JP5158523B2 - Denitrification processing equipment - Google Patents

Denitrification processing equipment Download PDF

Info

Publication number
JP5158523B2
JP5158523B2 JP2009120098A JP2009120098A JP5158523B2 JP 5158523 B2 JP5158523 B2 JP 5158523B2 JP 2009120098 A JP2009120098 A JP 2009120098A JP 2009120098 A JP2009120098 A JP 2009120098A JP 5158523 B2 JP5158523 B2 JP 5158523B2
Authority
JP
Japan
Prior art keywords
carrier
denitrification
treated
water
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009120098A
Other languages
Japanese (ja)
Other versions
JP2010264422A (en
Inventor
直樹 安部
雅智 渡部
和一 井坂
直道 森
康之 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2009120098A priority Critical patent/JP5158523B2/en
Publication of JP2010264422A publication Critical patent/JP2010264422A/en
Application granted granted Critical
Publication of JP5158523B2 publication Critical patent/JP5158523B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、脱窒処理装置に係り、特に被処理水が流入する脱窒槽内に脱窒菌を担持した担体を充填して脱窒処理を行う脱窒処理装置に関する。   The present invention relates to a denitrification treatment apparatus, and more particularly, to a denitrification treatment apparatus that performs a denitrification treatment by filling a carrier carrying denitrification bacteria in a denitrification tank into which treated water flows.

従来、廃水中のアンモニアを処理する装置として硝化・脱窒装置が知られている(例えば特許文献1)。この硝化・脱窒装置は、アンモニアの効率的な除去を目的として、硝化菌を含有する微生物(例えば活性汚泥)を担持材料に担持した担体を硝化槽内に充填して硝化槽内の硝化菌濃度を高めることにより、硝化効率を上げることが通常行われている。   Conventionally, a nitrification / denitrification apparatus is known as an apparatus for treating ammonia in wastewater (for example, Patent Document 1). This nitrification / denitrification device is used for the purpose of efficient removal of ammonia. A nitrification bacterium in the nitrification tank is filled by filling a nitrification tank with a carrier carrying a microorganism (for example, activated sludge) containing nitrification bacteria on a support material. It is usual to increase the nitrification efficiency by increasing the concentration.

担体としては、スポンジ、発泡プラスチックなどの担持材料の表面に細菌を付着させる付着担体と、ゲル中に細菌を包括固定する包括化担体とがある。   Examples of the carrier include an adherent carrier that attaches bacteria to the surface of a support material such as sponge and foamed plastic, and an encapsulated carrier that comprehensively immobilizes bacteria in a gel.

担体が充填された硝化槽は、硝化効率を高めるために被処理水や担体を硝化槽内で流動させることが重要であり、流動手段が設けられる。硝化槽での硝化反応は好気性反応であるため、流動手段としてエア曝気装置が通常使用される。   In the nitrification tank filled with the carrier, it is important to flow the water to be treated and the carrier in the nitrification tank in order to increase the nitrification efficiency, and a flow means is provided. Since the nitrification reaction in the nitrification tank is an aerobic reaction, an air aeration apparatus is usually used as a flow means.

また、硝化槽の処理水出口にはスクリーンを設け、担体が処理水に同伴して流出するのを防止している。この場合、特許文献2に示すように、スクリーンの前面側にガイド板を設置して、エア曝気装置のエアによるエアリフトによる水流をガイド板とスクリーンとの間に導いて水流でスクリーンを洗浄することにより、担体がスクリーンに目詰まりすることを防止している。   Further, a screen is provided at the treated water outlet of the nitrification tank to prevent the carrier from flowing out along with the treated water. In this case, as shown in Patent Document 2, a guide plate is installed on the front side of the screen, and the screen is washed with the water flow by guiding the water flow caused by the air lift of the air aeration apparatus between the guide plate and the screen. This prevents the carrier from clogging the screen.

即ち、流動手段としてエア曝気装置を使用できる硝化槽の場合には、スクリーンを設けてもエア曝気のエアによってスクリーンに目詰り防止できる。   That is, in the case of a nitrification tank in which an air aeration apparatus can be used as the flow means, even if a screen is provided, the screen can be prevented from being clogged by the air of air aeration.

ところで、硝化・脱窒装置の脱窒反応の効率化のためには、脱窒槽にも脱窒菌を含有する微生物(例えば活性汚泥)を担持した担体を充填することが好ましい。   By the way, in order to improve the efficiency of the denitrification reaction of the nitrification / denitrification apparatus, it is preferable to fill the denitrification tank with a carrier carrying microorganisms containing denitrifying bacteria (for example, activated sludge).

しかし、脱窒槽での脱窒反応は、嫌気性反応であるため被処理水や担体の流動及びスクリーンの目詰まり防止にエア曝気装置を使用できないという問題がある。そうかと言って、エア以外の気体である窒素ガスや二酸化炭素ガス等を曝気したのでは、窒素や二酸化炭素が処理水に溶解してしまい問題があると共にランニングコストが莫大になってしまう。   However, since the denitrification reaction in the denitrification tank is an anaerobic reaction, there is a problem that the air aeration apparatus cannot be used to prevent the clogging of the water to be treated and the carrier and the screen. However, if nitrogen gas or carbon dioxide gas, which is a gas other than air, is aerated, nitrogen and carbon dioxide are dissolved in the treated water, and there is a problem and the running cost becomes enormous.

したがって、従来の脱窒槽には、被処理水や担体の流動を行うための手段として脱窒槽内に水中攪拌機を設けられているのが通常である。   Therefore, the conventional denitrification tank is usually provided with an underwater agitator in the denitrification tank as means for flowing the water to be treated and the carrier.

特開2000−288581号公報JP 2000-285881 A 特開平09−117785号公報JP 09-117785 A

しかしながら、担体が充填された脱窒槽に水中攪拌機を設けると、付着担体の場合には、担体が攪拌機に接触することによって付着した細菌が剥離されてしまい、脱窒性能が低下するという問題がある。これにより、付着担体を脱窒処理に使用する効果が十分に発揮されないという欠点がある。   However, when an underwater stirrer is provided in a denitrification tank filled with a carrier, in the case of an adherent carrier, the attached bacteria are peeled off when the carrier comes into contact with the stirrer, and there is a problem that the denitrification performance is lowered. . Thereby, there exists a fault that the effect of using an adhesion | attachment support | carrier for a denitrification process is not fully exhibited.

一方、包括担体の場合には、攪拌機への接触や攪拌剪断力によって担持材料であるゲルが細かく破壊されてしまい、スクリーンから流出してしまうという問題がある。これにより、包括担体を脱窒処理に使用する効果が十分に発揮されないという欠点がある。   On the other hand, in the case of the entrapping carrier, there is a problem that the gel as the supporting material is finely broken due to contact with the stirrer or a stirring shearing force and flows out of the screen. Thereby, there exists a fault that the effect which uses a comprehensive support | carrier for a denitrification process is not fully exhibited.

また、脱窒槽は、硝化槽のようにスクリーンの目詰まり防止にエア曝気装置が使用できなので、スクリーンが目詰まりし易く、頻繁に掃除しなくてはならないいという問題がある。このことから、脱窒槽に担体を充填して脱窒処理の効率化を図るためには、スクリーンを設けなくてもよい脱窒槽が要望されている。   Further, since the denitrification tank can use an air aeration apparatus to prevent clogging of the screen like the nitrification tank, there is a problem that the screen is easily clogged and must be frequently cleaned. For this reason, in order to fill the denitrification tank with a carrier and improve the efficiency of the denitrification process, a denitrification tank that does not require a screen is desired.

本発明はこのような事情に鑑みてなされたものであり、脱窒槽に充填される担体から微生物が剥離されたり、担体が破損したりすることがないように脱窒槽内で被処理水や担体を流動させることができ、しかも担体流出防止用のスクリーンを設ける必要もない脱窒処理装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and the water to be treated and the carrier in the denitrification tank so that the microorganisms are not detached from the carrier filled in the denitrification tank or the carrier is damaged. It is an object of the present invention to provide a denitrification apparatus that can be made to flow and that does not require a screen for preventing carrier outflow.

本発明の請求項1は、前記目的を達成するために、被処理水が流入する脱窒槽内に脱窒菌を担持した多数の担体を充填して前記被処理水の脱窒処理を行う脱窒処理装置において、前記脱窒槽の被処理水中に縦向きに設けられ、前記脱窒槽内を前記担体が充填される筒外と該筒外と連通する筒内とに区画する複数の筒状部材と、前記複数の筒状部材の筒内それぞれに攪拌羽根が設けられ、該攪拌羽根の回転で前記複数の筒内に下降流を生じさせると共に前記複数の筒外に前記下降流が槽底部で反転した上向流を生じさせて前記脱窒槽内の被処理水に縦向きの循環流を発生させることによって、前記複数の筒外の上向流中に前記担体の流動床を形成する攪拌手段と、前記複数の筒状部材の筒内それぞれに設けられた攪拌羽根の回転数をそれぞれ調整して前記上向流の流速を変えることによって前記担体の流動床の膨張率を被処理水の流入側から処理水の排出側にかけて段階的に小さく、又は大きく制御する制御手段と、を備えたことを特徴とする脱窒処理装置を提供する。 According to a first aspect of the present invention, in order to achieve the above object, denitrification is performed by filling a large number of carriers carrying denitrifying bacteria in a denitrification tank into which the water to be treated flows, and performing denitrification treatment of the water to be treated. In the treatment apparatus, a plurality of cylindrical members which are provided vertically in the water to be treated of the denitrification tank and divide the inside of the denitrification tank into an outside cylinder filled with the carrier and an inside cylinder communicating with the outside of the cylinder A stirring blade is provided in each cylinder of the plurality of cylindrical members, and a downward flow is generated in the plurality of cylinders by rotation of the stirring blade, and the downflow is reversed outside the plurality of tubes at the bottom of the tank. A stirring means for forming a fluidized bed of the carrier in the upward flow outside the plurality of cylinders by generating a vertical circulation flow in the water to be treated in the denitrification tank Adjusting the number of rotations of the stirring blades provided in the cylinders of the plurality of cylindrical members, respectively. And a control means for the expansion rate of the fluidized bed of carrier reduced stepwise toward the discharge side of the treated water from the inflow side of the water to be treated, or to increase controlled by varying the flow rate of the upflow and A denitrification apparatus characterized by the above is provided.

ここで、「脱窒菌を担持した」とは、脱窒菌のみに限らず脱窒菌を主として含む微生物群(例えば活性汚泥)を担持する場合も含む。また、脱窒槽には、担体と一緒に浮遊活性汚泥が存在していてもよい。   Here, “supporting denitrifying bacteria” includes not only denitrifying bacteria but also a case of supporting a group of microorganisms mainly containing denitrifying bacteria (for example, activated sludge). In the denitrification tank, suspended activated sludge may be present together with the carrier.

本発明によれば、脱窒槽内を筒状部材によって、脱窒菌を担持した多数の担体が充填される筒外と、該筒外に連通する筒内とに区画すると共に、筒内に攪拌機の攪拌羽根を設けるようにした。そして、攪拌羽根を回転させて、筒内に下降流が筒外に上向流が生じるようにして、担体が充填された筒外に、上向流中で多数の担体が流動する流動床を形成するようにした。   According to the present invention, the inside of the denitrification tank is partitioned by the cylindrical member into the outside of the cylinder filled with a large number of carriers carrying denitrifying bacteria and the inside of the cylinder communicating with the outside of the cylinder, and the stirrer is provided in the cylinder. A stirring blade was provided. Then, by rotating the stirring blade, a downward flow is generated in the cylinder and an upward flow is generated outside the cylinder, and a fluidized bed in which a large number of carriers flow in the upward flow outside the cylinder filled with the carrier. It was made to form.

これにより、脱窒槽内に流入した被処理水には、流動床を通過する縦向きの循環流が形成されるので、担体と被処理水との接触効率が良くなり、脱窒効率を向上することができる。   As a result, a longitudinal circulation flow passing through the fluidized bed is formed in the water to be treated which has flowed into the denitrification tank, so that the contact efficiency between the carrier and the water to be treated is improved and the denitrification efficiency is improved. be able to.

更に、本発明では、攪拌手段を制御する制御手段を設け、攪拌羽根の回転数を調整して上向流の流速を変えることによって流動床の膨張率を制御するようにした。これにより、流動床の担体が筒状部材の筒内に流入して攪拌羽根に接触したり、脱窒槽から流出したりすることがない。   Furthermore, in the present invention, a control means for controlling the stirring means is provided, and the expansion rate of the fluidized bed is controlled by changing the flow rate of the upward flow by adjusting the rotation speed of the stirring blades. Thereby, the support | carrier of a fluid bed does not flow in into the cylinder of a cylindrical member, and does not contact a stirring blade, or flows out from a denitrification tank.

したがって、脱窒槽に充填される担体から微生物が剥離されたり、担体が破損したりすることがないように脱窒槽内で被処理水や担体を流動させることができ、しかも担体流出防止用のスクリーンを設ける必要もない脱窒処理装置を提供できる。   Therefore, the water to be treated and the carrier can flow in the denitrification tank so that the microorganisms are not detached from the carrier filled in the denitrification tank or the carrier is damaged, and the screen for preventing the carrier from flowing out. It is possible to provide a denitrification processing apparatus that does not need to be provided.

本発明において、前記流動床の上端を検出する検出手段を設け、前記制御手段は、前記検出手段の検出結果に基づいて前記攪拌羽根の回転数を調整することが好ましい。   In the present invention, it is preferable that detection means for detecting an upper end of the fluidized bed is provided, and the control means adjusts the rotation speed of the stirring blade based on a detection result of the detection means.

これにより、流動床の担体が筒状部材の筒内に流入して攪拌羽根に接触したり、脱窒槽から流出したりすることを確実に防止できる。   Thereby, it can prevent reliably that the support | carrier of a fluid bed flows in into the cylinder of a cylindrical member, contacts a stirring blade, or flows out from a denitrification tank.

本発明において、前記制御手段は、前記攪拌羽根の回転を停止した状態での前記流動床の膨張率を100%としたときに、前記膨張率が150〜200%の範囲になるように前記攪拌羽根の回転数を調整することが好ましい。   In the present invention, the control means is configured so that the expansion rate is in a range of 150 to 200% when the expansion rate of the fluidized bed in a state where rotation of the stirring blade is stopped is 100%. It is preferable to adjust the number of rotations of the blades.

流動床の膨張率が150%未満であると、流動床を形成する担体同士の隙間が不十分なために、被処理水中の固形分が流動床を閉塞させ易くなる。また、膨張率が200%を超えると、担体が筒状部材の筒内に流入し易くなる。   If the expansion rate of the fluidized bed is less than 150%, the gap between the carriers forming the fluidized bed is insufficient, so that the solid content in the water to be treated easily blocks the fluidized bed. When the expansion rate exceeds 200%, the carrier easily flows into the cylinder of the cylindrical member.

本発明において、前記脱窒槽底部のコーナーにはテーパが形成されていることが好ましい。これによって、筒内に形成された下降流が筒外においてスムーズに上向流に反転されるので、脱窒槽底部のコーナーに被処理水の滞留が形成されない。   In the present invention, it is preferable that a taper is formed at a corner of the bottom of the denitrification tank. As a result, the downward flow formed in the cylinder is smoothly reversed to the upward flow outside the cylinder, so that the water to be treated is not retained at the corner of the bottom of the denitrification tank.

本発明において、前記担体は、脱窒菌をゲルに包括固定した包括担体であることが好ましい。   In the present invention, the carrier is preferably a generic carrier in which denitrifying bacteria are generically immobilized on a gel.

本発明の脱窒処理装置によれば、脱窒槽に充填される担体から微生物が剥離されたり、担体が破損したりすることがないように脱窒槽内で被処理水や担体を流動させることができ、しかも担体流出防止用のスクリーンを設ける必要もない。   According to the denitrification treatment apparatus of the present invention, the water to be treated and the carrier can be flowed in the denitrification tank so that the microorganisms are not detached from the carrier filled in the denitrification tank or the carrier is damaged. In addition, it is not necessary to provide a screen for preventing the carrier from flowing out.

本発明の脱窒処理装置の概念図Conceptual diagram of the denitrification apparatus of the present invention 本発明の脱窒処理装置で、脱窒槽内にユニットを複数設け場合の概念図The conceptual diagram in the case of providing a plurality of units in the denitrification tank in the denitrification processing apparatus of the present invention 従来の脱窒処理装置の概念図Conceptual diagram of conventional denitrification equipment 本発明の実施例における試験Aの試験結果を説明する説明図Explanatory drawing explaining the test result of the test A in the Example of this invention 本発明の実施例における試験Bの試験結果を説明する説明図Explanatory drawing explaining the test result of the test B in the Example of this invention

以下、添付図面に従って本発明の脱窒処理装置の好ましい実施の形態について説明する。   Hereinafter, preferred embodiments of a denitrification apparatus of the present invention will be described with reference to the accompanying drawings.

図1に示すように、本発明の脱窒処理装置10は、主として、脱窒槽12と、脱窒槽12の被処理水中に縦向きに設けられた筒状部材14と、筒状部材14の筒内に攪拌羽根16が配置された攪拌手段18と、攪拌羽根16の回転数を制御する制御手段20と、で構成される。   As shown in FIG. 1, the denitrification apparatus 10 of the present invention mainly includes a denitrification tank 12, a cylindrical member 14 provided vertically in the water to be treated in the denitrification tank 12, and a cylinder of the cylindrical member 14. A stirring means 18 having a stirring blade 16 disposed therein and a control means 20 for controlling the rotational speed of the stirring blade 16 are configured.

脱窒槽12の底部には流入配管22が接続され、流入配管22にはポンプ24が設けられる。これにより、被処理水(例えば図示しない硝化槽からの硝化液)が流入配管22を流れて脱窒槽12内に流入する。また、脱窒槽12の上部には処理水配管26が接続され、脱窒槽12で脱窒処理された処理水が槽外に排出される。脱窒槽底部のコーナーにはテーパ13が形成されていることが好ましい。   An inflow pipe 22 is connected to the bottom of the denitrification tank 12, and a pump 24 is provided in the inflow pipe 22. As a result, water to be treated (for example, a nitrification liquid from a nitrification tank (not shown)) flows through the inflow pipe 22 and flows into the denitrification tank 12. Moreover, the treated water piping 26 is connected to the upper part of the denitrification tank 12, and the treated water denitrified in the denitrification tank 12 is discharged out of the tank. A taper 13 is preferably formed at the corner of the bottom of the denitrification tank.

筒状部材14の上端開口14Aは被処理水の水面下に形成されると共に、下端開口14Bは脱窒槽12底部から離間した位置に形成される。これにより、筒状部材14の筒外と筒内とが連通されて、被処理水が流通することができる。筒状部材14は、脱窒槽12の幅方向中央部に配置されることが好ましい。また、筒状部材14の筒内上部には攪拌羽根16が設けられ、攪拌羽根16を回転させる回転軸17が脱窒槽12の上方に配置されたモータ28に連結される。モータ28は図示しない支持部材に支持される。   The upper end opening 14A of the cylindrical member 14 is formed below the surface of the water to be treated, and the lower end opening 14B is formed at a position spaced from the bottom of the denitrification tank 12. Thereby, the outside of the cylinder of the cylindrical member 14 and the inside of the cylinder communicate with each other, and the water to be treated can flow. It is preferable that the cylindrical member 14 is disposed at the center in the width direction of the denitrification tank 12. Further, a stirring blade 16 is provided in the upper part of the cylindrical member 14 in the cylinder, and a rotating shaft 17 that rotates the stirring blade 16 is connected to a motor 28 disposed above the denitrification tank 12. The motor 28 is supported by a support member (not shown).

また、脱窒槽12内であって筒状部材14の筒外には、脱窒菌を担持した多数の担体30、30…が充填される。担体30の充填率としては、脱窒槽有効容積の10〜20容積%(V/V%)の範囲が好ましい。   Further, the inside of the denitrification tank 12 and the outside of the cylindrical member 14 is filled with a large number of carriers 30, 30. The filling rate of the carrier 30 is preferably in the range of 10 to 20% by volume (V / V%) of the effective volume of the denitrification tank.

そして、モータ28は、筒状部材14の筒内に被処理水の下降流が生じる回転方向に攪拌羽根16を回転させる。この結果、筒内で生じた下降流は、筒状部材14の下端開口14Bから脱窒槽12底部に向けて吐出され、脱窒槽12底部に衝突して流れが反転する。反転した流れは脱窒槽12内の筒外を上向流となって上昇し、再び筒状部材14の上端開口14Aから取り込まれる。これにより、脱窒槽12内には、被処理水が筒状部材14の筒内を下降流となって流れ、筒外を上向流となって流れる縦向きの循環流が形成され、この上向流中に担体30の流動床32が形成される。   And the motor 28 rotates the stirring blade 16 in the rotation direction in which the downflow of the water to be treated is generated in the cylinder of the cylindrical member 14. As a result, the downward flow generated in the cylinder is discharged from the lower end opening 14B of the cylindrical member 14 toward the bottom of the denitrification tank 12, collides with the bottom of the denitrification tank 12, and the flow is reversed. The reversed flow rises as an upward flow outside the cylinder in the denitrification tank 12 and is taken in again from the upper end opening 14 </ b> A of the cylindrical member 14. Thereby, in the denitrification tank 12, a vertical circulation flow is formed in which the water to be treated flows as a downward flow in the cylinder of the cylindrical member 14 and flows as an upward flow outside the cylinder. A fluidized bed 32 of the carrier 30 is formed during counterflow.

流動床32を形成する担体30としては、担体材料の表面に脱窒菌を付着した付着担体や、ゲル内部に脱窒菌を包括した包括担体を使用できる。ここで、「脱窒菌を担持した」とは、脱窒菌のみに限らず脱窒菌を主として含む微生物群(例えば活性汚泥)を担持する場合も含む。   As the carrier 30 that forms the fluidized bed 32, an attached carrier in which denitrifying bacteria are attached to the surface of the carrier material, or a comprehensive carrier in which denitrifying bacteria are included inside the gel can be used. Here, “supporting denitrifying bacteria” includes not only denitrifying bacteria but also a case of supporting a group of microorganisms mainly containing denitrifying bacteria (for example, activated sludge).

また、使用される担体30の比重は、攪拌羽根16を回転しない状態、即ち筒状部材14の筒外に上向流が発生せずに静置された状態では脱窒槽12底部に沈降し、上向流を発生させることにより上向流中で流動することが必要である。具体的には、担体30の比重は付着担体及び包括担体のいずれの場合であっても1.01以上、1.10以下であることが好ましい。より好ましくは、1.02〜1.05の範囲である。   Further, the specific gravity of the carrier 30 used is settled at the bottom of the denitrification tank 12 in a state where the stirring blades 16 are not rotated, that is, in a state where no upward flow is generated outside the cylindrical member 14, It is necessary to flow in the upward flow by generating an upward flow. Specifically, the specific gravity of the carrier 30 is preferably 1.01 or more and 1.10 or less in any case of the adhering carrier and the entrapping carrier. More preferably, it is the range of 1.02-1.05.

付着担体は、担体材料の表面に脱窒菌を付着保持して生物膜を形成するものであり、球状担体、筒状担体、紐状担体、ゲル状担体、不織布材料等のように表面積が大きく表面に凹凸の多い担体材料を使用すると脱窒菌を多く保持することができる。   The adherent carrier forms a biofilm by attaching and retaining denitrifying bacteria on the surface of the carrier material, and has a large surface area such as a spherical carrier, a cylindrical carrier, a string carrier, a gel carrier, and a nonwoven material. If a carrier material with many irregularities is used, a large amount of denitrifying bacteria can be retained.

包括担体は、少なくとも脱窒菌と担体材料であるモノマー、あるいはプレポリマーを混合し、この混合物を重合することでゲルの内部に脱窒菌を保持したものである。モノマー材料としては、アクリルアミド、メチレンビスアクリルアミド、トリアクリルフォルマール等を好適に使用できる。プレポリマーとしては、ポリエチレングリコールジアクリレートやポリエチレングリコールメタクリレートを好適に使用することができる。包括担体の形状は球状、矩形状であることが好ましく、この場合担体表面から担体中心まで半径長さが2.5mm以下(直径で5mm以下)であることが好ましい。包括担体は、窒素ガスが生成される脱窒反応が担体内部で生じるが、半径2.5mm以内であれば、発生した窒素ガスが担体内部に蓄積されずにスムーズに担体外部に排出できる。   The inclusion carrier is one in which at least a denitrifying bacterium and a monomer or prepolymer as a carrier material are mixed, and this mixture is polymerized to retain the denitrifying bacterium inside the gel. As the monomer material, acrylamide, methylenebisacrylamide, triacryl formal and the like can be suitably used. As the prepolymer, polyethylene glycol diacrylate or polyethylene glycol methacrylate can be suitably used. The shape of the inclusion carrier is preferably spherical or rectangular. In this case, the radial length from the carrier surface to the center of the carrier is preferably 2.5 mm or less (diameter of 5 mm or less). In the inclusion carrier, a denitrification reaction in which nitrogen gas is generated occurs inside the carrier, but if the radius is within 2.5 mm, the generated nitrogen gas can be smoothly discharged outside the carrier without accumulating inside the carrier.

また、付着担体及び包括担体のいずれの担体の場合にも、脱窒菌が10個/担体mL以上が担持されていることが好ましい。 Further, in both cases of the adherent carrier and the entrapping carrier, it is preferable that 10 4 denitrifying bacteria / mL or more of the carrier are supported.

制御手段20には、流動床32の上端を検出する検出手段34が設けられと共に、検出手段34は筒状部材14の上端開口14Aよりも下方位置に配置される。検出手段34の配置位置としては、例えば筒状部材14の上端開口から30〜50cm程度下方であることが好ましい。検出手段34で検出された検出データは制御手段20に逐次入力されると共に、制御手段20は攪拌手段18のモータ28に信号ケーブルを介して接続される。検出手段34としては、界面計を好適に使用できる。   The control means 20 is provided with detection means 34 for detecting the upper end of the fluidized bed 32, and the detection means 34 is disposed at a position below the upper end opening 14 </ b> A of the cylindrical member 14. The arrangement position of the detection means 34 is preferably, for example, about 30 to 50 cm below the upper end opening of the tubular member 14. The detection data detected by the detection means 34 is sequentially input to the control means 20, and the control means 20 is connected to the motor 28 of the stirring means 18 via a signal cable. As the detection means 34, an interface meter can be preferably used.

そして、制御手段20は、検出手段34の検出結果に基づいて攪拌羽根16の回転数を制御する。具体的には、膨張率が150〜200%の範囲になるように攪拌羽根16の回転数を調整することが好ましい。ここで、流動床32の膨張率とは、攪拌羽根16の回転を停止して担体30が沈降した状態での流動床32の膨張率を100%としたときに、攪拌羽根16の回転によって発生する上向流によって流動床32の層厚みが上方に膨張する比率をいう。例えば膨張率200%とは、上向流によって流動床32の層厚みの2倍に膨張したことを意味する。   Then, the control means 20 controls the rotation speed of the stirring blade 16 based on the detection result of the detection means 34. Specifically, it is preferable to adjust the rotation speed of the stirring blade 16 so that the expansion rate is in the range of 150 to 200%. Here, the expansion rate of the fluidized bed 32 is generated by the rotation of the agitating blade 16 when the expansion rate of the fluidized bed 32 is 100% when the rotation of the stirring blade 16 is stopped and the carrier 30 is settled. The ratio by which the layer thickness of the fluidized bed 32 expands upward due to upward flow. For example, an expansion rate of 200% means that the fluid has expanded to twice the bed thickness of the fluidized bed 32 due to the upward flow.

流動床32の膨張率が150%未満であると、流動床32を形成する担体30同士の隙間が不十分なために、被処理水中の固形分が流動床32を閉塞させ易くなる。また、膨張率が200%を超えると、担体30が筒状部材14の筒内に流入し易くなり担体30が攪拌羽根16で破壊される。したがって、膨張率200%のときの流動床32の上端位置に検出手段34が配置されることが好ましい。   If the expansion rate of the fluidized bed 32 is less than 150%, the gap between the carriers 30 forming the fluidized bed 32 is insufficient, so that the solid content in the water to be treated easily blocks the fluidized bed 32. If the expansion rate exceeds 200%, the carrier 30 easily flows into the cylinder of the cylindrical member 14, and the carrier 30 is broken by the stirring blade 16. Therefore, it is preferable that the detection means 34 is disposed at the upper end position of the fluidized bed 32 when the expansion rate is 200%.

次に、上記の如く構成された脱窒処理装置10の作用について説明する。   Next, the operation of the denitrification apparatus 10 configured as described above will be described.

脱窒槽12の被処理水中に配設された筒状部材14の筒外に多数の担体30が充填される。この状態で、制御手段20は攪拌手段18の攪拌羽根16を最初低速で回転させて、脱窒槽12内に、筒状部材14の筒内と筒外との間を循環する低速な循環流を形成する。これにより、筒状部材14の筒外には膨張率が100%を少し超える程度の流動床32が形成される。   A large number of carriers 30 are filled outside the cylindrical member 14 disposed in the water to be treated in the denitrification tank 12. In this state, the control means 20 first rotates the stirring blade 16 of the stirring means 18 at a low speed to generate a low-speed circulation flow that circulates between the inside and the outside of the cylindrical member 14 in the denitrification tank 12. Form. As a result, a fluidized bed 32 having an expansion rate slightly exceeding 100% is formed outside the cylindrical member 14.

次に、制御手段20は、攪拌羽根16の回転数を徐々に上昇させていく。この結果、流動床32が膨張して流動床32の上端が検出手段34によって検出されるので、制御手段20は攪拌羽根16の回転数を維持する。これにより、膨張率が150〜200%の流動床32が形成される。したがって、脱窒槽12内に流入した被処理水には、流動床32を通過する縦向きの循環流が形成されるので、担体30と被処理水との接触効率が良くなり、脱窒効率を向上することができる。更には、流動床32の担体30が筒状部材14の筒内に流入して攪拌羽根16に接触したり、脱窒槽12から流出したりすることがない。   Next, the control means 20 gradually increases the rotational speed of the stirring blade 16. As a result, the fluidized bed 32 expands and the upper end of the fluidized bed 32 is detected by the detection unit 34, so that the control unit 20 maintains the rotation speed of the stirring blade 16. Thereby, the fluidized bed 32 having an expansion rate of 150 to 200% is formed. Accordingly, a longitudinal circulation flow passing through the fluidized bed 32 is formed in the water to be treated which has flowed into the denitrification tank 12, so that the contact efficiency between the carrier 30 and the water to be treated is improved, and the denitrification efficiency is improved. Can be improved. Furthermore, the carrier 30 of the fluidized bed 32 does not flow into the cylinder of the cylindrical member 14 and come into contact with the stirring blade 16 or flow out of the denitrification tank 12.

これにより、脱窒槽12に充填される担体30から微生物が剥離されたり、担体30が破損したりすることがないように脱窒槽12内で被処理水や担体30を流動させることができ、しかも担体流出防止用のスクリーンを設ける必要もない。   As a result, the water to be treated and the carrier 30 can flow in the denitrification tank 12 so that the microorganisms are not detached from the carrier 30 filled in the denitrification tank 12 or the carrier 30 is damaged. There is no need to provide a screen for preventing carrier outflow.

図2の脱窒処理装置40は、脱窒槽12内に、筒状部材14と攪拌手段18とを備えた被処理水の循環ユニット42を、複数本並設させたものである。筒状部材14及び攪拌手段18の説明は、図1の場合と同様であるので省略すると共に、図1と同じ部材には同符号を付して説明する。また、循環ユニット42の本数を図2に示す3基の例で以下に説明するが、これに限定されるものではない。   In the denitrification treatment apparatus 40 of FIG. 2, a plurality of circulation units 42 for water to be treated including the cylindrical member 14 and the stirring means 18 are arranged in parallel in the denitrification tank 12. The description of the cylindrical member 14 and the stirring means 18 is the same as in FIG. 1 and will be omitted, and the same members as those in FIG. Moreover, although the number of the circulation units 42 is demonstrated below by the example of 3 units | sets shown in FIG. 2, it is not limited to this.

図2に示すように、脱窒槽12の一方端側に被処理水の流入配管22が接続されると共に、他方端側に処理水の処理水配管26が接続される。そして、流入配管22側から処理水配管26側にかけて、第1の循環ユニット42A、第2の循環ユニット42B、第3の循環ユニット42Cが配設される。   As shown in FIG. 2, the treated water inflow pipe 22 is connected to one end side of the denitrification tank 12, and the treated water pipe 26 is connected to the other end side. A first circulation unit 42A, a second circulation unit 42B, and a third circulation unit 42C are arranged from the inflow pipe 22 side to the treated water pipe 26 side.

各循環ユニット42A,42B,42Cにおける攪拌手段18のモータ28は、信号ケーブルを介して制御手段20に接続されると共に、流動床32の上端を検出する検出手段34からは検出結果が制御手段20に逐次送られる。   The motor 28 of the stirring means 18 in each circulation unit 42A, 42B, 42C is connected to the control means 20 via a signal cable, and the detection result is detected from the detection means 34 for detecting the upper end of the fluidized bed 32. Are sent sequentially.

これにより、流入配管22から流入した被処理水は、先ず第1の循環ユニット42Aで脱窒処理され、次に第2の循環ユニット42Bで脱窒処理され、最後に第3の循環ユニット42Cで脱窒処理された後、処理水配管26から排出される。即ち、図2の如く脱窒処理装置40を構成することによって、図1で説明したと同じ効果を奏するだけでなく、1つの脱窒槽12内で脱窒処理を多段に行うことができる。この場合、制御手段20は、各循環ユニット42A,42B,42Cの攪拌羽根16の回転数を変えることによって、各循環ユニット42A,42B,42Cが形成する流動床32の膨張率を変えることができる。例えば、流入配管22側から処理水配管26側にかけて流動床32の膨張率を段階的に小さくしたり、その逆に段階的に大きくしたりすることができるので、被処理水の水質に応じた柔軟性のある脱窒処理を行うことができる。   As a result, the water to be treated that flows in from the inflow pipe 22 is first denitrified in the first circulation unit 42A, then denitrified in the second circulation unit 42B, and finally in the third circulation unit 42C. After the denitrification treatment, it is discharged from the treated water pipe 26. That is, by configuring the denitrification apparatus 40 as shown in FIG. 2, not only the same effects as described with reference to FIG. 1 can be achieved, but also the denitrification process can be performed in multiple stages in one denitrification tank 12. In this case, the control means 20 can change the expansion rate of the fluidized bed 32 formed by the circulation units 42A, 42B, and 42C by changing the rotation speed of the stirring blades 16 of the circulation units 42A, 42B, and 42C. . For example, since the expansion rate of the fluidized bed 32 can be reduced stepwise from the inflow pipe 22 side to the treated water pipe 26 side, or vice versa, the flow rate can be increased stepwise. Flexible denitrification treatment can be performed.

次に本発明の実施例を説明する。   Next, examples of the present invention will be described.

[試験A]
試験Aは、本発明の脱窒処理装置(実施例)と従来の脱窒処理装置(比較例)とについて、脱窒性能、及び担体の状態を比較した対比試験である。
[Test A]
Test A is a comparison test comparing the denitrification performance and the state of the carrier for the denitrification treatment apparatus of the present invention (Example) and the conventional denitrification treatment apparatus (Comparative Example).

実施例の脱窒処理装置10は図1に示した装置を使用した。   The apparatus shown in FIG. 1 was used as the denitrification apparatus 10 of the example.

また、比較例の脱窒処理装置50としては、図3に示す装置を使用した。図3に示すように、脱窒槽52の一方端下部に流入配管54からポンプ56によって被処理水が流入し、脱窒槽52の他方端上部から処理水配管58を流れて処理水が排出される。また、脱窒槽52に流入した被処理水及び充填された担体60は、槽底部に配設された水中攪拌機62の攪拌羽根62Aが回転することによって流動される。   Moreover, the apparatus shown in FIG. 3 was used as the denitrification processing apparatus 50 of the comparative example. As shown in FIG. 3, the water to be treated flows into the lower part of one end of the denitrification tank 52 from the inflow pipe 54 by the pump 56, and the treated water flows from the upper part of the other end of the denitrification tank 52 through the treated water pipe 58. . Moreover, the to-be-processed water which flowed into the denitrification tank 52 and the filled carrier 60 are made to flow by the rotation of the stirring blade 62A of the underwater stirrer 62 disposed at the bottom of the tank.

(試験方法)
実施例及び比較例ともに、被処理水として、硝酸性窒素濃度(NO−N)が40mg/Lの合成廃水を使用し、1カ月の連続運転を行った。脱窒反応を行うためのBOD源としては、実施例及び比較例ともにBOD/Nの比=3になるようにメタノールを添加した。
(Test method)
In both Examples and Comparative Examples, synthetic wastewater having a nitrate nitrogen concentration (NO 3 -N) of 40 mg / L was used as the water to be treated, and continuous operation was performed for one month. As a BOD source for performing the denitrification reaction, methanol was added so that the ratio of BOD / N = 3 in both Examples and Comparative Examples.

実施例及び比較例ともに、担体30、60の条件を同じにして試験した。即ち、担体充填率は脱窒槽12、52の有効容積(1m)の15容積%とした。使用した担体30は、包括担体と付着担体(プラスチックの担体材料)を使用し、それぞれの担体30、60で試験した。包括担体、付着担体ともに、3mm角のペレット形状のもので、担体30、60の比重が1.02のものを使用した。 In both the examples and the comparative examples, the conditions of the carriers 30 and 60 were tested under the same conditions. That is, the carrier filling rate was set to 15% by volume of the effective volume (1 m 3 ) of the denitrification tanks 12 and 52. The carrier 30 used was a comprehensive carrier and an adherent carrier (plastic carrier material), and each carrier 30 and 60 was tested. Both the inclusion carrier and the adhesion carrier were in the form of 3 mm square pellets, and the specific gravity of the carriers 30 and 60 was 1.02.

そして、実施例では、流動床32の膨張率が150%になるように、制御手段20によって攪拌羽根16の回転数を制御した。一方、比較例では水中攪拌機62の攪拌羽根62Aの回転数を実施例と同じにした。   And in the Example, the rotation speed of the stirring blade 16 was controlled by the control means 20 so that the expansion rate of the fluidized bed 32 would be 150%. On the other hand, in the comparative example, the rotation speed of the stirring blade 62A of the underwater stirrer 62 was made the same as that of the example.

また、実施例及び比較例ともに、処理水が処理水配管26、58に流入する脱窒槽12、52位置に1.5mm目幅の担体流出防止用のスクリーン63を設けた。   Further, in both the examples and the comparative examples, a 1.5-mm-wide carrier outflow prevention screen 63 is provided at positions of the denitrification tanks 12 and 52 where the treated water flows into the treated water pipes 26 and 58.

(試験結果)
試験結果を図4の表に示す。
(Test results)
The test results are shown in the table of FIG.

図4の表から分かるように、包括担体を使用した比較例の脱窒処理装置50は、担体60が水中攪拌機62の攪拌羽根62Aに接触して破壊された。これにより、試験1カ月後には、元の3mm角の大きさの担体60は、全体の20%まで減少した。また、担体60が破壊されて細かくなった結果、スクリーン63から処理水と一緒に流出し易くなり、試験を続けるにしたがって脱窒性能が低下した。   As can be seen from the table of FIG. 4, the denitrification apparatus 50 of the comparative example using the entrapping carrier was broken when the carrier 60 contacted the stirring blade 62 </ b> A of the underwater stirrer 62. Thus, after one month of the test, the original 3 mm square carrier 60 was reduced to 20% of the total. Further, as a result of the carrier 60 being broken and becoming finer, it became easy to flow out of the screen 63 together with the treated water, and the denitrification performance was lowered as the test was continued.

これに対して、包括担体を使用した実施例の脱窒処理装置10は、筒状部材14の筒外に担体30の流動床32を形成し、筒内に流入したり、スクリーンから流出したりすることはなかった。これにより、担体30が筒内の攪拌羽根16に接触しないので、担体30の破壊は認められなかったと共に、スクリーンは不要であった。したがって、試験1カ月を通して高い脱窒性能を安定的に維持することができた。   On the other hand, in the denitrification processing apparatus 10 of the embodiment using the entrapping carrier, the fluidized bed 32 of the carrier 30 is formed outside the cylindrical member 14 and flows into the cylinder or out of the screen. I never did. Thus, since the carrier 30 does not contact the stirring blade 16 in the cylinder, the carrier 30 was not broken and the screen was unnecessary. Therefore, high denitrification performance could be stably maintained throughout the test one month.

また図4の表から分かるように、付着担体を使用した比較例の脱窒処理装置50は、担体材料がプラスチックであり水中攪拌機62によって破壊されることはなかった。しかし、担体材料に付着する付着菌体が剥離してしまった。これにより、剥離した付着菌体が処理水と一緒に脱窒槽52から流出するので、試験を続けるにしたがって脱窒性能が低下した。   Further, as can be seen from the table of FIG. 4, in the denitrification apparatus 50 of the comparative example using the adherent carrier, the carrier material is plastic and it was not destroyed by the underwater agitator 62. However, the adherent cells attached to the carrier material were peeled off. Thereby, since the peeled adherent cells flow out from the denitrification tank 52 together with the treated water, the denitrification performance decreased as the test was continued.

これに対して、付着担体を使用した実施例の脱窒処理装置10は、担体30が筒状部材14の筒外に流動床32を形成し、筒内に流入したり、スクリーンから流出したりすることはなかった。これにより、担体30が筒内の攪拌羽根16に接触しないので、付着菌体が剥離することがないと共に、スクリーンは不要であった。したがって、試験1カ月を通して高い脱窒性能を維持することができた。   On the other hand, in the denitrification processing apparatus 10 of the embodiment using the adhered carrier, the carrier 30 forms a fluidized bed 32 outside the cylinder member 14 and flows into the cylinder or out of the screen. I never did. Thereby, since the support | carrier 30 does not contact the stirring blade 16 in a pipe | tube, while an attached microbial cell does not peel, the screen was unnecessary. Therefore, high denitrification performance could be maintained throughout the test month.

[試験B]
試験Bは、図1の本発明の脱窒処理装置10を包括担体に適用した場合と付着担体に適用した場合との脱窒率を対比したものである。なお、担体充填率は20体積%(V/V%)とした。試験運転は担体馴養後に窒素容積負荷3kg/m・日で約50日間連続運転した。その他は試験Aと同様である。
[Test B]
Test B compares the denitrification rate between the case where the denitrification apparatus 10 of the present invention of FIG. 1 is applied to a covering carrier and the case where it is applied to an adherent carrier. The carrier filling rate was 20% by volume (V / V%). The test operation was performed continuously for about 50 days at a nitrogen volume load of 3 kg / m 3 · day after the vehicle was conditioned. Others are the same as those in Test A.

(試験結果)
試験結果を図5の表に示す。
(Test results)
The test results are shown in the table of FIG.

図5の表から分かるように、包括担体を使用した場合には、脱窒反応によって発生した窒素ガスは担体内部に滞留することなく担体30から排出され、脱窒率95%の高い脱窒性能で安定した運転を行うことができた。   As can be seen from the table of FIG. 5, when the entrapped carrier is used, the nitrogen gas generated by the denitrification reaction is discharged from the carrier 30 without staying inside the carrier, and a high denitrification performance with a 95% denitrification rate. And stable operation.

一方、付着担体の場合には、脱窒反応によって発生した窒素ガスが担体表面に付着して浮上し易くなると共に、付着菌体が増加して生物膜が厚くなると、担体30同士や担体30と脱窒槽12内壁との擦れによって生物膜が剥離する。このため、脱窒反応が包括担体に比べて不安定になり、運転約20日後及び約40日後において脱窒率が80%近くまで低下した。これにより、本発明の脱窒処理装置は、担体として付着担体よりも包括担体を使用する方が脱窒性能が向上する。   On the other hand, in the case of an adherent carrier, the nitrogen gas generated by the denitrification reaction adheres to the carrier surface and easily floats, and when the adherent cells increase and the biofilm becomes thicker, The biofilm is peeled off by rubbing against the inner wall of the denitrification tank 12. For this reason, the denitrification reaction became unstable compared to the entrapped carrier, and the denitrification rate decreased to nearly 80% after about 20 days and about 40 days after operation. As a result, the denitrification apparatus of the present invention improves the denitrification performance when the entrapping carrier is used as the carrier rather than the attached carrier.

10、40…脱窒処理装置、12…脱窒槽、14…筒状部材、16…攪拌羽根、18…攪拌手段、20…制御手段、22…流入配管、24…ポンプ、26…処理水配管、28…モータ、30…担体、32…流動床、34…検出手段、42A,42B,42C…循環ユニット   DESCRIPTION OF SYMBOLS 10, 40 ... Denitrification processing apparatus, 12 ... Denitrification tank, 14 ... Cylindrical member, 16 ... Stirring blade, 18 ... Stirring means, 20 ... Control means, 22 ... Inflow piping, 24 ... Pump, 26 ... Treated water piping, 28 ... Motor, 30 ... Carrier, 32 ... Fluidized bed, 34 ... Detection means, 42A, 42B, 42C ... Circulation unit

Claims (4)

被処理水が流入する脱窒槽内に脱窒菌を担持した多数の担体を充填して前記被処理水の脱窒処理を行う脱窒処理装置において、
前記脱窒槽の被処理水中に縦向きに設けられ、前記脱窒槽内を前記担体が充填される筒外と該筒外と連通する筒内とに区画する複数の筒状部材と、
前記複数の筒状部材の筒内それぞれに攪拌羽根が設けられ、該攪拌羽根の回転で前記複数の筒内に下降流を生じさせると共に前記複数の筒外に前記下降流が槽底部で反転した上向流を生じさせて前記脱窒槽内の被処理水に縦向きの循環流を発生させることによって、前記複数の筒外の上向流中に前記担体の流動床を形成する攪拌手段と、
前記複数の筒状部材の筒内それぞれに設けられた攪拌羽根の回転数をそれぞれ調整して前記上向流の流速を変えることによって前記担体の流動床の膨張率を被処理水の流入側から処理水の排出側にかけて段階的に小さく、又は大きく制御する制御手段と、を備えたことを特徴とする脱窒処理装置。
In a denitrification treatment apparatus for performing denitrification treatment of the treated water by filling a large number of carriers carrying denitrifying bacteria in a denitrification tank into which the treated water flows.
A plurality of cylindrical members which are provided vertically in the water to be treated of the denitrification tank, and divide the inside of the denitrification tank into an outside cylinder filled with the carrier and an inside cylinder communicating with the outside of the cylinder;
A stirring blade is provided in each of the cylinders of the plurality of cylindrical members, and a downward flow is generated in the plurality of cylinders by rotation of the stirring blade, and the downward flow is reversed outside the plurality of cylinders at a tank bottom. Agitating means for forming a fluidized bed of the carrier in the upward flow outside the plurality of cylinders by generating an upward flow and generating a vertical circulation flow in the water to be treated in the denitrification tank;
The rate of expansion of the fluidized bed of the carrier is changed from the inflow side of the water to be treated by adjusting the number of rotations of the stirring blades provided in the cylinders of the plurality of cylindrical members to change the flow velocity of the upward flow. And a denitrification apparatus characterized by comprising control means for controlling the process water to be gradually reduced or increased toward the treated water discharge side .
前記流動床の上端を検出する検出手段を設け、
前記制御手段は、前記検出手段の検出結果に基づいて前記攪拌羽根の回転数を調整することを特徴とする請求項1の脱窒処理装置。
A detecting means for detecting an upper end of the fluidized bed;
2. The denitrification apparatus according to claim 1, wherein the control unit adjusts the number of rotations of the stirring blade based on a detection result of the detection unit.
前記脱窒槽底部のコーナーにはテーパが形成されていることを特徴とする請求項1又は2に記載の脱窒処理装置。   The denitrification processing apparatus according to claim 1 or 2, wherein a taper is formed at a corner of the bottom of the denitrification tank. 前記担体は、脱窒菌をゲルに包括固定した包括担体であることを特徴とする請求項1〜3の何れか1の脱窒処理装置。   The denitrification apparatus according to any one of claims 1 to 3, wherein the carrier is a comprehensive carrier in which denitrifying bacteria are comprehensively fixed to a gel.
JP2009120098A 2009-05-18 2009-05-18 Denitrification processing equipment Active JP5158523B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009120098A JP5158523B2 (en) 2009-05-18 2009-05-18 Denitrification processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009120098A JP5158523B2 (en) 2009-05-18 2009-05-18 Denitrification processing equipment

Publications (2)

Publication Number Publication Date
JP2010264422A JP2010264422A (en) 2010-11-25
JP5158523B2 true JP5158523B2 (en) 2013-03-06

Family

ID=43361899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009120098A Active JP5158523B2 (en) 2009-05-18 2009-05-18 Denitrification processing equipment

Country Status (1)

Country Link
JP (1) JP5158523B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104445605A (en) * 2014-11-24 2015-03-25 南京大学 Mechanical internal circulation jet-flow anaerobic reactor and wastewater treatment method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5421862B2 (en) * 2010-06-18 2014-02-19 オルガノ株式会社 Perchlorate ion-containing water treatment method and perchlorate ion-containing water treatment apparatus
CN103058361A (en) * 2013-01-25 2013-04-24 南海发展股份有限公司 Biological fluidized bed reactor for removing ammonia nitrogen in high-pollution raw water
JP2017094305A (en) * 2015-11-27 2017-06-01 住友重機械エンバイロメント株式会社 Agitation system
CN113754073B (en) * 2021-09-16 2023-02-03 华夏碧水环保科技股份有限公司 Microorganism carrier solidification generator

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0665400B2 (en) * 1992-01-18 1994-08-24 日立プラント建設株式会社 Wastewater nitrogen removal method
JP2818081B2 (en) * 1992-10-20 1998-10-30 株式会社クボタ Sewage treatment equipment
JPH0760284A (en) * 1993-08-30 1995-03-07 Mitsubishi Kakoki Kaisha Ltd Nitrification and denitrification treatment device
JP3470392B2 (en) * 1994-06-16 2003-11-25 新日本石油株式会社 Organic wastewater treatment method and treatment apparatus
JPH08290196A (en) * 1995-04-25 1996-11-05 Nippon Kentetsu Co Ltd Water treating apparatus using comprehensive fixation process
JP3918349B2 (en) * 1999-03-04 2007-05-23 株式会社日立プラントテクノロジー Biological treatment method and apparatus for nitrous oxide gas
JP4318870B2 (en) * 2001-06-22 2009-08-26 アタカ大機株式会社 Water treatment equipment
JP4318875B2 (en) * 2001-09-13 2009-08-26 アタカ大機株式会社 Water treatment equipment
JP2003094082A (en) * 2001-09-21 2003-04-02 Hitachi Plant Eng & Constr Co Ltd Inclusive immobilized carrier and method for treating waste water using the carrier
JP4544583B2 (en) * 2005-02-09 2010-09-15 オルガノ株式会社 Waste water treatment apparatus and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104445605A (en) * 2014-11-24 2015-03-25 南京大学 Mechanical internal circulation jet-flow anaerobic reactor and wastewater treatment method thereof
CN104445605B (en) * 2014-11-24 2016-05-18 南京大学 A kind of method of circulating jet anaerobic reactor and processing waste water thereof in machinery

Also Published As

Publication number Publication date
JP2010264422A (en) 2010-11-25

Similar Documents

Publication Publication Date Title
JP5038985B2 (en) Aeration-less water treatment system
JP3989524B2 (en) Reactor and process for anaerobic wastewater treatment
JP5158523B2 (en) Denitrification processing equipment
CN102838255A (en) Cage-shaped filler type device for treating beer waste water in anaerobic-anoxic-aerobic mode and method for treating bear waste water by using device
JP2006218371A (en) Wastewater treatment apparatus and method
US8226828B2 (en) SAF system and method involving specific treatments at respective stages
CN112358039B (en) Moving bed biofilm reactor and sewage treatment system
JP5636862B2 (en) Waste water treatment equipment
JP3836576B2 (en) Fluidized bed wastewater treatment equipment
JP3136900B2 (en) Wastewater treatment method
KR101019092B1 (en) Advanced water-treating apparatus and method for removing phosphorus
JP2006281183A (en) Water treatment apparatus using biological membrane
JP2579122B2 (en) Wastewater treatment equipment
JP4261700B2 (en) Wastewater treatment equipment
JPH07136679A (en) Wastewater treatment tank
JP3627402B2 (en) Wastewater treatment method using microorganism-immobilized carrier
JPH10216787A (en) Waste water treatment equipment
JPH09276893A (en) Method for treating nitrogen-containing waste water
CN212954485U (en) Novel continuous aerobic reaction tank
JPH10128366A (en) Method for treating waste water using microorganism-immobilized carrier
CN215403349U (en) Oxygen deficiency or anaerobism MBBR reaction unit of horizontal stirring
JP2818081B2 (en) Sewage treatment equipment
JP2023156468A (en) Biological treatment apparatus and its method of organic waste water
KR20230031096A (en) Advanced wastewater treatment apparatus comprising floating filter tank
CN116514282A (en) Intermittent aeration structure bed reaction device and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121129

R150 Certificate of patent or registration of utility model

Ref document number: 5158523

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350