the coating thickness of the inorganic zinc primer Four types of corrosion test pieces were separately coated to 0 μm (no coating), 5 to 10 μm, 15 to 25 μm, and 50 to 70 μm. Subsequently, in order to accelerate the corrosion test, an X-shaped cutter scratch reaching the steel material surface was attached to the coating film surface so that the damage area ratio was 1.0%, and then subjected to the following general corrosion test. .

全面腐食試験は、図2に示した腐食試験装置を用いて行った。この腐食試験装置は、腐食試験槽9と温度制御プレート10とから構成されており、腐食試験槽9には温度が40℃に保持された水13が注入されており、また、その水13中には、12vol%CO、5vol%O、0.01vol%SO、0.1vol%HS、残部Nからなる混合ガス(導入ガス11)を導入して腐食試験槽9内を過飽和の水蒸気で充満し、原油タンク上甲板裏の腐食環境を再現した。そして、この試験槽の上裏面にセットした腐食試験片8に、ヒーターと冷却装置を内蔵した温度制御プレート10を介して、30℃×4時間+50℃×4時間を1サイクルとする温度変化を20日間繰り返して付与し、試験片表面に結露水を生じさせることにより、全面腐食を起こさせるようにしたものである。図2中、12は試験槽からの排出ガスを示す。 The overall corrosion test was performed using the corrosion test apparatus shown in FIG. The corrosion test apparatus is composed of a corrosion test tank 9 and a temperature control plate 10, and water 13 having a temperature maintained at 40 ° C. is injected into the corrosion test tank 9. Into the corrosion test tank 9, a mixed gas (introduction gas 11) composed of 12 vol% CO 2 , 5 vol% O 2 , 0.01 vol% SO 2 , 0.1 vol% H 2 S and the balance N 2 is introduced. The tank was filled with supersaturated water vapor and reproduced the corrosive environment behind the upper deck of the crude oil tank. And the temperature change which makes 30 degreeC * 4 hours +50 degreeC * 4 hours 1 cycle is set to the corrosion test piece 8 set to the upper and lower surfaces of this test tank via the temperature control plate 10 which incorporated the heater and the cooling device. It is repeatedly applied for 20 days to cause dew condensation on the surface of the test piece, thereby causing overall corrosion. In FIG. 2, 12 indicates the exhaust gas from the test tank.

上記試験後、各試験片についての耐全面腐食性を以下のようにして評価した。
<ジンクプライマー無塗布材>
試験前後の質量変化から、腐食による板厚減量を求め、これを1年当たりの腐食板厚に換算して、以下のランク分けにより耐全面腐食性を評価した。
1:腐食速度0.10mm/年未満
2:腐食速度0.10mm/年以上0.25mm/年未満
3:腐食速度0.25mm/年以上0.50mm/年未満
4:腐食速度0.50mm/年以上1.00mm/年未満
5:腐食速度1.00mm/年以上
<ジンクプライマー塗布材>
各試験片の表面および塗膜下に発生した錆の面積率を測定し、以下のランク分けにより耐全面腐食性を評価した。
1:錆面積率 5%未満
2:錆面積率 5%以上15%未満
3:錆面積率15%以上25%未満
4:錆面積率25%以上50%未満
5:錆面積率50%以上
After the above test, the overall corrosion resistance of each test piece was evaluated as follows.
<Zinc primer uncoated material>
From the change in mass before and after the test, the thickness loss due to corrosion was determined, converted into the corrosion plate thickness per year, and the overall corrosion resistance was evaluated according to the following ranking.
1: Corrosion rate 0.10 mm / year or less 2: Corrosion rate 0.10 mm / year or more and less than 0.25 mm / year 3: Corrosion rate 0.25 mm / year or more and less than 0.50 mm / year 4: Corrosion rate 0.50 mm / year 5 years or more and less than 1.00 mm / year 5: Corrosion rate of 1.00 mm / year or more <zinc primer coating material>
The area ratio of rust generated on the surface of each test piece and under the coating film was measured, and the overall corrosion resistance was evaluated by the following rank classification.
1: Rust area ratio 5% or less 2: Rust area ratio 5% or more and less than 15% 3: Rust area ratio 15% or more and less than 25% 4: Rust area ratio 25% or more and less than 50% 5: Rust area ratio 50% or more

上記全面腐食試験の結果を、表4中に併記して示した。表4から、本発明に適合する成分組成の鋼No.1〜26を素材とした熱間圧延形鋼は、無塗装材の耐全面腐食性がいずれもランク1〜2と良好である。これに対して、比較例の鋼No.27〜33を素材とした熱間圧延形鋼は、無機系ジンクプライマー塗布のない場合のみならず、塗布している場合においても、発明例の熱間圧延形鋼より耐全面腐食性が劣っていることがわかる。   The results of the overall corrosion test are shown together in Table 4. From Table 4, the steel No. having a component composition suitable for the present invention was obtained. The hot-rolled section steels having 1 to 26 as raw materials have good overall corrosion resistance of uncoated materials as ranks 1 and 2. On the other hand, steel No. of the comparative example. The hot rolled section steels 27 to 33 are not only not coated with an inorganic zinc primer, but also have a general corrosion resistance inferior to that of the hot rolled section steel of the inventive example, even when coated. I understand that.

本発明の原油タンク用熱間圧延形鋼は、海水による腐食環境下で優れた耐食性を示すので、船舶の補修期間の延長を通じて船舶自体の寿命延長にも有効であるが、類似の腐食環境で使用される他の分野で用いられる熱間圧延形鋼にも用いることができる。   The hot rolled steel for crude oil tanks of the present invention exhibits excellent corrosion resistance in a corrosive environment caused by seawater, and is effective in extending the life of the ship itself through extending the repair period of the ship. It can also be used for hot rolled steel used in other fields.

実施例1で用いた局部腐食試験に用いた試験装置を説明する図である。It is a figure explaining the test apparatus used for the local corrosion test used in Example 1. FIG. 実施例2で用いた全面腐食試験に用いた試験装置を説明する図である。It is a figure explaining the test apparatus used for the general corrosion test used in Example 2. FIG.

符号の説明Explanation of symbols

1、8:試験片
2、9:腐食試験槽
3:恒温槽
4、11:導入ガス
5、12:排出ガス
6:試験液
7、13:水
10:温度制御プレート
DESCRIPTION OF SYMBOLS 1, 8: Test piece 2, 9: Corrosion test tank 3: Constant temperature tank 4, 11: Introducing gas 5, 12: Exhaust gas 6: Test liquid 7, 13: Water 10: Temperature control plate

Claims (8)

C:0.001〜0.16mass%、Si:0.01〜1.5mass%、Mn:0.1〜2.5mass%、P:0.025mass%以下、S:0.01mass%以下、Al:0.005〜0.1mass%、N:0.001〜0.008mass%、W:0.001〜0.5mass%およびCr:0.06mass%以上0.20mass%未満を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、加工フェライトを全組織に対して面積率で10%以上含むフェライトと、パーライトとからなるミクロ組織を有する原油タンク用熱間圧延形鋼。 C: 0.001 to 0.16 mass%, Si: 0.01 to 1.5 mass%, Mn: 0.1 to 2.5 mass%, P: 0.025 mass% or less, S: 0.01 mass% or less, Al : 0.005 to 0.1 mass%, N: 0.001 to 0.008 mass%, W: 0.001 to 0.5 mass%, and Cr: 0.06 mass% or more and less than 0.20 mass%, the balance being A hot rolled steel for a crude oil tank, having a component composition comprising Fe and unavoidable impurities, and having a microstructure comprising a ferrite containing processed ferrite in an area ratio of 10% or more with respect to the entire structure and pearlite. 上記成分組成に加えてさらに、Sn:0.005〜0.3mass%およびSb:0.005〜0.3mass%のうちから選ばれる1種または2種を含有することを特徴とする請求項1に記載の原油タンク用熱間圧延形鋼。 2. In addition to the said component composition, it further contains 1 type or 2 types chosen from Sn: 0.005-0.3mass% and Sb: 0.005-0.3mass%, It is characterized by the above-mentioned. Hot rolled steel for crude oil tanks as described in 1. 上記成分組成に加えてさらに、Mo:0.001〜0.5mass%を含有することを特徴とする請求項1または2に記載の原油タンク用熱間圧延形鋼。 The hot rolled steel for a crude oil tank according to claim 1 or 2, further comprising Mo: 0.001 to 0.5 mass% in addition to the above component composition. 上記成分組成に加えてさらに、Nb:0.001〜0.1mass%、V:0.002〜0.1mass%、Ti:0.001〜0.1mass%およびB:0.01mass%以下のうちから選ばれる1種または2種以上を含有することを特徴とする請求項1〜3のいずれか1項に記載の原油タンク用熱間圧延形鋼。 In addition to the above component composition, Nb: 0.001 to 0.1 mass%, V: 0.002 to 0.1 mass%, Ti: 0.001 to 0.1 mass%, and B: 0.01 mass% or less The hot-rolled section steel for a crude oil tank according to any one of claims 1 to 3, comprising one or more selected from 上記成分組成に加えてさらに、Ca:0.0002〜0.005mass%およびREM:0.0005〜0.015mass%のうちから選ばれる1種または2種を含有することを特徴とする請求項1〜4のいずれか1項に記載の原油タンク用熱間圧延形鋼。 2. In addition to the above component composition, it further contains one or two selected from Ca: 0.0002 to 0.005 mass% and REM: 0.0005 to 0.015 mass%. The hot-rolled section steel for crude oil tanks according to any one of -4. 降伏応力が315MPa以上、引張強さが440MPa以上の強度を有することを特徴とする請求項1〜5のいずれか1項に記載の原油タンク用熱間圧延形鋼。 The hot rolled steel for a crude oil tank according to any one of claims 1 to 5, wherein the yield stress is 315 MPa or more and the tensile strength is 440 MPa or more. 請求項1〜5のいずれか1項に記載の成分組成を有する鋼素材を1000〜1350℃に加熱後、熱間圧延して形鋼を製造する方法において、前記熱間圧延を、Ar変態点以下での累積圧下率を10〜80%、圧延仕上温度を(Ar変態点−30℃)〜(Ar変態点−180℃)とする条件にて施し、その後、放冷することを特徴とする原油タンク用熱間圧延形鋼の製造方法。 After heating a steel material having a composition as set forth in claim 1 in 1,000 to 1,350 ° C., in a method of manufacturing the structural steel by hot rolling, the hot rolling, Ar 3 transformation It is applied under the conditions that the cumulative reduction ratio below the point is 10 to 80% and the rolling finishing temperature is (Ar 3 transformation point −30 ° C.) to (Ar 3 transformation point −180 ° C.), and then allowed to cool. A method for producing hot-rolled section steel for crude oil tanks. 上記熱間圧延において、圧延途中の形鋼の部位による温度差を表面温度差で50℃以内にしてから、Ar変態点以下での累積圧下率を10〜80%、圧延仕上温度を(Ar変態点−30℃)〜(Ar変態点−180℃)とする前記熱間圧延を施すことを特徴とする請求項7に記載の原油タンク用熱間圧延形鋼の製造方法。 In the above hot rolling, after the temperature difference due to the shape steel part in the middle of rolling is within 50 ° C. in terms of surface temperature difference, the cumulative reduction ratio below the Ar 3 transformation point is 10 to 80%, and the rolling finish temperature is (Ar The method for producing hot-rolled section steel for a crude oil tank according to claim 7, wherein the hot rolling is performed at 3 transformation points (-30 ° C) to (Ar 3 transformation points-180 ° C).
JP2008236029A 2007-09-25 2008-09-16 Hot rolled shape steel for crude oil tank and method for producing the same Active JP5320919B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2008236029A JP5320919B2 (en) 2007-09-25 2008-09-16 Hot rolled shape steel for crude oil tank and method for producing the same
TW097136408A TWI460285B (en) 2007-09-25 2008-09-23 Hot-rolled shapes for crude oil tank and process for manufacturing the same
CN2008801012545A CN101765673B (en) 2007-09-25 2008-09-24 Hot-rolled shape steel for crude oil tanks and process for manufacturing the same
KR1020127033612A KR20130006546A (en) 2007-09-25 2008-09-24 Hot-rolled shape steel for crude oil tanks and process for manufacturing the same
KR1020107001674A KR101241932B1 (en) 2007-09-25 2008-09-24 Hot-rolled shape steel for crude oil tanks and process for manufacturing the same
PCT/JP2008/067780 WO2009041703A1 (en) 2007-09-25 2008-09-24 Hot-rolled shape steel for crude oil tanks and process for manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007246844 2007-09-25
JP2007246844 2007-09-25
JP2008236029A JP5320919B2 (en) 2007-09-25 2008-09-16 Hot rolled shape steel for crude oil tank and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009097083A JP2009097083A (en) 2009-05-07
JP5320919B2 true JP5320919B2 (en) 2013-10-23

Family

ID=40700359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008236029A Active JP5320919B2 (en) 2007-09-25 2008-09-16 Hot rolled shape steel for crude oil tank and method for producing the same

Country Status (4)

Country Link
JP (1) JP5320919B2 (en)
KR (2) KR101241932B1 (en)
CN (1) CN101765673B (en)
TW (1) TWI460285B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5145897B2 (en) * 2007-11-22 2013-02-20 新日鐵住金株式会社 Corrosion resistant steel for cargo oil tanks
JP2011231365A (en) * 2010-04-27 2011-11-17 Jfe Steel Corp Hot rolled shape steel for vessel and method of manufacturing the same
CN102851582B (en) * 2011-06-28 2016-01-20 鞍钢股份有限公司 Corrosion-resistant steel for acidic crude oil storage and transportation tank and manufacturing method thereof
JP5942480B2 (en) * 2012-03-01 2016-06-29 Jfeスチール株式会社 Steel for construction and civil engineering structures with excellent compatibility with water-based paints
KR101701652B1 (en) 2012-06-27 2017-02-01 제이에프이 스틸 가부시키가이샤 Steel sheet for soft-nitriding and method for manufacturing the same
CN103014496B (en) * 2012-12-06 2014-12-03 武汉钢铁(集团)公司 High-strength hot-rolled steel strip with thickness ranging from 1.1 to 2 mm and easy to form
JP2017190522A (en) * 2016-04-11 2017-10-19 Jfeスチール株式会社 Steel material
JP6690585B2 (en) * 2017-03-14 2020-04-28 Jfeスチール株式会社 Steel material and manufacturing method thereof
CN114574766B (en) * 2022-03-04 2023-04-11 武安市裕华钢铁有限公司 Ni-RE series corrosion-resistant low-carbon hot-rolled steel strip and production process thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3860666B2 (en) * 1998-07-03 2006-12-20 新日本製鐵株式会社 Corrosion resistant steel for cargo oil tanks
JP2001107180A (en) * 1999-10-13 2001-04-17 Nkk Corp Corrosion resistant steel for oil loading tank
JP4483107B2 (en) * 2001-03-09 2010-06-16 Jfeスチール株式会社 Marine steel with excellent coating life
JP3753088B2 (en) * 2001-07-04 2006-03-08 住友金属工業株式会社 Steel material for cargo oil tanks
KR100630402B1 (en) * 2002-03-29 2006-10-02 신닛뽄세이테쯔 카부시키카이샤 High tensile steel excellent in high temperature strength and method for production thereof
JP4267367B2 (en) * 2002-06-19 2009-05-27 新日本製鐵株式会社 Crude oil tank steel and its manufacturing method, crude oil tank and its anticorrosion method
JP4449691B2 (en) * 2004-04-14 2010-04-14 住友金属工業株式会社 Steel material for cargo oil tanks
CN1946864A (en) * 2004-04-14 2007-04-11 住友金属工业株式会社 Steel product for cargo oil tank
KR20110084462A (en) * 2006-02-27 2011-07-22 제이에프이 스틸 가부시키가이샤 Corrosion-resistant steel material for ship and vessel
EP2009125B1 (en) * 2006-03-30 2018-07-04 JFE Steel Corporation Corroson-resistant steel material for crude oil storage tank, and crude oil storage tank

Also Published As

Publication number Publication date
TW200925294A (en) 2009-06-16
KR20100023049A (en) 2010-03-03
CN101765673B (en) 2011-10-26
KR101241932B1 (en) 2013-03-11
JP2009097083A (en) 2009-05-07
KR20130006546A (en) 2013-01-16
TWI460285B (en) 2014-11-11
CN101765673A (en) 2010-06-30

Similar Documents

Publication Publication Date Title
JP5320919B2 (en) Hot rolled shape steel for crude oil tank and method for producing the same
JP5396758B2 (en) Hot-rolled section steel for ship ballast tank and manufacturing method thereof
CN109563594B (en) Sulfuric acid dew point corrosion resistant steel
CN109642283B (en) Sulfuric acid dew point corrosion resistant steel
CN109563595B (en) Sulfuric acid dew point corrosion resistant steel
JP4640529B2 (en) Corrosion resistant steel material for crude oil tank, method for producing the same, and crude oil tank
CN109642287B (en) Sulfuric acid dew point corrosion resistant steel
KR101023634B1 (en) Corroson-resistant steel material for crude oil storage tank, and crude oil storage tank
JP4687531B2 (en) Steel for crude oil tank and method for producing the same
JP5375246B2 (en) Corrosion-resistant steel for crude oil tank and its manufacturing method
JP4525686B2 (en) Corrosion resistant steel for crude oil tank and crude oil tank
JP5825224B2 (en) High tensile steel sheet with excellent surface arrestability and method for producing the same
JP5526667B2 (en) Hot rolled section steel for ship ballast tank with excellent corrosion resistance and method for producing the same
JP5365187B2 (en) Method for producing marine structural steel with excellent corrosion resistance
JP2013019049A (en) Corrosion-resistant steel material for ship ballast tank having excellent corrosion resistance and method for producing the same
JP2011231365A (en) Hot rolled shape steel for vessel and method of manufacturing the same
CN115443344B (en) Steel sheet and method for producing same
JP6624130B2 (en) Steel material and method of manufacturing the same
JP7311808B2 (en) Steel plate and its manufacturing method
JP2005097709A (en) Steel material for bottom plate of crude oil tank
WO2009017177A1 (en) Hot-rolled shape steel for ships and process for manufacturing the same
WO2009041703A1 (en) Hot-rolled shape steel for crude oil tanks and process for manufacturing the same
WO2023162507A1 (en) Steel sheet and method for producing same
WO2023162522A1 (en) Steel sheet and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130701

R150 Certificate of patent or registration of utility model

Ref document number: 5320919

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250