JP5305231B2 - Photocatalyst paint - Google Patents

Photocatalyst paint Download PDF

Info

Publication number
JP5305231B2
JP5305231B2 JP2009016097A JP2009016097A JP5305231B2 JP 5305231 B2 JP5305231 B2 JP 5305231B2 JP 2009016097 A JP2009016097 A JP 2009016097A JP 2009016097 A JP2009016097 A JP 2009016097A JP 5305231 B2 JP5305231 B2 JP 5305231B2
Authority
JP
Japan
Prior art keywords
photocatalyst
mass
less
inorganic
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009016097A
Other languages
Japanese (ja)
Other versions
JP2010172797A (en
Inventor
浩二 表敷
順次 亀島
洋二 高木
信 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2009016097A priority Critical patent/JP5305231B2/en
Publication of JP2010172797A publication Critical patent/JP2010172797A/en
Application granted granted Critical
Publication of JP5305231B2 publication Critical patent/JP5305231B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、建築物等の外装材、内装材等の用途に特に適した、高度の耐候性、有害ガス分解性、耐光性および各種皮膜性能に優れた光触媒層を備えた光触媒塗装体に関する。   The present invention relates to a photocatalyst-coated body having a photocatalyst layer excellent in high weather resistance, harmful gas decomposability, light resistance, and various film performances, which is particularly suitable for applications such as exterior materials and interior materials such as buildings.

酸化チタンなどの光触媒が、近年建築物の外装材、内装材など多くの用途において利用されている。外装用途については、基材表面に光触媒を塗装することにより、光エネルギーを利用してNOx、SOx等の有害物質の分解機能を付与することが可能となる。また内装用途についても、光エネルギーを利用してVOC等の有害物質の分解機能を付与することが可能となる。   In recent years, photocatalysts such as titanium oxide have been used in many applications such as exterior and interior materials for buildings. For exterior applications, by applying a photocatalyst to the substrate surface, it is possible to impart a decomposition function of harmful substances such as NOx and SOx using light energy. In addition, for interior applications, it is possible to add a function to decompose harmful substances such as VOCs using light energy.

このような光触媒塗装体を得る場合、ベースとなる基材と光触媒の間に、接着および/または光触媒による基材表面の劣化抑制を目的とした中間層を設けることが行われる。このような光触媒を塗布した光触媒塗装体を得る技術としては、以下のものが知られている。 When obtaining such a photocatalyst-coated body, an intermediate layer is provided between the base material serving as the base and the photocatalyst for the purpose of adhesion and / or suppression of deterioration of the base material surface due to the photocatalyst. The following are known as techniques for obtaining a photocatalyst-coated body coated with such a photocatalyst.

ベースとなる基材と光触媒の間に、接着および/または光触媒による基材表面の劣化抑制を目的としたシリコーン変性樹脂などの中間層を設ける技術が知られている。(例えば、特許文献1(国際公開第97/00134号パンフレット)参照)。   A technique is known in which an intermediate layer such as a silicone-modified resin is provided between a base material serving as a base and a photocatalyst for the purpose of adhesion and / or suppression of deterioration of the base material surface by the photocatalyst. (For example, refer to Patent Document 1 (International Publication No. 97/00134 pamphlet)).

また、ベースとなる基材と光触媒の間に、中間層を設け、その中間層に無機系半導体、サリチル酸系、ベンゾフェノン系、ベンゾトリアゾール系、シアノアクリレート系等の有機物等の紫外線吸収物質を配合し、基材表面を劣化抑制する技術も知られている(例えば、特許文献2(特開2006−116461号公報)、特許文献3(特開2008−272718号公報)参照)。   In addition, an intermediate layer is provided between the base substrate and the photocatalyst, and an ultraviolet absorbing material such as an inorganic semiconductor, salicylic acid-based, benzophenone-based, benzotriazole-based, or cyanoacrylate-based organic material is blended in the intermediate layer. Further, techniques for suppressing deterioration of the substrate surface are also known (see, for example, Patent Document 2 (Japanese Patent Laid-Open No. 2006-116461) and Patent Document 3 (Japanese Patent Laid-Open No. 2008-272718)).

光触媒層のバインダー成分としてのシリカゾルと光触媒性二酸化チタンとを含有する塗膜を基体に形成して光触媒体を得る技術も知られている(例えば、特許文献4(特開平11−169727号公報)参照)。この技術にあっては、シリカゾルの添加量がSiO基準で二酸化チタンに対して20〜200重量部であるとされており、二酸化チタンの含有比率が高い。また、シリカゾルの粒径も0.1〜10nmと小さい。 A technique for obtaining a photocatalyst by forming a coating film containing silica sol as a binder component of a photocatalyst layer and photocatalytic titanium dioxide on a substrate is also known (for example, Japanese Patent Application Laid-Open No. 11-169727). reference). In this technique, the amount of silica sol added is 20 to 200 parts by weight with respect to titanium dioxide on the basis of SiO 2 , and the content ratio of titanium dioxide is high. In addition, the particle size of silica sol is as small as 0.1 to 10 nm.

また当該塗装体の耐久性を高める目的で、光触媒に加水分解性シリコーン等のバインダー成分を添加する技術が知られている。(特許文献5(特開2001−212510号公報)参照)、(特許文献6(特開2002−137322号公報)参照)。   In addition, a technique for adding a binder component such as hydrolyzable silicone to the photocatalyst for the purpose of enhancing the durability of the coated body is known. (See Patent Document 5 (Japanese Patent Laid-Open No. 2001-212510)), (See Patent Document 6 (Japanese Patent Laid-Open No. 2002-137322)).

国際公開第97/00134号パンフレットWO97 / 00134 pamphlet 特開2006−116461号公報JP 2006-116461 A 特開2008−272718号公報JP 2008-272718 A 特開平11−169727号公報JP 11-169727 A 特開2001−212510号公報JP 2001-212510 A 特開2002−137322号公報JP 2002-137322 A

充分な光触媒活性を得るために、光触媒層に含まれる光触媒を増量することが従来より行われているが、そのような塗膜構成にした場合、中間層が光触媒によって劣化する恐れがあるなどの不具合を発生する懸念があった。また、光触媒を減量させると光触媒層での紫外線遮蔽効果が弱まり、塗膜および下地の紫外線劣化が懸念される。   In order to obtain sufficient photocatalytic activity, it has been conventionally practiced to increase the amount of photocatalyst contained in the photocatalyst layer. However, when such a coating composition is used, the intermediate layer may be deteriorated by the photocatalyst. There was a concern about the occurrence of defects. Further, when the amount of the photocatalyst is reduced, the ultraviolet shielding effect in the photocatalyst layer is weakened, and there is a concern that the coating film and the underlying layer are deteriorated by ultraviolet light.

本発明では、上記事情に鑑み、中間層および基材に対する浸食を防止しながら、耐候性および有害ガス分解性を発揮する光触媒塗装体を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide a photocatalyst-coated body that exhibits weather resistance and harmful gas decomposability while preventing erosion of the intermediate layer and the substrate.

すなわち、本発明による光触媒塗装体は、基材と、基材上に設けられる中間層と、光触媒層とを備えた光触媒塗装体であって、前記光触媒層には平均粒径が100nm未満かつ励起波長が380nm以上の光触媒粒子が含まれており、前記中間層には耐候性樹脂と、平均粒径100nm以上の無機体質顔料又は無機白色顔料と、ヒドロキシフェニルトリアジン化合物とが含まれていることを特徴とする光触媒塗装体である。   That is, the photocatalyst-coated body according to the present invention is a photocatalyst-coated body including a base material, an intermediate layer provided on the base material, and a photocatalyst layer, and the photocatalyst layer has an average particle size of less than 100 nm and excited. Photocatalyst particles having a wavelength of 380 nm or more are included, and the intermediate layer contains a weather resistant resin, an inorganic extender pigment or an inorganic white pigment having an average particle diameter of 100 nm or more, and a hydroxyphenyltriazine compound. It is a featured photocatalyst-coated body.

光触媒塗装体
本発明による光触媒塗装体は、基材と、基材上に設けられる中間層と、光触媒層とを備えた光触媒塗装体であって、前記光触媒層には平均粒径が100nm未満かつ励起波長が380nm以上の光触媒粒子が含まれており、前記中間層には耐候性樹脂と、平均粒径100nm以上の無機体質顔料又は無機白色顔料と、ヒドロキシフェニルトリアジン化合物とが含まれていることを特徴とする光触媒塗装体である。
すなわち、本発明による光触媒塗装体は、中間層に380nm未満の短波長の紫外線を効果的に吸収するヒドロキシフェニルトリアジン化合物と、380nm以上の長波長の光線や熱線を有効に反射する平均粒径100nm以上の無機体質顔料又は無機白色顔料を含有せしめ、かつ光触媒層中の光触媒粒子として励起波長が380nm以上の光触媒を選択することで、おそらくは上記無機体質顔料又は無機白色顔料からの反射光線をも光触媒機能に寄与させるとともに、中間層や基材にダメージを与える380nm未満の有害な紫外線をカットすることが可能となり、光触媒の分解機能を有効に発揮するとともに基材および中間層の耐候性を向上させることが可能となる。
ここで、「平均粒径」は、走査型電子顕微鏡により1〜10視野に入る任意の100個の粒子の長さを測定した個数平均値として算出される。また、無機体質顔料が棒状の場合は長手方向の平均とする。
Photocatalyst-coated body A photocatalyst-coated body according to the present invention is a photocatalyst-coated body comprising a base material, an intermediate layer provided on the base material, and a photocatalyst layer, wherein the photocatalyst layer has an average particle size. Includes photocatalyst particles having an excitation wavelength of less than 100 nm and an excitation wavelength of 380 nm or more, and the intermediate layer contains a weather-resistant resin, an inorganic extender pigment or an inorganic white pigment having an average particle diameter of 100 nm or more, and a hydroxyphenyltriazine compound This is a photocatalyst-coated body characterized by the above.
That is, the photocatalyst-coated body according to the present invention has a hydroxyphenyl triazine compound that effectively absorbs ultraviolet light having a short wavelength of less than 380 nm and an average particle diameter of 100 nm that effectively reflects light and heat rays having a long wavelength of 380 nm or more. By containing the above inorganic extender pigment or inorganic white pigment and selecting a photocatalyst having an excitation wavelength of 380 nm or more as the photocatalyst particles in the photocatalyst layer, the photocatalyst probably reflects reflected light from the inorganic extender pigment or the inorganic white pigment. In addition to contributing to the function, it is possible to cut harmful UV rays of less than 380 nm that damage the intermediate layer and the base material, effectively exhibiting the decomposition function of the photocatalyst, and improving the weather resistance of the base material and the intermediate layer It becomes possible.
Here, the “average particle diameter” is calculated as a number average value obtained by measuring the lengths of arbitrary 100 particles entering 1 to 10 visual fields with a scanning electron microscope. When the inorganic extender pigment is rod-shaped, the average in the longitudinal direction is taken.

本発明の好ましい形態においては、ヒンダードアミンが含有されているようにする。そうすることで、ヒドロキシフェニルトリアジン化合物による380nm未満の短波長の紫外線の吸収性能が安定する。   In a preferred embodiment of the present invention, a hindered amine is contained. By doing so, the absorption performance of ultraviolet rays having a short wavelength of less than 380 nm by the hydroxyphenyltriazine compound is stabilized.

本発明の好ましい形態においては、前記耐候性樹脂は、シリコーン変性樹脂であるようにする。シリコーン変性樹脂を用いることで、中間層の耐候性が良好となる。   In a preferred embodiment of the present invention, the weather resistant resin is a silicone-modified resin. By using the silicone-modified resin, the weather resistance of the intermediate layer is improved.

本発明の好ましい形態においては、前記シリコーン変性樹脂中のケイ素含有量は、前記シリコーン変性樹脂の固形分に対して0.2質量%以上16.5質量%未満であるようにする。
ケイ素原子含有量が、シリコーン変性樹脂の固形分に対して0.2質量%以上16.5質量%未満が好ましく、より好ましくは6.5質量%以上16.5質量%未満である。シリコーン変性樹脂に含有されるケイ素原子含有量が0.2質量%以上、好ましくは6.5質量%以上にすることで、中間層の耐候性が低下し、光触媒に浸食される可能性を低減することができる。またシリコーン変性樹脂に含有されるケイ素原子含有量が16.5質量%未満にすることで、可撓性に乏しくなることに起因する中間層におけるクラックの発生を抑制できる。
ここでシリコーン変性樹脂中のケイ素原子含有量は、X線光電子分光分析装置(XPS)による化学分析によって測定することができる。
In a preferred embodiment of the present invention, the silicon content in the silicone-modified resin is 0.2% by mass or more and less than 16.5% by mass with respect to the solid content of the silicone-modified resin.
The silicon atom content is preferably 0.2% by mass or more and less than 16.5% by mass, and more preferably 6.5% by mass or more and less than 16.5% by mass with respect to the solid content of the silicone-modified resin. When the silicon atom content in the silicone-modified resin is 0.2% by mass or more, preferably 6.5% by mass or more, the weather resistance of the intermediate layer is lowered and the possibility of being eroded by the photocatalyst is reduced. can do. Moreover, generation | occurrence | production of the crack in an intermediate | middle layer resulting from lacking in flexibility can be suppressed because silicon atom content contained in silicone modified resin shall be less than 16.5 mass%.
Here, the silicon atom content in the silicone-modified resin can be measured by chemical analysis using an X-ray photoelectron spectrometer (XPS).

本発明の好ましい形態においては、前記ヒドロキシフェニルトリアジン化合物は、前記中間層に対して0.1質量%以上10質量%未満含有されているようにする。
この範囲にすることで380nm未満の短波長の紫外線の吸収性能が充分に発揮されるようになる。
In a preferred embodiment of the present invention, the hydroxyphenyl triazine compound is contained in an amount of 0.1% by mass or more and less than 10% by mass with respect to the intermediate layer.
By setting it within this range, the absorption performance of ultraviolet rays having a short wavelength of less than 380 nm is sufficiently exhibited.

本発明において用いられるヒドロキシフェニルトリアジン化合物は、ヒドロキシフェニルトリアジンおよび/または下記一般式(化1)に示される基本骨格を有するヒドロキシフェニルトリアジンの誘導体であり、市販のヒドロキシフェニルトリアジン系紫外線吸収剤を好適に利用することができる。   The hydroxyphenyl triazine compound used in the present invention is a derivative of hydroxyphenyl triazine and / or hydroxyphenyl triazine having a basic skeleton represented by the following general formula (Chemical Formula 1), and a commercially available hydroxyphenyl triazine-based UV absorber is preferable. Can be used.

Figure 0005305231
Figure 0005305231

本発明の好ましい形態においては、前記無機体質顔料又は無機白色顔料は、前記中間層に対して3質量%以上70質量%未満含有されているようにする。
この範囲にすることで380nm以上の長波長の光線や熱線を有効に反射するようになる。
In a preferred embodiment of the present invention, the inorganic extender pigment or the inorganic white pigment is contained in an amount of 3% by mass or more and less than 70% by mass with respect to the intermediate layer.
By setting it within this range, light rays and heat rays having a long wavelength of 380 nm or more are effectively reflected.

本発明の好ましい形態においては、前記無機体質顔料又は無機白色顔料はチタン含有酸化物であるようにする。
酸化チタン、チタン酸カリウム等のチタン含有酸化物は白色度が大きく、380nm以上の長波長の光線や熱線を有効に反射する。
In a preferred embodiment of the present invention, the inorganic extender pigment or the inorganic white pigment is a titanium-containing oxide.
Titanium-containing oxides such as titanium oxide and potassium titanate have high whiteness and effectively reflect light rays and heat rays having a long wavelength of 380 nm or more.

本発明の好ましい形態においては、前記光触媒層は通気性を有するようにする。
そうすることで、上記無機体質顔料又は無機白色顔料からの反射光線を光触媒機能に有効に寄与させることが可能となる。
In a preferred embodiment of the present invention, the photocatalyst layer has air permeability.
By doing so, it becomes possible to make the reflected light from the inorganic extender pigment or the inorganic white pigment effectively contribute to the photocatalytic function.

本発明の好ましい形態においては、前記光触媒層中に含有される前記光触媒粒子の含有量が1質量%を超え15質量%未満であるようにする。
上記範囲とすることで、無機体質顔料又は無機白色顔料からの反射光線を光触媒機能に有効に寄与させつつ光触媒粒子の中間層との直接的な接触を有効に抑えることができそれにより中間層を浸食しにくくなるので、温帯、亜寒帯地方の太陽光照射下での優れた光触媒機能と充分な耐候性を同時に発揮できる。
In a preferred embodiment of the present invention, the content of the photocatalyst particles contained in the photocatalyst layer is more than 1% by mass and less than 15% by mass.
By setting it as the above range, it is possible to effectively suppress direct contact with the intermediate layer of the photocatalyst particles while effectively contributing the reflected light beam from the inorganic extender pigment or the inorganic white pigment to the photocatalytic function. Since it becomes difficult to erode, it can simultaneously exhibit excellent photocatalytic function and sufficient weather resistance under sunlight irradiation in temperate and subarctic regions.

本発明の好ましい形態においては、前記光触媒層中に含有される前記光触媒粒子の含有量が1質量%を超え5質量%未満であるようにする。
上記範囲とすることで、無機体質顔料又は無機白色顔料からの反射光線を光触媒機能に有効に寄与させつつ光触媒粒子の中間層との直接的な接触を最小限に抑えることができそれにより中間層を浸食しにくくなるので、熱帯、亜熱帯地方の太陽光照射下での優れた光触媒機能と充分な耐候性を同時に発揮できる。
In a preferred embodiment of the present invention, the content of the photocatalyst particles contained in the photocatalyst layer is more than 1% by mass and less than 5% by mass.
By making the above range, the direct contact with the intermediate layer of the photocatalyst particles can be minimized while effectively reflecting the reflected light from the inorganic extender pigment or the inorganic white pigment to the photocatalytic function. Since it is difficult to erode, it can simultaneously exhibit excellent photocatalytic function and sufficient weather resistance under tropical and subtropical sunlight irradiation.

本発明の好ましい形態においては、前記光触媒層には、前記光触媒粒子以外に無機酸化物粒子が含まれているようにする。
光触媒粒子以外のバインダー成分の主成分を粒子状の無機酸化物とすることで、光触媒層に充分な通気性を確保でき、上記無機体質顔料又は無機白色顔料からの反射光線を光触媒機能により有効に寄与させることが可能となる。
In a preferred embodiment of the present invention, the photocatalyst layer contains inorganic oxide particles in addition to the photocatalyst particles.
By making the main component of the binder component other than the photocatalyst particles into a particulate inorganic oxide, sufficient air permeability can be secured in the photocatalyst layer, and reflected light from the inorganic extender pigment or inorganic white pigment can be effectively used by the photocatalyst function. It is possible to contribute.

本発明の好ましい形態においては、前記光触媒層が、1質量部を超え15質量部未満の光触媒粒子と、75質量部を超え99質量部未満の無機酸化物粒子と、任意成分として、加水分解性シリコーンの縮重合物、有機金属化合物の加水分解物の縮重合物の群から選ばれる少なくとも1種を0質量部以上10質量部未満とを、前記光触媒粒子、前記無機酸化物粒子、および前記任意成分の酸化物換算量の合計量が100質量部となるように含んでなるようにする。
そうすることで、温帯、亜寒帯地方の太陽光照射下での優れた光触媒機能と充分な耐候性を同時に発揮できるようになるとともに、光触媒層に充分な通気性を確保でき、上記無機体質顔料又は無機白色顔料からの反射光線を光触媒機能により有効に寄与させることが可能となる。
In a preferred embodiment of the present invention, the photocatalyst layer is hydrolyzable as an optional component, with photocatalyst particles exceeding 1 part by mass and less than 15 parts by mass, inorganic oxide particles exceeding 75 parts by mass and less than 99 parts by mass. At least one selected from the group consisting of a polycondensation product of silicone and a polycondensation product of a hydrolyzate of an organometallic compound is used in an amount of 0 to 10 parts by mass, the photocatalyst particles, the inorganic oxide particles, and the optional It is made to contain so that the total amount of the component oxide conversion amount may be 100 mass parts.
By doing so, it is possible to simultaneously exhibit excellent photocatalytic function and sufficient weather resistance under sunlight irradiation in the temperate and subarctic regions, and it is possible to ensure sufficient air permeability in the photocatalyst layer, the inorganic extender pigment or The reflected light from the inorganic white pigment can be effectively contributed by the photocatalytic function.

本発明の好ましい形態においては、前記光触媒層が、1質量部を超え5質量部未満の光触媒粒子と、85質量部を超え99質量部未満の無機酸化物粒子と、任意成分として、加水分解性シリコーンの縮重合物、有機金属化合物の加水分解物の縮重合物の群から選ばれる少なくとも1種を0質量部以上10質量部未満とを、前記光触媒粒子、前記無機酸化物粒子、および前記任意成分の酸化物換算量の合計量が100質量部となるように含んでなるようにする。
そうすることで、熱帯、亜熱帯地方の太陽光照射下での優れた光触媒機能と充分な耐候性を同時に発揮できるようになるとともに、光触媒層に充分な通気性を確保でき、上記無機体質顔料からの反射光線を光触媒機能により有効に寄与させることが可能となる。
In a preferred embodiment of the present invention, the photocatalyst layer is hydrolyzable as an optional component, with photocatalyst particles exceeding 1 part by mass and less than 5 parts by mass, inorganic oxide particles exceeding 85 parts by mass and less than 99 parts by mass. At least one selected from the group consisting of a polycondensation product of silicone and a polycondensation product of a hydrolyzate of an organometallic compound is used in an amount of 0 to 10 parts by mass, the photocatalyst particles, the inorganic oxide particles, and the optional It is made to contain so that the total amount of the oxide conversion amount of a component may be 100 mass parts.
By doing so, it is possible to simultaneously exhibit excellent photocatalytic function and sufficient weather resistance under sunlight irradiation in the tropical and subtropical regions, and also ensure sufficient air permeability in the photocatalyst layer. The reflected light can be effectively contributed by the photocatalytic function.

光触媒層
平均粒径が100nm未満かつ励起波長が380nm以上の光触媒粒子が含まれている。なお、この平均粒径は、走査型電子顕微鏡により20万倍の視野に入る任意の100個の粒子の長さを測定した個数平均値として算出される。
Photocatalyst particles having an average photocatalyst particle diameter of less than 100 nm and an excitation wavelength of 380 nm or more are included. The average particle diameter is calculated as a number average value obtained by measuring the length of any 100 particles that enter a 200,000-fold field of view with a scanning electron microscope.

励起波長が380nm以上の光触媒粒子としては、アナターゼ型酸化チタン、ルチル型酸化チタン、ブルッカイト型酸化チタン、ZnO、SrTiO、WO、Feのような金属酸化物の粒子、上記金属酸化物に白金、金、銅等の金属又はそのイオンをドープした可視光励起型の光触媒粒子、上記金属酸化物に窒素、硫黄等をドープした可視光励起型の光触媒粒子、上記金属酸化物の酸素欠損量を増加させた可視光励起型の光触媒粒子、上記金属酸化物のうちの2種以上をヘテロ接合させた可視光励起型の光触媒粒子が挙げられ、好ましくは酸化チタン粒子、酸化タングステン粒子、又はそのいずれかの金属酸化物に白金、金、銅等の金属又はそのイオンをドープした可視光励起型の光触媒粒子である。 Photocatalyst particles having an excitation wavelength of 380 nm or more include anatase-type titanium oxide, rutile-type titanium oxide, brookite-type titanium oxide, metal oxide particles such as ZnO, SrTiO 3 , WO 3 and Fe 2 O 3 , and the above metal oxide Visible light excitation type photocatalyst particles doped with metals such as platinum, gold, copper, etc. or ions thereof, visible light excitation type photocatalyst particles doped with nitrogen, sulfur, etc. into the above metal oxides, oxygen deficiency of the above metal oxides Visible-light-excited photocatalyst particles with an increased amount of light, visible-light-excited photocatalyst particles obtained by heterojunction of two or more of the above metal oxides, preferably titanium oxide particles, tungsten oxide particles, or any of them This is a visible light excitation type photocatalyst particle obtained by doping a metal oxide such as platinum, gold, copper or the like or ions thereof.

本発明の好ましい態様によれば、光触媒粒子が10nm以上100nm未満の平均粒径を有するのが好ましく、より好ましくは10nm以上60nm以下である。粒子の形状としては真球が最も良いが、略円形や楕円形でも良く、その場合の粒子の長さは((長径+短径)/2)として略算出される。この範囲内であると、耐候性、有害ガス分解性、および所望の各種被膜特性(透明性、塗膜強度等)が効率良く発揮される。   According to a preferred embodiment of the present invention, the photocatalyst particles preferably have an average particle size of 10 nm or more and less than 100 nm, more preferably 10 nm or more and 60 nm or less. As the shape of the particle, a true sphere is the best, but it may be approximately circular or elliptical, and the length of the particle in this case is approximately calculated as ((major axis + minor axis) / 2). Within this range, weather resistance, harmful gas decomposability, and various desired coating properties (transparency, coating strength, etc.) are efficiently exhibited.

さらに、波長550nmにおいての光触媒層の直線透過率を90%以上、より好ましくは95%以上確保するとより好ましい。そうすることで下地の色味、意匠を損なうことなく表現することが可能となる。また透明度の高いガラスやプラスチックなどにコーティングしても透明性を損なわずに済む。   Furthermore, it is more preferable that the linear transmittance of the photocatalyst layer at a wavelength of 550 nm is secured to 90% or more, more preferably 95% or more. By doing so, it becomes possible to express without impairing the color and design of the groundwork. Moreover, even if it is coated on highly transparent glass or plastic, the transparency is not impaired.

本発明の好ましい態様によれば、さらに高い光触媒能を発現するために、バナジウム、鉄、コバルト、ニッケル、パラジウム、亜鉛、ルテニウム、ロジウム、銅、銀、白金および金からなる群より選ばれる少なくとも一種の金属および/またはその金属からなる金属化合物を、光触媒層や光触媒層を形成するために中間層上に適用する光触媒コーティング液に添加することができる。この添加は、前記金属または金属化合物をコーティング液に混合し、溶解または分散させる方法、前記金属または金属化合物を光触媒層や光触媒粒子に担持する方法、などのいずれの方法によっても行うことができる。   According to a preferred embodiment of the present invention, at least one selected from the group consisting of vanadium, iron, cobalt, nickel, palladium, zinc, ruthenium, rhodium, copper, silver, platinum and gold is used to develop higher photocatalytic ability. And / or a metal compound comprising the metal can be added to a photocatalyst coating solution applied on the intermediate layer to form a photocatalyst layer or a photocatalyst layer. This addition can be performed by any method such as a method in which the metal or metal compound is mixed and dissolved or dispersed in a coating solution, or a method in which the metal or metal compound is supported on a photocatalyst layer or photocatalyst particles.

本発明では光触媒層中に無機酸化物粒子が含まれるのが好ましい。無機酸化物粒子は、光触媒粒子と共に層を形成可能な無機酸化物の粒子であれば特に限定されず、あらゆる種類の無機酸化物の粒子が使用可能である。そのような無機酸化物粒子の例としては、シリカ、アルミナ、ジルコニア、セリア、イットリア、酸化錫、酸化鉄、酸化マンガン、酸化ニッケル、酸化コバルト、ハフニア等の単一酸化物の粒子;およびチタン酸バリウム、ケイ酸カルシウム、ホウ酸アルミニウム、チタン酸カリウム等の複合酸化物の粒子が挙げられ、より好ましくはシリカ粒子である。これら無機酸化物粒子は、水を分散媒とした水性コロイド;またはエチルアルコール、イソプロピルアルコール、もしくはエチレングリコールなどの親水性溶媒にコロイド状に分散させたオルガノゾルの形態であるのが好ましく、特に好ましくはコロイダルシリカである。   In the present invention, it is preferable that inorganic oxide particles are contained in the photocatalyst layer. The inorganic oxide particles are not particularly limited as long as they are inorganic oxide particles capable of forming a layer together with the photocatalyst particles, and any kind of inorganic oxide particles can be used. Examples of such inorganic oxide particles include silica, alumina, zirconia, ceria, yttria, tin oxide, iron oxide, manganese oxide, nickel oxide, cobalt oxide, hafnia and other single oxide particles; and titanic acid Examples include particles of complex oxides such as barium, calcium silicate, aluminum borate, and potassium titanate, and silica particles are more preferable. These inorganic oxide particles are preferably in the form of an aqueous colloid using water as a dispersion medium; or an organosol dispersed in a hydrophilic solvent such as ethyl alcohol, isopropyl alcohol, or ethylene glycol, and particularly preferably. Colloidal silica.

上記無機酸化物粒子は、5nmを超え20nm以下、好ましくは10nm以上20nm以下の平均粒径を有する。なお、この平均粒径は、走査型電子顕微鏡により20万倍の視野に入る任意の100個の粒子の長さを測定した個数平均値として算出される。粒子の形状としては真球が最も良いが、略円形や楕円形でも良く、その場合の粒子の長さは((長径+短径)/2)として略算出される。この範囲内であると、耐候性、有害ガス分解性、および所望の各種被膜特性(透明性、塗膜強度等)が効率良く発揮され、とりわけ透明で密着性が良好な光触媒層を得ることができるだけではなく、摺動磨耗に対して強固な膜を得ることができる。   The inorganic oxide particles have an average particle diameter of more than 5 nm and not more than 20 nm, preferably not less than 10 nm and not more than 20 nm. The average particle diameter is calculated as a number average value obtained by measuring the length of any 100 particles that enter a 200,000-fold field of view with a scanning electron microscope. As the shape of the particle, a true sphere is the best, but it may be approximately circular or elliptical, and the length of the particle in this case is approximately calculated as ((major axis + minor axis) / 2). Within this range, weather resistance, harmful gas decomposability, and various desired coating properties (transparency, coating strength, etc.) are efficiently exhibited, and in particular, a photocatalyst layer that is transparent and has good adhesion can be obtained. Not only can a film that is strong against sliding wear be obtained.

本発明の光触媒層は、通気性を確保するために、加水分解性シリコーンの縮重合物を実質的に含まないのが好ましく、より好ましくは全く含まない。ここで加水分解性シリコーンとは、アルコキシ基を有するオルガノシロキサンおよび/またはその部分加水分解縮合物の総称である。加水分解性シリコーンの縮重合物の含有量は、シリカ換算で光触媒粒子、無機酸化物粒子、および加水分解性シリコーンの縮重合物の合計量100質量部に対して、0質量部以上10質量部未満が好ましく、より好ましくは5質量部以下、最も好ましくは0質量部である。加水分解性シリコーンとしては、2〜4官能シランをモノマー単位とするシリコーン化合物がよく使用され、例えば、エチルシリケート、メチルシリケート、アルキル基含有シリコーン、フェニル基含有シリコーン等が好適に利用できる。   In order to ensure air permeability, the photocatalyst layer of the present invention preferably does not substantially contain a hydrolyzable silicone condensation polymer, and more preferably does not contain it at all. Here, the hydrolyzable silicone is a general term for an organosiloxane having an alkoxy group and / or a partially hydrolyzed condensate thereof. The content of the hydrolyzable silicone polycondensate is 0 to 10 parts by mass with respect to 100 parts by mass of the total amount of photocatalyst particles, inorganic oxide particles, and hydrolyzable silicone polycondensate in terms of silica. Is preferably 5 parts by mass or less, and most preferably 0 part by mass. As the hydrolyzable silicone, a silicone compound having 2 to 4 functional silane as a monomer unit is often used, and for example, ethyl silicate, methyl silicate, alkyl group-containing silicone, phenyl group-containing silicone and the like can be suitably used.

本発明の光触媒層は、通気性を確保するために、有機金属化合物の加水分解物の縮重合物を実質的に含まないのが好ましく、より好ましくは全く含まない。ここで有機金属化合物とは、チタン、ジルコニウム、アルミニウム等の金属元素を含む金属アルコキシド、金属有機錯体等である。有機金属の加水分解物の縮重合物の含有量は、金属酸化物換算で光触媒粒子、無機酸化物粒子、および加水分解性シリコーンの合計量100質量部に対して、0質量部以上10質量部未満が好ましく、より好ましくは5質量部以下、最も好ましくは0質量部である。   In order to ensure air permeability, the photocatalyst layer of the present invention preferably contains substantially no polycondensate of a hydrolyzate of an organometallic compound, and more preferably does not contain at all. Here, the organometallic compound is a metal alkoxide containing a metal element such as titanium, zirconium, or aluminum, a metal organic complex, or the like. The content of the polycondensation product of the hydrolyzate of the organic metal is 0 parts by mass or more and 10 parts by mass with respect to 100 parts by mass in total of the photocatalyst particles, inorganic oxide particles, and hydrolyzable silicone in terms of metal oxide Is preferably 5 parts by mass or less, and most preferably 0 part by mass.

本発明の光触媒層においては、任意成分として、加水分解性シリコーンの縮重合物、有機金属化合物の加水分解物よりなる群から選択される少なくとも1種を含んでなる。任意成分の含有量は、光触媒粒子と無機酸化物粒子と、これら任意成分の酸化物換算量との合計量100質量部に対して、0質量部以上10質量部未満であることが好ましく、より好ましくは5質量部以下、最も好ましくは0質量部である。   The photocatalyst layer of the present invention comprises at least one selected from the group consisting of a hydrolyzable silicone polycondensate and an organometallic compound hydrolyzate as an optional component. The content of the optional component is preferably 0 parts by mass or more and less than 10 parts by mass with respect to 100 parts by mass of the total amount of the photocatalyst particles, the inorganic oxide particles, and the oxide conversion amount of these optional components, Preferably it is 5 mass parts or less, Most preferably, it is 0 mass part.

光触媒層は、0.1μm以上5.0μm以下の膜厚を有するのが好ましく、より好ましくは0.5μm以上3.0μm以下の膜厚であり、最も好ましくは1.0μm以上2.0μm以下である。このような範囲内であると、無機酸化物粒子よりも含有比率が低い光触媒粒子を膜厚方向に増加させることができるので、有害ガス分解性が向上する。さらには、透明性においても優れた特性が得られる。   The photocatalyst layer preferably has a thickness of 0.1 μm to 5.0 μm, more preferably 0.5 μm to 3.0 μm, and most preferably 1.0 μm to 2.0 μm. is there. Within such a range, the photocatalyst particles having a lower content ratio than the inorganic oxide particles can be increased in the film thickness direction, so that the harmful gas decomposability is improved. Furthermore, excellent characteristics can be obtained in terms of transparency.

なお、上記「光触媒層」「光触媒塗装体」の項で述べた内容は、任意に組合わせることが可能である。   The contents described in the above-mentioned sections “photocatalyst layer” and “photocatalyst-coated body” can be arbitrarily combined.

光触媒層製造方法
本発明の光触媒塗装体は、光触媒コーティング液を、中間層を有する基材上に塗布することにより簡単に製造することができる。光触媒層の塗装方法は、前記液剤を刷毛塗り、ローラー、スプレー、ロールコーター、フローコーター、ディップコート、流し塗り、スクリーン印刷等、一般に広く行われている方法を利用できる。コーティング液の基材への塗布後は、常温乾燥させればよく、あるいは必要に応じて加熱乾燥してもよい。
Photocatalyst layer manufacturing method The photocatalyst coating body of this invention can be easily manufactured by apply | coating a photocatalyst coating liquid on the base material which has an intermediate | middle layer. As a method for coating the photocatalyst layer, generally used methods such as brush coating, roller, spray, roll coater, flow coater, dip coating, flow coating, and screen printing can be used. After applying the coating liquid to the substrate, it may be dried at room temperature, or may be heat-dried as necessary.

光触媒コーティング液には、基本的には平均粒径が100nm未満かつ励起波長が380nm以上の光触媒粒子と、溶媒が含まれている。
「光触媒粒子」については、上記「光触媒層」「光触媒塗装体」の項で述べたものが好適に利用できる。
また「無機酸化物粒子」「加水分解性シリコーン」「有機金属化合物」を含んでもよいがそれについても上記「光触媒層」「光触媒塗装体」の項で述べたものが好適に利用できる。
The photocatalyst coating liquid basically contains photocatalyst particles having an average particle diameter of less than 100 nm and an excitation wavelength of 380 nm or more, and a solvent.
As the “photocatalyst particles”, those described in the above “photocatalyst layer” and “photocatalyst-coated body” can be suitably used.
Further, “inorganic oxide particles”, “hydrolyzable silicone”, and “organometallic compound” may be included, but those described in the above-mentioned “photocatalyst layer” and “photocatalyst-coated body” can be preferably used.

光触媒コーティング液の溶媒としては、上記構成成分を適切に分散可能なあらゆる溶媒が使用可能であり、水および/または有機溶媒であってよい。また、光触媒コーティング液の固形分濃度は特に限定されないが、1〜10質量%とするのが塗布し易い点で好ましい。なお、光触媒コーティング組成物中の構成成分の分析は、コーティング液を限外ろ過によって粒子成分と濾液に分離し、それぞれを赤外分光分析、ゲルパーミエーションクロマトグラフィー、蛍光X線分光分析などで分析し、スペクトルを解析することによって評価することができる。   As a solvent for the photocatalyst coating liquid, any solvent that can appropriately disperse the above components can be used, and water and / or an organic solvent may be used. Moreover, the solid content concentration of the photocatalyst coating liquid is not particularly limited, but it is preferably 1 to 10% by mass because it is easy to apply. The components in the photocatalyst coating composition are analyzed by separating the coating solution into particle components and filtrate by ultrafiltration, and analyzing each by infrared spectroscopic analysis, gel permeation chromatography, fluorescent X-ray spectroscopic analysis, etc. It can be evaluated by analyzing the spectrum.

光触媒コーティング液には任意成分として界面活性剤を含んでよい。本発明に用いる界面活性剤は、光触媒粒子、無機酸化物粒子、および加水分解性シリコーンの合計量100質量部に対して、0質量部以上10質量部未満光触媒層に含有されていてもよく、好ましくは0質量部以上8質量部以下であり、より好ましくは0以上6質量部以下である。界面活性剤の効果の1つとして基材へのレベリング性があり、コーティング液と基材との組合せによって界面活性剤の量を先述の範囲内で適宜決めれば良く、その際の下限値は0.1質量部とされてよい。この界面活性剤は光触媒コーティング液の濡れ性を改善するために有効な成分であるが、塗布後に形成される光触媒層にあってはもはや本発明の光触媒塗装体の効果には寄与しない不可避不純物に相当する。したがって、光触媒コーティング液に要求される濡れ性に応じて、上記含有量範囲内において使用されてよく、濡れ性を問題にしないのであれば界面活性剤は実質的にあるいは一切含まなくてよい。使用すべき界面活性剤は、光触媒や無機酸化物粒子の分散安定性、中間層上に塗布した際の濡れ性を勘案し適宜選択されることができるが、非イオン性界面活性剤が好ましく、より好ましくは、エーテル型非イオン性界面活性剤、エステル型非イオン性界面活性剤、ポリアルキレングリコール非イオン性界面活性剤、フッ素系非イオン性界面活性剤、シリコン系非イオン性界面活性剤が挙げられる。   The photocatalyst coating liquid may contain a surfactant as an optional component. The surfactant used in the present invention may be contained in the photocatalyst layer in an amount of 0 to less than 10 parts by mass with respect to 100 parts by mass of the total amount of photocatalyst particles, inorganic oxide particles, and hydrolyzable silicone, Preferably they are 0 mass part or more and 8 mass parts or less, More preferably, they are 0 or more and 6 mass parts or less. One of the effects of the surfactant is leveling to the substrate, and the amount of the surfactant may be appropriately determined within the above-mentioned range depending on the combination of the coating liquid and the substrate, and the lower limit at that time is 0 It may be 1 part by mass. This surfactant is an effective component for improving the wettability of the photocatalyst coating solution, but in the photocatalyst layer formed after coating, it is an inevitable impurity that no longer contributes to the effect of the photocatalyst-coated body of the present invention. Equivalent to. Therefore, it may be used within the above-mentioned content range depending on the wettability required for the photocatalyst coating liquid, and if the wettability is not a problem, the surfactant may be contained substantially or not at all. The surfactant to be used can be appropriately selected in consideration of the dispersion stability of the photocatalyst and inorganic oxide particles, and wettability when applied on the intermediate layer, but a nonionic surfactant is preferable, More preferably, an ether type nonionic surfactant, an ester type nonionic surfactant, a polyalkylene glycol nonionic surfactant, a fluorine-based nonionic surfactant, or a silicon-based nonionic surfactant is used. Can be mentioned.

中間層
必須成分として、耐候性樹脂と、平均粒径100nm以上の無機体質顔料又は無機白色顔料と、ヒドロキシフェニルトリアジン化合物とが含まれている。
As an essential component of the intermediate layer , a weather resistant resin, an inorganic extender pigment or an inorganic white pigment having an average particle diameter of 100 nm or more, and a hydroxyphenyltriazine compound are included.

耐候性樹脂は、紫外線吸収剤の相溶性が良好で、基材との接着性、光触媒との接着性を有し、光触媒による中間層表面の劣化を抑制できるものであれば特に限定されず、樹脂中にポリシロキサンを含むシリコーン変性アクリル樹脂、シリコーン変性エポキシ樹脂、シリコーン変性ウレタン樹脂、シリコーン変性ポリエステル等のシリコーン変性樹脂が好適である。外装用建材に適用する場合には、シリコーン変性アクリル樹脂が耐候性の点からより好適である。シリコーン変性アクリル樹脂において、カルボキシル基を有するシリコーン変性アクリル樹脂とエポキシ基を有するシリコーン樹脂の二液を混合して使用することが、塗膜の強度を向上させる点からさらに好適である。   The weather resistant resin is not particularly limited as long as it has good compatibility with the ultraviolet absorber, has adhesion to the base material, and adhesion to the photocatalyst, and can suppress deterioration of the intermediate layer surface due to the photocatalyst. Silicone-modified resins such as silicone-modified acrylic resins, silicone-modified epoxy resins, silicone-modified urethane resins, and silicone-modified polyesters containing polysiloxane in the resin are suitable. When applied to exterior building materials, silicone-modified acrylic resins are more suitable from the viewpoint of weather resistance. In the silicone-modified acrylic resin, it is more preferable to use a mixture of two liquids of a silicone-modified acrylic resin having a carboxyl group and a silicone resin having an epoxy group from the viewpoint of improving the strength of the coating film.

本発明の無機体質顔料には、平均粒径100nm以上の体質顔料が利用でき、例えば、酸化チタンウイスカー、炭酸カルシウムウイスカー、ホウ酸アルミニウムウイスカー、チタン酸カリウムウイスカー、マイカ、タルク等が好適に利用できる。
本発明の無機白色顔料には、平均粒径100nm以上の無機白色顔料が利用でき、例えば、酸化チタン白、酸化亜鉛白等が利用できる。
なお、この平均粒径は、走査型電子顕微鏡により1〜10視野に入る任意の100個の粒子の長さを測定した個数平均値として算出される。また、無機体質顔料が棒状の場合は長手方向の平均とする。
As the inorganic extender pigment of the present invention, extender pigments having an average particle diameter of 100 nm or more can be used. For example, titanium oxide whisker, calcium carbonate whisker, aluminum borate whisker, potassium titanate whisker, mica, talc and the like can be suitably used. .
As the inorganic white pigment of the present invention, an inorganic white pigment having an average particle diameter of 100 nm or more can be used. For example, titanium oxide white, zinc oxide white, or the like can be used.
In addition, this average particle diameter is calculated as a number average value obtained by measuring the length of any 100 particles that fall within 1 to 10 fields of view with a scanning electron microscope. When the inorganic extender pigment is rod-shaped, the average in the longitudinal direction is taken.

本発明では他に、白色以外の無機着色顔料、有機着色顔料、防藻剤、平均粒径100nm以下のシリカ粒子等の充填剤が添加されていてもよい。
上記白色以外の無機着色顔料としては特に限定されず、例えば、酸化鉄、カーボンブラック、スピネルグリーン、ベンガラ、アルミン酸コバルト、群青等が好適に利用できる。
有機着色顔料としては、フタロシアニン系、ベンズイミダゾロン系、イソインドリノン系、アゾ系、アンスラキノン系、キノフタロン系、アンスラピリジニン系、キナクリドン系、トルイジン系、ピラスロン系、ペリレン系等が好適に利用できる。
防藻剤としては、中間層の樹脂成分と相溶性が良好な有機防カビ剤が好適に利用可能であり、例えば、有機窒素硫黄系化合物、ピリチオン系化合物、有機ヨウ素化合物、トリアジン系化合物、イソチアゾリン系化合物、イミダゾール系化合物、ピリジン系化合物、ニトリル系化合物、チオカーバメート系化合物、チアゾール系化合物、ジスルフィド系化合物等が好適に利用できる。
In the present invention, other fillers such as inorganic coloring pigments other than white, organic coloring pigments, anti-algae agents, and silica particles having an average particle size of 100 nm or less may be added.
The inorganic coloring pigments other than white are not particularly limited, and for example, iron oxide, carbon black, spinel green, bengara, cobalt aluminate, ultramarine blue and the like can be suitably used.
As organic coloring pigments, phthalocyanine, benzimidazolone, isoindolinone, azo, anthraquinone, quinophthalone, anthrapyridinine, quinacridone, toluidine, pyrathrone, perylene, etc. are preferably used. it can.
As the anti-algae, organic anti-fungal agents having good compatibility with the resin component of the intermediate layer can be suitably used. For example, organic nitrogen sulfur compounds, pyrithion compounds, organic iodine compounds, triazine compounds, isothiazolines A compound, an imidazole compound, a pyridine compound, a nitrile compound, a thiocarbamate compound, a thiazole compound, a disulfide compound, or the like can be suitably used.

中間層の乾燥膜厚は特に限定されるものでは無いが、好ましくは1μm〜50μm、より好ましくは1μm〜10μmである。1μmより薄い場合は、光触媒による中間層および基材の劣化抑制効果が劣る可能性がある。50μmより厚い場合は、中間層の種類に依存するが、乾燥後に微細なクラックが発生する恐れがある。   Although the dry film thickness of an intermediate | middle layer is not specifically limited, Preferably they are 1 micrometer-50 micrometers, More preferably, they are 1 micrometer-10 micrometers. If the thickness is less than 1 μm, the effect of suppressing degradation of the intermediate layer and the substrate by the photocatalyst may be inferior. When it is thicker than 50 μm, although it depends on the type of the intermediate layer, there is a possibility that fine cracks may occur after drying.

なお、上記「中間層」「光触媒塗装体」「光触媒層」の項で述べた内容は、任意に組合わせることが可能である。   The contents described in the above-mentioned “intermediate layer”, “photocatalyst-coated body”, and “photocatalyst layer” can be arbitrarily combined.

中間層製造方法
中間層は、中間層コーティング液を、前記基材上に塗布することにより簡単に製造することができる。中間層の塗装方法は、前記液剤を刷毛塗り、ローラー、スプレー、ロールコーター、フローコーター、ディップコート、流し塗り、スクリーン印刷等、一般に広く行われている方法を利用できる。コーティング液の基材への塗布後は、常温乾燥させればよく、あるいは必要に応じて加熱乾燥してもよい。
Intermediate Layer Manufacturing Method The intermediate layer can be easily manufactured by applying an intermediate layer coating solution onto the substrate. As a method for coating the intermediate layer, generally used methods such as brush coating, roller, spray, roll coater, flow coater, dip coating, flow coating, and screen printing can be used. After applying the coating liquid to the substrate, it may be dried at room temperature, or may be heat-dried as necessary.

中間層コーティング液には、基本的に、耐候性樹脂又はその重合前の前駆体と、平均粒径100nm以上の無機体質顔料又は無機白色顔料と、ヒドロキシフェニルトリアジン化合物とが含まれている。   The intermediate layer coating liquid basically contains a weather resistant resin or a precursor before polymerization thereof, an inorganic extender pigment or an inorganic white pigment having an average particle diameter of 100 nm or more, and a hydroxyphenyltriazine compound.

「耐候性樹脂」「平均粒径100nm以上の無機体質顔料又は無機白色顔料」については、上記「光触媒層」「光触媒塗装体」の項で述べたものが好適に利用できる。   As the “weather-resistant resin” and “inorganic extender pigment or inorganic white pigment having an average particle diameter of 100 nm or more”, those described in the above “photocatalyst layer” and “photocatalyst-coated body” can be preferably used.

中間層コーティング液の溶媒としては、上記構成成分を適切に分散可能なあらゆる溶媒が使用可能であり、水および/または有機溶媒であってよい。また、本発明の中間層塗装用液剤の固形分濃度は特に限定されないが、10〜20質量%とするのが塗布し易い点で好ましい。なお、中間層コーティング液中の構成成分の分析は、樹脂成分に関しては赤外分光分析で評価することができる。   As the solvent for the intermediate layer coating liquid, any solvent that can appropriately disperse the above components can be used, and water and / or an organic solvent may be used. The solid content concentration of the intermediate layer coating solution of the present invention is not particularly limited, but it is preferably 10 to 20% by mass in terms of easy application. In addition, the analysis of the structural component in an intermediate | middle layer coating liquid can be evaluated by infrared spectroscopy about a resin component.

中間層コーティング液には、上記の他に「白色以外の無機着色顔料」、「有機着色顔料」、「防藻剤」、「平均粒径100nm以下のシリカ粒子等の充填剤」が配合されていてもよいが、それについても上記「中間層」の項で述べたものが好適に利用できる。   In addition to the above, the intermediate layer coating liquid contains “inorganic colored pigments other than white”, “organic colored pigments”, “algaeproofing agents”, and “fillers such as silica particles having an average particle size of 100 nm or less”. However, those described in the above-mentioned “intermediate layer” can also be suitably used.

中間層コーティング液には、上記の他に顔料分散剤、消泡剤、酸化防止剤等の塗料用添加剤、塗料に通常含まれるその他成分を含有することができる。また、シリカ微粒子等の艶消し剤を含んでもよい。   In addition to the above, the intermediate layer coating solution may contain paint additives such as pigment dispersants, antifoaming agents, and antioxidants, and other components usually included in paints. Further, a matting agent such as silica fine particles may be included.

基材
本発明に用いる基材は、その上に中間層が形成可能な材料であれば無機材料、有機材料を問わず種々の材料であってよく、その形状も限定されない。材料の観点からみた基材の好ましい例としては、金属、セラミック、ガラス、プラスチック、ゴム、石、セメント、コンクリ−ト、繊維、布帛、木、紙、それらの組合せ、それらの積層体、それらの表面に少なくとも一層の被膜を有するものが挙げられる。用途の観点からみた基材の好ましい例としては、建材、建物外装および内装、窓枠、窓ガラス、構造部材、乗物の外装及び塗装、機械装置や物品の外装、防塵カバー及び塗装、交通標識、各種表示装置、広告塔、道路用遮音壁、鉄道用遮音壁、橋梁、ガードレ−ルの外装及び塗装、トンネル内装及び塗装、碍子、太陽電池カバー、太陽熱温水器集熱カバー、ビニールハウス、車両用照明灯のカバー、屋外用照明器具、台、浴室材、キッチンパネル、流し台、レンジ、換気扇、空調、フィルター、便器、浴槽及び上記物品表面に貼着させるためのフィルム、シート、シール等が挙げられる。
Base Material The base material used in the present invention may be any material, regardless of inorganic material or organic material, as long as the intermediate layer can be formed thereon, and the shape is not limited. Preferred examples of the substrate from the viewpoint of materials include metals, ceramics, glass, plastics, rubber, stones, cement, concrete, fibers, fabrics, wood, paper, combinations thereof, laminates thereof, Examples thereof include those having at least one layer of coating on the surface. Preferred examples of base materials from the viewpoint of applications include building materials, building exteriors and interiors, window frames, window glass, structural members, exteriors and coatings of vehicles, exteriors of machinery and articles, dust covers and coatings, traffic signs, Various display devices, advertising towers, sound insulation walls for roads, sound insulation walls for railways, bridges, exterior and painting of guard rails, interior and painting of tunnels, insulators, solar battery covers, solar water heater heat collection covers, plastic houses, vehicle lighting Covers, outdoor lighting fixtures, tables, bathroom materials, kitchen panels, sinks, ranges, ventilation fans, air conditioning, filters, toilets, bathtubs, and films, sheets, seals and the like for attachment to the surface of the article.

本発明を以下の例に基づいて具体的に説明するが、本発明はこれらの例に限定されるものではない。   The present invention will be specifically described based on the following examples, but the present invention is not limited to these examples.

<塗装体試料の作製>
以下のようにして、実施例1〜7および比較例1〜4を作製した。
実施例1:
基材 :ガラス基材
中間層:ケイ素原子含有量がシリコーン変性樹脂の固形分に対して10質量%のシリコーン変性アクリル樹脂ディスパージョンに、このディスパージョンの固形分に対し1質量%のヒドロキシフェニルトリアジン化合物と、1質量%のヒンダードアミンと、上記ディスパージョンの固形分に対し30質量%の平均粒径200nmの酸化チタン白色顔料とを配合した中間層コーティング液をスプレーコートし、120℃で乾燥し、膜厚10μmの中間層を形成した。
光触媒層:アナターゼ型酸化チタン水分散体(平均粒径:約50nm、塩基性)と、水分散型コロイダルシリカ(平均粒径:約30nm、塩基性)と、ポリエーテル変性シリコーン系界面活性剤とを混合して光触媒コーティング液を得た。光触媒コーティング液中の光触媒および無機酸化物の合計の固形分濃度は5.5質量%とした。得られた光触媒コーティング液をあらかじめ加熱した上記中間層塗装体上にスプレー塗布し、120℃で乾燥した。得られた光触媒層中の酸化チタンは2質量部、シリカは98質量部、界面活性剤は6質量部であった。また、光触媒層の膜厚は0.5μmであった。
<Preparation of painted body sample>
Examples 1 to 7 and Comparative Examples 1 to 4 were produced as follows.
Example 1:
Base material: Glass base material Intermediate layer: Silicone-modified acrylic resin dispersion having a silicon atom content of 10% by weight based on the solid content of the silicone-modified resin, and 1% by weight of hydroxyphenyltriazine based on the solid content of the dispersion Spray coat the intermediate layer coating solution in which the compound, 1% by weight of hindered amine, and 30% by weight of the titanium oxide white pigment with an average particle diameter of 200 nm based on the solid content of the dispersion, and dry at 120 ° C. An intermediate layer having a thickness of 10 μm was formed.
Photocatalyst layer: anatase-type titanium oxide aqueous dispersion (average particle size: about 50 nm, basic), water-dispersed colloidal silica (average particle size: about 30 nm, basic), polyether-modified silicone surfactant, Were mixed to obtain a photocatalyst coating solution. The total solid concentration of the photocatalyst and the inorganic oxide in the photocatalyst coating solution was 5.5% by mass. The obtained photocatalyst coating liquid was spray-coated on the intermediate layer-coated body heated in advance and dried at 120 ° C. Titanium oxide in the obtained photocatalyst layer was 2 parts by mass, silica was 98 parts by mass, and the surfactant was 6 parts by mass. The film thickness of the photocatalyst layer was 0.5 μm.

実施例2:上記実施例1において、光触媒層中の酸化チタン量を15質量部、シリカを85質量部とした。
実施例3:上記実施例1において、中間層に「30質量%の平均粒径200nmの酸化チタン白色顔料とを配合した」ことに代えて、「15質量%の平均直径100nm、平均長さ20μmのチタン酸カリウムウイスカー及び25質量%の平均粒径200nmの酸化チタン白色顔料とを配合した」。
実施例4:上記実施例3において、光触媒層中の酸化チタン量を15質量部、シリカを85質量部とした。
実施例5:上記実施例1において、中間層に「30質量%の平均粒径200nmの酸化チタン白色顔料とを配合した」ことに代えて、「10質量%の平均粒径2.5μmのタルクを配合した」。
実施例6:上記実施例5において、光触媒層中の酸化チタン量を15質量部、シリカを85質量部とした。
実施例7:上記実施例1において、光触媒層中の酸化チタン量を4質量部、シリカを96質量部とした。
Example 2: In Example 1 above, the amount of titanium oxide in the photocatalyst layer was 15 parts by mass, and the silica was 85 parts by mass.
Example 3: Instead of “mixing 30% by mass of titanium oxide white pigment with an average particle diameter of 200 nm” in the intermediate layer in Example 1 above, “15% by mass of average diameter of 100 nm and average length of 20 μm” Of potassium titanate whisker and 25% by weight of titanium oxide white pigment having an average particle diameter of 200 nm ”.
Example 4: In Example 3 above, the amount of titanium oxide in the photocatalyst layer was 15 parts by mass, and silica was 85 parts by mass.
Example 5: Instead of “compounding 30% by mass of titanium oxide white pigment with an average particle diameter of 200 nm” in the intermediate layer in Example 1, “10% by mass of talc with an average particle diameter of 2.5 μm” "
Example 6: In Example 5 above, the amount of titanium oxide in the photocatalyst layer was 15 parts by mass, and the silica was 85 parts by mass.
Example 7 In the above Example 1, the amount of titanium oxide in the photocatalyst layer was 4 parts by mass, and the silica was 96 parts by mass.

比較例1:上記実施例1において、光触媒層中の光触媒粒子にアナターゼ型酸化チタン(平均粒径:約50nm)を用いる代わりに酸化錫(平均粒径:約10nm)を用いた。
比較例2:上記実施例2において、中間層の「平均粒径200nmの酸化チタン白色顔料」の代わりに、「アナターゼ型酸化チタン(平均粒径:約50nm)」を用いた。
比較例3:上記実施例2において、中間層にヒドロキシフェニルトリアジン化合物も、ヒンダードアミンも添加しなかった。
比較例4:上記実施例1において、「中間層のヒドロキシフェニルトリアジン化合物を0.07質量部とし、かつヒンダードアミンを1質量%」添加する代わりに、「ベンゾフェノン系化合物を1質量部」添加した。
Comparative Example 1: In Example 1 above, tin oxide (average particle size: about 10 nm) was used instead of anatase-type titanium oxide (average particle size: about 50 nm) for the photocatalyst particles in the photocatalyst layer.
Comparative Example 2: In the above Example 2, “anatase type titanium oxide (average particle size: about 50 nm)” was used in place of “titanium oxide white pigment having an average particle size of 200 nm” in the intermediate layer.
Comparative Example 3: In Example 2 above, neither a hydroxyphenyl triazine compound nor a hindered amine was added to the intermediate layer.
Comparative Example 4: Instead of adding “the intermediate layer hydroxyphenyltriazine compound is 0.07 parts by mass and hindered amine is 1% by mass” in Example 1, “1 part by mass of benzophenone compound” was added.

得られた試料について、3mW/cmのBLBによる光触媒分解活性、JIS B7753に規定されるサンシャインウエザメータに300時間投入時の中間層の劣化度合いにつき評価した。結果を表1に示す。 About the obtained sample, the photocatalytic decomposition activity by BLB of 3 mW / cm 2 was evaluated, and the degree of deterioration of the intermediate layer when it was put into a sunshine weather meter defined in JIS B7753 for 300 hours. The results are shown in Table 1.

Figure 0005305231
Figure 0005305231

また、実施例1、3、5、7については、さらに、宮古島にてJIS K5600−7−6に規定される暴露架台を用い南面に向けて水平より20°の角度で屋外暴露を6ヶ月行い、外観変化につき評価した。結果を表2に示す。   For Examples 1, 3, 5, and 7, further, outdoor exposure was performed for 6 months at an angle of 20 ° from the horizontal toward the south surface in Miyakojima using an exposure stand defined in JIS K5600-7-6. The appearance change was evaluated. The results are shown in Table 2.

Figure 0005305231
Figure 0005305231

Claims (13)

基材と、基材上に設けられる中間層と、光触媒層とを備えた光触媒塗装体であって、
前記光触媒層は、波長550nmの光の直線透過率が90%以上であり、
前記光触媒層には、平均粒径が100nm未満かつ励起波長が380nm以上の光触媒粒子が含まれており、
前記中間層には、耐候性樹脂と、平均粒径100nm以上の無機体質顔料又は無機白色顔料と、ヒドロキシフェニルトリアジン化合物とが含まれていることを特徴とする光触媒塗装体。
A photocatalyst-coated body comprising a base material, an intermediate layer provided on the base material, and a photocatalyst layer,
The photocatalytic layer has a linear transmittance of 90% or more for light having a wavelength of 550 nm,
The photocatalyst layer contains photocatalyst particles having an average particle diameter of less than 100 nm and an excitation wavelength of 380 nm or more,
The intermediate layer contains a weather-resistant resin, an inorganic extender pigment or inorganic white pigment having an average particle size of 100 nm or more, and a hydroxyphenyltriazine compound.
前記中間層にはさらにヒンダードアミンが含有されていることを特徴とする請求項1に記載の光触媒塗装体。   The photocatalyst-coated body according to claim 1, wherein the intermediate layer further contains a hindered amine. 前記耐候性樹脂は、シリコーン変性樹脂であることを特徴とする請求項1または2に記載の光触媒塗装体。   The photocatalyst-coated body according to claim 1 or 2, wherein the weather-resistant resin is a silicone-modified resin. 前記シリコーン変性樹脂中のケイ素含有量は、前記シリコーン変性樹脂の固形分に対して0.2質量%以上16.5質量%未満であることを特徴とする請求項3に記載の光触媒塗装体。   The photocatalyst-coated body according to claim 3, wherein the silicon content in the silicone-modified resin is 0.2% by mass or more and less than 16.5% by mass with respect to the solid content of the silicone-modified resin. 前記ヒドロキシフェニルトリアジン化合物は、前記中間層に対して0.1質量%以上10質量%未満含有されていることを特徴とする請求項1〜4のいずれか1項に記載の光触媒塗装体。   The photocatalyst-coated body according to any one of claims 1 to 4, wherein the hydroxyphenyltriazine compound is contained in an amount of 0.1% by mass or more and less than 10% by mass with respect to the intermediate layer. 前記無機体質顔料又は無機白色顔料は、前記中間層に対して3質量%以上70質量%未満含有されていることを特徴とする請求項1〜5のいずれか1項に記載の光触媒塗装体。   The photocatalyst-coated body according to any one of claims 1 to 5, wherein the inorganic extender pigment or the inorganic white pigment is contained in an amount of 3% by mass or more and less than 70% by mass with respect to the intermediate layer. 前記無機体質顔料又は無機白色顔料は、チタン含有酸化物であることを特徴とする請求項1〜6のいずれか1項に記載の光触媒塗装体。   The photocatalyst-coated body according to any one of claims 1 to 6, wherein the inorganic extender pigment or the inorganic white pigment is a titanium-containing oxide. 前記光触媒層は、通気性を有することを特徴とする請求項1〜7のいずれか1項に記載の光触媒塗装体。   The said photocatalyst layer has air permeability, The photocatalyst coating body of any one of Claims 1-7 characterized by the above-mentioned. 前記光触媒層中に含有される前記光触媒粒子の含有量が1質量%を超え15質量%未満であることを特徴とする請求項1〜8のいずれか1項に記載の光触媒塗装体。   Content of the said photocatalyst particle contained in the said photocatalyst layer exceeds 1 mass%, and is less than 15 mass%, The photocatalyst coating body of any one of Claims 1-8 characterized by the above-mentioned. 前記光触媒層中に含有される前記光触媒粒子の含有量が1質量%を超え5質量%未満であることを特徴とする請求項1〜9のいずれか1項に記載の光触媒塗装体。   The photocatalyst-coated body according to any one of claims 1 to 9, wherein the content of the photocatalyst particles contained in the photocatalyst layer is more than 1% by mass and less than 5% by mass. 前記光触媒層には、前記光触媒粒子以外に、無機酸化物粒子が含まれていることを特徴とする請求項1〜10のいずれか1項に記載の光触媒塗装体。   The photocatalyst-coated body according to any one of claims 1 to 10, wherein the photocatalyst layer contains inorganic oxide particles in addition to the photocatalyst particles. 前記光触媒層が、
1質量部を超え15質量部未満の前記光触媒粒子と、
75質量部を超え99質量部未満の前記無機酸化物粒子と、
任意成分として、加水分解性シリコーンの縮重合物、有機金属化合物の加水分解物の縮重合物の群から選ばれる少なくとも1種を0質量部以上10質量部未満と
を、前記光触媒粒子、前記無機酸化物粒子、および前記任意成分の酸化物換算量の合計量が100質量部となるように含んでなることを特徴とする請求項11に記載の光触媒塗装体。
The photocatalytic layer is
The photocatalyst particles of more than 1 part by weight and less than 15 parts by weight;
More than 75 parts by weight and less than 99 parts by weight of the inorganic oxide particles;
As an optional component, at least one selected from the group consisting of a hydrolyzable silicone polycondensate and an organometallic hydrolyzate polycondensate is 0 part by mass or more and less than 10 parts by mass, the photocatalyst particles, the inorganic 12. The photocatalyst-coated body according to claim 11, comprising a total amount of oxide particles and an oxide-converted amount of the optional component of 100 parts by mass.
前記光触媒層が、
1質量部を超え5質量部未満の前記光触媒粒子と、
85質量部を超え99質量部未満の前記無機酸化物粒子と、
任意成分として、加水分解性シリコーンの縮重合物、有機金属化合物の加水分解物の縮重合物の群から選ばれる少なくとも1種を0質量部以上10質量部未満と
を、前記光触媒粒子、前記無機酸化物粒子、および前記任意成分の酸化物換算量の合計量が100質量部となるように含んでなることを特徴とする請求項11に記載の光触媒塗装体。
The photocatalytic layer is
The photocatalyst particles of more than 1 part by weight and less than 5 parts by weight;
Greater than 85 parts by weight and less than 99 parts by weight of the inorganic oxide particles;
As an optional component, at least one selected from the group consisting of a hydrolyzable silicone polycondensate and an organometallic hydrolyzate polycondensate is 0 part by mass or more and less than 10 parts by mass, the photocatalyst particles, the inorganic 12. The photocatalyst-coated body according to claim 11, comprising a total amount of oxide particles and an oxide-converted amount of the optional component of 100 parts by mass.
JP2009016097A 2009-01-28 2009-01-28 Photocatalyst paint Active JP5305231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009016097A JP5305231B2 (en) 2009-01-28 2009-01-28 Photocatalyst paint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009016097A JP5305231B2 (en) 2009-01-28 2009-01-28 Photocatalyst paint

Publications (2)

Publication Number Publication Date
JP2010172797A JP2010172797A (en) 2010-08-12
JP5305231B2 true JP5305231B2 (en) 2013-10-02

Family

ID=42704261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009016097A Active JP5305231B2 (en) 2009-01-28 2009-01-28 Photocatalyst paint

Country Status (1)

Country Link
JP (1) JP5305231B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6866596B2 (en) 2015-09-30 2021-04-28 Toto株式会社 Photocatalyst coating
WO2017070507A1 (en) * 2015-10-21 2017-04-27 Cristal Usa Inc. Nox reducing coatings and methods for reducing nox therewith
WO2018025370A1 (en) * 2016-08-04 2018-02-08 株式会社オー・ティー・エー Photocatalyst filter

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3867382B2 (en) * 1996-12-17 2007-01-10 日本曹達株式会社 Photocatalyst-supported tent place canvas and structure using photocatalyst-supported tent place canvas
JP2001064582A (en) * 1999-08-27 2001-03-13 Toto Ltd Photocatalytic hydrophilic coating composition and preparation of photocatalytic hydrophilic composite by using the same
JP4092434B1 (en) * 2007-03-30 2008-05-28 Toto株式会社 Photocatalyst-coated body and photocatalyst coating liquid therefor
JP2008307527A (en) * 2007-03-30 2008-12-25 Toto Ltd Coated-photocatalyst object and photocatalyst coating solution therefor

Also Published As

Publication number Publication date
JP2010172797A (en) 2010-08-12

Similar Documents

Publication Publication Date Title
JP4092714B1 (en) Photocatalyst-coated body and photocatalyst coating liquid therefor
TWI440505B (en) Photocatalyst coating
JP5835219B2 (en) Photocatalyst-coated body and photocatalyst coating liquid
WO2011040405A1 (en) Photocatalyst-coated object and photocatalyst coating liquid therefor
JP2012250134A (en) Photocatalyst-coated object, and photocatalyst coating liquid therefor
JP2017064707A (en) Photocatalyst coated body
JP4933568B2 (en) Photocatalyst-coated body and photocatalyst coating liquid therefor
JP2010099647A (en) Photocatalyst-coated body and photocatalytic coating liquid for the same
JP5361513B2 (en) Photocatalyst paint
JP5305231B2 (en) Photocatalyst paint
JP2009119462A (en) Photocatalytic coated body and photocatalytic coating liquid for the same
JP5614945B2 (en) Photocatalyst paint
JP5707389B2 (en) Photocatalyst paint
JP2009255571A (en) Photocatalyst-applied object, and photocatalyst coating liquid therefor
JP4897781B2 (en) Photocatalyst-coated body and photocatalyst coating liquid therefor
JP2010099645A (en) Photocatalyst-coated body and photocatalytic coating liquid for the same
JP2011072935A (en) Photocatalyst-coated object and photocatalyst coating liquid therefor
JP2010270582A (en) Building material
JP2011006957A (en) Gate door
JP2010005608A (en) Coating comprising photocatalyst and photocatalyst coating liquid for the same
JP2009285535A (en) Photocatalyst-coated body and photocatalytic coating liquid therefor
JP2011006955A (en) Roof material
JP2010029806A (en) Photocatalyst coated body and photocatalytic coating liquid for the same
JP2009262139A (en) Photocatalyst-coated body and photocatalyst coating liquid therefor
JP2011079980A (en) Exterior item and coating liquid for exterior item

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130603

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5305231

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130616