JP5297985B2 - Method for polishing inner surface of metal hollow container - Google Patents

Method for polishing inner surface of metal hollow container Download PDF

Info

Publication number
JP5297985B2
JP5297985B2 JP2009259124A JP2009259124A JP5297985B2 JP 5297985 B2 JP5297985 B2 JP 5297985B2 JP 2009259124 A JP2009259124 A JP 2009259124A JP 2009259124 A JP2009259124 A JP 2009259124A JP 5297985 B2 JP5297985 B2 JP 5297985B2
Authority
JP
Japan
Prior art keywords
hollow container
metal hollow
polishing
container
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009259124A
Other languages
Japanese (ja)
Other versions
JP2011104666A (en
Inventor
浩一 赤澤
宣宏 原
耕一 和田
巧 鳥飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2009259124A priority Critical patent/JP5297985B2/en
Publication of JP2011104666A publication Critical patent/JP2011104666A/en
Application granted granted Critical
Publication of JP5297985B2 publication Critical patent/JP5297985B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of grinding an internal surface of a metallic hollow container with which the internal surface of the metallic hollow container can be ground in a short period of time within a few hours by a simple method, the internal surface of the container does not get rusted without coating, and absorbed water can be reduced. <P>SOLUTION: An upper surface of a grinding medium 2 is covered with water 3 to be poured into an internal space of the metallic hollow container 1, wherein a total volume ratio of the grinding medium 2 and the water 3 poured into the internal space of the container 1 occupying the internal space of the container 1 is 12.5-60%. The internal surface of the container 1 is ground by rotating the container 1 at peripheral velocity of 50-150 m/min around an axis 4 in a state that the axis 4 of the container 1 is inclined with respect to its vertical direction. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、高圧ガスボンベなどの金属製中空容器の内部空間に、アルミナなどの研磨メディア等を装入して、その金属製中空容器を回転させることでその内面を研磨する金属製中空容器の内面研磨処理方法に関するものである。   The present invention relates to an inner surface of a metal hollow container in which an inner surface of a metal hollow container such as a high-pressure gas cylinder is charged with an abrasive medium such as alumina and the inner surface is polished by rotating the metal hollow container. The present invention relates to a polishing method.

高純度アンモニア、塩素、フロン等を、圧縮ガスまたは液化ガスとして金属製中空容器に高圧で充填し、ガスの貯蔵や運搬手段として用いる高圧ガスボンベは、近年、半導体産業などの業界の伸展に伴い、その需要が益々広がる傾向にあり、その増加が見込める状況になっている。特に半導体産業では、各種の高純度ガスが用いられるため、高圧ガスボンベに充填されるガスが高い純度を維持することが必要となっている。   High-pressure gas cylinders filled with high-purity ammonia, chlorine, chlorofluorocarbon, etc., as compressed gas or liquefied gas at high pressure in metal hollow containers and used as gas storage and transportation means, in recent years, with the expansion of the industry such as the semiconductor industry, The demand tends to spread more and more, and the increase is expected. In particular, in the semiconductor industry, various high-purity gases are used. Therefore, it is necessary to maintain high purity in the gas filled in the high-pressure gas cylinder.

従来から用いられている高圧ガスボンベの内面には、防錆のためリン酸亜鉛皮膜等のコーティングが施されていたが、そのコーティングに吸着水が存在すると、充填される高純度ガスなどが純度の低下を引き起こすことが問題となっていた。   A coating such as a zinc phosphate film was applied to the inner surface of a high-pressure gas cylinder that has been used in the past to prevent rust. However, if adsorbed water is present in the coating, the high-purity gas to be filled has a purity. It has been a problem to cause a drop.

その対策の一つとして、高圧ガスボンベの内面を鏡面近くまで研磨した状態とし、その内面の清浄性を保つように高圧ガスボンベの内面を研磨処理する方法が、リン酸亜鉛皮膜等のコーティングに替えて実施されることがあった。この高圧ガスボンベの内面を鏡面近くまで研磨する方法としては、高圧ガスボンベの内部空間に研磨メディア等を装入し、高圧ガスボンベを様々な方向に回転させることで、その内面を研磨する回転研磨方法が従来から実施されている。   As one of the countermeasures, the method of polishing the inner surface of the high-pressure gas cylinder so that the inner surface of the high-pressure gas cylinder is polished close to the mirror surface and maintaining the cleanliness of the inner surface is replaced with a coating such as a zinc phosphate film. It was sometimes implemented. As a method of polishing the inner surface of the high pressure gas cylinder to near the mirror surface, there is a rotating polishing method in which the inner surface of the high pressure gas cylinder is charged with polishing media and the high pressure gas cylinder is rotated in various directions to polish the inner surface. It has been implemented conventionally.

その回転研磨方法の一例として、特許文献1記載の中空体の内面研磨方法や、特許文献2記載の高圧ガス容器の内面処理方法が提案されている。   As an example of the rotary polishing method, a hollow body inner surface polishing method described in Patent Document 1 and a high pressure gas container inner surface processing method described in Patent Document 2 have been proposed.

特許文献1記載の中空体の内面研磨方法は、中空体の内部空間に研磨メディアを部分的に充填し、その中空体を自転させつつ、その中空体の自転軸から離れた公転軸を中心に中空体を自転方向とは逆方向に公転させることで、中空体の内面を物理的に研磨する方法である。   The method of polishing an inner surface of a hollow body described in Patent Document 1 is mainly based on a revolution axis away from the rotation axis of the hollow body while partially filling the inner space of the hollow body with polishing media and rotating the hollow body. In this method, the inner surface of the hollow body is physically polished by revolving the hollow body in the direction opposite to the rotation direction.

この中空体の内面研磨方法では、中空体を自転させると共に、中空体の自転軸から離れた公転軸を中心に中空体を自転方向とは逆方向に公転させるようにしたので、研磨メディアを遠心力により中空体の内面に押し付ける作用が働き、これにより研磨除去量が飛躍的に増加し、短時間に研磨することができるという効果があるということである。   In this method of polishing the inner surface of the hollow body, the hollow body is rotated and the hollow body is revolved in the direction opposite to the rotation direction around the revolution axis away from the rotation axis of the hollow body. The action of pressing against the inner surface of the hollow body is exerted by the force, which greatly increases the amount of removal by polishing and has an effect that polishing can be performed in a short time.

しかしながら、中空体を公転させずに一方向の回転のみ、すなわち自転のみで回転させた場合は、その表1に示すように、連続24時間の内面研磨で多くとも4.2μm厚しか研磨除去することができず、研磨除去量を増加させて研磨時間を短縮するためには、自転に加えて公転が必要になり、その研磨装置の構成や研磨作業が極めて複雑になることが推測され、また、実際に複雑な構成の装置を使用して複雑な作業を行うことが開示されている。   However, when the hollow body is rotated only in one direction without revolving, that is, rotated only by rotation, as shown in Table 1, only 4.2 μm thickness is polished and removed by internal polishing for 24 hours continuously. In order to shorten the polishing time by increasing the amount of polishing removal, it is assumed that revolution is required in addition to rotation, and that the configuration and polishing work of the polishing apparatus are extremely complicated, In fact, it is disclosed that complicated work is performed by using a device having a complicated structure.

また、特許文献2記載の高純度ガス充填用高圧ガス容器の内面処理方法は、高圧ガス容器の内面を研磨処理した後、塩基性洗浄液又は塩基性洗浄液に酸化剤を含む溶液で洗浄する方法である。   Moreover, the inner surface treatment method of the high-pressure gas container for high-purity gas filling described in Patent Document 2 is a method in which the inner surface of the high-pressure gas container is polished and then washed with a basic cleaning solution or a solution containing an oxidizing agent in the basic cleaning solution. is there.

この高圧ガス容器の内面処理方法により、半導体高純度ガスのボンベ貯蔵中における純度低下を実用上充分な程度に防止することができると記載されてはいるが、その研磨法の事例は、ボンベ内部に研磨材と水及びコンパウンドを収容した状態で水平に支持し、ボンベをその軸心周りで右周りに自転させつつ、水平軸心周りで左周りに公転させるバレル研磨装置に取り付けてバレル研磨を行う研磨法が開示されているに過ぎない。   Although it has been described that this high-pressure gas container inner surface treatment method can prevent a decrease in purity of semiconductor high-purity gas during cylinder storage to a practically sufficient level, an example of the polishing method is described inside the cylinder. Attaching to a barrel polishing device that horizontally supports the abrasive, water, and compound, and rotates the cylinder clockwise around its axis, and revolves counterclockwise around the horizontal axis. Only the polishing method to be performed is disclosed.

この研磨法でも、高圧ガス容器の自転に加えて公転を行う必要があり、その研磨装置の構成や研磨作業が極めて複雑になることが予想できる。また、洗浄には、塩基性洗浄液又は塩基性洗浄液に酸化剤を含む溶液が必要になるため、溶剤の調整等、洗浄工程が複雑になると思料される。   Even in this polishing method, it is necessary to perform revolution in addition to the rotation of the high-pressure gas container, and it can be expected that the configuration of the polishing apparatus and the polishing operation become extremely complicated. In addition, since cleaning requires a basic cleaning solution or a solution containing an oxidizing agent in the basic cleaning solution, it is considered that the cleaning process such as solvent adjustment is complicated.

特開2000−71164号公報JP 2000-71164 A 特開2000−257795号公報JP 2000-257795 A

本発明は、上記従来の問題を解消せんとしてなされたもので、金属製中空容器の内面の研磨を、数時間以内の極めて短い時間で、しかも金属製中空容器を回転させる構成を複雑にせずとも実施することができ、また、リン酸亜鉛皮膜などのコーティングを施さなくても、金属製中空容器の内面に錆が発生せず、吸着水を低減することができる金属製中空容器の内面研磨処理方法を提供することを課題とするものである。   The present invention has been made to solve the above-described conventional problems, and polishing the inner surface of a metal hollow container in an extremely short time within several hours without complicating the structure for rotating the metal hollow container. The inner surface polishing treatment of a metal hollow container that can be carried out and can reduce adsorbed water without causing rust on the inner surface of the metal hollow container without applying a coating such as a zinc phosphate film. It is an object to provide a method.

請求項1記載の発明は、金属製中空容器の内部空間に研磨メディアと水を装入し、前記金属製中空容器をその軸心周りに回転させて前記金属製中空容器の内面を研磨する研磨工程と、その研磨工程の後に前記金属製中空容器の内面を洗浄し、洗浄後にその内面を乾燥させる洗浄・乾燥工程を備えた金属製中空容器の内面研磨処理方法であって、前記研磨工程で、前記金属製中空容器内部空間に装入される水が研磨メディアの上面を覆う状態とすると共に、前記金属製中空容器の内部空間に装入される研磨メディアと水が、前記金属製中空容器の内部空間内で占める総体積比率を12.5〜60%とし、前記金属製中空容器の軸心をその鉛直方向に対して傾斜させた状態でその軸心を回転軸として、前記金属製中空容器を50〜150m/minの周速度で回転させて前記金属製中空容器の内面を研磨することを特徴とする金属製中空容器の内面研磨処理方法である。   According to the first aspect of the present invention, polishing media and water are charged into the internal space of the metal hollow container, and the inner surface of the metal hollow container is polished by rotating the metal hollow container about its axis. And a method for polishing the inner surface of the metal hollow container, comprising a cleaning and drying step of cleaning the inner surface of the metal hollow container after the polishing step and drying the inner surface after the cleaning, The water charged in the inner space of the metal hollow container covers the upper surface of the polishing medium, and the polishing medium and water charged in the inner space of the metal hollow container are made of the metal hollow container. The total volume ratio occupying in the internal space of the metal hollow is 12.5 to 60%, and the metal hollow is made with the axis as the rotation axis in the state where the axis of the metal hollow container is inclined with respect to the vertical direction. 50-150m / mi container It is the inner surface polishing treatment method of a metal-made hollow container, characterized in that is rotated at a peripheral speed of polishing the inner surface of the metal hollow container.

請求項2記載の発明は、前記洗浄・乾燥工程で、前記金属製中空容器の内面の洗浄を、純水を用いて行うことを特徴とする請求項1記載の金属製中空容器の内面研磨処理方法である。   The invention according to claim 2 is characterized in that in the cleaning and drying step, the inner surface of the metal hollow container is cleaned using pure water. Is the method.

請求項3記載の発明は、前記金属製中空容器の内面の洗浄に用いる純水の温度が50〜100℃であることを特徴とする請求項2記載の金属製中空容器の内面研磨処理方法である。   The invention according to claim 3 is the method for polishing an inner surface of a metal hollow container according to claim 2, wherein the temperature of pure water used for cleaning the inner surface of the metal hollow container is 50 to 100 ° C. is there.

請求項4記載の発明は、前記研磨工程で、軸心を回転軸として回転する前記金属製中空容器を、その軸心の中間部を支点として揺動させることを特徴とする請求項1乃至3のいずれかに記載の金属製中空容器の内面研磨処理方法である。   According to a fourth aspect of the present invention, in the polishing step, the metal hollow container that rotates about an axis as a rotation axis is swung around an intermediate portion of the axis as a fulcrum. An inner surface polishing method for a metal hollow container according to any one of the above.

本発明の請求項1記載の金属製中空容器の内面研磨処理方法によると、金属製中空容器の内面の研磨を、数時間以内の極めて短い時間で、しかも金属製中空容器をその軸心周りに回転させるだけの簡単な方法で実施することができ、また、金属製中空容器の内面の水分吸着を低減することで、高純度ガスの純度を維持することが可能になり、金属製中空容器の内面を清浄面に短時間で容易に仕上げることができる。   According to the method for polishing an inner surface of a metal hollow container according to claim 1 of the present invention, the inner surface of the metal hollow container is polished in an extremely short time within several hours, and the metal hollow container is moved around its axis. It can be carried out by a simple method of rotating, and by reducing moisture adsorption on the inner surface of the metal hollow container, it becomes possible to maintain the purity of the high purity gas. The inner surface can be easily finished in a short time on a clean surface.

本発明の請求項2記載の金属製中空容器の内面研磨処理方法によると、金属製中空容器の内面の洗浄に不純物を殆ど含有しない純水を用いることで、洗浄後の金属製中空容器の内面を錆が発生しない清浄面に保つことができる。   According to the method for polishing an inner surface of a metal hollow container according to claim 2 of the present invention, the inner surface of the metal hollow container after cleaning is obtained by using pure water containing almost no impurities for cleaning the inner surface of the metal hollow container. Can be maintained on a clean surface where rust does not occur.

本発明の請求項3記載の金属製中空容器の内面研磨処理方法によると、洗浄に温度が50〜100℃の純水を用いることにより、洗浄後の金属製中空容器の内面の乾燥を、迅速且つ容易に行うことができる。   According to the method for polishing an inner surface of a metal hollow container according to claim 3 of the present invention, by using pure water having a temperature of 50 to 100 ° C. for cleaning, the inner surface of the metal hollow container after cleaning can be quickly dried. And it can be done easily.

本発明の請求項4記載の金属製中空容器の内面研磨処理方法によると、金属製中空容器の内面のうち、研磨が行き届かない可能性が危惧される両端面も確実に研磨することができる。   According to the method for polishing an inner surface of a metal hollow container according to claim 4 of the present invention, both end surfaces of the inner surface of the metal hollow container, which are likely to be incompletely polished, can be reliably polished.

本発明の一実施形態を示すもので、金属製中空容器を回転させたときの金属製中空容器を透過させた状態を示す斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows an embodiment of the present invention, and is a perspective view illustrating a state in which a metal hollow container is transmitted when the metal hollow container is rotated. 実施例1、2に用いた模擬の金属製中空容器を示す縦断面図である。1 is a longitudinal sectional view showing a simulated metal hollow container used in Examples 1 and 2. FIG. 実施例1の回転研磨試験で求めた鋼管内面の研磨量の測定結果を示すグラフ図である。It is a graph which shows the measurement result of the grinding | polishing amount of the steel pipe inner surface calculated | required by the rotation grinding | polishing test of Example 1. FIG.

以下、本発明を添付図面に示す実施形態に基づいて更に詳細に説明する。   Hereinafter, the present invention will be described in more detail based on embodiments shown in the accompanying drawings.

図1は、本発明の金属製中空容器の研磨処理方法の一実施形態を示すもので、金属製中空容器1を回転させたときの金属製中空容器1を透過させて、その内部の状態を表した説明図である。この金属製中空容器1は、アンモニア、塩素、フロン等を、圧縮ガスまたは液化ガスとして高圧で充填し、ガスの貯蔵や運搬手段として用いる高圧ガスボンベとして使用されるものであり、中空円筒状であって、その両端面は閉塞されており、その一端面側には開口(図示せず)が設けられている。本発明は、この金属製中空容器1の内部に圧縮ガスや液化ガスを充填する前の金属製中空容器1の内面の研磨処理方法に関する発明である。   FIG. 1 shows an embodiment of a polishing method for a metal hollow container according to the present invention. When the metal hollow container 1 is rotated, the metal hollow container 1 is allowed to pass through and the state inside thereof is shown. It is explanatory drawing represented. This metal hollow container 1 is used as a high pressure gas cylinder filled with ammonia, chlorine, chlorofluorocarbon or the like as a compressed gas or a liquefied gas and used as a gas storage or transportation means, and has a hollow cylindrical shape. Both end faces are closed, and an opening (not shown) is provided on one end face side. The present invention relates to a method for polishing the inner surface of the metal hollow container 1 before the inside of the metal hollow container 1 is filled with compressed gas or liquefied gas.

本発明の金属製中空容器の研磨処理方法は、金属製中空容器1の内部空間に研磨メディア2と水3を装入し、その金属製中空容器1を軸心4周りに回転させて金属製中空容器1の内面を研磨する研磨工程と、その研磨工程の後に金属製中空容器1の内面を洗浄し、洗浄後にその内面を乾燥させる洗浄・乾燥工程を少なくとも備えている。   In the method for polishing a metal hollow container according to the present invention, a polishing medium 2 and water 3 are inserted into the internal space of the metal hollow container 1 and the metal hollow container 1 is rotated around an axis 4 to be made of metal. A polishing step for polishing the inner surface of the hollow container 1 and a cleaning / drying step for cleaning the inner surface of the metal hollow container 1 after the polishing step and drying the inner surface after the cleaning are provided.

まず、研磨工程の際には、金属製中空容器1の内部空間に、金属製中空容器1の一端面側に設けられた開口から、研磨メディア2と水3が装入されて、金属製中空容器1を回転させることで、金属製中空容器1の内面の研磨が実施されるが、ここで示す研磨メディア2としては、酸化アルミニウム、炭化ケイ素、酸化ジルコニウムなどのセラミックス材を用いることができ、また、水3としては常温の水を用いることが好ましい。この研磨メディア2と水3の装入時には、金属製中空容器1の内部空間に研磨メディア2と水3の装入が完了した状態で、水3が研磨メディア2の上面を覆うように、その装入量を調整して研磨メディア2と水3を装入する。   First, in the polishing process, the polishing medium 2 and the water 3 are inserted into the internal space of the metal hollow container 1 from the opening provided on the one end surface side of the metal hollow container 1, so that the metal hollow By rotating the container 1, the inner surface of the metal hollow container 1 is polished. As the polishing media 2 shown here, a ceramic material such as aluminum oxide, silicon carbide, zirconium oxide, etc. can be used. Moreover, it is preferable to use water at room temperature as the water 3. When the polishing medium 2 and the water 3 are charged, the water 3 covers the upper surface of the polishing medium 2 in a state where the polishing medium 2 and the water 3 are completely charged in the internal space of the metal hollow container 1. The polishing medium 2 and water 3 are charged by adjusting the charging amount.

この研磨メディア2と水3を、金属製中空容器1の内部空間に装入後、金属製中空容器1をその軸心4を回転軸として回転させることで、金属製中空容器1の内面の研磨が実施される。この金属製中空容器1の回転研磨は、図1に示すように、金属製中空容器1の軸心4が鉛直方向に対して角度θだけ傾斜させた状態として実施される。この傾斜角度θは、鉛直方向に対して0°<θ<90°の範囲、すなわち少なくとも傾斜しておれば良く、金属製中空容器1を傾斜させて回転研磨を実施することで研磨が行き届かない可能性が危惧される金属製中空容器1の両端面を研磨することができる。   After the polishing media 2 and water 3 are charged into the internal space of the metal hollow container 1, the inner surface of the metal hollow container 1 is polished by rotating the metal hollow container 1 about its axis 4 as a rotation axis. Is implemented. As shown in FIG. 1, the rotational polishing of the metal hollow container 1 is performed in a state where the axis 4 of the metal hollow container 1 is inclined by an angle θ with respect to the vertical direction. The inclination angle θ should be in the range of 0 ° <θ <90 ° with respect to the vertical direction, that is, at least inclined, and polishing can be accomplished by inclining the metal hollow container 1 and performing rotary polishing. It is possible to polish both end faces of the metal hollow container 1 which is likely to be absent.

金属製中空容器1の軸心4をその鉛直方向に対して傾斜させた状態で、その軸心4を回転軸として回転させることで、金属製中空容器1に装入する研磨メディア2と水3の、金属製中空容器1の内部空間内で占める総体積比率が50%未満であっても、研磨が行き届かない可能性が危惧される金属製中空容器1の両端面も研磨することができる。また、図1の両方向矢印Aで示すように、金属製中空容器1の軸心4の中間部、好ましくは中心点Cを支点として揺動させることで、金属製中空容器1の両端面を更に確実に研磨することができる。   In a state where the axis 4 of the metal hollow container 1 is inclined with respect to the vertical direction, the polishing medium 2 and the water 3 charged in the metal hollow container 1 are rotated by rotating the axis 4 as a rotation axis. Even if the total volume ratio occupied in the internal space of the metal hollow container 1 is less than 50%, both end surfaces of the metal hollow container 1 where there is a concern that the polishing may not be achieved can be polished. Further, as shown by a double-headed arrow A in FIG. 1, both end surfaces of the metal hollow container 1 are further moved by swinging with an intermediate portion of the shaft center 4 of the metal hollow container 1, preferably a center point C as a fulcrum. It can polish reliably.

また、金属製中空容器1の内部空間に装入される研磨メディア2と水3は、金属製中空容器1の内部空間内で、その内部空間の容積に対して占める総体積比率が12.5〜60%になるようにして装入する必要がある。金属製中空容器1の内周面のみならず、研磨が行き届かない可能性が危惧される両端面も確実に研磨するためには、研磨メディア2と水3が金属製中空容器1の内部空間内で占める総体積比率を少なくとも12.5%とする必要がある。一方、研磨メディア2と水3が金属製中空容器1の内部空間内で占める総体積比率が60%を超えるようにして研磨メディア2と水3を装入しても、回転研磨の過程で、金属製中空容器1の内面と接触しない研磨メディア2が増加するため、その上限は60%とする。   Further, the polishing media 2 and the water 3 charged in the internal space of the metal hollow container 1 have a total volume ratio of 12.5 in the internal space of the metal hollow container 1 with respect to the volume of the internal space. It is necessary to insert it so that it becomes ˜60%. In order to surely polish not only the inner peripheral surface of the metal hollow container 1 but also both end faces where there is a possibility that polishing may not be achieved, the polishing media 2 and the water 3 are placed in the inner space of the metal hollow container 1. It is necessary to make the total volume ratio occupied by at least 12.5%. On the other hand, even if the polishing media 2 and the water 3 are charged so that the total volume ratio of the polishing media 2 and the water 3 in the internal space of the metal hollow container 1 exceeds 60%, Since the number of polishing media 2 that do not contact the inner surface of the metal hollow container 1 increases, the upper limit is set to 60%.

一般に、金属製中空容器1の回転速度(周速度)が速くなるほど、金属製中空容器1の内面と研磨メディア2との相対速度が増大し、研磨速度が増加して研磨効率が向上する。研磨メディア2と水3が金属製中空容器1の内部空間内で占める総体積比率が12.5〜60%の場合は、回転速度(周速度)が50m/min以上であれば、研磨効率が向上する。一方、金属製中空容器1の回転速度(周速度)を150m/minを超えて速くすると、金属製中空容器1の内面と研磨メディア2との相対速度が変化して研磨速度が低下し、研磨効率が低減する。従って、研磨メディア2と水3が金属製中空容器1の内部空間内で占める総体積比率に応じて、金属製中空容器1の回転速度(周速度)は、50〜150m/minの範囲から選択すれば良い。   In general, as the rotational speed (circumferential speed) of the metal hollow container 1 increases, the relative speed between the inner surface of the metal hollow container 1 and the polishing media 2 increases, the polishing speed increases, and the polishing efficiency improves. When the total volume ratio of the polishing media 2 and the water 3 in the internal space of the metal hollow container 1 is 12.5 to 60%, the polishing efficiency is improved if the rotational speed (circumferential speed) is 50 m / min or more. improves. On the other hand, when the rotational speed (circumferential speed) of the metal hollow container 1 is increased to exceed 150 m / min, the relative speed between the inner surface of the metal hollow container 1 and the polishing media 2 is changed, and the polishing speed is lowered. Efficiency is reduced. Therefore, the rotational speed (circumferential speed) of the metal hollow container 1 is selected from the range of 50 to 150 m / min depending on the total volume ratio occupied by the polishing media 2 and the water 3 in the internal space of the metal hollow container 1. Just do it.

尚、通常、研磨工程は、粗研磨と仕上げ研磨の2工程に分けて実施される。研磨メディア2としては、酸化アルミニウム、炭化ケイ素、酸化ジルコニウムなどのセラミックス材を用いることができると先に説明したが、このセラミックス材は、粗研磨では、四角柱、三角柱、三角錐、球状などの形状のものを用いることができ、仕上げ研磨では、通常、球状のものが用いられる。   Normally, the polishing process is divided into two processes, rough polishing and finish polishing. As described above, it is possible to use a ceramic material such as aluminum oxide, silicon carbide, and zirconium oxide as the polishing media 2. However, this ceramic material may be a quadrangular column, a triangular column, a triangular pyramid, a spherical shape, or the like in rough polishing. Shaped ones can be used, and spherical ones are usually used in finish polishing.

研磨工程が終了後、金属製中空容器1を一端面側に設けられた開口が下になるように倒立させて、研磨メディア2と水3を金属製中空容器1から排出させた後、次の洗浄・乾燥工程に入る。前記開口から金属製中空容器1の内部空間に、ノズルを昇降自在な状態で挿入し、そのノズルから温度が50〜100℃の純水を噴出させることにより、金属製中空容器1の内面の洗浄が実施される。純水の温度の下限値を50℃としたのは、純水の温度が50℃未満である場合は、洗浄後の金属製中空容器1の内面の乾燥が短時間ではできず、その結果、乾燥が不十分となり、金属製中空容器1の内面に錆が発生する可能性が懸念されるからである。尚、この洗浄に用いる純水は、比抵抗が2MΩ以上のものを用いることが好ましい。本発明では、比抵抗が2MΩ以上の水を純水の目安とする。   After the polishing step is finished, the metal hollow container 1 is inverted so that the opening provided on the one end surface side is downward, and the polishing media 2 and the water 3 are discharged from the metal hollow container 1, and then Enter the washing and drying process. A nozzle is inserted into the internal space of the metal hollow container 1 through the opening so as to be movable up and down, and pure water having a temperature of 50 to 100 ° C. is ejected from the nozzle to clean the inner surface of the metal hollow container 1. Is implemented. The lower limit of the temperature of the pure water was set to 50 ° C. When the temperature of the pure water was less than 50 ° C., the inner surface of the metal hollow container 1 after washing could not be dried in a short time. This is because drying is insufficient and there is a concern that rust may be generated on the inner surface of the metal hollow container 1. In addition, it is preferable to use the pure water used for this washing | cleaning whose specific resistance is 2 M (ohm) or more. In the present invention, water having a specific resistance of 2 MΩ or more is used as a standard for pure water.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、本発明の趣旨に適合し得る範囲で適宜変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, and the present invention is implemented with appropriate modifications within a range that can meet the gist of the present invention. These are all included in the technical scope of the present invention.

(実施例1)
図2に示すように、円筒状で有底の容器と蓋でなる密閉容器5の中に、直径200mm、長さが130mm、内面の初期最大粗さが15μmの鋼管6を嵌入して模擬の金属製中空容器1とした。この模擬の金属製中空容器1を旋盤にセットして、その金属製中空容器1の内部空間に装入される研磨メディア2と水3がその内部空間内で占める総体積比率、その金属製中空容器1の回転速度(周速度)を、表1に示す各条件で夫々変化させて、研磨工程の粗研磨に相当する金属製中空容器1の内面の回転研磨試験を2時間の回転研磨で実施した。図3にこの回転研磨試験での鋼管6の内面の研磨量を示す。この回転研磨試験では、研磨量が6μm以上であれば目標の研磨量に到達したものと判断する。
Example 1
As shown in FIG. 2, a steel tube 6 having a diameter of 200 mm, a length of 130 mm, and an initial maximum roughness of the inner surface of 15 μm is fitted into a cylindrical closed container 5 having a bottom and a lid. A metal hollow container 1 was obtained. The simulated metal hollow container 1 is set on a lathe, and the total volume ratio of the polishing media 2 and water 3 charged in the internal space of the metal hollow container 1 in the internal space, the metal hollow The rotational speed (circumferential speed) of the container 1 is changed under each condition shown in Table 1, and the rotational polishing test of the inner surface of the metal hollow container 1 corresponding to the rough polishing in the polishing process is performed by rotating polishing for 2 hours did. FIG. 3 shows the polishing amount of the inner surface of the steel pipe 6 in this rotary polishing test. In this rotary polishing test, if the polishing amount is 6 μm or more, it is determined that the target polishing amount has been reached.

Figure 0005297985
Figure 0005297985

図3によると、No.1、No.3、No.4が、目標とした6μm以上の研磨量とすることができた。これらNo.1、No.3、No.4は、金属製中空容器1の内部空間に装入される研磨メディア2と水3がその内部空間内で占める総体積比率が12.5〜60%の範囲内、金属製中空容器1の回転速度(周速度)が50〜150m/minの範囲内であったため、目標の研磨量に到達したものと判断することができる。これに対し、No.2は、金属製中空容器1の内部空間に装入される研磨メディア2と水3がその内部空間内で占める総体積比率が75%と本発明の要件を満足しておらず、また、金属製中空容器1の回転速度(周速度)も本発明の下限丁度であったため、研磨量は2時間の回転研磨では目標の6μmに到達できず、5μm未満の結果であった。   According to FIG. 1, no. 3, no. 4 was the target polishing amount of 6 μm or more. These No. 1, no. 3, no. 4, the total volume ratio occupied by the polishing media 2 and water 3 charged in the internal space of the metal hollow container 1 in the internal space is within a range of 12.5 to 60%, and the rotation of the metal hollow container 1 Since the speed (circumferential speed) was in the range of 50 to 150 m / min, it can be determined that the target polishing amount has been reached. In contrast, no. 2 is 75% of the total volume ratio of the polishing media 2 and the water 3 charged in the internal space of the metal hollow container 1 in the internal space and does not satisfy the requirements of the present invention. Since the rotational speed (circumferential speed) of the hollow container 1 was also just the lower limit of the present invention, the polishing amount could not reach the target of 6 μm by 2 hours of rotational polishing, and the result was less than 5 μm.

この結果は、金属製中空容器1の内面の研磨を、極めて短い時間で、しかも金属製中空容器1をその軸心周りに回転させるだけの簡単な方法で実施することができることを示している。   This result shows that polishing of the inner surface of the metal hollow container 1 can be carried out in a very short time and by a simple method in which the metal hollow container 1 is rotated around its axis.

(実施例2)
図2に示す実施例1と同じ模擬の金属製中空容器1を用いて、表2に示す条件で、研磨工程の粗研磨と仕上げ研磨を連続して実施した後、金属製中空容器1(鋼管6)の内面の表面粗さ(仕上げ面品質)の測定を行った。測定で得られた仕上げ面粗さは、5μmRmax以下であり、短時間(粗研磨2時間+仕上げ研磨2時間=合計4時間)で、水分吸着防止の観点から必要な仕上げ面粗さの6μmを達成できることが確認できた。
(Example 2)
Using the same simulated metal hollow container 1 as in Example 1 shown in FIG. 2, the rough polishing and the final polishing in the polishing process were continuously performed under the conditions shown in Table 2, and then the metal hollow container 1 (steel pipe) The surface roughness (finished surface quality) of the inner surface of 6) was measured. The finished surface roughness obtained by the measurement is 5 μm Rmax or less, and in a short time (rough polishing 2 hours + finish polishing 2 hours = total 4 hours), 6 μm of the finished surface roughness required from the viewpoint of preventing moisture adsorption is obtained. It was confirmed that it could be achieved.

Figure 0005297985
Figure 0005297985

(実施例3)
直径600mmの実機サイズの密閉容器の内周面に、炭素鋼でなるテストピースを埋め込んで、表3に示す条件で、研磨工程の粗研磨と仕上げ研磨を連続して実施した後、金属製中空容器1(テストピース)の内面の表面粗さ(仕上げ面品質)の測定を行った。測定で得られた仕上げ面粗さは、3.26μmRmaxであり、短時間(粗研磨3時間+仕上げ研磨3時間=合計6時間)で、水分吸着防止の観点から必要な仕上げ面粗さの6μmのみならず、より厳しい条件の4μmRmaxを達成できることが確認できた。
(Example 3)
A test piece made of carbon steel is embedded in the inner peripheral surface of a sealed container of actual machine size with a diameter of 600 mm, and after the rough polishing and the final polishing in the polishing process are continuously performed under the conditions shown in Table 3, the metal hollow The surface roughness (finished surface quality) of the inner surface of the container 1 (test piece) was measured. The finished surface roughness obtained by the measurement is 3.26 μm Rmax, and is 6 μm of the finished surface roughness required from the viewpoint of preventing moisture adsorption in a short time (rough polishing 3 hours + finish polishing 3 hours = total 6 hours). In addition, it was confirmed that 4 μm Rmax, which is more severe, can be achieved.

Figure 0005297985
Figure 0005297985

1…金属製中空容器
2…研磨メディア
3…水
4…軸心
5…密閉容器
6…鋼管
DESCRIPTION OF SYMBOLS 1 ... Metal hollow container 2 ... Polishing media 3 ... Water 4 ... Axle 5 ... Sealed container 6 ... Steel pipe

Claims (4)

金属製中空容器の内部空間に研磨メディアと水を装入し、前記金属製中空容器をその軸心周りに回転させて前記金属製中空容器の内面を研磨する研磨工程と、その研磨工程の後に前記金属製中空容器の内面を洗浄し、洗浄後にその内面を乾燥させる洗浄・乾燥工程を備えた金属製中空容器の内面研磨処理方法であって、
前記研磨工程で、前記金属製中空容器内部空間に装入される水が研磨メディアの上面を覆う状態とすると共に、
前記金属製中空容器の内部空間に装入される研磨メディアと水が、前記金属製中空容器の内部空間内で占める総体積比率を12.5〜60%とし、
前記金属製中空容器の軸心をその鉛直方向に対して傾斜させた状態でその軸心を回転軸として、前記金属製中空容器を50〜150m/minの周速度で回転させて前記金属製中空容器の内面を研磨することを特徴とする金属製中空容器の内面研磨処理方法。
A polishing step in which polishing media and water are charged into the internal space of the metal hollow container, the inner surface of the metal hollow container is polished by rotating the metal hollow container around its axis, and after the polishing step An inner surface polishing method for a metal hollow container comprising a cleaning / drying step of cleaning the inner surface of the metal hollow container and drying the inner surface after cleaning,
In the polishing step, the water charged into the metal hollow container internal space is in a state of covering the upper surface of the polishing media,
The total volume ratio that the polishing media and water charged in the internal space of the metal hollow container occupy in the internal space of the metal hollow container is 12.5 to 60%,
The metal hollow container is rotated at a peripheral speed of 50 to 150 m / min with the axis of the metal hollow container being inclined with respect to the vertical direction as a rotation axis. A method for polishing an inner surface of a metal hollow container, wherein the inner surface of the container is polished.
前記洗浄・乾燥工程で、前記金属製中空容器の内面の洗浄を、純水を用いて行うことを特徴とする請求項1記載の金属製中空容器の内面研磨処理方法。   The method for polishing an inner surface of a metal hollow container according to claim 1, wherein in the cleaning / drying step, the inner surface of the metal hollow container is cleaned using pure water. 前記金属製中空容器の内面の洗浄に用いる純水の温度が50〜100℃であることを特徴とする請求項2記載の金属製中空容器の内面研磨処理方法。   The method for polishing an inner surface of a metal hollow container according to claim 2, wherein the temperature of pure water used for cleaning the inner surface of the metal hollow container is 50 to 100 ° C. 前記研磨工程で、軸心を回転軸として回転する前記金属製中空容器を、その軸心の中間部を支点として揺動させることを特徴とする請求項1乃至3のいずれかに記載の金属製中空容器の内面研磨処理方法。   The metal hollow container according to any one of claims 1 to 3, wherein in the polishing step, the metal hollow container rotating about an axis as a rotation axis is swung with an intermediate portion of the axis as a fulcrum. Method for polishing inner surface of hollow container.
JP2009259124A 2009-11-12 2009-11-12 Method for polishing inner surface of metal hollow container Active JP5297985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009259124A JP5297985B2 (en) 2009-11-12 2009-11-12 Method for polishing inner surface of metal hollow container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009259124A JP5297985B2 (en) 2009-11-12 2009-11-12 Method for polishing inner surface of metal hollow container

Publications (2)

Publication Number Publication Date
JP2011104666A JP2011104666A (en) 2011-06-02
JP5297985B2 true JP5297985B2 (en) 2013-09-25

Family

ID=44228768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009259124A Active JP5297985B2 (en) 2009-11-12 2009-11-12 Method for polishing inner surface of metal hollow container

Country Status (1)

Country Link
JP (1) JP5297985B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6307900B2 (en) * 2014-01-29 2018-04-11 日本ゼオン株式会社 Gas container filled with fluorinated hydrocarbon compound
DE102020129779A1 (en) 2020-11-11 2022-05-12 Bolz Intec Gmbh Process for surface treatment of an inner surface of a container

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4035581B2 (en) * 1995-07-12 2008-01-23 日本エア・リキード株式会社 Inner surface treatment method for high pressure gas containers
JP2001179596A (en) * 1999-12-21 2001-07-03 Tipton Mfg Corp Inner surface polishing method of work
JP2003266246A (en) * 2002-03-12 2003-09-24 Kansan Corp Electrolytic composite polishing device, electrolytic composite polishing tool, and electrolytic composite polishing method

Also Published As

Publication number Publication date
JP2011104666A (en) 2011-06-02

Similar Documents

Publication Publication Date Title
JP7104199B2 (en) Inner surface treatment device for pipes
JP2016000450A (en) Barrel polishing method
CN102273329A (en) Immersive oxidation and etching process for cleaning silicon electrodes
JP5297985B2 (en) Method for polishing inner surface of metal hollow container
JP6663067B1 (en) Metal pipe inner surface polishing equipment
CN108161711A (en) Grinding wafer device and grinding head
TWI670763B (en) Brush for clearing wafers after a cmp process and method thereof
JP5051167B2 (en) Processing method of ferrous metal parts
JP6345988B2 (en) Substrate processing equipment
KR101001216B1 (en) Inner-surface Treatment Method of the certified Reference Gas Mixture Container Using Barrel Polishing
TWI670140B (en) Dry barrel grinding method and medium manufacturing method
TWI251618B (en) Method of inhibiting production of projections in metal deposited-film
JP2008137097A (en) Barrel grinding method
JP2000071164A (en) Inner surface polishing method for hollow body
KR102475216B1 (en) Method for treating inner surface of gas cylinder and apparatus for treating inner surface of gas cylinder using thereof
WO2016117464A1 (en) Gas-filled vessel filled with fluorinated hydrocarbon compound
CN113319734A (en) Chemical polishing apparatus and method
JP2009243691A (en) Method of manufacturing high-purity gas-filled vessel, and high-purity gas-filled vessel
JP2004270917A (en) Halogen-based gas charging container, gas charged in the same, and method for processing charging container
JP2006351928A (en) Polishing method and polishing apparatus
JP7147558B2 (en) Dry barrel polishing method
JP2007108395A (en) Method and apparatus for regenerating base holder
US20050079811A1 (en) Defect reduction using pad conditioner cleaning
JP3817462B2 (en) Tank rotation drive device
US11654527B2 (en) Polishing head for use in chemical mechanical polishing and CMP apparatus having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130617

R150 Certificate of patent or registration of utility model

Ref document number: 5297985

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250