JP5293109B2 - Waste water treatment apparatus and waste water treatment method - Google Patents

Waste water treatment apparatus and waste water treatment method Download PDF

Info

Publication number
JP5293109B2
JP5293109B2 JP2008297707A JP2008297707A JP5293109B2 JP 5293109 B2 JP5293109 B2 JP 5293109B2 JP 2008297707 A JP2008297707 A JP 2008297707A JP 2008297707 A JP2008297707 A JP 2008297707A JP 5293109 B2 JP5293109 B2 JP 5293109B2
Authority
JP
Japan
Prior art keywords
flow
diffuser
reaction tank
fixed bed
microorganism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008297707A
Other languages
Japanese (ja)
Other versions
JP2010119980A (en
Inventor
亮 功刀
俊夫 石井
俊明 局
英一郎 土場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008297707A priority Critical patent/JP5293109B2/en
Publication of JP2010119980A publication Critical patent/JP2010119980A/en
Application granted granted Critical
Publication of JP5293109B2 publication Critical patent/JP5293109B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Description

本発明は、下水、工場廃水などの、微生物固定用担体を用いた、廃水処理装置および廃水処理方法に関する。   The present invention relates to a wastewater treatment apparatus and a wastewater treatment method using a carrier for immobilizing microorganisms such as sewage and factory wastewater.

生活排水や工場排水などに含まれる有機物、無機物を微生物により分解する廃水処理装置の性能を向上する方法として、有機高分子物質や無機物質を主成分とする担体に微生物を固定して用いる方法がある。   As a method for improving the performance of wastewater treatment equipment that decomposes organic matter and inorganic matter contained in domestic wastewater and industrial wastewater with microorganisms, there is a method in which microorganisms are immobilized on a carrier mainly composed of organic polymer substances or inorganic substances. is there.

この方法は、標準活性汚泥法と比較して微生物濃度を高濃度に維持できるため、廃水処理装置の性能を向上することができる。   This method can maintain the microbial concentration at a higher concentration than the standard activated sludge method, and therefore can improve the performance of the wastewater treatment apparatus.

微生物の固定に用いる担体には、例えば、特許文献1に記載の、図6中に符号14で示すような、粒状のものの他、特許文献2に記載の、図7中に同じく符号14で示すような、ひも状のもの、などが知られている。   The carrier used for immobilizing microorganisms is, for example, a granular material as described in Patent Document 1 as indicated by reference numeral 14 in FIG. 6, and also described in Patent Document 2 and also indicated by reference numeral 14 in FIG. 7. Such as a string-like one is known.

微生物には酸素を供給する必要がある。それには、空気を送る散気装置を設置する方法がある。散気装置から空気を送って反応槽1内の廃水中の微生物に酸素を供給することを散気または曝気という。   It is necessary to supply oxygen to microorganisms. There is a method of installing an air diffuser that sends air. Supplying oxygen to the microorganisms in the wastewater in the reaction tank 1 by sending air from the diffuser is called aeration or aeration.

廃水処理装置における散気(曝気)のしかたには、散気装置2を反応槽1の槽底全体に設置した、全面曝気式(前記特許文献1、図6参照)と、図8に示すような、散気装置2を反応槽1の槽底の一部に設置し、処理すべき廃水を反応槽1内で旋回させ、循環させる、旋回流式の二つが知られている(特許文献3に記載の、図9などもこれに該当)。図8中、Fが旋回流を示している。   For the aeration (aeration) in the wastewater treatment apparatus, the aeration apparatus 2 is installed on the entire tank bottom of the reaction tank 1 (see Patent Document 1, FIG. 6), and as shown in FIG. Two swirling flow types are known in which a diffuser 2 is installed at a part of the bottom of the reaction tank 1 and waste water to be treated is swirled and circulated in the reaction tank 1 (Patent Document 3). This also applies to FIG. In FIG. 8, F indicates a swirling flow.

なお、特許文献1に記載の、図6中、6は担体分離用スクリーン(仕切具)、13は気泡発生装置、14は微生物固定用担体(担体)を示し、特許文献2に記載の、図7中、15は蓋、16は汚泥回収ピット、17はバイパス経路を示す。同図7中、18はバルブであり、普段は、バルブ18を閉じて、矢印にて示す流れの方向にみて、バルブ18よりも手前の散気装置2のみで散気する。担体14への汚泥などの付着量が多くなり、廃水処理装置の性能が低下すると、流出側の蓋15を閉じ、バイパス経路17側の蓋15を開け、散気装置2から反応槽1内に向けて供給する空気の流量を増加させるとともに、バルブ18よりも後方の散気装置2にも散気し、同散気装置2のある反応槽1の槽底に沈積した汚泥などを、汚泥回収ピット16に送って沈降させ、回収できるようにしている。
特開平11−070390号公報 特開平10−052694号公報 特開平06−343987号公報
In FIG. 6 described in Patent Document 1, reference numeral 6 denotes a carrier separation screen (partitioner), 13 denotes a bubble generation device, and 14 denotes a microorganism fixing carrier (carrier). 7, 15 is a lid, 16 is a sludge recovery pit, and 17 is a bypass route. In FIG. 7, reference numeral 18 denotes a valve. Usually, the valve 18 is closed, and the air is diffused only by the air diffuser 2 in front of the valve 18 in the flow direction indicated by the arrow. When the amount of sludge attached to the carrier 14 increases and the performance of the wastewater treatment device decreases, the outflow side lid 15 is closed, the bypass path 17 side lid 15 is opened, and the diffuser 2 enters the reaction tank 1. In addition to increasing the flow rate of air to be supplied, the air is diffused also in the diffuser 2 behind the valve 18, and sludge collected on the bottom of the reaction tank 1 where the diffuser 2 is located is recovered. It is sent to the pit 16 to be settled and collected.
Japanese Patent Laid-Open No. 11-070390 Japanese Patent Laid-Open No. 10-052694 Japanese Patent Laid-Open No. 06-343987

さて、粒状の微生物固定用担体14は、流出を防止しなければならない(図6中の担体分離用スクリーン(仕切具)6もこのためのものにあたる)。   Now, the particulate microorganism fixing carrier 14 must be prevented from flowing out (the carrier separating screen (partitioner) 6 in FIG. 6 corresponds to this).

この点、図7に示したような、反応層1内に、ひも状の担体を固定して用いる方法は、流出を防止するための手立てを講ずる必要もなく、安価で、しかも、付着した汚泥などの洗浄も容易な利点がある。   In this regard, the method of fixing and using a string-like carrier in the reaction layer 1 as shown in FIG. 7 does not require any measures for preventing the outflow, is inexpensive, and adheres sludge. There is an advantage that it is easy to clean.

ひも状の担体を用いた場合のみならず、微生物固定用担体14を、反応層1内に固定して用いる方式の廃水処理装置を、固定床型反応槽方式という。   A waste water treatment apparatus that uses the microorganism-fixing carrier 14 while being fixed in the reaction layer 1 as well as a string-like carrier is referred to as a fixed-bed type reaction tank system.

ところで、微生物に酸素を供給する方法として、先述の特許文献1の、図6に例を示した、全面曝気式は、散気装置2を反応槽1の槽底全体に設置するため、反応槽1内全体で不規則に緩やかな上昇流及び下降流が生成し、曝気効率が高い利点はあるが、反応槽1内に生ずる流速が小さく、反応槽1の槽底に汚泥が沈積しやすい問題がある。   By the way, as a method for supplying oxygen to microorganisms, the entire aeration system shown in FIG. 6 of the above-mentioned Patent Document 1 installs the diffuser 2 over the entire bottom of the reaction tank 1, so that the reaction tank 1 has the advantage that irregularly gradual upward and downward flows are generated in the whole and aeration efficiency is high, but the flow rate generated in the reaction tank 1 is small, and sludge tends to deposit on the bottom of the reaction tank 1 There is.

一方、旋回流式では、反応槽1内に生ずる流速が大きく、反応槽1の槽底に汚泥は沈積しにくいが、流速の速い領域と遅い領域が顕著に現れ、流速の速い領域では、酸素の供給が不足し、廃水処理装置全体としての性能を十分に発揮できない問題がある。   On the other hand, in the swirling flow type, the flow velocity generated in the reaction tank 1 is large, and sludge is difficult to deposit on the bottom of the reaction tank 1, but a region with a high flow rate and a region with a low flow rate appear remarkably. There is a problem that the performance of the waste water treatment apparatus as a whole cannot be fully exhibited.

本発明は、固定床型反応槽方式にて、旋回流式の曝気方式をとる場合に、微生物への酸素の供給を均等化し、廃水処理装置の性能を十分に発揮できる、廃水処理装置および廃水処理方法を提供することを目的とする。   The present invention provides a wastewater treatment apparatus and wastewater that can equalize the supply of oxygen to microorganisms and sufficiently exhibit the performance of the wastewater treatment apparatus when a swirling flow aeration system is adopted in a fixed bed type reaction tank system. An object is to provide a processing method.

すなわち、本発明は以下の通りである。
[1]反応槽内に複数の微生物固定床を設置した固定床型反応槽方式にて、旋回流生成のための散気装置Aを前記微生物固定床の下方から外れた、反応槽の槽底の一部に設置し、処理すべき廃水を旋回流として循環させる反応槽内旋回流式の曝気方式をとる、廃水処理装置において、
前記散気装置Aとは別に、前記微生物固定床に対応してその下方に設置された、流量可変とした散気装置B具備し、
前記微生物固定床は、旋回流外周側の微生物固定床ほど設置間隔を密にし、
前記散気装置Bは前記微生物固定床に対応して複数ブロックに分かれ、各ブロックからの散気はブロック毎にバルブにて流量可変とし、旋回流の流速が大きなブロックほど散気流量を大きくするとともに、前記散気装置Bからの散気流量の合計は、前記散気装置Aを含めた散気流量全体の合計に対して10%以上かつ旋回流の流れが滞って汚泥沈積を引き起す恐れのない範囲とすることを特徴とする廃水処理装置。
[2]反応槽内に複数の微生物固定床を設置した固定床型反応槽方式にて、旋回流生成のための散気装置Aを前記微生物固定床の下方から外れた、反応槽の槽底の一部に設置し、処理すべき廃水を旋回流として循環させる反応槽内旋回流式の曝気方式をとる、廃水処理方法において、
前記散気装置Aとは別に、前記微生物固定床に対応してその下方に、流量可変とした散気装置Bを設置し、
前記微生物固定床は、旋回流外周側の微生物固定床ほど設置間隔を密にし、
前記散気装置Bは前記微生物固定床に対応して複数ブロックに分かれ、各ブロックからの散気はブロック毎にバルブにて流量可変とし、旋回流の流速が大きなブロックほど散気流量を大きくするとともに、前記散気装置Bからの散気流量の合計は、前記散気装置Aを含めた散気流量全体の合計に対して10%以上かつ旋回流の流れが滞って汚泥沈積を引き起す恐れのない範囲とすることを特徴とする廃水処理方法。
That is, the present invention is as follows.
[1] The bottom of the reaction tank in which a diffuser A for generating a swirling flow is removed from below the fixed microorganism bed in a fixed bed type reaction tank system in which a plurality of fixed microorganism beds are installed in the reaction tank. In a wastewater treatment apparatus, which is installed in a part of the reactor and adopts a swirling flow aeration method in a reaction tank that circulates wastewater to be treated as a swirling flow,
Apart from the air diffuser apparatus A, comprising the microorganism fixed bed supports disposed thereunder, air diffuser B was a variable flow rate,
The microbial fixed bed, the microbial fixed bed on the swirl flow outer peripheral side is closer to the installation interval,
The air diffuser B is divided into a plurality of blocks corresponding to the microorganism fixed bed, and the air diffuser from each block is variable in flow rate by a valve for each block, and the air diffuser flow rate is increased as the block has a higher flow velocity of the swirl flow. At the same time, the total diffused flow rate from the diffuser B is 10% or more of the total diffused flow including the diffuser A, and the swirl flow may be delayed, causing sludge deposition. A wastewater treatment apparatus characterized by having no range .
[2] Bottom of reaction tank in which a diffuser A for generating swirling flow is removed from below the fixed microorganism bed in a fixed bed type reaction tank system in which a plurality of fixed microorganism beds are installed in the reaction tank In a wastewater treatment method that uses a swirling flow aeration system in a reaction tank that is installed in a part of the reactor and circulates wastewater to be treated as a swirling flow,
Apart from the diffusion device A, to the lower in response to the microorganism fixed bed, it established the air diffuser B was a variable flow rate,
The microbial fixed bed, the microbial fixed bed on the swirl flow outer peripheral side is closer to the installation interval,
The air diffuser B is divided into a plurality of blocks corresponding to the microorganism fixed bed, and the air diffuser from each block is variable in flow rate by a valve for each block, and the air diffuser flow rate is increased as the block has a higher flow velocity of the swirl flow. At the same time, the total diffused flow rate from the diffuser B is 10% or more of the total diffused flow including the diffuser A, and the swirl flow may be delayed, causing sludge deposition. A wastewater treatment method characterized in that the range is free of water.

本発明によれば、固定床型反応槽方式にて、旋回流式の曝気方法をとる場合に、微生物への酸素の供給を均等化し、廃水処理装置の性能を十分に発揮できる、廃水処理装置および廃水処理方法を提供することができる。   According to the present invention, when a swirling flow type aeration method is used in a fixed bed type reaction tank system, the supply of oxygen to microorganisms is equalized, and the performance of the wastewater treatment apparatus can be fully exhibited. And a wastewater treatment method can be provided.

図1は、本発明の一つの実施の形態に係る廃水処理装置100を示している。   FIG. 1 shows a wastewater treatment apparatus 100 according to one embodiment of the present invention.

図1の例では、反応槽1には、ひも状などの担体14を内部に固定的に設置した、微生物固定床7,8,9を固定的に設置している(数は必ずしもこれに限らず、単数でも複数でもよい)。   In the example of FIG. 1, in the reaction tank 1, microorganisms fixed beds 7, 8, 9 are fixedly installed in which a carrier 14 such as a string is fixedly installed (the number is not necessarily limited thereto). It may be singular or plural).

また、図1の例では、散気装置として、旋回流生成のための散気装置2aが、微生物固定床7,8,9の下方から外れた、反応槽1の槽底の一部に設置され、流量調整弁12により場所によって散気流量を可変とした、散気装置2bが、微生物固定床7,8,9の下方に設置されている。   Moreover, in the example of FIG. 1, the diffuser 2a for generating the swirl flow is installed as a diffuser at a part of the bottom of the reaction tank 1 that is removed from below the microorganism fixed beds 7, 8, and 9. The air diffuser 2b in which the air diffuser flow rate is variable depending on the location by the flow rate adjusting valve 12 is installed below the microorganism fixed beds 7, 8, and 9.

散気装置2aから反応槽1内に散気される空気(気泡3)中に含まれる酸素は、旋回流とともに微生物固定床7,8,9の上方から流入する。   Oxygen contained in the air (bubble 3) diffused from the diffuser 2a into the reaction tank 1 flows from above the microorganism fixed beds 7, 8, and 9 together with the swirling flow.

そして、微生物固定床7,8,9の下方から流出した旋回流は、散気装置2aの設置された場所に戻ってくる。   And the swirling flow which flowed out from the lower part of the microorganism fixed beds 7, 8, 9 returns to the place where the diffuser 2a is installed.

旋回流式のものであっても、先述の特許文献3の、図9に示した例のように、7,8,9のような微生物固定床を用いないものもあるが、本発明では、微生物固定床を固定的に設置した、固定床型反応槽方式を前提とするため、図1のものを例に挙げて以下説明することにする。   Even in the swirling flow type, there are some which do not use a microorganism fixed bed such as 7, 8, 9 as in the example shown in FIG. 9 of the above-mentioned Patent Document 3, Since a fixed bed type reaction tank system in which a microorganism fixed bed is fixedly installed is assumed, the following description will be made with reference to FIG. 1 as an example.

流入水4として、下水、工場廃水などの廃水が、連続的または断続的に反応槽1内に流入し、反応槽1内で処理され、浄化された水が、流出水5として、連続的または断続的に反応槽1から流出する。   Waste water such as sewage and factory waste water flows into the reaction tank 1 continuously or intermittently as the inflow water 4, and treated and purified water in the reaction tank 1 is continuously or It flows out of the reaction tank 1 intermittently.

さて、散気装置2aから遠い側すなわち旋回流Fの外周側にある微生物固定床7では、速い下降流が生じやすく、逆に、散気装置2aに近い側すなわち旋回流Fの内周側にある微生物固定床9では、遅い下降流が生じやすい。このように、流速の速い領域と遅い領域が顕著に現れることを、偏流が生じる、という。   Now, in the microorganism fixed bed 7 on the side far from the diffuser 2a, that is, on the outer peripheral side of the swirling flow F, a fast downward flow is likely to occur, and conversely, on the side closer to the diffuser 2a, that is, on the inner peripheral side of the swirling flow F. In a certain microorganism fixed bed 9, a slow downward flow tends to occur. Thus, the fact that the region where the flow velocity is fast and the region where the flow velocity is remarkable appears is called drifting.

本発明の廃水処理装置では、旋回流生成のための散気装置2aとは別に、設置場所により流量可変とした散気装置2bから、次に述べるように散気する。   In the wastewater treatment apparatus of the present invention, air is diffused as described below from the air diffuser 2b whose flow rate is variable depending on the installation location, in addition to the air diffuser 2a for generating the swirl flow.

すなわち、速い下降流が生じやすい微生物固定床7側にいくほど、散気装置2bから散気する空気の流量を多くし、遅い下降流が生じやすい微生物固定床9側にいくほど、散気装置2bから散気する空気の流量を少なくする。言い換えれば、旋回流Fの流速が大きな場所にいくほど散気流量を大きくする、ということである。   That is, the air flow from the air diffuser 2b is increased as it goes to the microorganism fixed bed 7 side where a fast downward flow is likely to occur, and the air diffuser is located toward the microorganism fixed bed 9 side where a slow downward flow is likely to occur. Reduce the flow rate of air diffused from 2b. In other words, the diffuser flow rate is increased as the flow velocity of the swirling flow F increases.

そのようにすると、散気装置2bから、速い下降流が生じやすい微生物固定床7側にいくほど流量多く散気され、遅い下降流が生じやすい微生物固定床9側にいくほど流量少なく散気される、空気の泡が、微生物固定床7,8,9の中を上昇する間に、抵抗となって、先述の偏流が生じるのを抑制することができるのである。   By doing so, a larger flow rate is diffused from the diffuser 2b toward the microorganism fixed bed 7 side where a fast downward flow is likely to occur, and a smaller flow rate is diffused toward the microorganism fixed bed 9 side where a slow downward flow is likely to occur. That is, while the air bubbles ascend in the microorganism fixed beds 7, 8, and 9, resistance can be generated and the above-described drift can be suppressed.

その結果、旋回流生成のための散気装置2aから散気されることで廃水中に供給され、溶解した酸素は、微生物固定床7,8,9に均等にいきわたる。   As a result, diffused oxygen is supplied to the wastewater by being diffused from the diffuser 2a for generating the swirling flow, and the dissolved oxygen spreads evenly in the microorganism fixed beds 7, 8, and 9.

すると、反応槽1の容積が同一の条件下では、酸素によって活性化される微生物の活動により、廃水中成分の分解処理も効率最大となるため、従来と比較して処理効率を高めることができる。   Then, under the condition where the volume of the reaction tank 1 is the same, the decomposition efficiency of the wastewater components is maximized due to the activity of the microorganisms activated by oxygen, so that the processing efficiency can be increased as compared with the conventional case. .

場所によって速い下降流のところと遅い下降流のところができて偏流が生じるのを抑制するためには、旋回流生成のための散気装置2aとは別の、流量可変とした散気装置2bからの散気流量の合計が、全体からの散気流量の合計(散気装置2a含む)に占める割合を、10%以上とするのが好ましく、旋回流生成のための散気装置2aとは別に、設置場所毎に流量可変とした散気装置2bは、図1のように2つ以上のブロックに分け、散気流量を個別に設けたバルブ12で調整するのが好ましい。一方、三つある散気装置2bのうち、二つを一つのバルブ12で統合して調整してもよい。   In order to suppress the occurrence of uneven flow due to the location of a fast downward flow and a slow downward flow depending on the location, an air diffuser 2b having a variable flow rate separate from the air diffuser 2a for generating the swirl flow is used. It is preferable that the ratio of the total diffused air flow rate to the total diffused flow rate (including the diffuser device 2a) is 10% or more, separately from the diffuser device 2a for generating the swirl flow The air diffuser 2b having a variable flow rate for each installation location is preferably divided into two or more blocks as shown in FIG. 1, and the diffuser flow rate is preferably adjusted by a valve 12 provided individually. On the other hand, two of the three air diffusers 2b may be integrated and adjusted by one valve 12.

散気装置2bからの散気流量は、過剰になると、反応槽1内を旋回する旋回流Fの流れが滞り、反応槽1の底への汚泥などの沈積を引き起こす恐れがある。   If the amount of air diffused from the air diffuser 2b becomes excessive, the flow of the swirling flow F swirling in the reaction tank 1 may stagnate, and sedimentation of sludge or the like on the bottom of the reaction tank 1 may occur.

散気装置2bへの最適な散気流量は、反応槽1の形状、微生物固定床7,8,9の流体抵抗(圧力損失)や配置、散気装置2a,2bの配置、各散気装置や各ブロックの散気流量の違い、などによって異なるため、第一義的には、流体の数値シミュレーションなどを行なって決定するのが好ましいが、水理実験などを行って決定するのがより好ましい。   The optimum air flow rate to the air diffuser 2b includes the shape of the reaction tank 1, the fluid resistance (pressure loss) and arrangement of the microorganism fixed beds 7, 8, and 9, the arrangement of the air diffusers 2a and 2b, and each air diffuser. In the first place, it is preferable to determine by performing a numerical simulation of the fluid, but it is more preferable to determine by performing a hydraulic experiment or the like. .

散気装置2a及び散気装置2bとしては、円板型、パネル型、筒型など、どのような形状のものを用いてもよい。また、散気装置2aと散気装置2b、同種のものを用いてもよいし、別種のものを用いてもよい。   As the air diffuser 2a and the air diffuser 2b, any shape such as a disk shape, a panel shape, and a cylindrical shape may be used. Moreover, the diffuser 2a and the diffuser 2b may be the same type or different types.

散気装置2から反応槽1内に送られる空気(気泡3)に随伴して生じ、上方に向かおうとする廃水の流れと、微生物固定床7,8,9の上方から流入する向き、すなわち、下方に向かおうとする廃水の流れと、の間に、整流壁(仕切具)6aを設けるのも好ましく、散気装置2a及び散気装置2bから生ずる気泡の上昇を整流するため、散気装置2bを構成する各ブロックの間に、整流壁6bを設けるのも好ましい。   A flow of wastewater that is generated along with the air (bubble 3) sent from the air diffuser 2 into the reaction tank 1 and is directed upward, and a direction of flowing in from above the microorganism fixed beds 7, 8, and 9, that is, It is also preferable to provide a rectifying wall (partitioner) 6a between the waste water flow toward the lower side, and in order to rectify the rise of bubbles generated from the diffusing device 2a and the diffusing device 2b, It is also preferable to provide a rectifying wall 6b between the blocks constituting the device 2b.

微生物固定床7,8,9は、ひも状、粒状などの担体をメッシュ状の容器に充填したものなどを、反応槽1内に固定したものなど、各種のものが用いて好適である。担体の材質としては、プラスチック系、セルロース系、スポンジ系など、各種のものが用いて好適である。   As the microorganism fixed beds 7, 8, and 9, various types such as those in which a mesh-like container filled with a string-like or granular carrier is fixed in the reaction tank 1 are suitable. Various materials such as plastics, celluloses and sponges are suitable for use as the material of the carrier.

微生物固定床7,8,9に大量の微生物が付着して処理効率が低下したり、それにより、旋回流Fが滞るなどして、散気装置2bによる流れのコントロールが困難となった場合は、散気装置2aを停止し、散気装置2bを個別または同時にブローし、微生物固定床7,8,9に過剰に付着した微生物層を剥離して洗浄することもできる。   When a large amount of microorganisms adhere to the microorganism fixed beds 7, 8, and 9 and the processing efficiency is lowered, or the swirling flow F is stagnated, making it difficult to control the flow by the air diffuser 2b. The air diffuser 2a can be stopped, the air diffuser 2b can be blown individually or simultaneously, and the microorganism layer excessively attached to the microorganism fixed beds 7, 8, and 9 can be peeled off and washed.

旋回流Fの外周側にある微生物固定床7では、旋回流Fの内周側にある微生物固定床9と比較して、微生物固定用担体14の設置間隔を密にするのも好ましい。   In the microorganism fixed bed 7 on the outer peripheral side of the swirl flow F, it is also preferable that the interval between the microorganism fixing carriers 14 is set closer than that on the microorganism fixed bed 9 on the inner periphery side of the swirl flow F.

微生物固定用担体14の設置間隔が同じだと、旋回流Fの外周側にある微生物固定床7では、速い下降流が生じやすく、逆に、旋回流Fの内周側にある微生物固定床9では、遅い下降流が生じやすいため、微生物との接触によって浄化される水の量は、旋回流Fの外周側にある微生物固定床7では少なく、そして、旋回流Fの内周側にある微生物固定床9では多くなりやすいことから、この差を小さくするため、以上のように、微生物固定用担体14の設置間隔を場所によって調整する方法を併用するのも有効である。   If the interval between the microorganism fixing carriers 14 is the same, the microorganism fixed bed 7 on the outer peripheral side of the swirl flow F tends to generate a fast downward flow, and conversely, the microorganism fixed bed 9 on the inner peripheral side of the swirl flow F. Then, since a slow downward flow tends to occur, the amount of water purified by contact with microorganisms is small in the microorganism fixed bed 7 on the outer peripheral side of the swirl flow F, and the microorganisms on the inner peripheral side of the swirl flow F Since it tends to increase in the fixed bed 9, it is also effective to use a method of adjusting the installation interval of the microorganism fixing carrier 14 depending on the location as described above in order to reduce this difference.

図2は、本発明の別の実施形態に係る廃水処理装置を示し、散気装置2aを反応槽1の中央付近に設置し、旋回流を両側に生じさせる場合の例である。図3は、本発明のまた別の実施形態に係る廃水処理装置を示し、反応槽1の形状は矩形のほかに、図3に示すような円筒形でもよい。   FIG. 2 shows an example of a wastewater treatment apparatus according to another embodiment of the present invention, in which a diffuser 2a is installed near the center of the reaction tank 1 and a swirling flow is generated on both sides. FIG. 3 shows a wastewater treatment apparatus according to still another embodiment of the present invention, and the reaction tank 1 may have a cylindrical shape as shown in FIG. 3 in addition to a rectangle.

図4に示す構成の、幅(図中左右方向)7m、長さ(図中奥行き方向)15m、有効深さ5mの矩形の反応槽1に、ひも状の担体を固定的に設置した微生物固定床7,8,9を設置した場合の、流体シミュレーションの結果を示す。   Fixation of microorganisms in which a string-like carrier is fixedly installed in a rectangular reaction tank 1 having a configuration shown in FIG. 4 having a width (horizontal direction in the figure) of 7 m, a length (depth direction in the figure) of 15 m, and an effective depth of 5 m. The result of the fluid simulation when floors 7, 8, and 9 are installed is shown.

なお、図4に示す、ここでの例では、旋回流生成のための散気装置2aを反応槽1底の一部に設け、その一部を除いた反応槽1底の上方に、微生物固定床7,8,9を設置し、各微生物固定床7,8,9の下方に、流量可変とした散気装置2bを設置している。   In the example shown in FIG. 4, an aeration device 2 a for generating a swirl flow is provided at a part of the bottom of the reaction tank 1, and microorganisms are immobilized above the bottom of the reaction tank 1 except for a part thereof. Floors 7, 8, and 9 are installed, and an air diffuser 2b with a variable flow rate is installed below each microorganism fixed bed 7, 8, and 9.

表1は、反応槽1の幅方向の位置(図4中、反応槽1の左端を基準)と、その範囲での散気装置2bへの散気流量を示している。   Table 1 shows the position in the width direction of the reaction tank 1 (with reference to the left end of the reaction tank 1 in FIG. 4) and the diffused flow rate to the diffuser 2b in that range.

なお、流入、流出する廃水の流量は3.5m3/min、水理学的滞留時間は約2.5時間である。 The flow rate of wastewater flowing in and out is 3.5 m 3 / min, and the hydraulic retention time is about 2.5 hours.

Figure 0005293109
Figure 0005293109

表2は、中間水深(水面下2.5m)での水面に平行な仮想断面の単位面積当りを通過する廃水の流量を求めたものである。   Table 2 shows the flow rate of wastewater that passes per unit area of a virtual cross section parallel to the water surface at an intermediate water depth (2.5 m below the water surface).

Figure 0005293109
Figure 0005293109

微生物固定床7の下方に設置した散気装置2bから散気しないケース1の場合、反応槽1内の流れは、旋回流の外周側にあたる、反応槽1の壁面10に近い側に、大きく偏っていることが分かる。   In the case 1 that does not diffuse from the diffuser 2b installed below the microorganism fixed bed 7, the flow in the reaction tank 1 is largely biased toward the outer peripheral side of the swirl flow, near the wall surface 10 of the reaction tank 1. I understand that

一方、微生物固定床7の下方に設置した散気装置2bから散気するケース2及びケース3の場合、反応槽1内の流れが均等化していることが分かる。   On the other hand, in the case 2 and case 3 that diffuse from the diffuser 2b installed below the microorganism fixed bed 7, it can be seen that the flow in the reaction tank 1 is equalized.

ただし、ケース3では、微生物固定床7の下方に設置した散気装置2bへの散気流量が他のケースと比べて多いため、微生物固定床7,9の間を循環する流れが生じてしまっており、反応槽1全体を旋回する廃水の流れがケース2の半分程度にまで少なくなってしまっている。   However, in case 3, since the amount of air diffused to the air diffuser 2b installed below the microorganism fixed bed 7 is larger than that in other cases, a flow circulating between the microorganism fixed beds 7 and 9 occurs. As a result, the flow of waste water swirling the entire reaction tank 1 is reduced to about half that of the case 2.

また、図5に示す構成の幅(図中左右方向)1.5m、長さ(図中奥行き方向)2m、有効深さ1mの模型を用いて、COD(Chemical Oxygen Demand:化学的酸素要求量)成分としてチオ硫酸イオン(S2O3 2−)を含有する模擬廃水の処理実験を行った。 In addition, COD (Chemical Oxygen Demand: Chemical Oxygen Demand) using a model with a width of 1.5m, a length (depth direction in the figure) of 2m, and an effective depth of 1m in the configuration shown in FIG. A treatment experiment of simulated wastewater containing thiosulfate ion (S 2 O 3 2− ) as a component was conducted.

微生物固定床7,9として、馴養した粒状担体をメッシュ状の容器に充填したものを用いた。   As the microorganism fixed beds 7 and 9, those obtained by filling a mesh-like container with a conditioned granular carrier were used.

旋回流生成のための散気装置2aからのみ散気した場合をケース4、旋回流生成のための散気装置2aと、散気装置2aから遠い側すなわち旋回流の外周側にある微生物固定床7の下方にある散気装置2bと、への散気流量比を0.8:0.2にした場合をケース5とした。流入する廃水のCODは50mg/Lとした。   Case 4 where air is diffused only from the diffuser 2a for generating the swirl flow, the diffuser 2a for generating the swirl flow, and the microorganism fixed bed on the side far from the diffuser 2a, that is, on the outer peripheral side of the swirl flow Case 5 was defined as a case where the air flow rate ratio to the air diffuser 2b below 7 was 0.8: 0.2. The COD of the influent wastewater was 50 mg / L.

結果を、表3に示す。   The results are shown in Table 3.

Figure 0005293109
Figure 0005293109

ケース4では、チオ硫酸イオン(S2O3 2−)濃度の上昇に伴うCOD負荷の上昇に伴い、廃水中のCODが上昇していることから、処理効率の低下が見られるが、微生物固定床7の下方にある散気装置2bから散気したケース5では、廃水中のCODは、ほぼ同程度の値を示し、COD負荷が上昇しても、ほぼ同程度の処理効率が得られる。 In Case 4, the COD in the wastewater increases with the increase in COD load accompanying the increase in thiosulfate ion (S 2 O 3 2− ) concentration. In case 5 diffused from the diffuser 2b below the floor 7, the COD in the wastewater shows substantially the same value, and even if the COD load increases, almost the same processing efficiency can be obtained.

本発明の一つの実施の形態について説明するための線図The diagram for explaining one embodiment of the present invention 本発明の一つの実施の形態について説明するための線図The diagram for explaining one embodiment of the present invention 本発明の一つの実施の形態について説明するための線図The diagram for explaining one embodiment of the present invention 本発明の一つの実施の形態について説明するための線図The diagram for explaining one embodiment of the present invention 本発明の一つの実施の形態について説明するための線図The diagram for explaining one embodiment of the present invention 従来技術について説明するための線図Diagram for explaining the prior art 従来技術について説明するための線図Diagram for explaining the prior art 従来技術について説明するための線図Diagram for explaining the prior art 従来技術について説明するための線図Diagram for explaining the prior art

符号の説明Explanation of symbols

1 反応槽
1a 反応槽流入部
1b 反応槽流出部
2 散気装置
2a 散気装置
2b 散気装置
3 気泡
4 流入水
5 流出水
6 整流壁(仕切具)
6a 整流壁(仕切具)
6b 整流壁(仕切具)
7 微生物固定床
8 微生物固定床
9 微生物固定床
10 壁面
11 ブロワ
13 気泡発生装置
14 微生物固定用担体(担体)
15 蓋
16 汚泥回収ピット
17 バイパス経路
18 バルブ
100 廃水処理装置
F 旋回流
DESCRIPTION OF SYMBOLS 1 Reaction tank 1a Reaction tank inflow part 1b Reaction tank outflow part 2 Air diffuser 2a Air diffuser 2b Air diffuser 3 Bubble 4 Inflow water 5 Outflow water 6 Rectification wall (partition)
6a Rectification wall (partition)
6b Rectification wall (partition)
7 Microorganism fixed bed 8 Microorganism fixed bed 9 Microorganism fixed bed 10 Wall surface 11 Blower 13 Bubble generator 14 Microorganism fixing carrier (carrier)
15 Lid 16 Sludge recovery pit 17 Bypass path 18 Valve 100 Wastewater treatment equipment F Swirling flow

Claims (2)

反応槽内に複数の微生物固定床を設置した固定床型反応槽方式にて、旋回流生成のための散気装置Aを前記微生物固定床の下方から外れた、反応槽の槽底の一部に設置し、処理すべき廃水を旋回流として循環させる反応槽内旋回流式の曝気方式をとる、廃水処理装置において、
前記散気装置Aとは別に、前記微生物固定床に対応してその下方に設置された、流量可変とした散気装置B具備し、
前記微生物固定床は、旋回流外周側の微生物固定床ほど設置間隔を密にし、
前記散気装置Bは前記微生物固定床に対応して複数ブロックに分かれ、各ブロックからの散気はブロック毎にバルブにて流量可変とし、旋回流の流速が大きなブロックほど散気流量を大きくするとともに、前記散気装置Bからの散気流量の合計は、前記散気装置Aを含めた散気流量全体の合計に対して10%以上かつ旋回流の流れが滞って汚泥沈積を引き起す恐れのない範囲とすることを特徴とする廃水処理装置。
A part of the bottom of the reaction tank where the diffuser A for generating the swirling flow is removed from below the fixed microorganism bed in the fixed bed type reaction tank system in which a plurality of fixed microorganism beds are installed in the reaction tank. In a wastewater treatment apparatus that adopts a swirling flow aeration system in a reaction tank that circulates wastewater to be treated as a swirling flow,
Apart from the air diffuser apparatus A, comprising the microorganism fixed bed supports disposed thereunder, air diffuser B was a variable flow rate,
The microbial fixed bed, the microbial fixed bed on the swirl flow outer peripheral side is closer to the installation interval,
The air diffuser B is divided into a plurality of blocks corresponding to the microorganism fixed bed, and the air diffuser from each block is variable in flow rate by a valve for each block, and the air diffuser flow rate is increased as the block has a higher flow velocity of the swirl flow. At the same time, the total diffused flow rate from the diffuser B is 10% or more of the total diffused flow including the diffuser A, and the swirl flow may be delayed, causing sludge deposition. A wastewater treatment apparatus characterized by having no range .
反応槽内に複数の微生物固定床を設置した固定床型反応槽方式にて、旋回流生成のための散気装置Aを前記微生物固定床の下方から外れた、反応槽の槽底の一部に設置し、処理すべき廃水を旋回流として循環させる反応槽内旋回流式の曝気方式をとる、廃水処理方法において、
前記散気装置Aとは別に、前記微生物固定床に対応してその下方に、流量可変とした散気装置Bを設置し、
前記微生物固定床は、旋回流外周側の微生物固定床ほど設置間隔を密にし、
前記散気装置Bは前記微生物固定床に対応して複数ブロックに分かれ、各ブロックからの散気はブロック毎にバルブにて流量可変とし、旋回流の流速が大きなブロックほど散気流量を大きくするとともに、前記散気装置Bからの散気流量の合計は、前記散気装置Aを含めた散気流量全体の合計に対して10%以上かつ旋回流の流れが滞って汚泥沈積を引き起す恐れのない範囲とすることを特徴とする廃水処理方法。
A part of the bottom of the reaction tank where the diffuser A for generating the swirling flow is removed from below the fixed microorganism bed in the fixed bed type reaction tank system in which a plurality of fixed microorganism beds are installed in the reaction tank. In the wastewater treatment method, which adopts a swirling flow aeration method in the reaction tank that circulates the wastewater to be treated as a swirling flow,
Apart from the diffusion device A, to the lower in response to the microorganism fixed bed, it established the air diffuser B was a variable flow rate,
The microbial fixed bed, the microbial fixed bed on the swirl flow outer peripheral side is closer to the installation interval,
The air diffuser B is divided into a plurality of blocks corresponding to the microorganism fixed bed, and the air diffuser from each block is variable in flow rate by a valve for each block, and the air diffuser flow rate is increased as the block has a higher flow velocity of the swirl flow. At the same time, the total diffused flow rate from the diffuser B is 10% or more of the total diffused flow including the diffuser A, and the swirl flow may be delayed, causing sludge deposition. A wastewater treatment method characterized in that the range is free of water.
JP2008297707A 2008-11-21 2008-11-21 Waste water treatment apparatus and waste water treatment method Expired - Fee Related JP5293109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008297707A JP5293109B2 (en) 2008-11-21 2008-11-21 Waste water treatment apparatus and waste water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008297707A JP5293109B2 (en) 2008-11-21 2008-11-21 Waste water treatment apparatus and waste water treatment method

Publications (2)

Publication Number Publication Date
JP2010119980A JP2010119980A (en) 2010-06-03
JP5293109B2 true JP5293109B2 (en) 2013-09-18

Family

ID=42321794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008297707A Expired - Fee Related JP5293109B2 (en) 2008-11-21 2008-11-21 Waste water treatment apparatus and waste water treatment method

Country Status (1)

Country Link
JP (1) JP5293109B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014046217A (en) * 2012-08-29 2014-03-17 Toshiba Corp Organic waste water treatment unit, and organic waste water treatment system using the same

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5727599Y2 (en) * 1977-06-22 1982-06-16
JPS54131346A (en) * 1978-04-03 1979-10-12 Mitsubishi Heavy Ind Ltd Waste water treatment by dipping former sticking membrane
JPS55133288U (en) * 1979-03-15 1980-09-20
JPS57191492U (en) * 1981-05-30 1982-12-04
JPS57191493U (en) * 1981-05-30 1982-12-04
JPS58153590A (en) * 1982-03-08 1983-09-12 Chiyoda Chem Eng & Constr Co Ltd Method and apparatus for treating waste water with aerobic microorganisms
JPS58190497U (en) * 1982-06-16 1983-12-17 千代田化工建設株式会社 Wastewater treatment equipment using microorganisms
JPS5939693U (en) * 1982-09-09 1984-03-13 三菱樹脂株式会社 Wastewater treatment equipment
JPH0380998A (en) * 1989-08-25 1991-04-05 Ngk Insulators Ltd Fluidized bed type waste water treatment method and apparatus
JPH0626399Y2 (en) * 1990-08-03 1994-07-20 艮一 小松 Sewage purification device
JPH04250898A (en) * 1990-12-28 1992-09-07 Yanmar Diesel Engine Co Ltd Batch-wise waste water treating device
JP2604745Y2 (en) * 1993-08-16 2000-06-05 栗田工業株式会社 Activated sludge treatment equipment
JPH08267078A (en) * 1995-03-29 1996-10-15 Matsushita Electric Works Ltd Sewage treating tank
JPH1170391A (en) * 1997-06-19 1999-03-16 Nkk Corp Waste water treatment method and apparatus therefor
JP3698297B2 (en) * 1999-08-23 2005-09-21 株式会社石垣 Filter media cleaning and recycling equipment
JP2002119989A (en) * 2000-10-18 2002-04-23 Mitsubishi Heavy Ind Ltd Bioreactor and microorganism activating method
JP3884735B2 (en) * 2003-12-10 2007-02-21 住友重機械工業株式会社 Aeration equipment
JP2008119609A (en) * 2006-11-13 2008-05-29 Kobelco Eco-Solutions Co Ltd Gas diffusion system and gas diffusion method
JP5190242B2 (en) * 2007-10-02 2013-04-24 株式会社神鋼環境ソリューション Biological treatment method and biological treatment apparatus
JP5267068B2 (en) * 2008-11-21 2013-08-21 Jfeスチール株式会社 Waste water treatment apparatus and waste water treatment method

Also Published As

Publication number Publication date
JP2010119980A (en) 2010-06-03

Similar Documents

Publication Publication Date Title
US8110108B2 (en) Wastewater treatment system
CN107200401A (en) The aerobic membrane module processing method of anaerobic/anoxic
CN105722795A (en) Immobilized microorganism carrier, and contact oxidation combination system employing same
CN107176679A (en) The aerobic membrane module processing method of anaerobic/anoxic
JP5293109B2 (en) Waste water treatment apparatus and waste water treatment method
CN103613255B (en) Domestic sewage treatment integrated equipment and treatment method
KR100249422B1 (en) Submerged sewage purifier and method for purifying sewage by using the purifier
JP5158523B2 (en) Denitrification processing equipment
JP2008246483A (en) Apparatus for biological treatment of waste water
JP5636862B2 (en) Waste water treatment equipment
CN210012649U (en) Aerobic biological reaction tank with sectional filler
JP5267068B2 (en) Waste water treatment apparatus and waste water treatment method
TW201934498A (en) Operating method for aerobic organism treatment device
CN107151054A (en) The aerobic membrane module processing unit of anaerobic/anoxic
JPH07116692A (en) Treating device for nitrification and denitrification of sewage
JP4524553B2 (en) Membrane separation activated sludge treatment equipment
CN207903981U (en) A kind of efficient up-flow biological reaction apparatus
CN206940545U (en) A2O2+MBR processing units
JPH10128366A (en) Method for treating waste water using microorganism-immobilized carrier
JPH10216787A (en) Waste water treatment equipment
JP3627402B2 (en) Wastewater treatment method using microorganism-immobilized carrier
CN203402971U (en) Carbon aeration tank
KR102497135B1 (en) Advanced wastewater complex treatment apparatus with three step filtering type
JPH07136679A (en) Wastewater treatment tank
JP6874435B2 (en) Wastewater treatment equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110824

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130527

R150 Certificate of patent or registration of utility model

Ref document number: 5293109

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees