JP5314760B2 - 光多重終端装置、波長多重受動光網システム、下り波長送信方法 - Google Patents

光多重終端装置、波長多重受動光網システム、下り波長送信方法 Download PDF

Info

Publication number
JP5314760B2
JP5314760B2 JP2011519337A JP2011519337A JP5314760B2 JP 5314760 B2 JP5314760 B2 JP 5314760B2 JP 2011519337 A JP2011519337 A JP 2011519337A JP 2011519337 A JP2011519337 A JP 2011519337A JP 5314760 B2 JP5314760 B2 JP 5314760B2
Authority
JP
Japan
Prior art keywords
wavelength
optical network
transmission
optical
transmission timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011519337A
Other languages
English (en)
Other versions
JPWO2010146658A1 (ja
Inventor
徹 加沢
憲弘 坂本
昌輝 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of JPWO2010146658A1 publication Critical patent/JPWO2010146658A1/ja
Application granted granted Critical
Publication of JP5314760B2 publication Critical patent/JP5314760B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/44Star or tree networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/272Star-type networks or tree-type networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0245Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
    • H04J14/0246Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU using one wavelength per ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0245Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
    • H04J14/0247Sharing one wavelength for at least a group of ONUs
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0249Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU
    • H04J14/025Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU using one wavelength per ONU, e.g. for transmissions from-ONU-to-OLT or from-ONU-to-ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0249Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU
    • H04J14/0252Sharing one wavelength for at least a group of ONUs, e.g. for transmissions from-ONU-to-OLT or from-ONU-to-ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0256Optical medium access at the optical channel layer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0256Optical medium access at the optical channel layer
    • H04J14/0258Wavelength identification or labelling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0256Optical medium access at the optical channel layer
    • H04J14/026Optical medium access at the optical channel layer using WDM channels of different transmission rates
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0272Transmission of OAMP information
    • H04J14/0273Transmission of OAMP information using optical overhead, e.g. overhead processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0282WDM tree architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/66Arrangements for connecting between networks having differing types of switching systems, e.g. gateways
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)
  • Small-Scale Networks (AREA)

Description

本発明は、光多重終端装置、波長多重受動光網システム、下り波長送信方法に係り、特に、複数の加入者接続装置等の光網終端装置が光伝送回線を共有する受動光網システムにおける光多重終端装置、波長多重受動光網システム、下り波長送信方法に関する。
大容量の画像信号やデータを通信網を介して送受信する為に、通信網の高速・広帯域化が加入者を通信網へ接続するアクセス網でも進められ、国際電気通信連合(以下ITU−Tと称す)の勧告G.984.3等で規定された受動網光システム(Passive Optical Network system:以下PONと称する)の導入が図られている。PONは、上位の通信網と接続される光多重終端装置(Optical Line Terminator:以下OLTと称する)と、複数の加入者の端末(PCや電話)を収容する光網終端装置(Optical Network Unit:以下ONUと称する)とを、基幹光ファイバと光スプリッタと複数の支線光ファイバとを含む光受動網で接続したシステムである。具体的には、各ONUに接続された端末(PC他)からの信号を光信号で支線光ファイバから光スプリッタを介して基幹光ファイバで光学(時分割)多重してOLTに送り、OLTが各ONUからの信号を通信処理して上位の通信網に送信する、あるいは、OLTに接続される他のONUに送信するという形態で通信を行うものである。
PONの開発・導入は64kbit/秒のような低速信号を扱うシステムから始まり、固定長のATMセルを最大約600Mbit/秒で送受信するBPON(Broadband PON)あるいはイーサネット(登録商標)の可変長パケットを最大約1Gbit/秒で送受信するイーサネットPON(EPON)や、より高速な2.4Gbit/秒程度の信号を扱うITU−T勧告G.984.3で標準化されたGPON(Gigabit PON)の導入が進められている。更に、今後は10Gbit/秒から40Gbit/秒の信号を扱うことが可能な高速PONの実現が求められている。これらの高速PONを実現する手段としては、複数の信号を時分割多重するTDM(Time Division Multiplexing)、波長多重するWDM(Wavelength Division Multiplexing)、符号多重するCDM(Code Division Multiplexing)等の多重化方法が検討されている。なお、現状のPONはTDMを採用しており、例えば、GPONは、上り(ONUからOLT)の信号と下り(OLTからONU)の信号とで異なる波長を用い、OLTと各ONU間の通信は、各ONUに対して信号の通信時間を割当てる構成である。また、従来の固定長信号を処理する構成から、より多様な種別の信号(音声、画像、データ等)を扱い易いバースト状の可変長信号(バースト信号)も処理する構成になってきている。
一方WDM方式では、OLTとONUの間に上り信号、下り信号に共に複数の波長の異なる波を接続し、各ONUは特定の波長を受信、送信することにより、通信を行う。OLTから各ONUに対して個別の波長を割り当てて通信を行うことにより、通信帯域を著しく向上させることが出来る。例えば、最大32台のONUを接続できるWDM−PONの1つの実現方法は、下りM個の波長(ただし32波長各ONUに上り下りそれぞれ1つずつの波長を割り当てる、すなわち1つのPONで使用する波長数は接続されるONUの最大数の2倍とすることである。ただしここで最大32台のONUを接続できるWDM−PONでも従来のTDM−PONの考え方を踏襲して、上り波長数をn個(ただし32波長以下)に制限することにより、高価な光部品の数を減じて経済的にPONを構築するという考え方もありうる。この時、上り信号は複数のONUからの送信信号を時分割多重して伝送するため、WDM−PONでありながら後に述べるレンジング手順や動的帯域割当てが必要となることは注意すべきである。
上記各PONの形態では、様々な場所に点在する加入者宅にONUを設置するためOLTから各ONUまでの距離が異なる。すなわち、OLTから各ONU迄の基幹光ファイバと支線光ファイバを併せた光ファイバの長さ(伝送距離)がばらつくため、各ONUとOLT間の伝送遅延(遅延量)がばらつき、各ONUが異なるタイミングで信号を送信しても基幹光ファイバ上で各ONUから出力される光信号同士が衝突・干渉する可能性がある。このため、各PONにおいては、例えばG.984.3の10章で規定したような、レンジングと称される技術を用いて、OLTとONUとの間の距離測定を行った後に、各ONUからの信号出力が衝突しないように各ONUの出力信号の遅延を調整するようにしている。
更に、OLTは、動的帯域割当て(Dynamic Bandwidth Assignment:以下DBAと称する)と称される技術を用いて各ONUからの送信要求に基づき該ONUに送信を許可する信号の帯域を決めると、上述したレンジングで測定した遅延量も考慮した上で、各ONUからの光信号が基幹光ファイバ上で衝突・干渉しないように各ONUへ送信タイミングを指定するようにしている。すなわち、PONは、OLTと各ONU間で送受信される信号のタイミングがシステム内で管理された状態で通信の運用がなされるように構成されている。
OLTと各ONU間との信号の送受信においては、例えばG.984.2の8.3.3章の規定によれば、ONUからOLTの信号は、OLTが基幹光ファイバで多重された各ONUからの信号を識別して処理できるように、各ONUからの信号の先頭に最大12バイトからなる干渉防止用のガードタイムと、OLT内受信器の信号識別閾値の決定およびクロック抽出に利用するプリアンブルと、受信信号の区切りを識別するデリミタと呼ばれるバーストオーバヘッドバイトと、PONの制御信号(オーバヘッドあるいはヘッダと称することもある)とがデータ(ペイロードと称することもある)に付加される。なお、各データは可変長のバーストデータであるため、各データの先頭には、可変長データを処理するためのGEM(G−PON Encapsulation Method)ヘッダと呼ばれるヘッダも付加される。
一方、OLTから各ONU宛の信号には、各ONUがOLTからの信号を識別して処理できるように、OLTから各ONUに向けて送信される信号の先頭に、先頭を識別するためのフレーム同期パタンと、監視・保守・制御情報を送信するPLOAM領域と、各ONUの信号送信タイミングを指示するグラント指示領域と呼ばれるオーバヘッド(ヘッダと称されることもある)とが各ONU宛に時分割多重化されたデータに付加される構成である。なお、多重化される各ONU宛のデータには、ONUからの信号と同様に、可変長データを処理するためのGEMヘッダが付加されている。OLTは、グラント指示領域を用いて各ONUの上り送信許可タイミング(送信開始(Start)と終了(Stop))を各ONUにバイト単位で指定する。この送信許可タイミングをグラントと称している。そして、各ONUが該許可タイミングでOLT宛のデータを送信すると、これらが光ファイバー上で光学(時分割)多重されOLTで受信される。
ITU−T勧告G.984.3
上述したように、PONは、BPONからGPONへの移行のように、低速信号を処理するものから、より高速信号を処理するものへと開発・導入が進んできている。ところで、PONの信号伝送機能を提供する要素部品である光モジュールやLSIは、伝送速度が速いほど大量の電力を消費することが知られている。例えば光モジュールはより高い伝送速度を達成するために、伝送速度が高いほど大量の電流を流すことで必要な帯域を確保している傾向にある。またCMOS技術によるデジタル信号処理LSIは、使用されるクロックの速度にほぼ比例した電力を消費することは良く知られている。上述の事情から、今後、伝送速度が速ければ速いほど大量の消費電力が消費される傾向にあることは容易に予想されるところである。一方、エンドユーザーがより速い伝送速度を求める傾向があるといえども、エンドユーザーは常時速い伝送速度を欲しているわけではない。通信を行っていない時間帯には当然速い伝送速度を要求しないことはもちろん、通信中でも特にインターネットアクセスにおけるデータ伝送においては、大量の画像データや大容量ファイルをダウンロードないしアップロードする瞬間のみ速い伝送速度を欲し、内容の閲覧中や作業中は速い伝送速度を要求しないことは当然であろう。また、データ伝送に用いられるTCPプロトコルにおいては、一定数のパケットを受信すると確認信号パケットを返送することが必要であり、データの送信側は確認信号パケットを受信するまで、後続のデータを送信しない。この帰結として、データ伝送中であってもデータトラヒックは極めてバースト性の高い伝送形態となることは明らかである。にもかかわらず、PON装置を構成する光モジュールやLSIは実質的にデータを伝送しない時間帯も動作して電力を消費しており、著しい電力の無駄を生じる原因となる。このため、エンドユーザトラヒックが小さい時は低速の伝送速度で伝送を行い、エンドユーザトラヒックが大きい時は高速の伝送速度で伝送を行うことの可能なPONシステムが求められることになる。
特にOLTからONUへ向かう下り方向では、大容量の映像ダウンロードから短時間の制御パケットまで帯域に非常に開きの大きいトラヒックが流れることが想像される。
本発明は以上の点に鑑み、特に下り方向のエンドユーザトラヒックに基づいて消費電力の無駄を極力減らすことの可能な受動光網システムを実現することを目的とする。
以上のような課題は、上述したような下り波長数をn個(ただし32波長以下)に制限したWDM−PONの下り信号において、波長毎に異なる伝送速度(伝送クロック速度)を使用し、要求帯域の小さいONUの下り信号には伝送速度の小さい波長を用いて下り信号通信を行うことで解決できる。
具体的には、OLTは自身が送信機能として備える複数の送信波長のうち、要求帯域の小さいONUから順番に、伝送速度のより小さい波長を順次用いて、信号を送信する。この時、各ONUに割り当てる帯域が、割り当てた波長で伝送できる最大帯域を下回るように、割り当てる波長が選択されなければならない。例えば、4つの下り波長を使用し、それら波長で使用する伝送速度を順番に、波長1=100Mbit/s、波長2=500Mbit/s、波長3=1Gbit/s、波長4=10Gbit/sを使用するとする。ここで、600Mbit/sの帯域をあるONUに割り当てたい場合は、たとえ波長1ないし波長2に帯域割り当ての余りがあったとしてもそれらの波長を使用せず、波長3=1Gbit/sの波長を割り当て波長として選択しなければならない。
これは以下の理由による。ONUが1つの可変WDMフィルタを搭載し、OLTからの指示に基づいて受信波長を選択動作する場合、可変WDMフィルタは1度に1つの波長の光を選択透過することしかできない。もし上述の例で波長1=100Mbit/s、波長2=500Mbit/sの2波長を受信しようと試みると、可変WDMフィルタは同時に波長1と波長2の光を受信することが求められるが、こうすると2つの波長信号が混じりあうことにより、信号の正しい受信ができないことになる。
なお上述の制約は、以下のように1つのONUに対する時分割に2つの波長を用いて行うことを妨げない。今度は1Gbit/sの帯域要求を持つONUに波長3と波長4を時分割で割り当てる場合を考える。具体的には、波長3を用いてDBA周期の後半2分の1を用いて500Mbit/sの情報を伝送する。さらに波長4(10Gbit/sの帯域に対応を用いて下り帯域割当周期の前半20分の1を用いて500Mbit/sの情報を伝送する。この時分割の波長割り当てであれば、可変WDMフィルタは同時に波長3と波長4の光を受信する必要はないことになる。このような時分割の波長割り当ては、上述のように要求帯域の小さいONUから順番に、伝送速度のより小さい波長を順次用いて、帯域割り当てを実施することによって見通し良く実現するものである。
続いて、OLTがONUに使用する波長を指示する方法を説明する。OLTは、ONUに対して下り伝送波長とそのタイミングを通知する領域を設ける。ONUは、OLTより指示された波長とその波長で決められた伝送速度を用いて下り方向の通信を行うことになる。ONUはより低速の伝送速度で通信するときは、LSIの下り信号処理部分に供給するクロックの周波数を落とすため、ONUの消費電力が低減される。
本発明の第1の解決手段によると、
上位の通信網と接続される光多重終端装置と、加入者端末を収容するための複数の光網終端装置とが、光スプリッタおよび複数の光ファイバを備えた光ファイバ網で接続されており、前記光多重終端装置から前記光網終端装置への方向の通信は、前記光多重終端装置に接続された前記光網終端装置の総数より少ない数の複数の波長を使用する波長多重受動光網システムにおける前記光多重終端装置であって、
光網終端装置IDに対して、下り波長種別、送信タイミングのスタート位置、送信タイミングのエンド位置を記憶した送信タイミングテーブルと、
光網終端装置IDに対して、各光網終端装置に割当てたデータ量を示す割当バイト長を記憶した割当てバイト長テーブルと、
前記送信タイミングテーブル及び前記割当てバイト長テーブルを参照し、各光網終端装置に下り波長種別及び送信タイミングを割当るための制御部と、
を備え、
前記制御部は、前記光多重終端装置から前記光網終端装置への方向の通信に使用する前記複数の波長に対応する伝送速度の総和を上限として、該光網終端装置の夫々に送信許可する信号の量を一定の周期毎に決め、決められた送信許可する信号の量が少ない該光網終端装置から順番に、帯域割り当てが完了していない前記波長の中から、対応する伝送速度が最も遅い前記波長を選択して送信タイミングを割り当て、光網終端装置IDに対して、選択された波長の下り波長種別とともに送信タイミングのスタート位置及び送信タイミングのエンド位置を前記送信タイミングテーブルに記憶し、
前記制御部は、前記送信タイミングテーブルを参照し、各エントリの光網終端装置IDに対する下り波長種別、送信タイミングのスタート位置、送信タイミングのエンド位置を含むデータ組を順次含めて、下りグラント指示を作成し、該下りグラント指示の各データ組毎に、指定された光網終端装置に対する送信タイミングのスタート位置からエンド位置までの送信データを含めてフレームペイロードを作成し、
前記制御部は、前記下りグラント指示を、前回の送信周期で送信された下りグラント指示に従い各光網終端装置が選択している波長で各光網終端装置に送信し、続けて下りグラント指示により指定された下り波長種別の波長で、順次波長を切り替えて前記フレームペイロードを含む下り信号を送信する
前記光多重終端装置が提供される。
本発明の第2の解決手段によると、
上位の通信網と接続される光多重終端装置と、加入者端末を収容するための複数の光網終端装置とが、光スプリッタおよび複数の光ファイバを備えた光ファイバ網で接続されており、前記光多重終端装置から前記光網終端装置への方向の通信は、前記光多重終端装置に接続された前記光網終端装置の総数より少ない数の複数の波長を使用する波長多重受動光網システムであって、
前記光多重終端装置は、
光網終端装置IDに対して、下り波長種別、送信タイミングのスタート位置、送信タイミングのエンド位置を記憶した送信タイミングテーブルと、
光網終端装置IDに対して、各光網終端装置に割当てたデータ量を示す割当バイト長を記憶した割当てバイト長テーブルと、
前記送信タイミングテーブル及び前記割当てバイト長テーブルを参照し、各光網終端装置に下り波長種別及び送信タイミングを割当るための制御部と、
を備え、
前記制御部は、前記光多重終端装置から前記光網終端装置への方向の通信に使用する前記複数の波長に対応する伝送速度の総和を上限として、該光網終端装置の夫々に送信許可する信号の量を一定の周期毎に決め、決められた送信許可する信号の量が少ない該光網終端装置から順番に、帯域割り当てが完了していない前記波長の中から、対応する伝送速度が最も遅い前記波長を選択して送信タイミングを割り当て、光網終端装置IDに対して、選択された波長の下り波長種別とともに送信タイミングのスタート位置及び送信タイミングのエンド位置を前記送信タイミングテーブルに記憶し、
前記制御部は、前記送信タイミングテーブルを参照し、各エントリの光網終端装置IDに対する下り波長種別、送信タイミングのスタート位置、送信タイミングのエンド位置を含むデータ組を順次含めて、下りグラント指示を作成し、該下りグラント指示の各データ組毎に、指定された光網終端装置に対する送信タイミングのスタート位置からエンド位置までの送信データを含めてフレームペイロードを作成し、
前記制御部は、前記下りグラント指示を、前回の送信周期で送信された下りグラント指示に従い各光網終端装置が選択している波長で各光網終端装置に送信し、続けて下りグラント指示により指定された下り波長種別の波長で、順次波長を切り替えて前記フレームペイロードを含む下り信号を送信する
前記波長多重受動光網システムが提供される。
本発明の第3の解決手段によると、
上位の通信網と接続される光多重終端装置と、加入者端末を収容するための複数の光網終端装置とが、光スプリッタおよび複数の光ファイバを備えた光ファイバ網で接続されており、前記光多重終端装置から前記光網終端装置への方向の通信は、前記光多重終端装置に接続された前記光網終端装置の総数より少ない数の複数の波長を使用する波長多重受動光網システムであって、
前記光多重終端装置は、
光網終端装置IDに対して、下り波長種別、送信タイミングのスタート位置、送信タイミングのエンド位置を記憶した送信タイミングテーブルと、
光網終端装置IDに対して、各光網終端装置に割当てたデータ量を示す割当バイト長を記憶した割当てバイト長テーブルと、
前記送信タイミングテーブル及び前記割当てバイト長テーブルを参照し、各光網終端装置に下り波長種別及び送信タイミングを割当るための制御部と、
を備えた、前記波長多重受動光網システムにおける下り波長送信方法であって、

前記制御部は、前記光多重終端装置から前記光網終端装置への方向の通信に使用する前記複数の波長に対応する伝送速度の総和を上限として、該光網終端装置の夫々に送信許可する信号の量を一定の周期毎に決め、決められた送信許可する信号の量が少ない該光網終端装置から順番に、帯域割り当てが完了していない前記波長の中から、対応する伝送速度が最も遅い前記波長を選択して送信タイミングを割り当て、光網終端装置IDに対して、選択された波長の下り波長種別とともに送信タイミングのスタート位置及び送信タイミングのエンド位置を前記送信タイミングテーブルに記憶し、
前記制御部は、前記送信タイミングテーブルを参照し、各エントリの光網終端装置IDに対する下り波長種別、送信タイミングのスタート位置、送信タイミングのエンド位置を含むデータ組を順次含めて、下りグラント指示を作成し、該下りグラント指示の各データ組毎に、指定された光網終端装置に対する送信タイミングのスタート位置からエンド位置までの送信データを含めてフレームペイロードを作成し、
前記制御部は、前記下りグラント指示を、前回の送信周期で送信された下りグラント指示に従い各光網終端装置が選択している波長で各光網終端装置に送信し、続けて下りグラント指示により指定された下り波長種別の波長で、順次波長を切り替えて前記フレームペイロードを含む下り信号を送信する
前記下り波長送信方法が提供される。
本発明によると、下り伝送速度の異なる複数の信号を時分割で混在させて運用出来る構成のPONにおいて、エンドユーザトラヒックに基づいて消費電力の無駄を極力減らすことの可能な受動光網システムを実現することができる。
PONを用いた光アクセス網の構成例を示す網構成図である。 OLTからONUへの下り信号の構成例を示すフレーム構成図である。 ONUの構成例を示すブロック構成図である。 ONUの光受信インタフェースの構成例を示すブロック構成図である。 OLTの構成例を示すブロック構成図である。 OLTの下りパケットバッファの構成例を示すブロック構成図である。 OLTの制御部の構成と動作例を説明する説明図である。 OLTの送信部の構成例を示すブロック構成図である。 OLTの受信部の構成例を示すブロック構成図である。 割当てバイト長テーブルの構成例を示すメモリ構成図である。 割当てバイト長テーブルの構成例を示すメモリ構成図である。 送信タイミングテーブルの構成例を示すメモリ構成図である。 送信タイミングテーブルの構成例を示すメモリ構成図である。 OLTの制御部の動作例(その1)を示す動作フロー図である。 下り波長の割り当て動作例を示す図である。 OLTの制御部の動作例(その2)を示す動作フロー図である。 各波長における下りグラントの送信例(第1周期)を示す図である。 各波長における下りグラントの送信例(第2周期)を示す図である。 フレームペイロードの例を示す図である。 図10(a)の割当てバイト長テーブルのデータを割当てバイト長の小さい順に並び替えた割当てバイト長テーブルの図である。
以下、図面を用いて本実施の形態によるPONの構成と動作、本手段を実現するための波長割当て方法を詳細に説明する。

1.受動光網システム
以下の説明では、OLTに接続されている5台のONU毎に波長を割当ててデータを波長分割多重して処理する構成のPONを想定したもので、OLTから各ONUへの下りデータに割当てる波長は、100Mbit/s(正確には103.68Mbit/sでありタイムスロットの長さは1620バイト)、500Mbit/s(正確には518.4Mbit/sでありタイムスロットの長さは8100バイト)、1Gbit/s(正確には1036.8Mbit/sでありタイムスロットの長さは16200バイト)、10Gbit/s(正確には10368Mbit/sでありタイムスロットの長さは162000バイト)分のデータを送信できる波長(λd1、λd2、λd3、λd4)を動的に割り当てる例をとり説明する。またONUからOLTへの上りデータへ割当てる波長は、波長(λu1、λu2、λu3、λu4)を動的に割り当てるが、本実施の形態は、主に、下りデータへ割当てる波長に関するものであり、以下では、詳細な説明はしない。なお、これらの数値は一例であり、他の伝送速度であってもよく、本実施の形態がこの数値に限定されるものではない。また、上り波長は4つ以上、ONUは5つ以上あってもよく、あるいは上り波長は3つ以下、ONUは4つ以下であってもよい。
図1に本実施の形態が適用される光アクセス網の構成図を示す。
PON10はPSTN/インターネット20に接続されて、データを送受信する。PON10は光スプリッタ100、幹線ファイバ110、支線ファイバ120、OLT200およびONU300,電話400、パーソナルコンピュータ410を備える。OLT200には、1本の幹線ファイバ110、光スプリッタ100および支線ファイバ120を介して、たとえば32台のONU300が接続可能である。図1には5台のONUが図示されており、それぞれ使用する波長が異なる。図示された例では、下り波長はλu1、λu2、λu3、λu4を全ONUが共有しており、後に説明する方法で動的な割り当てを行っている。一方、上り波長は4波長をONU5台で共有するという状況を一例としてONU300−1はλu1、ONU300−2はλu3、ONU300−3はλu4、ONU300−4はλu4、ONU300−5はλu2と図示している。各ONUは時分割で波長を切替えて使うことが出来る。OLT200からONU300の方向に伝送される信号にはそれぞれのONU300宛の信号が波長多重されて伝送される。ONU300で受信された信号は、自分宛の波長を選択してONU300内で受信し、信号のあて先に基づいて、電話400やパーソナルコンピュータ410に送られる。また、ONU300からOLT200の方向では、ONU300−1、ONU300−2、ONU300−3、ONU300−4.ONU300−5から伝送される信号は、OLT200から指示されたタイミング・波長でデータを送信し、光スプリッタ100を通った後に波長多重されて、OLT200に到達する。
図1の例では、5台のONU300が図示され、OLT200に接続されている。なお、OLT200に接続されるONUの数、接続可能な最大数は適宜の数でもよい。
図2は、下り信号の第1の構成例を示すフレーム構成図である。
下り信号(以下、下りフレーム、もしくは、単にフレームと称することがある)は、ITU−T勧告G984.3に規定された125μ秒周期の構造を用いる。フレーム同期パタン21、PLOAM(Physical Layer Operation,Administration and Maintenence)22、グラント指示23、フレームペイロード24を含む。フレーム同期パタン21は、各ONU300が125μ秒周期のフレームの先頭を識別するための固定パタンである。PLOAM22は、OLT200が各ONU300の物理レイヤの管理に使用する情報を格納する。グラント指示23は後ほど詳細に説明するが、ONU300に信号送信タイミングと伝送波長を指示するものである。一方、フレームペイロード24には、OLT200から各ONU300へ向かうユーザ信号が格納されている。グラント指示23は、さらに上りグラント指示30と下りグラント指示31を含む。上りグラント指示30は、各ONU300の上り信号送信タイミング(グラント)を指示するもので、より詳細には、各ONU300の内部でのユーザ信号制御単位であるTCONT(ONU−IDで指定されたONU)毎にグラントを指示するものである。一方、下りグラント指示31は、ITU−T勧告G984.3に規定されず本発明の課題を解決するために導入されたものである。具体的にはOLTからONUへ送信するフレームペイロード24に格納されるデータについて宛先ONU番号毎にその伝送開始時間と伝送終了時間および伝送波長を通知している。
同図は、図1で示した構成に対応した一構成例を示したもので、ONU300−1を制御するためのONU−ID#1用信号40a、ONU−2を制御するためのONU−ID#2用信号40b、ONU−3を制御するためのONU−ID#3用信号40cを示している。尚、各ONU用信号は、ONUを識別するためのONU−ID41、信号の送信開始タイミングを示すStrat42と送信終了タイミングを示すEnd43と、伝送波長指定領域44とを含む。伝送波長指定領域44は、下り信号にλu1、λu2、λu3、λu4の何を用いるかをONU毎に指示するものである。尚、Start42とEnd43はONU毎の信号について送信開始タイミングと送信終了タイミングを示すものである。OLT200は、各ONU300に周期的にグラント指示23を含む下り信号を送信し、各ONUにどれだけの下りデータが転送されるかを指示する。このStart42とEnd43は、OLT200がグラント指示を送信する各周期の中で、どのタイミングでデータの受信を開始して終了すれば良いかを示す情報である。尚、End43の代わりに、送信すべきデータのデータ長を指定し、Start42のタイミングから指定されたデータ長だけデータを送信するように指示しても良い。
このStart42、End43および伝送波長指定領域44の組により、ペイロード24の中に格納されたONU#1宛信号ペイロード32の開始位置、終了位置、伝送波長が通知される。
OLT200は、下りグラント指示31の伝送波長指定領域44により各ONUに指定した波長で、Start42及びEnd43で指示された区間のペイロードを各ONUに波長を切り替えて送信する。ONU300は、下りグラント指示31で指定された各波長44に受信波長に切替えて、この指定された区間内(Start42及びEnd43)で、下り信号を受信する。後に説明するONU300の内部では、この下りグラント指示を用いて自局が受信すべき信号の時間区間と伝送波長を検出し、内部の光受信インタフェースを制御して、指定された伝送波長の信号を受信する。本実施の形態は伝送波長毎に伝送速度が異なるものであるから、ONU300は、必然的に異なる伝送速度の信号を受信することとなる。以下、ONU#2宛信号ペイロード33、ONU#3宛信号ペイロード34についても同様であり、本図では、一例として、ONU#1宛信号ペイロード32が2.4Gbit/秒であり、ONU#2宛信号ペイロード33およびONU#3宛信号ペイロード34が10Gbit/秒の場合を図示している。すべてのONU宛ペイロードの変わり目にダミーペイロード35および36が挿入される。ONU300の光受信伝送インタフェースに従来から用いられる連続伝送用のデバイスを使用する場合、伝送速度が変化した時に、その変化に追従して同期するために、例えば数100ナノ秒から数マイクロ秒の時間を要する場合がある。異なる波長の信号は波長依存の伝播遅延差やOLTの送信時間の遅延偏差により必然的にスキューも持つ。したがってONU300がOLT200の指示に基づいて波長を切り替える際、受信器はこのスキューを修正し、受信信号に同期するための時間を必然的に要求する。ダミーペイロード35の具体的な値として、例えば信号振幅調整およびクロック同期の双方に都合の良い“10“交番が最適であるが、他の異なる値を用いることを妨げない。また本実施の形態では、一例として、ダミーペイロードの長さを12バイトにとって説明している。
2.ONU
図3に本実施の形態が適用されるONU300の構成例を示す。
支線ファイバ120から受信した光信号は、WDMフィルタ301にて波長分離され、波長可変フィルタ302にて下り波長λd1からλd4の内、1つを選択透過する。光受信インタフェース303にて光信号はディジタルビット列に変換される。続いてPONフレーム終端部306で、図2で説明した信号の分離を行う。PLOAM領域21、グラント指示領域22の信号はメッセージ受信バッファ308に送られ、そしてフレームペイロード領域23の信号はユーザーIF307に送られて出力される。またユーザーIF307から入力された信号は、バッファ309に一時的に格納された後、フレーム送信制御部310の制御のもとに読み出され、PONフレーム生成部311にて例えばITU−T勧告G.984.3の8.2章に記載のようなフォーマットに組み立てられる。パケットバッファ309はキュー長監視部314によりバッファの使用量が監視される。バッファ使用量情報は例えばITU−T勧告G.984.3の8.4章に記載のような形式でPON区間フレームに格納されてOLTに伝えられ、OLTはこのキュー長情報に基づいて発行するグラント量を制御する。組み立てられた信号はドライバー312にて波長可変レーザー313を電流駆動することにより光信号に変換され、WDMフィルタ301を経て支線ファイバ120に向けて送信される。CPU323、メモリ324は対になってONU300内の各ブロックの監視制御を行う。例えばCPU323は、ONU起動直後やONUがファイバに接続された直後に波長管理メモリ322に事前に決められた波長、例えば下り波長λd1、上り波長λu1を初期値としてリセットする。受信波長制御部321は波長管理メモリ322に格納されている値にもとづき波長可変フィルタ302の波長を設定し、送信波長制御部320は波長管理メモリ322に格納されている値にもとづき可変波長レーザー313の波長を設定する。また、CPU323は、タイマ325を参照しながらメッセージ受信バッファ308およびメッセージ送信バッファ310を用いてOLT200と波長割り当てメッセージの授受を行い、波長管理メモリ322に自身の割り当て波長を設定する。
ONU300にて使用するクロックは、上り信号ブロックでは、上り用クロック生成317からのクロックを常時使用し、下り信号ブロックでは、グラント指示領域22の波長指定領域43にて指定される波長に適合したクロック316(本実施例では、λd1は100Mクロック、λd2は500Mクロック、λd3は1Gクロック、λd4は10Gクロック)をセレクタ315で選択し動作する。
図4は、図3の光受信インタフェース303の詳細な実施例である。
高電圧可変バイアス源401に接続されたAPD402は高電圧で逆バイアスされて、受信光信号をアバランシェ効果により増幅して電流に変換する。この増幅作用により、1Gbit/秒を超える高速信号が−30dBm程度の微弱な光信号として入力される場合も、正しくデータを識別することが可能となる。変換された電流は抵抗403および404と増幅器406から構成されるトランスインピーダンスアンプにて電圧変換される。続いて可変利得増幅器407により増幅された信号はフリップフロップ410にてディジタルビット列に変換される。ここでフリップフロップ410に入力されるクロックは、多相クロック発生回路408の出力から信号の最適識別点に最も近いクロックを選択する最適位相選択回路409により生成される。上記構成のうち、高電圧可変バイアス源401はCPU323からの制御により伝送速度に応じたバイアス電圧を出力して受信信号を適切に増幅する。またスイッチ405はCPU323からの制御により伝送速度に応じた抵抗403および404の選択を行い、帯域とトランスインピーダンスゲインを決定する。可変利得増幅器407は、CPU323からの制御により伝送速度に応じた利得が設定される。多相クロック発生回路408はCPU323からの制御により伝送速度に応じた周波数の多相クロックを出力し、最適位相選択回路409はCPU323からの制御により伝送速度に応じた最適識別点に最も近いクロックを選択する。
3.OLT
図5は、本実施の形態のPONで用いるOLTの構成例を示すブロック構成図である。
OLT200は、網IF部607、制御部700、送信部710、受信部711、WDM606を備える。送信部710は、下りデータバッファ701、下り信号処理部702、光送信インタフェース703を備える。また、受信部711は、光受信インタフェース704、上り信号処理部705、上りデータバッファ706を備える。
下りデータバッファ701は、上位網20から網IF部607を介して受信したデータを一時的に蓄える。下り信号処理部702は、上位網20からの光信号をONU300に中継するために必要な処理を行う。図2にて説明した下りフレームの組立はこのブロックによって行われ、後に説明する方法で下り帯域制御部708より出力された下りグラント(図2の31)が下りフレーム内に格納される。光送信インタフェース703は、電気信号を光信号に変換して、光信号IF部606を介してONUに光信号(下り信号)を送信する。光受信インタフェース704は、ONU300から光信号IF部606を介して受信した光信号を電気信号に変換する。上り信号処理部705は、ONU300からの信号を上位網20に中継するために必要な処理を行う。上りデータバッファ706は、上位網20へ網IF部607を介して送信するデータを一時的に蓄える。制御部700は、上述した各機能ブロックと接続され、複数のONU300と通信(監視・制御等)を行うための必要な各種処理を実行し、また上位網20とONU300との間の信号を中継する機能を有する。
上り帯域制御部707は、あらかじめ定められたDBA周期毎に、該周期内でOLT200が収容したONU300(TCONT)の夫々にどれだけの通信帯域を割当てるかを決定する動的帯域割当処理を行う。下り帯域制御部708は、あらかじめ定められた周期毎に該周期内でOLT200が収容したONU300の夫々にどれだけの信号を転送するかを決定する。制御部700は、PONに備えた制御ボード(例えば、PCで構成した保守端末)と通信を行い、予め制御に必要な制御パラメータ(例えば、ONUの加入条件、契約トラヒック等)を制御部に設定しておいたり、保守者の要求に基づいて監視情報(例えば、障害発生状況や各ONUへの送信許可データ量等)を受信したりする構成とした。
尚、上述したOLT200の各機能ブロックは、CPUやメモリに蓄積したファームウェアで実現したり、電気/光変換回路・メモリ・増幅器といった電気部品等で実現するものである。また、これらの機能を各処理に特化した専用のハードウェア(LSI等)により実現しても良い。
図6はOLTに備えた下りパケットバッファ701の構成を説明する説明図である。下りパケットバッファ701は、振り分け部721、多重化部722、キュー長モニタ部723、バッファ読み出し制御部724、パケットバッファ725を備える。上位網20から網IF部607を介して受信したデータは、例えばVLANのラベル等を参照して宛先ONU別に振り分けられ、ONU別に備えられたパケットバッファ725に一時蓄積される。キュー長モニタ部723は各パケットバッファ725のキュー長をモニタし、下り帯域制御部708に通知する。バッファ読み出し制御部724は下り帯域制御部708からの指示により、指示されたパケットバッファ725からデータを指示された量だけ読み出し、多重化部722を介して後段に送信する。
図7は、OLTに備えた下り帯域制御部708の構成と動作例を説明する説明図である。バイト長決定部731は、下り帯域制御周期内(本実施例では0.125ミリ秒)で各ONU300へ向けたデータ量であるキュー長をキュー長モニタ部723から受信する。
尚、バイト長決定部731には、各ONUに下り送信可能な最大帯域パラメータであるポリサ帯域(又は、契約帯域)が契約に基づき、保守者により制御ボード(図5参照)から設定されている。このポリサ帯域は、例えば、各ONU契約者のサービス契約額に応じて下り送信データ量に制約をかける目的で設定されており、図6にて説明したパケットバッファ725に格納されたデータは、上記ポリサ帯域の設定値以下であれば各ONU宛に送信可能であるが、上記ポリサ帯域の設定値以上のデータが格納されていれば、ポリサ帯域の設定値を上回るデータは即時に送信できず、パケットバッファ725内の格納データ量がポリサ帯域の設定値以下となる条件を満たすまで、同パケットバッファ725内に留め置かれることにある。上記制約に基づき、具体的には上記受信したキュー長と予め設定されたポリサ帯域の値に基づいて、各ONU300に送信するバイト数(下り通信帯域)を決定し、各ONUの識別子であるONU−IDと送信するバイト長を対応付けた割当てバイト長テーブル733を作成して記憶部732に格納する(図7:(1))。
図10(a)及び図10(b)に、割当てバイト長テーブル733の構成例を示す。割当てバイト長テーブル733は、ONUの識別子であるONU−ID901と、下り帯域制御でONUに割り当てたバイト長902を有する。
図12に、割当てバイト長テーブル733のバイト長の決定方法についてのフローチャートを示す。なお、バイト長の決定方法は様々なバリエーションが可能であり、本実施の形態に留まるものではない。先ず、バイト長決定部731は、各ONU300へ向けたデータ量であるキュー長をキュー長モニタ部723から受信する(1401)。バイト長決定部731は、ONU−IDの初期値0とし(1402)、処理対象ONU−IDを決定する(1403)。バイト長決定部731は、予め設定された契約パラメータと送信待ちデータ量を比較(1404)し、契約パラメータよりも送信待ちデータ量が大きい場合には契約パラメータを割当てバイト長とし(1405)、バイト長を割当てバイトテーブル733へ書込む(1407)。逆に、バイト長決定部731は、契約パラメータと送信待ちデータ量を比較(1404)し、契約パラメータよりも送信待ちデータ量が小さい場合には送信待ちデータ量を割当てバイト長とし(1406)、バイト長を割当てバイトテーブル733へ書込む(1407)。バイト長決定部731は、この処理を登録されているONU−IDすべてに行なう(1408)。そして、バイト長決定部731は、下り帯域割り当て周期を満了後(1409)に再びキュー長を集約(1401)し、同処理を実施する。
送信タイミング決定部735は、割当てバイト長テーブル733の内容を読み出して(図7:(2))、各TCONTに割り当てたバイト長902に対応するタイムスロットをグラント周期毎に割り当て、ONU−IDと各グラント周期内に割り当てたバイト長を対応付けた送信タイミングテーブル734を作成して記憶部710に格納する(図7:(3))。また、送信タイミング決定部735は、作成した送信タイミングテーブル734の内容に従って、グラント指示22を含む送信許可メッセージを各ONU300に送信してデータの送信タイミングを通知する。
図11に、送信タイミングテーブル734の構成例を示す。送信タイミングテーブル734は、ONUの識別子であるONU−ID901と、あるグラント周期内でのデータ送信開始タイミングStart28を格納するStartエリア1002とデータ送信終了タイミングEnd29を格納するEndエリア1003と下り波長種別1004を有する。
各波長は、次のような帯域と割当てタイムスロット長に相当する。波長毎のタイムスロット長は、記憶部732等の適宜のテーブルに予め保存することができる。
λu1:帯域100Mbit/s (正確には103.68Mbit/s)用波長、割当てタイムスロット長:1620バイト
λu2:帯域500Mbit/s (正確には518.4Mbit/s)用波長、割当てタイムスロット長:8100バイト
λu3:帯域1Gbit/s (正確には1036.8Mbit/s)用波長、割当てタイムスロット長:16200バイト
λu4:帯域10Gbit/s (正確には10368Mbit/s)用波長、割当てタイムスロット長:162000バイト
図8は、下り信号処理部と光送信インタフェースの詳細構成図を示す。
下りデータバッファ701からの下り信号を信号振分部203にて送信波長単位に振分けてPONフレーム生成部204−1から204−4の中の対応するブロックにパケット信号を転送する。本実施例に示すようにOLT200が送信に使用する波長が4個の時、それぞれ4個の、PONフレーム生成部204、グラント挿入部207、多重部208、ドライバー205、E/O206を備えている。PONフレーム生成部204は制御部700から通知されるPLOAM情報22や信号振分部203からのフレームペイロード24をもとに図2にて説明したフォーマットにフレームが組み立てられる。特に制御部700にて生成された上りグラント指示および下りグラント指示はグラント挿入部207にて対応する波長のいずれかに挿入され、多重部208にてPONフレーム生成部204の信号と多重される。ここで上りグラント指示および下りグラント指示をどの波長に対応させて挿入するかを、後に図15を用いて説明する。組み立てられた信号はドライバ205がE/O206を電流駆動することで電気信号を光信号にし変換し、WDM部606を経て幹線ファイバ110向けて送信される。
図9は、光受信インタフェースと上り信号処理部の詳細構成図を示す。
本実施例では、100Mbit/s用の波長、500Mbit/s用の波長、1Gbit/s用の波長、10Gbit/s用の波長の4波長を使用した場合を例にとって説明するため、OLT200内には、それぞれ4個の、O/E508、増幅器509、クロック抽出部510およびPONフレーム分解部511を備えている。光信号IF部606を介して受信された光信号は、O/E508にて電気信号に変換され、増幅器509にて増幅され、クロック抽出部510にてリタイミングされ、PONフレーム分解部511にてオーバーヘッドが分離されて信号多重部516へパケットが送信され、上りデータバッファ706へ送信される。メッセージ受信バッファ523では、制御部700での処理に必要な図3にて説明した制御信号(PLOAM、キュー長)を格納し、制御部700へ転送する。
4.波長割り当て
図10(a)には、実施例として、図7にて説明したOLT200内の下り帯域制御部708で下り帯域制御処理をした結果、ONU#1に割り当てバイト長486バイト(帯域30Mbit/s(正確には31.104Mbit/s))、ONU#2に割り当てバイト長11340バイト(帯域700Mbit/s(正確には725.76Mbit/s))、ONU#3に割り当てバイト長32400バイト(帯域2Gbit/s(正確には2073.6Mbit/s))、ONU#4に割り当てバイト長12960バイト(帯域800Mbit/s(正確には829.44Mbit/s))、ONU#5に割り当てバイト長1458バイト(帯域90Mbit/s(正確には93.312Mbit/s))を割当てて下り信号を送信する場合の割当バイト長テーブル733(第1周期)を示す。さらに図10(b)には図10(a)の処理に続く次の下り帯域制御処理を行った結果の割当バイト長テーブル733(第2周期)の例を示す。
図11(a)は、図10(a)の割り当てテーブルを用いて作成された送信タイミングテーブル734(第1周期)の例である。
この送信タイミングテーブル734は、割当て帯域を帯域が小さい順に割当て、且つ、割当て帯域が各波長毎に設定された最大帯域より小さくするように割当てる場合を示す。
図13には、図11(a)の送信タイミングテーブル734の例における下り波長毎の下りタイムスロット図を示す。なお、本例においては、下り波長の割り当て順番は帯域が小さいものから割当てることとしている。また、本例では、λu1を帯域100Mbit/s用の波長、λu2を帯域500Mbit/s用の波長、λu3を帯域1Gbit/s用の波長、λu4を帯域10Gbit/s用の波長とする。図13は、各波長に対する割当てタイムスロット長が示され、各ONU−IDのONUへの下り信号の波長と送信タイミング(送信タイムスロット)を表している。この割当て例では、割当バイト(帯域)の小さいONU−IDには(例えば、ONU−ID=1及び5)、低速用クロック(低帯域)で動作する下り波長が割当てられる。また、割当バイト(帯域)の大きいONU−IDには(例えば、ONU−ID=2及び4及び3)、高速用クロック(高帯域)で動作する下り波長が割当てられる。そして、この例では各ONU−IDにおいて、下り波長が同時に(同じ送信タイムスロット又は送信タイミングに重なって)割当てられることがない。このように波長に設定された帯域(例えば、λu1であれば100Mbit/s)以上の帯域が割当てられているONUに対しては、その波長を割当てずに次の波長を割当てることで、上述の課題が解決できる。すなわち、例えば、ONU−ID=5のONUにおいては、タイムスロット510〜1619で波長λu1を用い、12〜359で波長λu2を用いているので、あるタイムスロットにおける割り当て波長がひとつのみ存在することになる。
5.送信タイミングテーブル生成処理
図14に、下り波長種別、Start/End決定方法についてのフローチャートを示す。
図14の例では、図10(a)の割当てバイト長テーブル733を用いて図11(a)の送信タイミングテーブル734を生成するための処理を示す。
送信タイミングテーブル734の作成方法を以下に説明する。
下り波長の割り当てにおいては、OLTは自身が送信機能として備える複数の送信波長のうち、要求帯域の小さいONUから順番に、伝送速度のより小さい波長を順次用いて、信号を送信する。この時、各ONUに割り当てる帯域が、割り当てた波長で伝送できる最大帯域を下回るように、割り当てる波長が選択されなければならない。この理由は、前述のように、ONUが搭載する可変WDMフィルタは同時に1つの波長しか選択できず、同時に複数の波長にまたがった波長割り当てを防止するための措置である。このフローチャートは、下り波長種別並びにStart/End決定方法に関するもので、例えば、制御部700、特に、送信タイミング決定部735等により実行される。
先ず、送信タイミング決定部735は、図10の割当てバイト長テーブル733を参照し、図10を割当てバイト長の小さい順に並べ替え処理順をつけ、iを処理順1801、B_alloc(i)を割当てバイト長902とする(1901)。
図17には、図10の割当てバイト長テーブルのデータを割当てバイト長の小さい順に並び替えたテーブルの図を示す。処理順1801が小さいONU−ID901順に送信タイミング決定処理が実施される。並び替えたテーブルは割当てバイト長テーブル733の他のエリアに記憶するか、それに上書きすることができる。割当てバイト長902は、処理フローの初期値設定としてiに1を、下り波長種別を表わすjに1を、i_minに1を代入する(1902)。送信タイミング決定部735は、Start、Endの初期値設定としてStartに1を、Endに−1を代入する(1903)。送信タイミング決定部735は、iにi_minを代入する(1904)。B_total(j)は各波長のタイムスロットの長さであり、本実施の形態では、λu1のB_total(1)は1620バイト、λu2のB_total(2)は8100バイト、λu3のB_total(3)は16200バイト、λu4のB_total(4)は162000バイトとしている。なお、波長毎のタイムスロット長は、記憶部732等の適宜の記憶領域に予め記憶されており、送信タイミング決定部735は、それを参照してB_total(j)を求めることができる。送信タイミング決定部735は、B_total(j)とB_alloc(i)を比較(1905)し、B_total(j)の方が大きい場合にはStartに(前のEnd値)+1+12を代入(1906)して、Startを決定する。送信タイミング決定部735は、小さい場合にはjを1増加させてi_minにiを代入(1910)して、ステップ1903へ戻る。送信タイミング決定部735は、Startが決定(1906)後はB_total(j)−1とStart+B_alloc(i)−1を比較(1907)し、B_total(j)−1の方が大きい場合にはEndにStart+B_alloc(i)−1を代入(1911)してEndを決定し、下り波長をλujに決定する。送信タイミング決定部735は、その後の処理1912では、iが最終処理順であれば、処理を終了し、iが最終処理順でなければi_minにi+1を代入(1913)してステップ1904へ戻る。送信タイミング決定部735は、比較ステップ1907にてB_total(j)−1の方が小さい場合にはEndにB_alloc(i)−1を代入し、Start+B_alloc(i)−1を代入(1911)してEndを決定する(1908)。また、送信タイミング決定部735は、同時にB_alloc(i)にStart+B_alloc(i)−B_total(j)を代入(1908)し、下り波長をλujに決定する(1908)。その後、送信タイミング決定部735は、ステップ1909で、jが最終割当て波長であれば、処理を終了し、jが最終割当て波長でなければjを1増加させてi_minにiを代入(1910)して処理1903へ戻る。なお、処理中+1、+12等は、データのStart/End又はガードタイム等のデータ間のためのバイト長であり、適宜の値に予め設定することができる。なお、送信タイミング決定部735は、上述の各ステップにおいて、Start、End、下り波長等の各データの設定後に、適宜のタイミングでそれらデータを送信タイミングテーブル734の該当するONU−IDの欄に記憶する。
以下に、図14のフローチャートに従い、図10(a)のテーブルを用い、図11(a)、図13のように割当てる場合の例について説明する。
まず、処理順i=1で、ONU−ID=1の割当バイト長486についてはステップ1901〜ステップ1905を経てλu1のタイムスロット長1620と比較され、ステップ1906に移り、Start=‘12’となる。さらに、ステップ1907により、
1620>12+486−1
であるから、ステップ1911によりEnd=‘497’、下り波長=λu1と設定される。
次に、ステップ1912、ステップ1913の処理の後、処理順i=2で、ONU−ID=5の割当バイト表1458については、ステップ1904、ステップ1905を経て、λu1のタイムスロット長1620と比較されステップ1906に移りStart=‘510’(=497+1+12)となる。さらにステップ1907により、
1620−1<510+1458−1
であるから、ステップ1908により、End=‘1619’下り波長λu1と設定される。さらに、残りの割当てバイト長については(B_alloc(i)=510+1458−1620=348)、ステップ1910を経て波長がλu2に変更され、ステップ1903〜ステップ1906によりStart=‘12’、下り波長λu2と設定され、さらにステップ1907〜ステップ1911によりEnd=12+348−1=‘359’、下り波長λu2に設定される。
同様に、処理順i=3以降も処理される。
図11(b)は、同様に図10(b)に示す第2周期の割り当てテーブルを用いて作成された送信タイミングテーブルの例である。
図15(a)には、送信タイミング決定部735が、図11(a)に示す第1周期の送信タイミングテーブルの内容をどのように図2にて説明した下りグラント領域31に格納するかの例を示している。本実施例では、使用する4つの下り波長のそれぞれが図2で説明したフレームフォーマットで伝送を行っており、したがって下りグラント領域31もそれぞれの波長毎に備えられている。図2で説明したフレームの先頭、すなわちフレーム同期パタン21の直前のタイミングにおいて、各ONU300は図3にて説明した波長可変フィルタ302により1つの波長を選択して信号を受信しているため、続いて伝送される該当ONUへのグラント信号23もフレーム同期パタン21の直前のタイミングにおいて選択されている波長を用いて伝送することは自然である。具体的にまだ下り信号の送信が始まっていない第0周期には全ONUは下り波長λd1を選択しているとして、続く第1周期のグラント信号は全て下り波長λd1を用いて伝送される。送信タイミング決定部735は、送信タイミングテーブル734を参照し、具体的に図11(a)の送信タイミングテーブルの順番に基づいて、領域41aから44aにはONU#1宛のグラント信号、領域41bから44bおよび41cから44cにはONU#5宛のグラント信号を格納していく。ここでONU#5宛のグラント信号に2組の下りグラント領域を使用している理由は、図14にて示したように2つの波長を同時には使用せず、かつ順番に使用して極力少ない消費電力となるように伝送速度を選択しているためである。以下、送信タイミング決定部735は、同様に、領域41dから44dにはONU#2宛のグラント信号、領域41eから44eおよび41fから44fにはONU#4宛のグラント信号、領域41gから44gにはONU#3宛のグラント信号を格納する。また、送信タイミング決定部735は、残る波長λd2、λd3およびλd4にはグラント信号を格納しない。
図17は、フレームペイロードの例を示す図である。
このように、第1周期のグラント信号により指示されたペイロードの波長44、Start42、End43に従い、フレームペイロード24が、波長を切り替えて送信される。各ONUは、図15(a)のグラント指示に従い、波長を切り替えてペイロードを受信する。
続いて図15(b)には、送信タイミング決定部735が、図11(b)に示す第2周期の送信タイミングテーブルの内容を、どのように図2にて説明した下りグラント領域31に格納するかの例を示している。上述の第1周期の伝送が終了するタイミング(すなわち第2周期のフレーム同期パタン21の直前のタイミング)において、図15(a)に示す下りグラント信号に従い、ONU#1は波長λd1を選択しており、以下同様にONU#2は波長λd3を、ONU#3は波長λd4を、ONU#4は波長λd4を、ONU#5は波長λd2を選択している(ONU#4は、下りグラント指示に従い、下り波長λd3のペイロードの受信後に下り波長λd4のペイロードを受信するため、λd4に設定されている。また、ONU#5は、下りグラント指示に従い、下り波長λd1のペイロードの受信後に下り波長λd2のペイロードを受信するため、λd2に設定されている。)。したがって、第2周期のグラント信号送信にもこの波長をそれぞれ使用することにする。具体的には、送信タイミング決定部735は、波長λd1において、領域41aから44aにはONU#1宛のグラント信号を格納する。送信タイミング決定部735は、波長λd2において、領域41aから44aにはONU#5宛のグラント信号を格納する。送信タイミング決定部735は、波長λd3において、領域41aから44aにはONU#2宛のグラント信号を格納する。送信タイミング決定部735は、波長λd4において、領域41aから44aおよび41bから44bにはONU#3宛のグラント信号を格納し、41cから44cおよび41dから44dにはONU#4宛のグラント信号を格納する。
本発明は、例えばPONシステムに利用可能であるが、この他にも各端末や終端装置に下り波長を割り当てるシステムに適用可能である。
10 PON
100 スプリッタ
110、120 光ファイバ
200 OLT
300 ONU
400、410 端末
700 制御部
708 下り帯域制御部
735 送信タイミング決定部
733 割当てバイト長テーブル
734 送信タイミングテーブル

Claims (8)

  1. 上位の通信網と接続される光多重終端装置と、加入者端末を収容するための複数の光網終端装置とが、光スプリッタおよび複数の光ファイバを備えた光ファイバ網で接続されており、前記光多重終端装置から前記光網終端装置への方向の通信は、前記光多重終端装置に接続された前記光網終端装置の総数より少ない数の複数の波長を使用する波長多重受動光網システムにおける前記光多重終端装置であって、
    光網終端装置IDに対して、下り波長種別、送信タイミングのスタート位置、送信タイミングのエンド位置を記憶した送信タイミングテーブルと、
    光網終端装置IDに対して、各光網終端装置に割当てたデータ量を示す割当バイト長を記憶した割当てバイト長テーブルと、
    前記送信タイミングテーブル及び前記割当てバイト長テーブルを参照し、各光網終端装置に下り波長種別及び送信タイミングを割当るための制御部と、
    を備え、
    前記制御部は、前記光多重終端装置から前記光網終端装置への方向の通信に使用する前記複数の波長に対応する伝送速度の総和を上限として、該光網終端装置の夫々に送信許可する信号の量を一定の周期毎に決め、決められた送信許可する信号の量が少ない該光網終端装置から順番に、帯域割り当てが完了していない前記波長の中から、対応する伝送速度が最も遅い前記波長を選択して送信タイミングを割り当て、光網終端装置IDに対して、選択された波長の下り波長種別とともに送信タイミングのスタート位置及び送信タイミングのエンド位置を前記送信タイミングテーブルに記憶し、
    前記制御部は、前記送信タイミングテーブルを参照し、各エントリの光網終端装置IDに対する下り波長種別、送信タイミングのスタート位置、送信タイミングのエンド位置を含むデータ組を順次含めて、下りグラント指示を作成し、該下りグラント指示の各データ組毎に、指定された光網終端装置に対する送信タイミングのスタート位置からエンド位置までの送信データを含めてフレームペイロードを作成し、
    前記制御部は、前記下りグラント指示を、前回の送信周期で送信された下りグラント指示に従い各光網終端装置が選択している波長で各光網終端装置に送信し、続けて下りグラント指示により指定された下り波長種別の波長で、順次波長を切り替えて前記フレームペイロードを含む下り信号を送信する
    前記光多重終端装置。
  2. 前記制御部は、
    前記割当てバイト長テーブルを参照し、光網終端装置ID毎の割当バイト長の小さい順に並べて処理順を付け、
    前記割当てバイト長テーブルを参照し、前記処理順の小さい光網終端装置IDから順に、波長に相当するタイムスロット長が小さい順に下り波長種別を選択し、
    選択された下り波長種別に相当するタイムスロット長と、前記割当てバイト長テーブルから読み出された光網終端装置IDの割当バイト長とを比較し、
    選択された波長種別のタイムスロット長が光網終端装置IDの割当バイト長よりも大きい値の場合、その波長種別を第1の波長種別として割当て、一方、選択された波長種別のタイムスロット長が光網終端装置IDの割当バイト長よりも小さい値の場合、選択された波長種別よりタイムスリット長が大きく、且つ、タイムスロット長が光網終端装置IDの割当バイト長よりも大きい波長を第1の波長種別として割当て、
    第1の波長種別で送信タイムスロットが割り当てられていないタイムスロット長内に、全ての割当バイト長が割当てられれば送信タイムスロットのスタート位置とエンド位置を設定し、第1の下り波長種別とともにスタート位置とエンド位置を前記送信タイミングテーブルに光網終端装置IDに対応して記憶し、
    一方、第1の波長種別で送信タイムスロットが割り当てられていないタイムスロット長内に、全ての割当バイト長が割当てられなければ、第1の下り波長種別のタイムスロット長内に割当てられる分のバイト長を割当て、送信タイムスロットのスタート位置とエンド位置を設定し、第1の下り波長種別とともにスタート位置とエンド位置を前記送信タイミングテーブルに光網終端装置IDに対応して記憶し、さらに、第1の下り波長種別よりタイムスロット長が次に大きく、送信タイムスロットがまだ割り当てられていない第2の波長種別のタイムスロット長内に、残りの割当バイト長を割当て、送信タイムスロットのスタート位置とエンド位置を設定し、第2の下り波長種別とともにスタート位置とエンド位置を前記送信タイミングテーブルに光網終端装置IDに対応して記憶する
    ことを特徴とする請求項1に記載の光多重終端装置。
  3. 前記制御部は、さらに、前記フレームペイロードの、各光網終端装置に対する前記データ組の前に波長切り替えのためのダミーペイロードを挿入することを特徴とする請求項1に記載の光多重終端装置。
  4. 前記制御部は、
    予め設定された契約パラメータと送信許可するデータ量を比較し、
    契約パラメータが送信待ちデータ量よりも大きい場合には契約パラメータを割当バイト長とし、割当バイト長を前記割当てバイト長テーブルへ書込み、一方、契約パラメータよりも送信待ちデータ量が大きい場合には送信待ちデータ量を割当バイト長とし、割当バイト長を前記割当てバイト長テーブルへ書込むことを特徴とする請求項1に記載の光多重終端装置。
  5. 前記制御部は、送信許可する信号の量と、前記一定の周期毎に送信波長に対応する伝送速度にて伝送可能な最大の信号量を比較し、前記送信許可する信号の量が前記伝送可能な最大の信号量を上回らないときのみ、前記比較に使用した前記波長を用いて送信タイミングの割り当てを行うことを特徴とする請求項1に記載の光多重終端装置。
  6. 上位の通信網と接続される光多重終端装置と、加入者端末を収容するための複数の光網終端装置とが、光スプリッタおよび複数の光ファイバを備えた光ファイバ網で接続されており、前記光多重終端装置から前記光網終端装置への方向の通信は、前記光多重終端装置に接続された前記光網終端装置の総数より少ない数の複数の波長を使用する波長多重受動光網システムであって、
    前記光多重終端装置は、
    光網終端装置IDに対して、下り波長種別、送信タイミングのスタート位置、送信タイミングのエンド位置を記憶した送信タイミングテーブルと、
    光網終端装置IDに対して、各光網終端装置に割当てたデータ量を示す割当バイト長を記憶した割当てバイト長テーブルと、
    前記送信タイミングテーブル及び前記割当てバイト長テーブルを参照し、各光網終端装置に下り波長種別及び送信タイミングを割当るための制御部と、
    を備え、
    前記制御部は、前記光多重終端装置から前記光網終端装置への方向の通信に使用する前記複数の波長に対応する伝送速度の総和を上限として、該光網終端装置の夫々に送信許可する信号の量を一定の周期毎に決め、決められた送信許可する信号の量が少ない該光網終端装置から順番に、帯域割り当てが完了していない前記波長の中から、対応する伝送速度が最も遅い前記波長を選択して送信タイミングを割り当て、光網終端装置IDに対して、選択された波長の下り波長種別とともに送信タイミングのスタート位置及び送信タイミングのエンド位置を前記送信タイミングテーブルに記憶し、
    前記制御部は、前記送信タイミングテーブルを参照し、各エントリの光網終端装置IDに対する下り波長種別、送信タイミングのスタート位置、送信タイミングのエンド位置を含むデータ組を順次含めて、下りグラント指示を作成し、該下りグラント指示の各データ組毎に、指定された光網終端装置に対する送信タイミングのスタート位置からエンド位置までの送信データを含めてフレームペイロードを作成し、
    前記制御部は、前記下りグラント指示を、前回の送信周期で送信された下りグラント指示に従い各光網終端装置が選択している波長で各光網終端装置に送信し、続けて下りグラント指示により指定された下り波長種別の波長で、順次波長を切り替えて前記フレームペイロードを含む下り信号を送信する
    前記波長多重受動光網システム。
  7. 前記光網終端装置は、
    前記光多重終端装置から下り信号を受信し、前記下り信号に含まれる下りグラント指示に従い、受信波長を切り替えて、自光網終端装置への前記フレームペイロードを受信することを特徴とする請求項6に記載の波長多重受動光網システム。
  8. 上位の通信網と接続される光多重終端装置と、加入者端末を収容するための複数の光網終端装置とが、光スプリッタおよび複数の光ファイバを備えた光ファイバ網で接続されており、前記光多重終端装置から前記光網終端装置への方向の通信は、前記光多重終端装置に接続された前記光網終端装置の総数より少ない数の複数の波長を使用する波長多重受動光網システムであって、
    前記光多重終端装置は、
    光網終端装置IDに対して、下り波長種別、送信タイミングのスタート位置、送信タイミングのエンド位置を記憶した送信タイミングテーブルと、
    光網終端装置IDに対して、各光網終端装置に割当てたデータ量を示す割当バイト長を記憶した割当てバイト長テーブルと、
    前記送信タイミングテーブル及び前記割当てバイト長テーブルを参照し、各光網終端装置に下り波長種別及び送信タイミングを割当るための制御部と、
    を備えた、前記波長多重受動光網システムにおける下り波長送信方法であって、

    前記制御部は、前記光多重終端装置から前記光網終端装置への方向の通信に使用する前記複数の波長に対応する伝送速度の総和を上限として、該光網終端装置の夫々に送信許可する信号の量を一定の周期毎に決め、決められた送信許可する信号の量が少ない該光網終端装置から順番に、帯域割り当てが完了していない前記波長の中から、対応する伝送速度が最も遅い前記波長を選択して送信タイミングを割り当て、光網終端装置IDに対して、選択された波長の下り波長種別とともに送信タイミングのスタート位置及び送信タイミングのエンド位置を前記送信タイミングテーブルに記憶し、
    前記制御部は、前記送信タイミングテーブルを参照し、各エントリの光網終端装置IDに対する下り波長種別、送信タイミングのスタート位置、送信タイミングのエンド位置を含むデータ組を順次含めて、下りグラント指示を作成し、該下りグラント指示の各データ組毎に、指定された光網終端装置に対する送信タイミングのスタート位置からエンド位置までの送信データを含めてフレームペイロードを作成し、
    前記制御部は、前記下りグラント指示を、前回の送信周期で送信された下りグラント指示に従い各光網終端装置が選択している波長で各光網終端装置に送信し、続けて下りグラント指示により指定された下り波長種別の波長で、順次波長を切り替えて前記フレームペイロードを含む下り信号を送信する
    前記下り波長送信方法。
JP2011519337A 2009-06-16 2009-06-16 光多重終端装置、波長多重受動光網システム、下り波長送信方法 Expired - Fee Related JP5314760B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/060935 WO2010146658A1 (ja) 2009-06-16 2009-06-16 光多重終端装置、波長多重受動光網システム、下り波長送信方法

Publications (2)

Publication Number Publication Date
JPWO2010146658A1 JPWO2010146658A1 (ja) 2012-11-29
JP5314760B2 true JP5314760B2 (ja) 2013-10-16

Family

ID=43355996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011519337A Expired - Fee Related JP5314760B2 (ja) 2009-06-16 2009-06-16 光多重終端装置、波長多重受動光網システム、下り波長送信方法

Country Status (4)

Country Link
US (1) US8811819B2 (ja)
JP (1) JP5314760B2 (ja)
CN (1) CN102804701B (ja)
WO (1) WO2010146658A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9906403B2 (en) 2014-08-26 2018-02-27 Mitsubishi Electric Corporation Slave station device, master station device, optical communication system, and malfunction detection method

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110018826A (ko) * 2009-08-18 2011-02-24 한국전자통신연구원 개방형 광가입자망 시스템
JP5669613B2 (ja) * 2011-02-18 2015-02-12 沖電気工業株式会社 動的帯域割当方法、光通信ネットワーク及び局側装置
US9667377B2 (en) * 2011-04-08 2017-05-30 Futurewei Technologies, Inc. Wavelength indication in multiple-wavelength passive optical networks
US9219566B2 (en) 2011-04-08 2015-12-22 Futurewei Technologies, Inc. Wavelength management in multiple-wavelength passive optical networks
JP5380689B2 (ja) * 2011-05-30 2014-01-08 株式会社日立製作所 光回線装置、帯域制御方法、及び、光ネットワークシステム
US9712235B2 (en) * 2012-02-28 2017-07-18 Spatial Digital Systems, Inc. Resource allocation in PON networks via wave-front multiplexing and de-multiplexing
US9231729B2 (en) * 2012-02-28 2016-01-05 Spatial Digital Systems, Inc. Resource allocation in PON networks via wave-front multiplexing and de-multiplexing
JP5924088B2 (ja) * 2012-04-06 2016-05-25 富士通株式会社 光伝送システム
WO2013173983A1 (zh) * 2012-05-23 2013-11-28 华为技术有限公司 多波长无源光网络的波长切换方法、***和装置
CN104737480B (zh) * 2013-05-03 2018-01-16 华为技术有限公司 多载波分复用***的方法和装置
CN103281632A (zh) * 2013-06-21 2013-09-04 苏州彩云飞电子有限公司 多波长无源光网络***
CN103281635A (zh) * 2013-06-21 2013-09-04 苏州彩云飞电子有限公司 多波长无源光网络***
JP6072285B2 (ja) 2013-11-01 2017-02-01 三菱電機株式会社 親局装置および通信システム
WO2015184604A1 (zh) * 2014-06-04 2015-12-10 华为技术有限公司 波长切换方法、装置和***
WO2016000205A1 (zh) * 2014-07-01 2016-01-07 华为技术有限公司 数据传输控制方法、无源光网络设备及装置、无源光网络
FR3024622A1 (fr) * 2014-08-04 2016-02-05 Orange Signal optique comprenant une succession de rafales multi-bandes de signaux multi-porteuses de donnees, systeme et procede d'emission d'un tel signal, et reseau de transport optique correspondant.
US10805905B2 (en) * 2015-03-30 2020-10-13 Nippon Telegraph And Telephone Corporation Terminal station device and bandwidth allocation method
EP3288201B1 (en) * 2015-05-20 2019-07-24 Huawei Technologies Co., Ltd. Passive optical network framing method, device and system
CN106253971B (zh) * 2015-06-15 2020-11-03 南京中兴新软件有限责任公司 光网络***、光线路终端、光网络单元及其控制方法
CN107302412B (zh) 2016-04-14 2019-12-13 中兴通讯股份有限公司 无源光网络架构及其实现数据传输的方法和光网络设备
US10200123B2 (en) * 2016-06-20 2019-02-05 Cable Television Laboratories, Inc. System and methods for distribution of heterogeneous wavelength multiplexed signals over optical access network
US10397672B2 (en) * 2016-06-20 2019-08-27 Cable Television Laboratories, Inc. Systems and methods for intelligent edge to edge optical system and wavelength provisioning
KR102088968B1 (ko) * 2017-08-23 2020-03-13 한국전자통신연구원 멀티 레인을 효율적으로 활용하는 광 선로 단말 및 상기 광 선로 단말을 포함하는 수동형 광 네트워크
CN110392317B (zh) 2018-04-17 2022-07-26 华为技术有限公司 一种信号发送方法和装置
US11792123B2 (en) * 2020-04-20 2023-10-17 Intel Corporation Concept for a source device and a destination device of a point-to- multipoint communication network

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10247896A (ja) * 1997-03-05 1998-09-14 Fujitsu Ltd 通信ネットワーク、光送信機、光受信機及び通信方法
JP2006165953A (ja) * 2004-12-07 2006-06-22 Oki Electric Ind Co Ltd 光通信システム
JP2008172351A (ja) * 2007-01-09 2008-07-24 Hitachi Communication Technologies Ltd パッシブ光ネットワークシステムおよび波長割当方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004079960A1 (ja) * 2003-03-04 2004-09-16 Fujitsu Limited コンテンツ情報の配信方法並びに配信システムおよびそのセンタ局
US8250622B2 (en) * 2003-10-30 2012-08-21 Panasonic Corporation Method and apparatus for broadcasting to a portable terminal
US7627246B2 (en) * 2005-07-22 2009-12-01 Novera Optics, Inc. Wavelength division multiplexing passive optical networks to transport access platforms
CN101213776A (zh) * 2006-01-27 2008-07-02 日本电信电话株式会社 光波长多路接入***
JP4096017B2 (ja) * 2006-10-13 2008-06-04 株式会社日立コミュニケーションテクノロジー 光信号送信タイミング調整方法
JP4065892B1 (ja) * 2006-10-13 2008-03-26 株式会社日立コミュニケーションテクノロジー Ponシステムおよびそのレンジング方法
JP4340692B2 (ja) * 2007-02-02 2009-10-07 株式会社日立コミュニケーションテクノロジー 受動光網システムおよびその運用方法
WO2010116487A1 (ja) * 2009-04-07 2010-10-14 株式会社日立製作所 光多重終端装置、受動光網システム、波長割当て方法
JP5286155B2 (ja) * 2009-05-13 2013-09-11 株式会社日立製作所 受動光網システムおよびその親局装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10247896A (ja) * 1997-03-05 1998-09-14 Fujitsu Ltd 通信ネットワーク、光送信機、光受信機及び通信方法
JP2006165953A (ja) * 2004-12-07 2006-06-22 Oki Electric Ind Co Ltd 光通信システム
JP2008172351A (ja) * 2007-01-09 2008-07-24 Hitachi Communication Technologies Ltd パッシブ光ネットワークシステムおよび波長割当方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9906403B2 (en) 2014-08-26 2018-02-27 Mitsubishi Electric Corporation Slave station device, master station device, optical communication system, and malfunction detection method

Also Published As

Publication number Publication date
CN102804701B (zh) 2015-04-08
JPWO2010146658A1 (ja) 2012-11-29
US8811819B2 (en) 2014-08-19
WO2010146658A1 (ja) 2010-12-23
CN102804701A (zh) 2012-11-28
US20120093509A1 (en) 2012-04-19

Similar Documents

Publication Publication Date Title
JP5314760B2 (ja) 光多重終端装置、波長多重受動光網システム、下り波長送信方法
JP5285766B2 (ja) 光多重終端装置、受動光網システム、波長割当て方法
JP5286155B2 (ja) 受動光網システムおよびその親局装置
JP4942680B2 (ja) 受動光網システム、光多重終端装置及び受動光網システムの通信方法
JP5097655B2 (ja) 受動光網システム及び光多重終端装置
JP5097641B2 (ja) 受動光網システム、光多重終端装置及び光網終端装置
JP5094247B2 (ja) 受動光網システムおよびその通信方法
JP5216656B2 (ja) 受動光網システムおよびその運用方法
JP5114268B2 (ja) 受動光網システムおよびその運用方法
US20070064731A1 (en) Transmission apparatus with function of multi-step bandwidth assignment to other communication apparatuses
JP2008283323A (ja) Ponシステムにおける動的帯域割当方式
US20090317082A1 (en) Passive Optical Network System, Optical Network Unit, and Optical Line Terminal
JP2016149609A (ja) アクセス制御システム、アクセス制御方法、親局装置及び子局装置
JP2006237769A (ja) 受動型光ネットワークシステム
JP5487292B2 (ja) 受動光網システムおよびその運用方法
JP5487293B2 (ja) 受動光網システムおよびその運用方法
JP5411805B2 (ja) 受動光網システム及び送信光制御方法、光多重終端装置及び光網終端装置
Kwong et al. WDM PONs: Next step for the first mile

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130705

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees