JP5299935B2 - Nonionic or anionic water-soluble acrylamide polymer and process for producing the same - Google Patents

Nonionic or anionic water-soluble acrylamide polymer and process for producing the same Download PDF

Info

Publication number
JP5299935B2
JP5299935B2 JP2001148134A JP2001148134A JP5299935B2 JP 5299935 B2 JP5299935 B2 JP 5299935B2 JP 2001148134 A JP2001148134 A JP 2001148134A JP 2001148134 A JP2001148134 A JP 2001148134A JP 5299935 B2 JP5299935 B2 JP 5299935B2
Authority
JP
Japan
Prior art keywords
polymer
acrylamide
nonionic
water
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001148134A
Other languages
Japanese (ja)
Other versions
JP2002338630A (en
Inventor
裕 倉橋
信孝 國分
純 細田
茂 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2001148134A priority Critical patent/JP5299935B2/en
Publication of JP2002338630A publication Critical patent/JP2002338630A/en
Application granted granted Critical
Publication of JP5299935B2 publication Critical patent/JP5299935B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Paper (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonionic or anionic water-soluble acrylamide polymer having excellent flocculation properties and a good water solubility and its production method. SOLUTION: This nonionic or anionic water-soluble acrylamide polymer is obtained by the photopolymerization of an aqueous acrylamide monomer solution containing a photoinitiator and has a 0.2% salt viscosity ηs(0.2) and an anion equivalent value (Eq) satisfying the equation: ηs(0.2) -1.56Eq>=24. Such a water-soluble acrylamide polymer can be produced at a high productivity by supplying a layer of an aqueous acrylamide monomer solution containing a photoinitiator onto a substrate and irradiating the layer with an active energy ray by changing the irradiation conditions.

Description

本発明は、格段に優れた凝集性能を有し、かつ水溶解性に優れ、凝集剤、抄紙用粘剤、製紙用歩留まり向上剤等に好適なノニオン性又はアニオン性の水溶性アクリルアミド系重合体およびその製造方法に関する。  The present invention is a nonionic or anionic water-soluble acrylamide polymer which has a remarkably excellent aggregating performance and is excellent in water solubility, and is suitable for a flocculant, a papermaking adhesive, a papermaking yield improver, etc. And a manufacturing method thereof.

一般に、水溶性アクリルアミド系重合体は工業的な規模で生産され、各種用水の浄化のための凝集剤、紙力増強剤、繊維分散剤、土質安定剤等として広く利用されている。
一方、正電荷を帯び安定に分散して水中に浮遊する微粒子を凝集させる凝集剤としては、ノニオン性又はアニオン性の高分子量の重合体が有効であることが知られている。これらノニオン性又はアニオン性の重合体の使用にあっては、凝集させる対象の荷電状態が異なるため、対象に適したアニオン当量値を有する重合体が選択されている。
In general, water-soluble acrylamide polymers are produced on an industrial scale and are widely used as flocculants, paper strength enhancers, fiber dispersants, soil stabilizers and the like for purification of various waters.
On the other hand, it is known that a nonionic or anionic high molecular weight polymer is effective as an aggregating agent that aggregates fine particles that are positively charged and stably dispersed and suspended in water. In the use of these nonionic or anionic polymers, the charge state of the target to be aggregated is different, so a polymer having an anion equivalent value suitable for the target is selected.

発明が解決しようとする課題Problems to be solved by the invention

一般にこれら重合体を凝集剤として使用する場合、その分子量が高いほど少ない使用量で、また短い凝集沈殿時間で対象を凝集させることができ、凝集性能に優れていると言われている。しかし一方で、分子量が高いほど重合体の水への溶解性が低下してしまうことが知られている。  In general, when these polymers are used as a flocculant, it is said that the higher the molecular weight, the smaller the amount used, and the shorter the agglomeration precipitation time, the better the agglomeration performance. On the other hand, it is known that the higher the molecular weight, the lower the solubility of the polymer in water.

このような水溶解性の低下は使用時の溶解時間を長くすることによってある程度解決される。しかしながら、高架橋重合体は水溶解性がはなはだしく低く水中で膨潤するのみで、溶解時間を長くしても粒子状物が溶解せずに残ってしまう。そのため、高架橋重合体を凝集剤として使用すると凝集性能が低く、石油回収用増粘剤として使用する場合は浸透力が低く、また抄紙用粘剤として使用する場合は抄紙上にフィッシュアイを生じる等の問題がある。
すなわち、高い凝集性能と良好な水溶性とをともに満足するようなアクリルアミド系重合体は従来得られていなかった。
Such a decrease in water solubility can be solved to some extent by increasing the dissolution time during use. However, the highly crosslinked polymer is extremely low in water solubility and only swells in water. Even if the dissolution time is increased, the particulate matter remains undissolved. Therefore, when a highly crosslinked polymer is used as a flocculant, the agglomeration performance is low, when used as a thickener for oil recovery, the penetrating power is low, and when used as a papermaking thickener, fish eyes are formed on the paper. There is a problem.
That is, an acrylamide polymer that satisfies both high aggregation performance and good water solubility has not been obtained.

一方、アクリルアミド系重合体の製造方法としては、例えば、特公平5−32410号公報および特公平6−804号公報には、移動する基体上に光開始剤を含むアクリルアミド系水溶液を層状となるように供給し、この層状とされたアクリルアミド水溶液に光を照射して重合させ、ノニオン性又はアニオン性のアクリルアミド系重合体を連続的に製造する方法が開示されている。これは、例えば可動式の連続ベルト上の一端から単量体水溶液を供給し、光を照射して重合させ、得られた水性ゲルを他端から連続的に取り出す方法である。  On the other hand, as a method for producing an acrylamide polymer, for example, in Japanese Patent Publication No. 5-32410 and Japanese Patent Publication No. 6-804, an acrylamide aqueous solution containing a photoinitiator is layered on a moving substrate. And a method of continuously producing a nonionic or anionic acrylamide polymer by irradiating the layered acrylamide aqueous solution with light and polymerizing it. In this method, for example, an aqueous monomer solution is supplied from one end of a movable continuous belt, polymerized by irradiation with light, and the resulting aqueous gel is continuously taken out from the other end.

ノニオン性又はアニオン性のアクリルアミド系単量体の重合発熱は、カチオン性のアクリルアミド系単量体の重合に比べて一般に大きいため、前記方法で高分子量のノニオン性又はアニオン性の水溶性アクリルアミド系重合体を得ようとすると架橋等の副反応が生じ、得られる重合体の溶解性が著しく低下することがある。そのため、単量体水溶液の厚みを薄くして重合する等の工夫により重合発熱を十分除去することが必要で、生産性が低いという問題があった。  The polymerization exotherm of the nonionic or anionic acrylamide monomer is generally larger than that of the cationic acrylamide monomer, so that the above method is used to form a high molecular weight nonionic or anionic water-soluble acrylamide monomer. When trying to obtain a coalescence, a side reaction such as crosslinking occurs, and the solubility of the resulting polymer may be significantly reduced. For this reason, it is necessary to remove the polymerization heat sufficiently by devising the polymerization by reducing the thickness of the aqueous monomer solution, and there is a problem that the productivity is low.

一方、特公平5−26522号公報において、微細鉱物粒子を含む廃水処理用に用いられる特定のアニオン当量値を有するアニオン性の水溶性アクリルアミド系重合体からなる凝集剤について、その凝集剤の物性と、凝集物のフロック径および沈降速度等の凝集性能との好ましい関係について提案されている。しかしながら、この提案では適用できる凝集剤が特定のアニオン当量値のものに限られるという問題がある。
また、特開昭52−3758号公報には、特定組成のアクリルアミド系共重合体の曳糸性を制御することにより凝集性能に優れた重合体が得られると記述されている。また、特開昭61−213203号公報には曳糸性を制御した重合体の製造方法として光重合による方法が記載されているが、重合生産性がはなはだ低いという問題がある。
すなわち、従来、凝集性能に優れた重合体を生産性良く製造する方法は提案されておらず、また、凝集剤の物性とその性能などとの関係も十分には明らかになっていなかった。
On the other hand, in Japanese Examined Patent Publication No. 5-26522, the flocculant composed of an anionic water-soluble acrylamide polymer having a specific anion equivalent value used for the treatment of wastewater containing fine mineral particles, the physical properties of the flocculant and A preferred relationship with the agglomeration performance such as the floc diameter and sedimentation speed of the agglomerates has been proposed. However, this proposal has a problem that applicable flocculants are limited to those having a specific anion equivalent value.
Japanese Patent Application Laid-Open No. 52-3758 describes that a polymer excellent in aggregating performance can be obtained by controlling the spinnability of an acrylamide copolymer having a specific composition. Japanese Patent Application Laid-Open No. 61-213203 discloses a method of photopolymerization as a method for producing a polymer with controlled spinnability, but there is a problem that the polymerization productivity is very low.
That is, conventionally, a method for producing a polymer excellent in aggregating performance with high productivity has not been proposed, and the relationship between the physical properties of the aggregating agent and its performance has not been sufficiently clarified.

本発明は、上記事情に鑑みてなされたもので、格段に優れた凝集性能を有し、かつ水溶解性のよいノニオン性又はアニオン性の水溶性アクリルアミド系重合体を生産性よく提供することを目的とする。  The present invention has been made in view of the above circumstances, and provides a highly productive nonionic or anionic water-soluble acrylamide polymer having excellent aggregation performance and good water solubility. Objective.

課題を解決するための手段Means for solving the problem

【課題を解決するための手段】
本発明者らは、重合体の凝集性能と水溶液物性との関係について詳細に解析検討した結果、意外にも光重合により得られたノニオン性又はアニオン性の水溶性アクリルアミド系重合体であって、その溶液粘度とアニオン当量値とが特定の関係にあるものが、格段に優れた凝集性能を発現することを見出し本発明を完成するに至った。即ち、本発明の要旨は、光開始剤を含むアクリルアミド系単量体水溶液を光重合させて得られたノニオン性又はアニオン性の水溶性アクリルアミド系重合体であって、当該重合体は、アクリルアミドとアクリル酸の共重合体、または、アクリルアミドとアクリル酸と2−アクリルアミド−2−メチルプロパンスルホン酸の共重合体であり、当該重合体の0.2%塩粘度(ηS(0.2))とアニオン当量値(Eq)の関係が下記式(I)を満足することを特徴とするノニオン性又はアニオン性の水溶性アクリルアミド系重合体である。
ηS(0.2)−1.56Eq≧24・・・(I)
(ただし(I)式中、ηS(0.2)の単位は[mPa・s]、Eqの単位は[meq/g]とする。)
[Means for Solving the Problems]
As a result of detailed analysis and investigation on the relationship between the aggregation performance of the polymer and the physical properties of the aqueous solution, the present inventors are unexpectedly a nonionic or anionic water-soluble acrylamide polymer obtained by photopolymerization, The inventors found that a solution having a specific relationship between the viscosity of the solution and the anion equivalent value expresses significantly superior agglomeration performance, and completed the present invention. That is, the gist of the present invention is a nonionic or anionic water-soluble acrylamide polymer obtained by photopolymerization of an aqueous solution of an acrylamide monomer containing a photoinitiator , and the polymer includes acrylamide and A copolymer of acrylic acid, or a copolymer of acrylamide, acrylic acid and 2-acrylamido-2-methylpropanesulfonic acid, and 0.2% salt viscosity (η S (0.2) ) of the polymer The anionic equivalent value (Eq) satisfies the following formula (I): a nonionic or anionic water-soluble acrylamide polymer.
η S (0.2) −1.56 Eq ≧ 24 (I)
(In the formula (I), the unit of η S (0.2) is [mPa · s], and the unit of Eq is [meq / g].)

ここで、0.2%塩粘度ηS(0.2)とは、アクリルアミド系重合体濃度が0.184重量%となるように重合体乾燥粉末を溶解した4重量%塩化ナトリウム水溶液を、B型回転粘度計にてローターNo.1を用いて60rpm、25℃で測定したブルックフィールド粘度を意味する。重合体乾燥粉末を溶解した4重量%塩化ナトリウム水溶液は、内径約8.6cmのガラス製500mlビーカーに重合体乾燥粉末と純水を合計480g入れ、同じ大きさの上下2段の平羽根(塩化ビニル製、厚さ3mm、幅5cm、高さ2cm、液面から上段の平羽根上部までの距離1.5cm、上下2段の板の間隔2cm、2枚の板を固定する軸の直径8mm)を用いて、240rpmで4時間攪拌後、塩化ナトリウム20gを加え、さらに30分間攪拌を行って調製する。Here, 0.2% salt viscosity η S (0.2) means a 4% sodium chloride aqueous solution in which a polymer dry powder is dissolved so that the acrylamide polymer concentration is 0.184% by weight. The rotor no. 1 means Brookfield viscosity measured at 60 rpm and 25 ° C. A 4% by weight aqueous sodium chloride solution in which the dry polymer powder was dissolved was placed in a glass 500 ml beaker having an inner diameter of about 8.6 cm in total with 480 g of the dry polymer powder and pure water. (Made of vinyl, thickness 3mm, width 5cm, height 2cm, distance 1.5cm from liquid level to upper flat blade upper part, distance 2cm between upper and lower plates, diameter of shaft to fix two plates 8mm) After stirring at 240 rpm for 4 hours, 20 g of sodium chloride is added and the mixture is further stirred for 30 minutes.

このとき、通常のアクリルアミド系重合体の乾燥粉末には、重合体成分(中和塩を含む)と水分が含まれるが、溶液中のアクリルアミド系重合体の重量とは乾燥粉末の重量を含水率で補正した重量のことであり、この水分を含まない。乾燥粉末の水分量は通常8%前後であり、例えば8%の水分を含む乾燥粉末の場合、乾燥粉末が0.2重量%となるように加えることで、アクリルアミド系重合体濃度が0.184重量%である前記の溶液が得られる。なお、水分量は熱風乾燥機にて重合体を110℃で6hr加熱した際の減量であり、乾燥粉末の含水率はこの水分量から算出したものである。  At this time, the dry powder of an ordinary acrylamide polymer contains a polymer component (including a neutralized salt) and moisture, but the weight of the acrylamide polymer in the solution is the weight of the dry powder. It is the weight corrected by, and does not contain this moisture. The moisture content of the dry powder is usually around 8%. For example, in the case of a dry powder containing 8% moisture, the concentration of the acrylamide polymer is 0.184 by adding the dry powder to 0.2% by weight. A solution of the aforementioned weight% is obtained. The moisture content is a loss when the polymer is heated at 110 ° C. for 6 hours with a hot air dryer, and the moisture content of the dry powder is calculated from this moisture content.

また、アクリルアミド系重合体(試料)のアニオン当量値(Eq)は次のようにして算出された値である。
まず、100mlビーカーに0.1重量%試料溶液を3g程度精秤し、これに脱イオン水を加えて50gとして、5分以上攪拌する。
次に、この溶液のpHをN/10アンモニア水で約10.4に調整後、これにN/200メチルグリコールキトサン試薬5mlを滴下して5分間攪拌し、これにトルイジンブルー指示薬を2〜3滴加えて検水とし、この検水をN/400ポリビニル硫酸カリウム試薬(N/400PVSK)により滴定する。
このときの滴定速度は2ml/分とし、検水が青から赤紫色に変色してからこの状態を10秒以上保持し、かつ更にN/400PVSKを1滴加えても検水が変色しない時点を終点とする。
なお、上記操作において、試料溶液を添加しない場合をブランクとする。また、上記滴定は、25℃で行う。
これらの測定値を基に、アニオン当量値(Eq)は下記式(III)で計算される。
アニオン当量値(Eq)[meq/g]
=(ブランクの滴定量[ml]−試料の滴定量[ml])×2.5×N/400PVSKのファクター/0.1重量%試料溶液重量[g]・・・(III)
The anion equivalent value (Eq) of the acrylamide polymer (sample) is a value calculated as follows.
First, about 3 g of a 0.1% by weight sample solution is precisely weighed in a 100 ml beaker, and deionized water is added thereto to make 50 g, followed by stirring for 5 minutes or more.
Next, after adjusting the pH of this solution to about 10.4 with N / 10 aqueous ammonia, 5 ml of N / 200 methyl glycol chitosan reagent was added dropwise thereto and stirred for 5 minutes, and then toluidine blue indicator was added to the mixture. A test water is added by dropping, and the test water is titrated with N / 400 potassium potassium sulfate reagent (N / 400 PVSK).
At this time, the titration rate is 2 ml / min, this state is maintained for 10 seconds or more after the sample color changes from blue to reddish purple, and the time point when the sample sample does not change color even if one drop of N / 400 PVSK is added. The end point.
In the above operation, a case where no sample solution is added is regarded as a blank. The titration is performed at 25 ° C.
Based on these measured values, the anion equivalent value (Eq) is calculated by the following formula (III).
Anion equivalent value (Eq) [meq / g]
= (Blank titration [ml] -Sample titration [ml]) × 2.5 × N / 400 PVSK factor / 0.1 wt% sample solution weight [g] (III)

また、本発明者等は上記アクリルアミド系重合体において、溶液粘度とアニオン当量値だけでなく、ワイセンベルク効果の程度、希薄水溶液粘度を含めた特定の物性範囲の重合体が、これまでに知られているよりも格段に優れた凝集性能を発現することを見出した。すなわち、上記ノニオン性又はアニオン性の重合体においては、上記物性に加えて、0.2%塩粘度(ηS(0.2))、1.04%ワイセンベルク値(1.04%W値またはW1.04)、0.1%溶液粘度(ηSol(0.1))、1%塩粘度(ηS(1))、およびアニオン当量値(Eq)の関係が下記式(II)を満足する値である。
2.68×10−1ηS(0.2)+1.10×101.04/ηS(1)−5.62ηSol(0.1)/ηS(1)−5.57×10−1Eq≧8.0・・・(II)
(ただし(II)式中、ηS(0.2)およびηSol(0.1)およびηS(1)の単位は[mPa・s]、Eqの単位は[meq/g]、W1.04の単位は[mm]とする。)
Further, the present inventors have previously known polymers having a specific physical property range including not only the solution viscosity and the anion equivalent value but also the degree of the Weissenberg effect and the viscosity of a dilute aqueous solution in the acrylamide polymer. It has been found that the agglomeration performance is far superior to that of the present invention. That is, in the nonionic or anionic polymer, in addition to the above physical properties, 0.2% salt viscosity (η S (0.2) ), 1.04% Weissenberg value (1.04% W value or W 1.04 ), 0.1% solution viscosity (η Sol (0.1) ), 1% salt viscosity (η S (1) ), and anion equivalent value (Eq) are represented by the following formula (II): It is a satisfactory value .
2.68 × 10 −1 η S (0.2) + 1.10 × 10 2 W 1.04 / η S (1) −5.62 η Sol (0.1) / η S (1) −5.57 × 10 −1 Eq ≧ 8.0 (II)
(However, in the formula (II), the unit of η S (0.2), η Sol (0.1) and η S (1) is [mPa · s], the unit of Eq is [meq / g], W 1 The unit of .04 is [mm].)

ここで、1%塩粘度(ηS(1))とは、重合体濃度が0.92重量%となるように重合体乾燥粉末を溶解した4重量%塩化ナトリウム水溶液を、B型回転粘度計にてローターNo.2を用いて6rpm、25℃で測定したブルックフィールド粘度を意味する。例えば、8%の水分を含む乾燥粉末の場合、乾燥粉末が1重量%となるように加えることで、前記のアクリルアミド系重合体濃度が0.92重量%の溶液が得られる。重合体乾燥粉末を溶解した4重量%塩化ナトリウム水溶液は、内径約8.6cmのガラス製500mlビーカーに重合体乾燥粉末と純水を合計480g入れ、同じ大きさの上下2段の平羽根(塩化ビニル製、厚さ3mm、幅5cm、高さ2cm、液面から上段の平羽根上部までの距離1.5cm、上下2段の板の間隔2cm、2枚の板を固定する軸の直径8mm)を用いて、240rpmで4時間攪拌後、塩化ナトリウム20gを加えさらに30分間攪拌を行って調製する。Here, 1% salt viscosity (η S (1) ) means a 4 wt% sodium chloride aqueous solution in which a polymer dry powder is dissolved so that the polymer concentration becomes 0.92 wt%. At rotor no. 2 means Brookfield viscosity measured at 6 rpm and 25 ° C. For example, in the case of a dry powder containing 8% water, a solution having the acrylamide polymer concentration of 0.92% by weight can be obtained by adding the dry powder to 1% by weight. A 4% by weight aqueous sodium chloride solution in which the dry polymer powder was dissolved was placed in a glass 500 ml beaker having an inner diameter of about 8.6 cm in total with 480 g of the dry polymer powder and pure water. (Made of vinyl, thickness 3mm, width 5cm, height 2cm, distance 1.5cm from liquid level to upper flat blade upper part, distance 2cm between upper and lower plates, diameter of shaft to fix two plates 8mm) After stirring at 240 rpm for 4 hours, 20 g of sodium chloride is added and stirring is further performed for 30 minutes.

上記1,04%W値(W1.04)とは、重合体濃度が0.96重量%となるように重合体乾燥粉末を溶解した水溶液500gを、内径約8.6cmのガラス製500mlビーカーで、2段の2枚平羽根(塩化ビニル製、幅5cm、高さ2cm、間隔2cm、液面から上段の平羽根までの距離1.5cm)を用いて、240rpmで4時間攪拌したときのワイセンベルク効果の高さ(攪拌時に攪拌棒に絡みついた上記水溶液の上位置と液面との距離、単位はmmとする。)を意味する。例えば、8%の水分を含む乾燥粉末の場合、乾燥粉末が1.04重量%となるように加えることで、前記のアクリルアミド系重合体濃度が0.96重量%の溶液が得られる。The above 1.04% W value (W 1.04 ) is a glass 500 ml beaker having an inner diameter of about 8.6 cm, obtained by dissolving 500 g of an aqueous solution obtained by dissolving a polymer dry powder so that the polymer concentration becomes 0.96 wt%. Weissenberg effect when stirred for 4 hours at 240 rpm using two flat blades (made of vinyl chloride, width 5 cm, height 2 cm, distance 2 cm, distance 1.5 cm from the liquid surface to the upper flat blade) (The distance between the upper position of the aqueous solution entangled with the stirring rod during stirring and the liquid level, the unit is mm). For example, in the case of a dry powder containing 8% of water, a solution having the acrylamide polymer concentration of 0.96% by weight can be obtained by adding the dry powder to 1.04% by weight.

上記0.1%溶液粘度とは、重合体濃度が0.092重量%となるように重合体乾燥粉末を溶解した水溶液を、B型回転粘度計にてローターNo.1を用いて6rpm、25℃で測定したブルックフィールド粘度を意味する。但し、測定値が100mPa・s以下の時は、BLアダプタを使用して測定した値を用いる。例えば、8%の水分を含む乾燥粉末の場合、乾燥粉末が0.1重量%となるように加えることで、前記のアクリルアミド系重合体濃度が0.092重量%の溶液が得られる。水溶液は、内径約8.6cmのガラス製500mlビーカーに重合体乾燥粉末と純水を合計500g入れ、内径約8.6cmのガラス製500mlビーカーで、同じ大きさの上下2段の平羽根(塩化ビニル製、厚さ3mm、幅5cm、高さ2cm、液面から上段の平羽根上部までの距離1.5cm、上下2段の板の間隔2cm、2枚の板を固定する軸の直径8mm)を用いて、240rpmで4時間攪拌を行って調製する。  The above-mentioned 0.1% solution viscosity refers to an aqueous solution obtained by dissolving a polymer dry powder so that the polymer concentration is 0.092% by weight using a B-type rotational viscometer. 1 means Brookfield viscosity measured at 6 rpm and 25 ° C. However, when the measured value is 100 mPa · s or less, the value measured using the BL adapter is used. For example, in the case of a dry powder containing 8% of water, a solution having the acrylamide polymer concentration of 0.092% by weight can be obtained by adding the dry powder to 0.1% by weight. The aqueous solution is a glass 500 ml beaker with an inner diameter of about 8.6 cm. A total of 500 g of the polymer dry powder and pure water are placed in a glass 500 ml beaker with an inner diameter of about 8.6 cm. (Made of vinyl, thickness 3mm, width 5cm, height 2cm, distance 1.5cm from liquid level to upper flat blade upper part, distance 2cm between upper and lower plates, diameter of shaft to fix two plates 8mm) And stirring for 4 hours at 240 rpm.

また、上記ノニオン性又はアニオン性の水溶性アクリルアミド系重合体においては、アニオン当量値(Eq)が3.8meq/g以下であることが好ましい。この範囲であれば凝集剤等として広い用途に適用することができる。  In the nonionic or anionic water-soluble acrylamide polymer, the anion equivalent value (Eq) is preferably 3.8 meq / g or less. If it is this range, it can apply to a wide use as a flocculant.

また本発明者等は、上記のごとく優れた凝集性能を有する高分子量で水への溶解性が良好な重合体の製造方法について鋭意検討した結果、単量体を水溶液中で重合させる製造方法として、光開始剤を添加した単量体水溶液を基体上に層状となるよう供給し、特定の照射条件下で光照射して光重合を行う製造方法が好ましいことを見出した。すなわち、光開始剤を含むアクリルアミド系単量体水溶液を基体上に層状に供給し、この層状の単量体水溶液に活性エネルギー線を照射して光重合する水溶性アクリルアミド系重合体の製造方法において、実質的に単量体の重合が開始した時点(t)から、重合率95%となるまでの活性エネルギー線の照射時間をtとし、この照射時間tに照射される活性エネルギー線の全照射エネルギーの35〜60%を、実質的に重合が開始した時点から1/3tまでの時間に照射し、上記照射時間t以降の照射時間内に、照射時間tに照射した活性エネルギー線の最大照射強度の3倍以上の活性エネルギー線を照射して光重合することが好ましい。
In addition, as a result of intensive studies on a method for producing a polymer having a high molecular weight and excellent water solubility as described above, the present inventors have made a monomer polymerization method in an aqueous solution. The present inventors have found that a production method in which an aqueous monomer solution to which a photoinitiator has been added is supplied in a layered form on a substrate and photopolymerization is performed by light irradiation under specific irradiation conditions has been found to be preferable. Chi words, the acrylamide monomer solution containing a photoinitiator is supplied in layers on a substrate, preparation of a water-soluble acrylamide polymer which photopolymerized by irradiating with an active energy ray to the monomer aqueous solution of this layered In the method, the irradiation time of the active energy rays from the time point when the polymerization of the monomer substantially starts (t 0 ) until the polymerization rate reaches 95% is defined as t 1, and the activity irradiated during this irradiation time t 1. 35 to 60% of the total irradiation energy of the energy beam is irradiated for a period of time from the time when the polymerization starts to 1/3 t 1 until the irradiation time t 1 within the irradiation time after the irradiation time t 1 . It is preferable to carry out photopolymerization by irradiating active energy rays that are at least three times the maximum irradiation intensity of the irradiated active energy rays .

また、より水溶解性に優れたアクリルアミド系重合体を得るには、原料であるアクリルアミド系単量体の少なくとも一部として、ニトリルヒドラターゼの触媒作用によりアクリロニトリルを水和して得られたアクリルアミド単量体を使うことが好ましい。  In addition, in order to obtain an acrylamide polymer having better water solubility, acrylamide obtained by hydrating acrylonitrile by the catalytic action of nitrile hydratase is used as at least a part of the acrylamide monomer as a raw material. It is preferable to use a monomer.

以下に、本発明を詳細に説明する。
本発明のノニオン性又はアニオン性の水溶性アクリルアミド系重合体は、光開始剤を含むアクリルアミド系単量体水溶液を光重合させて得られたノニオン性又はアニオン性の水溶性アクリルアミド系重合体であって、当該重合体の0.2%塩粘度(ηS(0.2))とアニオン当量値(Eq)の関係が下記式(I)を満足することを特徴とする。
ηS(0.2)−1.56Eq≧24・・・(I)
(ただし(I)式中、ηS(0.2)の単位は[mPa・s]、Eqの単位は[meq/g]とする。)
The present invention is described in detail below.
The nonionic or anionic water-soluble acrylamide polymer of the present invention is a nonionic or anionic water-soluble acrylamide polymer obtained by photopolymerizing an aqueous acrylamide monomer solution containing a photoinitiator. The relationship between the 0.2% salt viscosity (η S (0.2) ) and the anion equivalent value (Eq) of the polymer satisfies the following formula (I).
η S (0.2) -1.56Eq ≧ 24 (I)
(In the formula (I), the unit of η S (0.2) is [mPa · s], and the unit of Eq is [meq / g].)

上記アクリルアミド系単量体水溶液とは少なくともアクリルアミドを含む水溶液であり、アクリルアミド以外のアニオン性又はノニオン性の単量体を含んでいてもよいが、全単量体中、アクリルアミドは25重量%以上含まれることが好ましい。
アクリルアミド以外のアニオン性又はノニオン性の単量体としては、例えば、アクリルアミドの部分加水分解物、
アクリル酸およびこれらの酸のアルカリ塩、アンモニウム塩、
メタクリル酸およびこれらの酸のアルカリ塩、アンモニウム塩
2−アクリルアミド−2−メチルプロパンスルホン酸のようなアクリルアミドアルカンスルホン酸およびそのアルカリ塩、アンモニウム塩、
2−アクリルアミド−2−メチルプロパンスルホン酸のようなアクリルアミドアルカンスルホン酸およびそのアルカリ塩、アンモニウム塩等が挙げられる。
またアクリルアミド系単量体水溶液には、生成重合体の水溶性を損なわない範囲で、アクリロニトリル、アクリルアミドおよびメタクリルアミドのN置換誘導体、スチレン、N,N’−メチレンビスアクリルアミドのような2官能基以上のビニル単量体を含んでいてもよい。
The acrylamide-based monomer aqueous solution is an aqueous solution containing at least acrylamide, and may contain anionic or nonionic monomers other than acrylamide. It is preferable that
Examples of anionic or nonionic monomers other than acrylamide include, for example, a partial hydrolyzate of acrylamide,
Acrylic acid and alkali salts, ammonium salts of these acids,
Methacrylic acid and alkali salts of these acids, ammonium salts Acrylamide alkane sulfonic acids such as 2-acrylamido-2-methylpropane sulfonic acid and its alkali salts, ammonium salts,
Examples include acrylamide alkanesulfonic acid such as 2-acrylamido-2-methylpropanesulfonic acid, and alkali salts and ammonium salts thereof.
In addition, the acrylamide-based monomer aqueous solution has two or more functional groups such as N-substituted derivatives of acrylonitrile, acrylamide and methacrylamide, styrene, and N, N′-methylenebisacrylamide, as long as the water solubility of the produced polymer is not impaired. The vinyl monomer may be included.

アクリルアミド系単量体水溶液に含まれるアクリルアミドの製法は特に限定されず、例えば、銅または銅化合物を触媒として接触水和する方法(以下、銅触媒法という)、ニトリルヒドラターゼの触媒作用によりアクリロニトリルを水和する方法(以下、バイオ法という)等が挙げられる。特に、水不溶物が少なく良好な水溶性を示す重合体を得るためには、バイオ法で製造されたアクリルアミドが好ましい。この理由としては、製法の相違に基づく何らかの不純物が関与していると推定される。  The method for producing acrylamide contained in the acrylamide monomer aqueous solution is not particularly limited. For example, a method of catalytic hydration using copper or a copper compound as a catalyst (hereinafter referred to as a copper catalyst method), acrylonitrile is produced by the catalytic action of nitrile hydratase. Examples thereof include a hydration method (hereinafter referred to as a biomethod). In particular, acrylamide produced by a bio method is preferable in order to obtain a polymer having a small amount of water insolubles and exhibiting good water solubility. The reason for this is presumed that some impurities based on the difference in the production method are involved.

ここで、ニトリルヒドラターゼとは、ニトリル化合物を対応するアミド化合物に変換する酵素であり、例えば、バチルス(Bacillus)属、バクテリジューム(Bacteridium)属、マイクロコッカス(Micrococcus)属、ブレビバクテリウム(Brevibacterium)属〔特公昭62−21519号〕、コリネバクテリウム(Corynebacterium)属、ノカルディア(Nocardia)属〔特公昭56−17918号〕、シュードモナス(Pseudomonas)属〔特公昭59−37951号〕、ロドコッカス(Rhodococcus)属、ミクロバクテリウム(Microbacterium)属〔特公平4−4873号〕、ロドコッカス(Rhodococcus)属〔特公平4−40948号〕、ロドコッカス ロドクロウス(Rhodococcus rhodochrous)種〔特公平6−55148号、SU1731814号〕、フザリウム(Fusarium)属〔特開昭64−86889号〕、アグロバクテリウム(Agrobacterium)属〔特開平5−103681号、特開平6−14786号〕に属する微生物由来のものが挙げられる。  Here, the nitrile hydratase is an enzyme that converts a nitrile compound into a corresponding amide compound, and includes, for example, the genus Bacillus, the genus Bacteridium, the genus Micrococcus, and the Brevibacterium. ) Genus [Japanese Patent Publication No. 62-21519], Corynebacterium genus, Nocardia genus [Japanese Examined Publication No. 56-17918], Pseudomonas genus [Japanese Examined Publication No. 59-37951], Rhodococcus ( Rhodococcus genus, Microbacterium genus [Japanese Patent Publication 4873], Rhodococcus genus -40948], Rhodococcus rhodochrous species (Japanese Patent Publication No. 6-55148, SU17331814), Fusarium genus [Japanese Patent Laid-Open No. 64-86889], Agrobacterium genus [Japanese Patent Laid-open No. Hei 5] -103681, JP-A-6-14786] derived from microorganisms.

ニトリルヒドラターゼを用いてアクリルアミドを製造する際のニトリルヒドラターゼの使用形態は特に限定されず、例えば、上記微生物の培養液、培養液から分離した休止菌体または固定化菌体、あるいは、休止菌体からニトリルヒドラターゼ活性酵素を抽出し、直接または担体に固定化したもの等が挙げられる。
また、アクリロニトリルのアクリルアミドへの水和反応条件は常温、常圧で反応する酵素法の条件に準ずるものであれば、特に制限されない。また、水和反応後のアクリルアミド水溶液をそのまま用いても、濃縮操作によりアクリルアミド濃度を上げてから使用しても差し支えない。
The use form of nitrile hydratase when producing acrylamide using nitrile hydratase is not particularly limited. For example, the culture solution of the microorganism, a resting cell or an immobilized cell separated from the culture solution, or a resting cell Examples include nitrile hydratase-active enzyme extracted from the body and directly or immobilized on a carrier.
The conditions for the hydration reaction of acrylonitrile to acrylamide are not particularly limited as long as they conform to the conditions of the enzymatic method in which the reaction is performed at normal temperature and normal pressure. Moreover, the acrylamide aqueous solution after the hydration reaction may be used as it is, or it may be used after increasing the acrylamide concentration by a concentration operation.

上記光開始剤とは、活性エネルギー線によって分解し開始ラジカルを発生する化合物であり、例えば、ベンゾイン、ベンゾインアルキルエーテル、ベンジル、ベンゾフェノン、アセトフェノン、アンスラキノン、アシルホスフィンオキサイド化合物、アゾ系化合物等が挙げられる。特に、水溶解性が高い重合体が得られやすいアシルホスフィンオキサイド化合物が好ましい。また、これら光開始剤は、2種類以上を組み合わせて使用することもできる。
光開始剤の添加量は、目的とする重合体の分子量と重合時間の兼ね合いから適宜決定され、通常1〜1000ppm程度である。
The photoinitiator is a compound that decomposes by active energy rays to generate an initiation radical, and examples thereof include benzoin, benzoin alkyl ether, benzyl, benzophenone, acetophenone, anthraquinone, acylphosphine oxide compounds, and azo compounds. It is done. In particular, an acylphosphine oxide compound from which a polymer having high water solubility can be easily obtained is preferable. Moreover, these photoinitiators can also be used in combination of 2 or more types.
The addition amount of the photoinitiator is appropriately determined from the balance between the molecular weight of the target polymer and the polymerization time, and is usually about 1 to 1000 ppm.

上記ノニオン性又はアニオン性の水溶性アクリルアミド重合体とは、上記アクリルアミド系単量体水溶液を光重合して得られる水溶性重合体であり、例えば、アクリルアミド重合体、
アクリルアミドの部分加水分解物、アクリルアミドとアクリル酸およびこれらの酸のアルカリ塩、アンモニウム塩の共重合体、
アクリルアミドとメタクリル酸およびこれらの酸のアルカリ塩、アンモニウム塩の共重合体、アクリルアミドと2−アクリルアミド−2−メチルプロパンスルホン酸のようなアクリルアミドアルカンスルホン酸およびそのアルカリ塩、アンモニウム塩との共重合体、
アクリルアミドとアクリル酸、メタクリル酸およびこれらの酸のアルカリ塩、アンモニウム塩と2−アクリルアミド−2−メチルプロパンスルホン酸のようなアクリルアミドアルカンスルホン酸およびそのアルカリ塩、アンモニウム塩との共重合体、
等が挙げられる。
The nonionic or anionic water-soluble acrylamide polymer is a water-soluble polymer obtained by photopolymerization of the acrylamide monomer aqueous solution, for example, an acrylamide polymer,
Acrylamide partial hydrolyzate, acrylamide and acrylic acid and alkali salts of these acids, copolymers of ammonium salts,
Copolymers of acrylamide and methacrylic acid and alkali salts and ammonium salts of these acids, acrylamide and acrylamide alkane sulfonic acids such as 2-acrylamido-2-methylpropanesulfonic acid and their alkali and ammonium salts ,
Copolymers of acrylamide and acrylic acid, methacrylic acid and alkali salts of these acids, ammonium salts and acrylamide alkane sulfonic acids such as 2-acrylamido-2-methylpropane sulfonic acid and alkali and ammonium salts thereof,
Etc.

また、カルボキシル基を有するアニオン性の重合体は、カルボキシル基を含む単量体を共重合する方法(共重合法〉以外に、アクリルアミド単量体単位を含む重合体を加水分解する方法によっても製造できるが、生産性の高い光重合による共重合法で製造することが好ましい。  In addition, the anionic polymer having a carboxyl group can be produced not only by a method of copolymerizing a monomer containing a carboxyl group (copolymerization method) but also by a method of hydrolyzing a polymer containing an acrylamide monomer unit. However, it is preferably produced by a copolymerization method by photopolymerization with high productivity.

上記アクリルアミド系重合体における上記式(I)で示される(0.2%塩粘度(ηS(0.2))−1.56×アニオン当量値(Eq))の値は24以上であり、好ましくは24〜50、より好ましくは28〜45、更に好ましくは32〜40である。この値は大きいほど、凝集剤として優れた凝集性能を示し、一方、少ないほど水に対する溶解性が向上する傾向にある。The value of (0.2% salt viscosity (η S (0.2) ) −1.56 × anion equivalent value (Eq)) represented by the above formula (I) in the acrylamide polymer is 24 or more, preferably It is 24-50, More preferably, it is 28-45, More preferably, it is 32-40. The larger this value, the better the aggregation performance as a flocculant, while the smaller the value, the better the solubility in water.

また、上記アクリルアミド系重合体の0.2%塩粘度(ηS(0.2))、1.04%W値(W1.04)、0.1%溶液粘度(ηSol(0.1))、1%塩粘度ηS(1)、およびアニオン当量値(Eq)が、それぞれ下記式(II)に示される関係を満足していると、そのアクリルアミド系重合体はより優れた凝集性能を示す。ここでの各パラメータの定義は上述の通りである。
2.68×10-1ηS(0.2)+1.10×1021.04/ηS(1)−5.62ηSol(0.1)/ηS(1)−5.57×10-1Eq≧8.0・・・(II)
(ただし(II)式中、ηS(0.2)およびηSol(0.1)およびnS(1)の単位は[mPa・s]Eqの単位は[meq/g]、W1.04の単位は[mm]とする。)
さらに、上記式(II)において、左辺の値は9以上であることがより好ましい。
In addition, 0.2% salt viscosity (η S (0.2) ), 1.04% W value (W 1.04 ), 0.1% solution viscosity (η Sol (0.1) ), 1% salt of the acrylamide polymer. When the viscosity η S (1) and the anion equivalent value (Eq) satisfy the relationship represented by the following formula (II), the acrylamide polymer exhibits more excellent aggregation performance. The definition of each parameter here is as described above.
2.68 × 10 −1 η S (0.2) + 1.10 × 10 2 W 1.04 / η S (1) −5.62 η Sol (0.1) / η S (1) −5.57 × 10 −1 Eq ≧ 8.0 (II)
(In the formula (II), the unit of η S (0.2), η Sol (0.1) and n S (1) is [mPa · s] Eq is [meq / g], and the unit of W 1.04 is [mm] ])
Furthermore, in the above formula (II), the value on the left side is more preferably 9 or more.

また、さらに、アクリルアミド系重合体のアニオン当量値(Eq)が3.8meq/g以下であれば、正電荷を帯び安定に分散して水中に浮遊する微粒子を凝集させる凝集剤として有用となり、各種用水の浄化のための凝集剤、紙力増強剤、繊維分散剤、土質安定剤等として広く利用することができる。
また、本発明で言うノニオン性とはアニオン当量値が0.1meq/g以下であることを意味する。例えば、アクリルアミドの単独重合体は重合の過程で一部が加水分解されて僅かながらカルボキシル基を生じるので、アニオン当量値が0とはならないが、通常0.1meq/g以下であるので、このようなアクリルアミドの単独重合体はノニオン性である。
Furthermore, when the anion equivalent value (Eq) of the acrylamide polymer is 3.8 meq / g or less, it becomes useful as an aggregating agent for aggregating fine particles that are positively charged and stably dispersed and suspended in water. It can be widely used as a flocculant, a paper strength enhancer, a fiber dispersant, a soil stabilizer, etc. for purification of water.
Moreover, the nonionicity said by this invention means that an anion equivalent value is 0.1 meq / g or less. For example, an acrylamide homopolymer is partially hydrolyzed in the course of polymerization to produce a slight carboxyl group, so that the anion equivalent value is not 0, but is usually 0.1 meq / g or less. The acrylamide homopolymer is nonionic.

このような水溶性アクリルアミド系重合体は、各種用途に使用することができるが、特に紙・パルプ工業、又は金属工業の産業廃水処理用の凝集剤として好適であり、その使用に際して効率よく凝集沈殿を生じさせるためには必要に応じ、硫酸バンド、ポリ塩化アルミニウム等の無機凝集剤を併用することができる。  Such a water-soluble acrylamide polymer can be used for various applications, but is particularly suitable as a flocculant for the treatment of industrial wastewater in the paper / pulp industry or the metal industry, and efficiently agglomerates and precipitates when used. In order to produce the above, an inorganic flocculant such as a sulfuric acid band or polyaluminum chloride can be used in combination as necessary.

次に、上述したような物性を有する本発明のノニオン性又はアニオン性のアクリルアミド系重合体の製造方法の好ましい一例について詳しく説明する。
この方法では、光開始剤を添加したアクリルアミド系単量体水溶液を基体上に層状となるように供給し、この層状とされた単量体水溶液に活性エネルギー線を当てて重合体を得る。
このような光重合方法としては、例えば特公平5−32410号公報および特公平6−804号公報に、移動する基体上での光照射による連続重合方法が開示されている。これは、例えば可動式の連続ベルト上の一端から単量体水溶液を供給し、光を照射して重合せしめ、得られた水性ゲルを他端から連続的に取り出す方法である。
Next, a preferable example of the method for producing the nonionic or anionic acrylamide polymer of the present invention having the above-described physical properties will be described in detail.
In this method, an aqueous acrylamide monomer solution to which a photoinitiator has been added is supplied in a layered form on a substrate, and a polymer is obtained by applying active energy rays to the layered monomer aqueous solution.
As such a photopolymerization method, for example, Japanese Patent Publication No. 5-32410 and Japanese Patent Publication No. 6-804 disclose a continuous polymerization method by light irradiation on a moving substrate. In this method, for example, an aqueous monomer solution is supplied from one end of a movable continuous belt, polymerized by irradiation with light, and the resulting aqueous gel is continuously taken out from the other end.

ここでのアクリルアミド系単量体水溶液の濃度は、好ましくは20〜50重量%、より好ましくは25〜45%、更に好ましくは30〜40重量%である。濃度は高いほど重合時間が短く、重合体を乾燥させる際の負荷が少なくなり生産性が向上する。また、濃度は低いほど重合熱の除去が容易になる。
アクリルアミド系単量体水溶液の光照射開始時における溶存酸素濃度は、1ppm以下が好ましく、より好ましくは0.5ppm以下である。溶存酸素濃度は低いほど重合開始の遅延が少なく、水不溶物の発生が少ない。また溶存酸素濃度の低減は、窒素置換法等により行うことが出来る。
また上記単量体水溶液には、分子量を調整するために必要に応じて亜リン酸水素ニナトリウム、次亜リン酸ナトリウム等の連鎖移動剤を添加しても構わない。
The concentration of the acrylamide monomer aqueous solution here is preferably 20 to 50% by weight, more preferably 25 to 45%, and still more preferably 30 to 40% by weight. The higher the concentration, the shorter the polymerization time, the less the load when drying the polymer, and the productivity is improved. Also, the lower the concentration, the easier the removal of the polymerization heat.
The dissolved oxygen concentration at the start of light irradiation of the acrylamide monomer aqueous solution is preferably 1 ppm or less, more preferably 0.5 ppm or less. The lower the dissolved oxygen concentration, the smaller the delay of polymerization initiation and the less water insoluble matter is generated. The concentration of dissolved oxygen can be reduced by a nitrogen substitution method or the like.
In addition, a chain transfer agent such as disodium hydrogen phosphite or sodium hypophosphite may be added to the aqueous monomer solution as necessary in order to adjust the molecular weight.

そして、本発明のアクリルアミド系重合体の製造方法においては、活性エネルギー線の照射条件を、単量体の重合率(重合反応においてある時間を経過したときの重量体の生成量を単量体の仕込み量に対する比率で表したもの)および重合時間によって変えること、すなわち、活性エネルギー線の照射エネルギーの配分を変えることを特徴とするものである。
詳しくは、単量体水溶液に、次の条件で活性エネルギー線を照射するものである。
In the method for producing an acrylamide polymer of the present invention, the irradiation conditions of the active energy ray are set such that the polymerization rate of the monomer (the production amount of the weight body when a certain time elapses in the polymerization reaction) It is characterized in that it is varied depending on the polymerization time and the distribution of the irradiation energy of the active energy ray.
Specifically, the monomer solution is irradiated with active energy rays under the following conditions.

(1)実質的に単量体の重合が開始した時点(t0)から、重合率95%となるまでの活性エネルギー線の照射時間をt1とし、この照射時間t1に照射される活性エネルギー線の全照射エネルギーの35〜60%、好ましくは45〜55%を、実質的に重合が開始した時点(t0)から1/3t1までの時間に照射する。照射エネルギーの配分をこのようにすることで、得られる重合体の分子量分布が制御でき、水溶解性低下の原因となる架橋しやすい超高分子量成分の生成を低減できると推定される。
ここで照射する活性エネルギー線の照射エネルギーとは、照射強度計で測定した照射強度と照射時間の積である。照射強度は、光源ランプの照射光波長分布に適した測定波長域の照射強度計を用い、光源が蛍光ケミカルランプの場合はUVR−36(トプコン社製、測定波長域310〜390nm)、青色蛍光ランプの場合はUVR−40(トプコン社製測定波長域360〜480nm)の受光器を装着したUVR−1(トプコン社製)を用い測定することができる。
(1) The irradiation time of active energy rays from the time point when the polymerization of monomers substantially starts (t 0 ) until the polymerization rate reaches 95% is defined as t 1, and the activity irradiated during this irradiation time t 1 35 to 60%, preferably 45 to 55% of the total irradiation energy of the energy rays is irradiated for a period of time from the time when the polymerization starts (t 0 ) to 1/3 t 1 . By making the distribution of the irradiation energy in this way, it is presumed that the molecular weight distribution of the obtained polymer can be controlled, and the generation of an ultra-high molecular weight component that easily crosslinks that causes a decrease in water solubility can be reduced.
The irradiation energy of the active energy ray irradiated here is a product of the irradiation intensity measured by the irradiation intensity meter and the irradiation time. The irradiation intensity is measured using an irradiation intensity meter in the measurement wavelength range suitable for the irradiation light wavelength distribution of the light source lamp. When the light source is a fluorescent chemical lamp, UVR-36 (manufactured by Topcon, measurement wavelength range 310 to 390 nm), blue fluorescence In the case of a lamp, measurement can be performed using UVR-1 (Topcon) equipped with a UVR-40 (Topcon measurement wavelength range 360 to 480 nm) light receiver.

(2)上記照射時間t1以降の照射時間内に、照射時間t1に照射した活性エネルギー線の最大照射強度の3倍以上、好ましくは4〜10倍の活性エネルギー線を照射して光重合を行う。すなわち、重合率が95%を超えた以降に、重合率が95%となるまでに照射した活性エネルギー線の最大照射強度の3倍以上、好ましくは4〜10倍の活性エネルギー線を照射する。また、そのような強度による照射を、重合が終了するまで続けることが好ましい。なお、このような強度の活性エネルギー線の照射を開始する時期は、重合率が95%を超えた直後であっても、重合が更に進んだ時点、例えば重合率が97%の時点でもよい。
このようにすることで良好な水溶解性を維持しつつ格段に優れた凝集性能を有する重合体が得られる。
(2) within the irradiation time t 1 after the irradiation time, 3 times or more of the maximum illumination intensity of the active energy ray irradiated on the irradiation time t 1, preferably photopolymerization by irradiation of 4-10 times the active energy ray I do. That is, after the polymerization rate exceeds 95%, the active energy rays are irradiated three times or more, preferably 4 to 10 times the maximum irradiation intensity of the active energy rays irradiated until the polymerization rate reaches 95%. Moreover, it is preferable to continue the irradiation with such intensity until the polymerization is completed. It should be noted that the time when the irradiation of such intense active energy rays is started may be immediately after the polymerization rate exceeds 95% or may be when the polymerization further proceeds, for example, when the polymerization rate is 97%.
By doing in this way, the polymer which has the remarkably excellent aggregation performance is maintained, maintaining favorable water solubility.

本発明でいう実質的に重合が開始した時点(t0)とは、光開始剤を添加した単量体水溶液において、光を照射してから溶存酸素、重合禁止剤等によって引き起こされる誘導期間が終了した時点を意味する。したがって、照射時間t1に照射される活性エネルギー線の全照射エネルギーには、この誘導期間に照射された活性エネルギー線は含まれない。誘導期間の終了は単量体水溶液の温度上昇によって確認できる。The time point (t 0 ) at which the polymerization is substantially started in the present invention refers to an induction period caused by dissolved oxygen, a polymerization inhibitor and the like after irradiation with light in a monomer aqueous solution to which a photoinitiator is added. It means the time of completion. Accordingly, the total irradiation energy of the active energy rays irradiated at the irradiation time t 1 does not include the active energy rays irradiated during this induction period. The end of the induction period can be confirmed by the temperature increase of the monomer aqueous solution.

活性エネルギー線の照射エネルギーを配分する方法としては、活性エネルギー線の強度や光源を段階的に変える方法が簡便である。各段階の境界は明確である必要はなく、例えば、活性エネルギー線強度が連続的に変化するパターンで光を照射する方法等でもよい。
このとき、単量体水溶液の層厚さ(つまり、照射方向に対する液深さ)は11mm以上が好ましく、より好ましくは13mm以上、更に好ましくは16mm以上である。また、その上限については、好ましくは50mm以下であり、より好ましくは30mm以下、更に好ましくは25mm以下である。単量体水溶液の層厚さは、厚いほど生産性が高くなり、薄いほど重合熱の除去が容易になる。
As a method of allocating the irradiation energy of the active energy ray, a method of changing the intensity of the active energy ray or the light source in a stepwise manner is simple. The boundary of each stage does not need to be clear, and for example, a method of irradiating light with a pattern in which the active energy ray intensity continuously changes may be used.
At this time, the layer thickness of the monomer aqueous solution (that is, the liquid depth with respect to the irradiation direction) is preferably 11 mm or more, more preferably 13 mm or more, and further preferably 16 mm or more. Moreover, about the upper limit, Preferably it is 50 mm or less, More preferably, it is 30 mm or less, More preferably, it is 25 mm or less. The thicker the monomer aqueous solution, the higher the productivity, and the thinner the monomer aqueous solution, the easier it is to remove the polymerization heat.

上記基体としては、単量体水溶液を層状に保持できるものであれば特に限定されないが、層厚さができるだけ均一になるものが好ましい。このような基体として、例えば、バット様の容器、平らな平板上の四方に堰を設けたもの、連続ベルトの両側に堰を設けたものなどを用いることができる。
上記重合反応は、例えば、バット様の容器等可動式でない容器を用い回分操作で重合反応を行うこともできるが、工業的生産性を向上させるためには、連続ベルト等可動式の基体上で重合することが有利である。
この時に用いる連続ベルトとしては、上記特公平6−804号公報に提案されている構造のもの等を用いることができ、例えば、エンドレスベルト(連続ベルト)の両長辺部分にゴム棒により堰を設け、この堰内側にプラスチックフィルム等を敷いて液が漏れ出ないようにした装置などを挙げることが出来る。
The substrate is not particularly limited as long as the aqueous monomer solution can be held in a layer form, but a substrate having a layer thickness as uniform as possible is preferable. As such a substrate, for example, a bat-like container, one provided with weirs on four sides on a flat plate, one provided with weirs on both sides of a continuous belt, or the like can be used.
The polymerization reaction can be carried out by batch operation using a non-movable container such as a bat-like container, but in order to improve industrial productivity, on a movable substrate such as a continuous belt. It is advantageous to polymerize.
As the continuous belt used at this time, one having the structure proposed in the above Japanese Patent Publication No. 6-804 can be used. For example, weirs are provided by rubber bars on both long side portions of an endless belt (continuous belt). There may be mentioned an apparatus provided with a plastic film or the like placed inside the weir so that the liquid does not leak out.

そして、このような連続ベルトを用いた重合においては、エンドレスベルトの一端より単量体溶液を供給して上記シート状(層状)となし、固定された光源の下をベルトとともに通過させることにより重合させる。また、この場合において単量体水溶液(重合反応液)が流動しなくなった時点以降は、ローラコンベアー上に連続的に移動させ、光照射を続けることも可能である。この場合には、上記、上方と下方の両方から光照射を行うことが出来る。
また、このとき単量体水溶液表面を光透過性フィルム(ポリエチレンテレフタレート(PET)フィルムやポリ塩化ビニリデン等のフィルム)により覆うことも可能である。このようにすれば、単量体水溶液と外部空気、特に重合を阻害する酸素との接触をさけることが出来、効率的な重合が可能となる。
In the polymerization using such a continuous belt, the monomer solution is supplied from one end of the endless belt to form the sheet (layered), and the polymerization is performed by passing under a fixed light source together with the belt. Let Further, in this case, after the monomer aqueous solution (polymerization reaction solution) stops flowing, it can be continuously moved on the roller conveyor and light irradiation can be continued. In this case, light irradiation can be performed from both above and below.
At this time, it is also possible to cover the surface of the monomer aqueous solution with a light transmissive film (a film such as a polyethylene terephthalate (PET) film or polyvinylidene chloride). In this way, contact between the aqueous monomer solution and external air, particularly oxygen that inhibits polymerization, can be avoided, and efficient polymerization becomes possible.

上記層状にされた単量体水溶液に照射される活性エネルギー線は、例えば、紫外線および可視光線等が挙げられる。その波長は、使用する光開始剤により適宜選定される。しかしながら、単量体自身による吸収、光量子のエネルギーの2つからみて、200〜650nmの領域の波長が望ましい。200〜650nmの活性エネルギー線を与える光源として各種のものがあるが、その代表例としては、例えば、高圧水銀ランプ、低圧水銀ランプ、メタルハライドランプ、蛍光ケミカルランプ、蛍光青色ランプ等が挙げられる。  Examples of the active energy rays applied to the layered monomer aqueous solution include ultraviolet rays and visible rays. The wavelength is appropriately selected depending on the photoinitiator used. However, a wavelength in the range of 200 to 650 nm is desirable from the viewpoint of absorption by the monomer itself and energy of photon. There are various types of light sources that give an active energy ray of 200 to 650 nm. Typical examples thereof include a high pressure mercury lamp, a low pressure mercury lamp, a metal halide lamp, a fluorescent chemical lamp, and a fluorescent blue lamp.

また、単量体水溶液の重合において、沸騰を防ぐためには、重合熱を極力除去することが好ましい。重合熱の除去方法としては、例えば、基体の下面から冷水等の冷却媒を噴霧する方法、単量体表面を気体により冷却する方法などが挙げられる。  In order to prevent boiling in the polymerization of the monomer aqueous solution, it is preferable to remove the heat of polymerization as much as possible. Examples of the method for removing the polymerization heat include a method of spraying a cooling medium such as cold water from the lower surface of the substrate, and a method of cooling the monomer surface with gas.

以上の条件により水溶解性が良好で格段に優れた凝集性能を有する本発明のアクリルアミド系重合体重合体を生産性よく得ることができる。  Under the above conditions, the acrylamide polymer of the present invention having good water solubility and remarkably excellent aggregation performance can be obtained with high productivity.

以下に実施例によって本発明を具体的に説明するが、本発明は以下の実施例に限定されるものではない。以下において、部は重量部を示す。
なお、「粘度指標」とは上記式(I)の左辺を、「凝集性能指標」とは上記式(II)の左辺の値を意味する。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the following examples. Below, a part shows a weight part.
The “viscosity index” means the left side of the above formula (I), and the “aggregation performance index” means the value of the left side of the above formula (II).

(実施例1〜13、比較例1〜3)
1、単量体水溶液の調整
表1に示したニトリルヒドラターゼの触媒作用によりアクリロニトリルを水和して製造された50重量%アクリルアミド水溶液(AAmaq)、アクリル酸(AA)、2−アクリルアミド−2−メチルプロパンスルホン酸(TBAS)、亜リン酸水素ニナトリウムの所定量を純水に溶解し、水酸化ナトリウム水溶液と純水を加えてpH6.5の溶液100部を得た。この溶液に、遮光下で2,4,6−トリメチルベンゾイルジフェニルホスフィンオキサイドの2重量%メタノール溶液0.05部、2−ヒドロキシ−2−メチル−1フェニルプロパン−1−オンの2重量%メタノール溶液1部を添加した。なお、表1中「AAmaq(部)」は、50重量%水溶液としての量を示す。次に、溶存酸素濃度が0.2ppm以下になるよう窒素ガスで溶存酸素を置換しつつ、液温を10℃に調整した。
(Examples 1-13, Comparative Examples 1-3)
1. Preparation of monomer aqueous solution 50 wt% acrylamide aqueous solution (AAmaq), acrylic acid (AA), 2-acrylamido-2-2 produced by hydrating acrylonitrile by the catalytic action of nitrile hydratase shown in Table 1 Predetermined amounts of methylpropanesulfonic acid (TBAS) and disodium hydrogen phosphite were dissolved in pure water, and an aqueous sodium hydroxide solution and pure water were added to obtain 100 parts of a pH 6.5 solution. To this solution, under light shielding, 0.05 part of a 2% by weight methanol solution of 2,4,6-trimethylbenzoyldiphenylphosphine oxide and a 2% by weight methanol solution of 2-hydroxy-2-methyl-1phenylpropan-1-one 1 part was added. In Table 1, “AAmaq (parts)” indicates the amount as a 50 wt% aqueous solution. Next, the liquid temperature was adjusted to 10 ° C. while replacing the dissolved oxygen with nitrogen gas so that the dissolved oxygen concentration was 0.2 ppm or less.

2、重合装置
重合装置を以下のようにして得た。
ステンレス板(厚さ1mm)上に底面が225mm×225mmとなるように、周囲を、断面が上辺24mm、下辺40mm、高さ24mmの台形のゴム棒で堰を作り、その内側に厚さ26μmのPETフィルムを敷き、単量体水溶液を供給し、上面を厚さ16μmの光透過性フィルム(PETフィルム12μm+ポリ塩化ビニリデン4μm)が単量体水溶液に接するように覆った。単量体水溶液の厚さは16mmであった。
2. Polymerization apparatus The polymerization apparatus was obtained as follows.
A weir is made of a trapezoidal rubber rod having a cross section of 24 mm on the upper side, 40 mm on the lower side and 24 mm in height so that the bottom surface is 225 mm × 225 mm on the stainless steel plate (thickness 1 mm), and a thickness of 26 μm is formed on the inside. A PET film was laid, an aqueous monomer solution was supplied, and the upper surface was covered with a 16 μm thick light-transmitting film (PET film 12 μm + polyvinylidene chloride 4 μm) in contact with the aqueous monomer solution. The thickness of the monomer aqueous solution was 16 mm.

3、重合反応
重合装置の上方に20W型蛍光青色ランプ(東芝社製FL−20S−B)を取り付けた光源を、ステンレス板上に受光器UVR−40(トプコン社製)を置き、上面を覆うための光透過性フィルムを通した光強度が13W/m2となるよう設置した。そして、ランプを点灯したところ直ちに温度上昇が見られ重合の開始が確認された。その後、光照射強度を次のように段階的に変化させた。すなわち、重合開始1分後に2.5W/m2とし、重合開始24.5分後に光源を20W型蛍光ケミカルランプ(東芝社製FL−20S−BL)に変え、受光器UVR−36(トプコン社製)を用いて測定した光照射強度52W/m2で10.5分間重合を行った。重合中は、重合装置下面から10℃の冷水を噴霧し、また上面からは光透過性フィルムに向けて風速約5m/sとなるよう室温の空気を吹き付けた。
各実施例および比較例における、重合率95%となるまでの活性エネルギー線の照射時間(t1)は23分、t1に照射した活性エネルギー線の全照射エネルギーに対する重合が開始した時点から1/3t1までの時間に照射した活性エネルギー線の照射エネルギーの割合は43.6%、t1に照射した活性エネルギー線の最大照射強度(13W/m2)に対するt1以降に照射した活性エネルギー線の最大照射強度(52W/m2)の割合は4倍であった。
なお、t1は重合途中の重合率を定期的に測定することにより決定した。重合率は、少量の重合物を定期的にサンプリングし、この重合物を乾燥し粉砕した重合体乾燥粉末から残留単量体をメタノール/水=80/20溶媒で16時間かけて抽出したものを液体クロマトグラフィーで定量して算出した。
3. Polymerization reaction Place a light source with a 20W fluorescent blue lamp (Toshiba FL-20S-B) above the polymerization equipment, and place a UVR-40 receiver (Topcon) on the stainless steel plate to cover the top surface. The light intensity through the light-transmitting film was set to 13 W / m 2 . When the lamp was turned on, the temperature increased immediately and the start of polymerization was confirmed. Thereafter, the light irradiation intensity was changed stepwise as follows. That is, 2.5 W / m 2 after 1 minute from the start of polymerization, and 24.5 minutes after the start of the polymerization, the light source was changed to a 20 W fluorescent chemical lamp (FL-20S-BL, manufactured by Toshiba), and the light receiver UVR-36 (Topcon Corporation). Polymerization was carried out for 10.5 minutes at a light irradiation intensity of 52 W / m 2 measured using During polymerization, cold water at 10 ° C. was sprayed from the lower surface of the polymerization apparatus, and air at room temperature was sprayed from the upper surface toward the light transmissive film at a wind speed of about 5 m / s.
In Examples and Comparative Examples, the irradiation time of the active energy rays until the polymerization ratio 95% (t 1) is 23 minutes, from the time the polymerization to the total irradiation energy of the active energy ray irradiated to t 1 is started 1 / 3t 1 to 43.6% ratio of irradiation energy of the active energy ray irradiated on the time, the active energy is irradiated to t 1 after to the maximum illumination intensity of the active energy ray irradiated to t 1 (13W / m 2) The ratio of the maximum irradiation intensity (52 W / m 2 ) of the line was 4 times.
Incidentally, t 1 is determined by periodically measuring the rate of polymerization of the course of the polymerization. The polymerization rate was obtained by sampling a small amount of polymer periodically, extracting the residual monomer from methanol / water = 80/20 solvent over 16 hours from the dried polymer powder dried and pulverized. The quantity was calculated by liquid chromatography.

このようにして得られたゲル状含水重合体を数mm角に解砕し、60℃で16時間乾燥を行い、ウイレー粉砕器で粉砕し、重合体乾燥粉末を得た。  The gel-like water-containing polymer thus obtained was crushed into several square mm, dried at 60 ° C. for 16 hours, and pulverized with a Wiley pulverizer to obtain a polymer dry powder.

Figure 0005299935
Figure 0005299935

[水溶解性能試験]
表2、3に示す各種重合体(実施例1〜8、比較例1)について、次のように水溶解性能評価を行った。
得られた乾燥重合体粉末を純水500g中、0.1重量%濃度に溶解した後、80メッシュの金網で濾過し、溶解状態および水不溶物を観察した。その結果、いずれの場合も水不溶物は全く含まれていなかった。
[Water dissolution performance test]
About the various polymers (Examples 1-8, Comparative Example 1) shown in Table 2, 3, water solubility performance evaluation was performed as follows.
The obtained dry polymer powder was dissolved at a concentration of 0.1% by weight in 500 g of pure water and then filtered through an 80 mesh wire net to observe the dissolved state and water insoluble matter. As a result, in any case, water-insoluble matter was not contained at all.

[凝集性能試験A]
表2、3に示す各種重合体(実施例1〜8、比較例1)について、次のように凝集性能評価を行った。
懸濁物として濃度約350ppmの紙パルプ廃水を用い、この廃水500mLを500mLビーカーにとり、所定pHに調整し、ジャーテスターに据え付け、所定量の硫酸バンドを添加し2分間攪拌した。その後、0.1%濃度となるようにされた重合体水溶液を廃水重量に対して0.5ppmになるよう加えて回転数100rpmで3分間攪拌混合し、フロックを形成させた後、攪拌を止め、前記フロックの沈降時間を測定した。
結果を表2および表3に示す。
[Aggregation performance test A]
For various polymers shown in Tables 2 and 3 (Examples 1 to 8, Comparative Example 1), the aggregation performance was evaluated as follows.
Using a pulp and paper wastewater having a concentration of about 350 ppm as a suspension, 500 mL of this wastewater was taken into a 500 mL beaker, adjusted to a predetermined pH, mounted on a jar tester, a predetermined amount of sulfuric acid band was added, and the mixture was stirred for 2 minutes. Thereafter, an aqueous polymer solution adjusted to a concentration of 0.1% was added to 0.5 ppm with respect to the weight of the wastewater, and the mixture was stirred for 3 minutes at a rotational speed of 100 rpm to form a flock, and then the stirring was stopped. The sedimentation time of the floc was measured.
The results are shown in Table 2 and Table 3.

Figure 0005299935
Figure 0005299935

Figure 0005299935
Figure 0005299935

表中の略語の意味は以下の通り。
AAm…アクリルアミド
AA…アクリル酸
TBAS…2−アクリルアミド−2−メチルプロパンスルホン酸
粘度指標…ηS(0.2)−1.56Eq
凝集性能…2.68×10-1ηS(0.2)+1.10×1021.04/ηS(1)−5.62ηSol(0.1)/ηS(1)−5.57×10-1Eq
The meanings of the abbreviations in the table are as follows.
AAm: Acrylamide AA: Acrylic acid TBAS: 2-acrylamido-2-methylpropanesulfonic acid viscosity index: η S (0.2) -1.56 Eq
Aggregation performance: 2.68 × 10 −1 η S (0.2) + 1.10 × 10 2 W 1.04 / η S (1) −5.62η Sol (0.1) / η S (1) −5.57 × 10 − 1 Eq

表2および3の結果より、粘度指標が24以上、更には凝集性能指標が8以上であれば沈降時間が短く、更に、粘度指標が26以上、凝集性能指標が9以上では沈降時間がより短くに凝集性能に優れていることがわかる。実施例1〜8の重合体を用いて凝集させたフロックは、フロック径も明らかに大きく、かつ攪拌に対しても耐久性が高かった。  From the results of Tables 2 and 3, the sedimentation time is short when the viscosity index is 24 or more, and further the aggregation performance index is 8 or more, and further, the sedimentation time is shorter when the viscosity index is 26 or more and the aggregation performance index is 9 or more. It can be seen that the coagulation performance is excellent. The flocs agglomerated using the polymers of Examples 1 to 8 had a clearly large floc diameter and high durability against stirring.

また、表4および5に示す各種重合体(実施例9〜13、比較例2〜3)の凝集性能評価を行った。
表4に示す各種重合体については、廃水として懸濁物濃度約500ppmの紙パルプ廃水を用い、硫酸バンドに代えてポリ塩化アルミニウムを用いた以外は凝集性能試験Aと同様にして凝集性能評価Bを行った。
表5に示す各種重合体については、廃水として懸濁物濃度670ppmの銅を含む金属廃水を用い、硫酸バンドを添加しなかったこと以外は凝集性能試験Aと同様にして凝集性能評価Cを行った。
Moreover, the aggregation performance evaluation of the various polymers (Examples 9 to 13 and Comparative Examples 2 to 3) shown in Tables 4 and 5 was performed.
For the various polymers shown in Table 4, coagulation performance evaluation B was performed in the same manner as coagulation performance test A, except that paper pulp wastewater having a suspension concentration of about 500 ppm was used as wastewater, and polyaluminum chloride was used instead of the sulfuric acid band. Went.
The various polymers shown in Table 5 were subjected to a coagulation performance evaluation C in the same manner as the coagulation performance test A, except that metal wastewater containing copper having a suspension concentration of 670 ppm was used as the wastewater, and no sulfuric acid band was added. It was.

Figure 0005299935
Figure 0005299935

Figure 0005299935
Figure 0005299935

表2および3の廃水とは異なる廃水を用いた表4および5の結果からも、表2および3と同様の傾向が得られた。また、実施例9〜13の重合体は水溶解性、凝集性能共に優れたものであった。また、同じ重合体を用いた実施例10と11の比較から、重合体の添加量が70%であっても、優れた凝集性能を示すことが判った。  The same tendency as in Tables 2 and 3 was obtained from the results in Tables 4 and 5 using waste water different from those in Tables 2 and 3. In addition, the polymers of Examples 9 to 13 were excellent in both water solubility and aggregation performance. Further, from comparison between Examples 10 and 11 using the same polymer, it was found that excellent aggregation performance was exhibited even when the amount of the polymer added was 70%.

(実施例14)
銅触媒法で製造された50重量%アクリルアミド水溶液を用いた以外は実施例9と同様に行った。重合率95%となるt1は実施例9と同じであった。
得られた重合体のアニオン当量値(Eq)は2.0meq/g、0.2%塩粘度(ηS(0.2))は28.5mPa・sで、粘度指標は25.4だった。また、W1.04/ηS(1)は0.013mm/(mPa・s)、0.1%溶液粘度ηSol(0.1)/ηS(1)は0.15mPa・s/(mPa・s)で、凝集性能指標は7.2であった。
得られた乾燥重合体粉末について水溶解性能評価を行ったところ、一部未溶解の部分が観察された。また、得られた重合体について実施例9と同様に凝集性能評価Bは行った結果、沈降時間は17秒であった。
(Example 14)
The same procedure as in Example 9 was performed except that a 50 wt% acrylamide aqueous solution produced by a copper catalyst method was used. T 1 at which the polymerization rate was 95% was the same as in Example 9.
The obtained polymer had an anion equivalent value (Eq) of 2.0 meq / g, a 0.2% salt viscosity (η S (0.2) ) of 28.5 mPa · s, and a viscosity index of 25.4. W 1.04 / η S (1) is 0.013 mm / (mPa · s), 0.1% solution viscosity η Sol (0.1) / η S (1) is 0.15 mPa · s / (mPa · s) The aggregation performance index was 7.2.
When the water-dissolving performance of the obtained dry polymer powder was evaluated, a partially undissolved portion was observed. Further, as a result of conducting the aggregation performance evaluation B on the obtained polymer in the same manner as in Example 9, the sedimentation time was 17 seconds.

発明の効果Effect of the invention

以上説明したように、本発明のノニオン性又はアニオン性の水溶性アクリルアミド系重合体は、従来のものに比べて格段に凝集性能に優れ、かつ水溶解性にも優れる。そのため、本発明のノニオン性又はアニオン性の水溶性アクリルアミド系重合体を凝集剤等として使用すれば、大幅に速い沈降速度が得られ、効率的な凝集操作ができ、重合体の使用量を少なくすることが出来る。よって、上記アクリルアミド系重合体は、浄化のための凝集剤、紙力増強剤、繊維分散剤、土質安定剤等として広い用途に好適に使用することが出来る。
また、本発明の上記ノニオン性又はアニオン性の水溶性アクリルアミド系重合体の製造方法によれば、格段に優れた凝集性能を有し、溶解性のよい上記ノニオン性又はアニオン性の水溶性アクリルアミド系重合体重合体を生産性よく得ることができる。
As described above, the nonionic or anionic water-soluble acrylamide polymer of the present invention is remarkably superior in aggregation performance and water solubility compared to conventional ones. Therefore, if the nonionic or anionic water-soluble acrylamide polymer of the present invention is used as a flocculant or the like, a significantly faster sedimentation rate can be obtained, an efficient flocculation operation can be performed, and the amount of the polymer used can be reduced. I can do it. Therefore, the acrylamide polymer can be suitably used for a wide range of applications as a flocculant for purification, a paper strength enhancer, a fiber dispersant, a soil stabilizer, and the like.
In addition, according to the method for producing the nonionic or anionic water-soluble acrylamide polymer of the present invention, the nonionic or anionic water-soluble acrylamide type having remarkably excellent aggregation performance and good solubility. A polymer can be obtained with high productivity.

Claims (2)

光開始剤を含むアクリルアミド系単量体水溶液を光重合させて得られたノニオン性又はアニオン性の水溶性アクリルアミド系重合体であって、
当該重合体は、アクリルアミドとアクリル酸の共重合体、または、アクリルアミドとアクリル酸と2−アクリルアミド−2−メチルプロパンスルホン酸の共重合体であり、
当該重合体の0.2%塩粘度(ηS(0.2))とアニオン当量値(Eq)の関係が下記式(I)を満足し、0.2%塩粘度(η S(0.2) )、1.04%ワイセンベルク値(1.04%W値またはW 1.04 )、0.1%溶液粘度(η Sol(0.1) )、1%塩粘度(η S(1) )、およびアニオン当量値(Eq)がそれぞれ下記式(II)の関係を満足する値であることを特徴とするノニオン性又はアニオン性の水溶性アクリルアミド系重合体。
ηS(0.2)−1.56Eq≧24・・・(I)
(ただし(I)式中、ηS(0.2)の単位は[mPa・s]、Eqの単位は[meq/g]とする。)
2.68×10−1ηS(0.2)+1.10×101.04/ηS(1)−5.62ηSol(0.1)/ηS(1)−5.57×10−1Eq≧8.0・・・(II)
(ただし(II)式中、ηS(0.2)およびηSol(0.1)およびηS(1)の単位は[mPa・s]、Eqの単位は[meq/g]、W1.04の単位は[mm]とする。)
A nonionic or anionic water-soluble acrylamide polymer obtained by photopolymerization of an aqueous acrylamide monomer solution containing a photoinitiator,
The polymer is a copolymer of acrylamide and acrylic acid, or a copolymer of acrylamide, acrylic acid, and 2-acrylamido-2-methylpropanesulfonic acid,
The relationship between the 0.2% salt viscosity (η S (0.2) ) and the anion equivalent value (Eq) of the polymer satisfies the following formula (I), and the 0.2% salt viscosity (η S (0. 2) ), 1.04% Weissenberg value (1.04% W value or W 1.04 ), 0.1% solution viscosity (η Sol (0.1) ), 1% salt viscosity (η S (1) ) And an anionic equivalent value (Eq) satisfying the relationship of the following formula (II), respectively , a nonionic or anionic water-soluble acrylamide polymer.
η S (0.2) −1.56 Eq ≧ 24 (I)
(In the formula (I), the unit of η S (0.2) is [mPa · s], and the unit of Eq is [meq / g].)
2.68 × 10 −1 η S (0.2) + 1.10 × 10 2 W 1.04 / η S (1) −5.62 η Sol (0.1) / η S (1) −5.57 × 10 −1 Eq ≧ 8.0 (II)
(However, in the formula (II), the unit of η S (0.2), η Sol (0.1) and η S (1) is [mPa · s], the unit of Eq is [meq / g], W 1 The unit of .04 is [mm].)
アニオン当量値(Eq)が3.8[meq/g]以下であることを特徴とする請求項1に記載のノニオン性又はアニオン性の水溶性アクリルアミド系重合体。 The nonionic or anionic water-soluble acrylamide polymer according to claim 1, wherein the anion equivalent value (Eq) is 3.8 [meq / g] or less.
JP2001148134A 2001-05-17 2001-05-17 Nonionic or anionic water-soluble acrylamide polymer and process for producing the same Expired - Fee Related JP5299935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001148134A JP5299935B2 (en) 2001-05-17 2001-05-17 Nonionic or anionic water-soluble acrylamide polymer and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001148134A JP5299935B2 (en) 2001-05-17 2001-05-17 Nonionic or anionic water-soluble acrylamide polymer and process for producing the same

Publications (2)

Publication Number Publication Date
JP2002338630A JP2002338630A (en) 2002-11-27
JP5299935B2 true JP5299935B2 (en) 2013-09-25

Family

ID=18993512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001148134A Expired - Fee Related JP5299935B2 (en) 2001-05-17 2001-05-17 Nonionic or anionic water-soluble acrylamide polymer and process for producing the same

Country Status (1)

Country Link
JP (1) JP5299935B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4522692B2 (en) * 2003-11-28 2010-08-11 ダイヤニトリックス株式会社 Paper making adhesive
FI3730524T3 (en) * 2017-12-19 2024-02-23 Snf Group Method for producing anionic water-soluble polymer on the basis of bioacrylamide and acrylic acid
CN113583175A (en) * 2021-08-05 2021-11-02 重庆工商大学 Preparation method of flocculant based on photosensitizer for enhancing visible light initiation

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2348227A1 (en) * 1976-04-14 1977-11-10 Rhone Poulenc Ind IMPROVEMENT IN PROCESSES FOR THE PREPARATION OF WATER-SOLUBLE ACRYLIC POLYMERS BY PHOTOPOLYMERIZATION
DE2842938A1 (en) * 1978-10-02 1980-04-17 Roehm Gmbh METHOD FOR POLYMERIZING BY UV LIGHT
JPS61155406A (en) * 1984-12-27 1986-07-15 Dai Ichi Kogyo Seiyaku Co Ltd Production of high-mw acrylic polymer
JP2661815B2 (en) * 1991-06-10 1997-10-08 東京応化工業株式会社 Flattening film
JP3629347B2 (en) * 1997-02-18 2005-03-16 ダイヤニトリックス株式会社 Method for producing water-soluble polymer
JP3621545B2 (en) * 1997-02-18 2005-02-16 ダイヤニトリックス株式会社 Production method of water-soluble polymer
JPH10316714A (en) * 1997-05-15 1998-12-02 Mitsubishi Rayon Co Ltd Production of acrylamide polymer
JPH11228609A (en) * 1998-02-09 1999-08-24 Diafloc Kk Production of water-soluble polymer

Also Published As

Publication number Publication date
JP2002338630A (en) 2002-11-27

Similar Documents

Publication Publication Date Title
TW200300775A (en) Process for production of water-soluble (meth)acrylic polymers, water-soluble (meth)acrylic polymers, and use thereof
JPH02222404A (en) Preparation of stable water-in-oil type emulsion of hydrolysed n-vinylamide polymer, and dehydrating agent, retention agent and coagulating agent consisting of said emulsion for manufacturing paper and paper product
AU2013247051A1 (en) New cationic polymers
US9321869B2 (en) Cationic polymers
JPH06218399A (en) Sludge dewatering agent
JP2011224420A (en) Sludge dewatering agent and sludge dewatering treatment method
JP6131465B2 (en) Sludge dewatering method
JP5299935B2 (en) Nonionic or anionic water-soluble acrylamide polymer and process for producing the same
US3835046A (en) Dewatering of aqueous suspensions
JPWO2008050702A1 (en) Dewatering method for sewage digested sludge
JP5906672B2 (en) Sludge dewatering agent and organic sludge dewatering method using the same
JP5961934B2 (en) Sludge dewatering method
JP2015062901A (en) Method for removing colored component
JP5967705B2 (en) Coagulation treatment agent and sludge dewatering method using the same
JP5952593B2 (en) Wastewater treatment method
JP5501122B2 (en) Method for producing powdered cationic water-soluble polymer compound, sludge dewatering agent, and sludge dewatering method
JP4846617B2 (en) Amphoteric polymer flocculant and sludge treatment method using the same
JP3820164B2 (en) Method for producing water-soluble vinyl polymer
JP5866096B2 (en) Wastewater treatment method
JP3621545B2 (en) Production method of water-soluble polymer
JP6550782B2 (en) Flocculating agent for wastewater and flocculation method for wastewater
Akryloamidowych et al. Application of acrylamide polymers as flocculants in sewages coagulation process
JP4175194B2 (en) Method for producing dialkylaminoalkyl (meth) acrylate quaternary salt polymer
JP4396185B2 (en) Composition
JP5878409B2 (en) Wastewater treatment method using organic coagulant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130612

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130604

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees