JP5286292B2 - Winding cores for stationary equipment and three-phase tripod winding cores - Google Patents

Winding cores for stationary equipment and three-phase tripod winding cores Download PDF

Info

Publication number
JP5286292B2
JP5286292B2 JP2010007698A JP2010007698A JP5286292B2 JP 5286292 B2 JP5286292 B2 JP 5286292B2 JP 2010007698 A JP2010007698 A JP 2010007698A JP 2010007698 A JP2010007698 A JP 2010007698A JP 5286292 B2 JP5286292 B2 JP 5286292B2
Authority
JP
Japan
Prior art keywords
magnetic
steel sheet
wound
core
peripheral side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010007698A
Other languages
Japanese (ja)
Other versions
JP2010087536A (en
Inventor
博之 遠藤
誠 篠原
正尚 桑原
洋一 天兒
年樹 白畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2010007698A priority Critical patent/JP5286292B2/en
Publication of JP2010087536A publication Critical patent/JP2010087536A/en
Application granted granted Critical
Publication of JP5286292B2 publication Critical patent/JP5286292B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Soft Magnetic Materials (AREA)

Description

本発明は変圧器やリアクトルなどの静止機器用巻鉄心に関り、磁気特性(以下、鉄損、透磁率を示す)を有する電磁鋼板を任意の積厚配分比で同一鉄心内に積層した巻鉄心を有する静止機器に関するものである。   The present invention relates to a wound core for a stationary device such as a transformer or a reactor, and is a winding in which electrical steel sheets having magnetic properties (hereinafter referred to as iron loss and magnetic permeability) are laminated in the same core with an arbitrary thickness distribution ratio. The present invention relates to a stationary device having an iron core.

変圧器用巻鉄心には、同一鉄心内に同一の磁気特性を有する同種の電磁鋼板を積層している。近年、地球温暖化対策の一環として、変圧器は低損失化の方向に向かっており鉄心で発生する鉄損(無負荷損)、またコイルで発生する銅損(負荷損)を低減するために、前者は電磁鋼板投入量を増大し鉄心の断面積を多く確保することでの低磁束密度化、または高価な低損失電磁鋼板を使用する設計となっており、鉄心の大形化、及びコストアップを招いている。   The same type of electrical steel sheet having the same magnetic characteristics is laminated in the same iron core in the transformer core. In recent years, as part of global warming countermeasures, transformers are moving towards lowering losses, in order to reduce iron loss (no load loss) generated in the iron core and copper loss (load loss) generated in the coil. The former is designed to use low magnetic flux density by increasing the amount of electromagnetic steel sheet input and securing a large cross-sectional area of the iron core, or to use an expensive low-loss electromagnetic steel sheet. Invite up.

また特許文献1(特開平10−270263号公報)にはアモルファスシートブロック材の成形において磁気特性の比較的低質の材料を内側に、比較的良質の材料を外側にしたアモルファスシートブロック材を用いてアモルファス鉄心を成形することが記載されている。   Patent Document 1 (Japanese Patent Application Laid-Open No. 10-270263) uses an amorphous sheet block material in which a relatively low quality material having a relatively low magnetic property is formed inside and a relatively high quality material is disposed outside in forming an amorphous sheet block material. It describes that an amorphous iron core is formed.

特開平10−270263号公報JP-A-10-270263

静止機器用巻鉄心内の磁束分布は、積層される電磁鋼板の磁路長が短く磁気抵抗が小さい内周側に磁束が偏っていることが一般的に知られている。よって磁束が集中している巻鉄心の内周側は高磁束密度となり鉄損が悪化することから、低損失化を図るには、巻鉄心内の磁束分布を均一化することが重要である。   It is generally known that the magnetic flux distribution in the wound iron core for stationary equipment is such that the magnetic flux is biased toward the inner peripheral side where the magnetic path length of the laminated electrical steel sheet is short and the magnetic resistance is small. Therefore, since the inner peripheral side of the wound core where the magnetic flux is concentrated has a high magnetic flux density and the iron loss is deteriorated, it is important to make the magnetic flux distribution uniform in the wound core in order to reduce the loss.

本発明の目的は、同一巻鉄心内で磁束分布を均一化するため、磁気特性の異なる電磁鋼
板を任意の積厚比率で配置した静止機器用巻鉄心、及び三相三脚巻鉄心を提供することにある。
An object of the present invention is to provide a wound iron core for stationary equipment and a three-phase tripod wound iron core in which electromagnetic steel sheets having different magnetic properties are arranged at an arbitrary thickness ratio in order to make the magnetic flux distribution uniform within the same wound iron core. It is in.

上記課題を解決するために、本発明では、電磁鋼板を積層して成る静止機器用巻鉄心において、磁路長が短く磁気抵抗が小さい内周側に外周側よりも磁気特性の劣る電磁鋼板を、磁路長が長く磁気抵抗が大きい外周側には内周側よりも磁気特性の優れた電磁鋼板を配置し、前記磁気特性の劣る電磁鋼板と前記磁気特性の優れた電磁鋼板との積厚比率を、鉄損の励磁特性試験の結果として、磁気特性の優れた電磁鋼板のみからなる巻鉄心の鉄損値よりも鉄損値が改善される積厚比率とするようにする。
また、前記巻鉄心の内周側の電磁鋼板を高配向性ケイ素鋼板とし、その外周側の電磁鋼板を磁区制御ケイ素鋼板とし、内周側に外周側よりも磁気特性の劣る電磁鋼板を巻鉄心の積層全厚さの40%以下となるように配置するようにする。
また、2脚の内鉄心、1脚の外鉄心からなる三相三脚巻鉄心において、U脚、V脚、W脚のうち少なくとも1脚は、磁路長が短く磁気抵抗が小さい内周側に外周側よりも磁気特性の劣る電磁鋼板を、磁路長が長く磁気抵抗が大きい外周側には内周側よりも磁気特性の優れた電磁鋼板を配置し、前記U脚、V脚、W脚のうち少なくとも1脚を前記静止機器用巻鉄心とするようにする。

In order to solve the above-mentioned problems, in the present invention, in a wound iron core for stationary equipment formed by laminating electromagnetic steel sheets , an electromagnetic steel sheet having a magnetic path length is short and magnetic resistance is small, and the magnetic properties are inferior to the outer peripheral side. In addition, an electromagnetic steel sheet having better magnetic properties than the inner circumference side is disposed on the outer peripheral side having a long magnetic path length and large magnetic resistance, and the thickness of the electromagnetic steel sheet having inferior magnetic properties and the electromagnetic steel plate having excellent magnetic properties is arranged. The ratio is set to a thickness ratio at which the iron loss value is improved as compared with the iron loss value of the wound core made of only the magnetic steel sheet having excellent magnetic properties as a result of the iron loss excitation characteristic test.
Also, the magnetic steel sheet on the inner peripheral side of the wound core is a highly oriented silicon steel sheet, the magnetic steel sheet on the outer peripheral side is a magnetic domain controlled silicon steel sheet, and the magnetic steel sheet having inferior magnetic properties than the outer peripheral side is provided on the inner peripheral side. It arrange | positions so that it may become 40% or less of the lamination | stacking total thickness.
Also, in a three-phase tripod-wound iron core consisting of two inner iron cores and one outer iron core, at least one of the U, V, and W legs has a short magnetic path length and a low magnetic resistance. Magnetic steel sheets with inferior magnetic properties than the outer peripheral side, magnetic steel plates with magnetic characteristics that are longer than the inner peripheral side on the outer peripheral side with a long magnetic path length and large magnetic resistance, are arranged on the U, V, W legs. At least one leg is used as the wound iron core for stationary equipment.

鉄心の鉄損は、各電磁鋼板固有の鉄損(W/Kg)特性と使用質量(Kg)の積で求まる。同一鉄心内に磁気特性が異なる電磁鋼板を積層した場合においても、理論上では各電磁鋼板固有の鉄損(W/Kg)特性と使用質量(Kg)の積の和で求まると考えられる。   The iron loss of the iron core is obtained by the product of the iron loss (W / Kg) characteristic unique to each electromagnetic steel sheet and the used mass (Kg). Even when magnetic steel sheets having different magnetic properties are stacked in the same iron core, it is theoretically considered to be obtained by the sum of products of iron loss (W / Kg) characteristics inherent to each magnetic steel sheet and used mass (Kg).

しかし、本発明によれば巻鉄心内周側に、外周側よりも磁気特性の劣る電磁鋼板を任意の積厚比率で配置することで、前記計算の鉄損理論値より小さい鉄損値を得ることができ、安価で磁気特性の劣る電磁鋼板を使用しながらも鉄損増加率を抑えた低価格な巻鉄心を製造することができる。   However, according to the present invention, the iron loss value smaller than the calculated iron loss theoretical value is obtained by arranging the magnetic steel sheet having a magnetic property inferior to the outer periphery side at an arbitrary thickness ratio on the inner peripheral side of the wound core. It is possible to manufacture a low-priced wound iron core that suppresses the rate of increase in iron loss while using an inexpensive steel sheet with inferior magnetic properties.

本発明の巻鉄心構造斜視図である。It is a wound iron core structure perspective view of the present invention. 従来の巻鉄心構造斜視図である。It is a conventional wound iron core structure perspective view. 従来の巻鉄心における磁束分布図である。It is a magnetic flux distribution figure in the conventional wound iron core. 本発明に関わる特性検証用鉄心の正面図である。It is a front view of the iron core for characteristic verification concerning this invention. 本発明に関わる鉄損特性検証結果である。It is an iron loss characteristic verification result in connection with the present invention. 本発明に関わる1.70Tにおける鉄損特性比較図である。It is a iron loss characteristic comparison figure in 1.70T in connection with this invention. 本発明に関わる三相三脚巻鉄心の一実施例を示す正面図である。It is a front view which shows one Example of the three-phase tripod winding iron core in connection with this invention. 本発明に関わる三相三脚巻鉄心の一実施例を示す正面図である。It is a front view which shows one Example of the three-phase tripod winding iron core in connection with this invention. 本発明に関わる三相三脚巻鉄心の一実施例を示す正面図である。It is a front view which shows one Example of the three-phase tripod winding iron core in connection with this invention.

以下、本発明に関わる巻鉄心構造の実施例について図を用いて説明する。   Hereinafter, the Example of the wound core structure in connection with this invention is described using figures.

従来、変圧器用巻鉄心は図2に示すように、同一鉄心内に同一の磁気特性を有する同種の電磁鋼板を積層して製造され、この巻鉄心4内の磁束分布は、図3に示すように積層される電磁鋼板の磁路が短く磁気抵抗が小さい内周側に磁束が偏っている。よって磁束が集中している巻鉄心の内周側は高磁束密度となり鉄損が増加する。   Conventionally, as shown in FIG. 2, a wound core for a transformer is manufactured by laminating the same kind of electrical steel sheets having the same magnetic characteristics in the same core, and the magnetic flux distribution in the wound core 4 is as shown in FIG. Magnetic fluxes are biased toward the inner peripheral side of the magnetic steel sheets laminated on the inner circumference with short magnetic paths and small magnetic resistance. Therefore, the inner peripheral side of the wound core where the magnetic flux is concentrated has a high magnetic flux density, and the iron loss increases.

そこで本発明では、巻鉄心において磁路長が短い内周側に磁気特性の劣る電磁鋼板を、磁路長が長い外周側に内周側よりも磁気特性の優れた電磁鋼板を配置することで、鉄心の断面積内の磁束分布を均一化する構造とする。   Therefore, in the present invention, an electromagnetic steel sheet with inferior magnetic properties is arranged on the inner circumference side with a short magnetic path length in the wound iron core, and an electromagnetic steel plate with better magnetic characteristics than the inner circumference side is arranged on the outer circumference side with a long magnetic path length The magnetic flux distribution in the cross-sectional area of the iron core is made uniform.

図1は磁気特性の異なる2種類の電磁鋼板から製造した巻鉄心1であり、巻鉄心1の内周側には高配向性けい素鋼板2を、外周側には高配向性けい素鋼板2より磁気特性の優れた磁区制御けい素鋼板3を配置した巻鉄心である。ここで高配向性けい素鋼板とは、材料の圧延方向と磁束の通る方向が揃っているけい素鋼板である。磁区制御けい素鋼板とは、高配向性けい素鋼板を素材とし、その表面に浅い溝を造り磁区を細分化したけい素鋼板であり、その磁気特性は高配向性けい素鋼板よりも優れている。この巻鉄心構造において、各電磁鋼板2、3の積厚比率を変えたものを図4のNo.1〜No.4に示す。図4のNo.1の巻鉄心は鉄損特性比較のために磁区制御けい素鋼板3のみより製造したものである。これに対しNo.2の巻鉄心は内周側に高配向性けい素鋼板2を積厚比率25%になるように配置し、外周側には高配向性けい素鋼板2より磁気特性の優れた磁区制御けい素鋼板bを積厚比率75%になるように配置したものである。No.3、No.4の巻鉄心においては、No.2同様に内周側の高配向性けい素鋼板2の積厚比率がそれぞれ50%、75%になるように配置したものである。以下にこれらの巻鉄心における鉄損特性を検証した結果について説明する。   FIG. 1 shows a wound iron core 1 manufactured from two types of electromagnetic steel sheets having different magnetic properties. A highly oriented silicon steel sheet 2 is provided on the inner peripheral side of the wound iron core 1, and a highly oriented silicon steel sheet 2 is provided on the outer peripheral side. This is a wound iron core in which a magnetic domain control silicon steel plate 3 having more excellent magnetic properties is arranged. Here, the highly oriented silicon steel sheet is a silicon steel sheet in which the rolling direction of the material and the direction in which the magnetic flux passes are aligned. A magnetic domain control silicon steel sheet is a silicon steel sheet that is made of a highly oriented silicon steel sheet and has shallow grooves formed on the surface thereof, and the magnetic domains are subdivided. Its magnetic properties are superior to those of a highly oriented silicon steel sheet. Yes. In this wound core structure, the thickness ratio of each of the electromagnetic steel sheets 2 and 3 is changed as shown in No. 4 of FIG. 1-No. 4 shows. No. 4 in FIG. The wound core 1 is manufactured only from the magnetic domain control silicon steel plate 3 for comparison of the iron loss characteristics. In contrast, no. In the wound iron core 2, a highly oriented silicon steel plate 2 is arranged on the inner peripheral side so that the thickness ratio is 25%, and on the outer peripheral side, the magnetic domain control silicon having better magnetic properties than the high oriented silicon steel plate 2 is arranged. The steel plates b are arranged so that the thickness ratio is 75%. No. 3, no. No. 4 in the wound iron core. 2 is arranged so that the thickness ratio of the highly oriented silicon steel plate 2 on the inner peripheral side is 50% and 75%, respectively. The results of verifying the iron loss characteristics of these wound cores will be described below.

図5は、図4のNo.1〜No.4の各鉄心における鉄損の励磁特性試験結果を示し、横軸は磁束密度、縦軸は鉄損の相対値である。図5において磁束密度1.55Tから1.
85Tまで変化させたとき、鉄損の特性は、No.2、No.1、No.3、No.4の順に劣化していることが分かる。
FIG. 1-No. 4 shows the results of excitation characteristic test of iron loss in each iron core of No. 4, wherein the horizontal axis represents the magnetic flux density and the vertical axis represents the relative value of the iron loss. In FIG.
When changed to 85T, the iron loss characteristics are No. 2, No. 1, no. 3, no. It turns out that it has deteriorated in order of 4.

また、図6は、磁束密度1.70Tにおける各鉄損値の比較で、No.1の鉄損値を100%とした場合の各鉄損の相対値(測定周波数50Hz)を示している。図6のおいて、最も良好な鉄損値を示したのはNo.2の巻鉄心であり、No.1の磁区制御けい素鋼板3のみから成る巻鉄心の鉄損値よりも磁束密度1.70Tで約2%改善されている。また内周側の高配向性けい素鋼板2の積厚比率が50%以上になると鉄損は大きく増加傾向を示している。   6 is a comparison of iron loss values at a magnetic flux density of 1.70 T. The relative value (measurement frequency 50Hz) of each iron loss when the iron loss value of 1 is 100% is shown. In FIG. 6, the best iron loss value is shown in No. No. 2 wound iron core. This is an improvement of about 2% at a magnetic flux density of 1.70 T compared to the iron loss value of a wound core consisting of only one magnetic domain control silicon steel plate 3. Further, when the thickness ratio of the highly oriented silicon steel sheet 2 on the inner peripheral side becomes 50% or more, the iron loss shows a large increasing tendency.

巻鉄心内の磁束は、全積厚に対し磁路が短く磁気抵抗が小さい内周側に偏ることが一般的に知られている。本検証では巻鉄心の内周側に高配向性けい素鋼板2を配置し、外周側には高配向性けい素鋼板2より磁気特性の優れたすなわち透磁率が高い磁区制御けい素鋼板3を配置することにより、鉄心の断面積内の磁束分布が均一化され鉄損が改善されている。しかし、本試験結果より内周側に外周側よりも磁気特性の劣る高配向性けい素鋼板2を配置しても、その積厚比率を50%以上とした巻鉄心では、高配向性けい素鋼板2の投入量が多くなり鉄損は増加傾向を示すことが確認できる。以上のことより内周側に配置する外周側よりも磁気特性の劣る高配向性けい素鋼板bの積厚比率は40%以下になることが望ましい。   It is generally known that the magnetic flux in the wound iron core is biased toward the inner peripheral side with a short magnetic path and a small magnetic resistance with respect to the total thickness. In this verification, a highly oriented silicon steel plate 2 is arranged on the inner peripheral side of the wound iron core, and a magnetic domain control silicon steel plate 3 having a magnetic property superior to that of the high oriented silicon steel plate 2, that is, having a high permeability, is provided on the outer peripheral side. By arranging, the magnetic flux distribution in the cross-sectional area of the iron core is made uniform, and the iron loss is improved. However, even if a highly oriented silicon steel sheet 2 having a magnetic property inferior to that of the outer peripheral side is arranged on the inner peripheral side based on the result of this test, in a wound iron core having a thickness ratio of 50% or more, the highly oriented silicon It can be confirmed that the input amount of the steel plate 2 increases and the iron loss shows an increasing tendency. From the above, it is desirable that the thickness ratio of the highly oriented silicon steel sheet b having inferior magnetic properties as compared with the outer peripheral side disposed on the inner peripheral side is 40% or less.

鉄心の鉄損は、各電磁鋼板固有の鉄損(W/Kg)特性と使用質量(Kg)の積で求まる。同一鉄心内に磁気特性が異なる電磁鋼板を積層した場合においても、理論上では各電磁鋼板固有の鉄損(W/Kg)特性と使用質量(Kg)の積の和で求まると考えられる。しかし、巻鉄心内周側に、外周側よりも磁気特性の劣る電磁鋼板を適切な積厚比率で配置することで、鉄心断面積内の磁束分布が均一化され、前記の鉄損理論値より小さい鉄損値を得ることが検証できた。よって、巻鉄心の内周側には安価で磁気特性の劣る電磁鋼板を使用しながらも、鉄損増加率を抑えた低価格な巻鉄心を製造することが可能である。   The iron loss of the iron core is obtained by the product of the iron loss (W / Kg) characteristic unique to each electromagnetic steel sheet and the used mass (Kg). Even when magnetic steel sheets having different magnetic properties are stacked in the same iron core, it is theoretically considered to be obtained by the sum of products of iron loss (W / Kg) characteristics inherent to each magnetic steel sheet and used mass (Kg). However, the magnetic flux distribution in the core cross-sectional area is made uniform by arranging the magnetic steel sheets with inferior magnetic properties on the inner peripheral side of the wound core at the appropriate thickness ratio compared to the outer peripheral side. It was verified that a small iron loss value was obtained. Therefore, it is possible to manufacture a low-price wound core with a reduced iron loss increase rate, while using an inexpensive steel sheet with inferior magnetic properties on the inner peripheral side of the wound core.

図7は2個の内側巻鉄心5aと、それらを囲むように配置された1個の外側巻鉄心6aからなる三相三脚巻鉄心であり、各巻鉄心の内周側には方向性けい素鋼板7a、9aを、外周側には方向性けい素鋼板よりも磁気特性の優れた高配向性けい素鋼板8a、10aを配置した巻鉄心である。図7の三相三脚巻鉄心は内側鉄心5a、外側鉄心6a共に各巻鉄心の内周側の方向性けい素鋼板7a、9aの積厚比率が25%になるように配置したものである。また図7の三相三脚巻鉄心においてのU脚、V脚、W脚全体での積厚比率は、どの脚においても方向性けい素鋼板が25%となる。   FIG. 7 shows a three-phase tripod wound core consisting of two inner wound cores 5a and one outer wound core 6a arranged so as to surround them, and a directional silicon steel sheet is provided on the inner peripheral side of each wound core. 7a and 9a are wound cores in which high-orientation silicon steel plates 8a and 10a having magnetic properties superior to those of directional silicon steel plates are arranged on the outer peripheral side. The three-phase tripod wound core shown in FIG. 7 is arranged such that the inner and outer iron cores 5a and 6a have a thickness ratio of 25% of the directional silicon steel plates 7a and 9a on the inner peripheral side of each wound core. Further, in the three-phase tripod wound core shown in FIG. 7, the thickness ratio of the entire U, V, and W legs is 25% for the directional silicon steel plate in any leg.

図8の三相三脚巻鉄心は、2個の内側巻鉄心5bと、それらを囲むように配置された1個の外側巻鉄心6bからなり、内側巻鉄心5bの内周側には方向性けい素鋼板7bを、外周側には高配向性けい素鋼板8bを配置し、外側巻鉄心6bの内周側には高配向性けい素鋼板配置10bを、外周側には方向性けい素鋼板9bを配置したものである。図8の三相三脚巻鉄心は内側巻鉄心5bの内周側に配置された方向性けい素鋼板7bの積厚比率が25%に、外側巻鉄心6bの外周側に配置された方向性けい素鋼板9bの積厚比率が25%になるように配置したものである。また図8の三相三脚巻鉄心においてのU脚、V脚、W脚全体での積厚比率は、どの脚においても方向性けい素鋼板が25%となる。   The three-phase tripod wound core shown in FIG. 8 is composed of two inner wound cores 5b and one outer wound core 6b disposed so as to surround them. The base steel plate 7b, the high orientation silicon steel plate 8b on the outer peripheral side, the high orientation silicon steel plate arrangement 10b on the inner peripheral side of the outer wound core 6b, and the directional silicon steel plate 9b on the outer peripheral side. Is arranged. The three-phase tripod wound core shown in FIG. 8 has a directional silicon steel plate 7b having a thickness ratio of 25% and a directional silicon core disposed on the outer peripheral side of the outer wound core 6b. It is arranged so that the thickness ratio of the base steel plate 9b is 25%. In the three-phase three-leg wound core of FIG. 8, the thickness ratio of the entire U-leg, V-leg, and W-leg is 25% for the directional silicon steel plate in any leg.

図9の三相三脚巻鉄心は、2個の内側巻鉄心5cと、それらを囲むように配置された1個の外側巻鉄心6cからなり、内側巻鉄心5cの内周側には方向性けい素鋼板7cを、外周側には高配向性けい素鋼板8cを配置し、外側巻鉄心6cには全て高配向性けい素鋼板10cを配置したものである。尚、この内側巻鉄心5cは、内周側に配置された方向性けい素鋼板7cの積厚比率が50%になるように配置したものである。また図9の三相三脚巻鉄心においてのU脚、V脚、W脚全体での積厚比率は、方向性けい素鋼板の積厚比率でU脚25%、V脚50%、W脚25%となる。   The three-phase tripod wound core shown in FIG. 9 is composed of two inner wound cores 5c and one outer wound core 6c disposed so as to surround them. The base steel plate 7c is arranged on the outer peripheral side with a highly oriented silicon steel plate 8c, and the outer wound core 6c is provided with a highly oriented silicon steel plate 10c. In addition, this inner side wound iron core 5c is arrange | positioned so that the thickness ratio of the directionality silicon steel plate 7c arrange | positioned at the inner peripheral side may be 50%. The total thickness ratio of the U, V, and W legs in the three-phase three-leg wound core shown in FIG. 9 is the ratio of the thickness of the directional silicon steel sheet: 25% for the U leg, 50% for the V leg, and 25 for the W leg. %.

1・・巻鉄心
2・・高配向性けい素鋼板
3・・磁区制御けい素鋼板
4・・従来構造の巻鉄心
5a、5b、5c・・三相三脚巻鉄心の内側巻鉄心
6a、6b、6c・・三相三脚巻鉄心の外側巻鉄心
7a、7b、7c、9a、9b、9c・・方向性けい素鋼板
8a、8b、8c、10a、10b、10c・・高配向性けい素鋼板
1 .. Rolled iron core 2. Highly oriented silicon steel sheet
3. Magnetic domain control silicon steel plate 4. Conventional wound cores 5a, 5b, 5c .. Three-phase tripod wound core inner wound cores 6a, 6b, 6c .. Three-phase tripod wound core outer wound core 7a, 7b, 7c, 9a, 9b, 9c ··· Directional silicon steel plates 8a, 8b, 8c, 10a, 10b, 10c ··· Highly oriented silicon steel plates

Claims (3)

電磁鋼板を積層して成る静止機器用巻鉄心において
磁路長が短く磁気抵抗が小さい内周側に外周側よりも磁気特性の劣る電磁鋼板を、
磁路長が長く磁気抵抗が大きい外周側には内周側よりも磁気特性の優れた電磁鋼板を配置し、
前記磁気特性の劣る電磁鋼板と前記磁気特性の優れた電磁鋼板との積厚比率を、
鉄損の励磁特性試験の結果として、
磁気特性の優れた電磁鋼板のみからなる巻鉄心の鉄損値よりも鉄損値が改善される積厚比率とする
ことを特徴とする静止機器用巻鉄心。
In wound iron cores for stationary equipment made of laminated magnetic steel sheets ,
Magnetic steel sheet with a shorter magnetic path length and smaller magnetic resistance on the inner circumference side, which has inferior magnetic properties than the outer circumference side,
On the outer circumference side where the magnetic path length is long and the magnetic resistance is large, an electromagnetic steel sheet having better magnetic properties than the inner circumference side is arranged,
The thickness ratio of the electrical steel sheet with inferior magnetic properties and the electrical steel sheet with excellent magnetic properties,
As a result of the iron loss excitation characteristic test,
A wound iron core for stationary equipment, characterized by having a thickness ratio that improves the iron loss value over that of a wound iron core made only of magnetic steel sheets with excellent magnetic properties .
請求項1の静止機器用巻鉄心において、In the wound iron core for stationary equipment of claim 1,
前記巻鉄心の内周側の電磁鋼板を高配向性ケイ素鋼板とし、その外周側の電磁鋼板を磁区制御ケイ素鋼板とし、The magnetic steel sheet on the inner peripheral side of the wound iron core is a highly oriented silicon steel sheet, the magnetic steel sheet on the outer peripheral side is a magnetic domain control silicon steel sheet,
内周側に外周側よりも磁気特性の劣る電磁鋼板を巻鉄心の積層全厚さの40%以下となるように配置することを特徴とする静止機器用鉄心。An iron core for stationary equipment, characterized in that an electromagnetic steel sheet having a magnetic property inferior to that of the outer peripheral side is arranged on the inner peripheral side so as to be 40% or less of the total laminated core thickness.
2脚の内鉄心、1脚の外鉄心からなる三相三脚巻鉄心において、In a three-phase tripod wound core consisting of two inner cores and one outer core,
U脚、V脚、W脚のうち少なくとも1脚は、At least one of the U, V, and W legs
磁路長が短く磁気抵抗が小さい内周側に外周側よりも磁気特性の劣る電磁鋼板を、  Magnetic steel sheet with a shorter magnetic path length and smaller magnetic resistance on the inner circumference side, which has inferior magnetic properties than the outer circumference side,
磁路長が長く磁気抵抗が大きい外周側には内周側よりも磁気特性の優れた電磁鋼板を配置し、  On the outer circumference side where the magnetic path length is long and the magnetic resistance is large, an electromagnetic steel sheet having better magnetic properties than the inner circumference side is arranged,
前記U脚、V脚、W脚のうち少なくとも1脚を請求項1、又は請求項2の静止機器用巻鉄心として成形したことを特徴とする三相三脚巻鉄心。A three-phase, three-leg wound core, wherein at least one of the U, V, and W legs is formed as the wound core for stationary equipment according to claim 1 or claim 2.
JP2010007698A 2005-07-08 2010-01-18 Winding cores for stationary equipment and three-phase tripod winding cores Active JP5286292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010007698A JP5286292B2 (en) 2005-07-08 2010-01-18 Winding cores for stationary equipment and three-phase tripod winding cores

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005199545 2005-07-08
JP2005199545 2005-07-08
JP2010007698A JP5286292B2 (en) 2005-07-08 2010-01-18 Winding cores for stationary equipment and three-phase tripod winding cores

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005289510A Division JP4959170B2 (en) 2005-07-08 2005-10-03 Iron core for stationary equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012109075A Division JP5544393B2 (en) 2005-07-08 2012-05-11 Winding iron core for stationary equipment and stationary equipment having the same

Publications (2)

Publication Number Publication Date
JP2010087536A JP2010087536A (en) 2010-04-15
JP5286292B2 true JP5286292B2 (en) 2013-09-11

Family

ID=37609653

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2010007698A Active JP5286292B2 (en) 2005-07-08 2010-01-18 Winding cores for stationary equipment and three-phase tripod winding cores
JP2012109075A Active JP5544393B2 (en) 2005-07-08 2012-05-11 Winding iron core for stationary equipment and stationary equipment having the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2012109075A Active JP5544393B2 (en) 2005-07-08 2012-05-11 Winding iron core for stationary equipment and stationary equipment having the same

Country Status (2)

Country Link
JP (2) JP5286292B2 (en)
CN (1) CN1897175B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169666A (en) * 2005-07-08 2012-09-06 Hitachi Industrial Equipment Systems Co Ltd Wound iron core for static apparatus, and static apparatus with the same
WO2019151399A1 (en) 2018-01-31 2019-08-08 Jfeスチール株式会社 Directional electrical steel sheet, wound transformer core using the same, and method for manufacturing wound core
WO2023007953A1 (en) 2021-07-30 2023-02-02 Jfeスチール株式会社 Wound core and wound core manufacturing method
WO2023007952A1 (en) 2021-07-30 2023-02-02 Jfeスチール株式会社 Wound core and wound core manufacturing method
KR20240021276A (en) 2021-07-30 2024-02-16 제이에프이 스틸 가부시키가이샤 Winding iron core and manufacturing method of the winding iron core
KR20240021277A (en) 2021-07-30 2024-02-16 제이에프이 스틸 가부시키가이샤 Winding iron core and manufacturing method of the winding iron core

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2584572A1 (en) 2010-06-16 2013-04-24 Hitachi, Ltd. Static electromagnetic apparatus
CN102136358B (en) 2011-01-13 2012-12-19 上海诺雅克电气有限公司 Power supply current transformer for electronic protection
JP2012204745A (en) * 2011-03-28 2012-10-22 Kitashiba Electric Co Ltd Iron core reactor
RU2676337C2 (en) * 2014-11-25 2018-12-28 Аперам Elementary magnetic wiring module of electric transformer, magnetic wire containing the mentioned elementary module, and its manufacturing method and transformer, containing the mentioned elementary module
KR102541759B1 (en) * 2018-10-03 2023-06-13 닛폰세이테츠 가부시키가이샤 winding core and transformer

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6028129B2 (en) * 1978-10-13 1985-07-03 株式会社日立製作所 Wound core for transformer
US4205288A (en) * 1978-10-27 1980-05-27 Westinghouse Electric Corp. Transformer with parallel magnetic circuits of unequal mean lengths and loss characteristics
JPS5926221U (en) * 1982-08-09 1984-02-18 三菱電機株式会社 wound iron core
JPS59175110A (en) * 1983-03-24 1984-10-03 Hitachi Ltd Wound core type stationary induction electric apparatus
JPS6115309A (en) * 1984-07-02 1986-01-23 Kawasaki Steel Corp Wound core for transformer with low iron loss
JPH03268311A (en) * 1990-03-19 1991-11-29 Toshiba Corp Iron core of transformer
JPH03198312A (en) * 1989-12-27 1991-08-29 Tamura Seisakusho Co Ltd Iron core for swinging choke coil and its manufacture
JPH06120044A (en) * 1991-04-17 1994-04-28 Nippon Steel Corp Low-noise transformer core
JPH05101943A (en) * 1991-05-08 1993-04-23 Toshiba Corp Three-phase wound core
JP2003142318A (en) * 2001-11-01 2003-05-16 Hitachi Ltd Gas-insulated transformer
JP2006185999A (en) * 2004-12-27 2006-07-13 Nippon Steel Corp Method of manufacturing low-building factor iron core for transformer and reactor
CN1897175B (en) * 2005-07-08 2012-07-18 株式会社日立产机*** Iron core for stationary apparatus and stationary apparatus
JP4959170B2 (en) * 2005-07-08 2012-06-20 株式会社日立産機システム Iron core for stationary equipment

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169666A (en) * 2005-07-08 2012-09-06 Hitachi Industrial Equipment Systems Co Ltd Wound iron core for static apparatus, and static apparatus with the same
WO2019151399A1 (en) 2018-01-31 2019-08-08 Jfeスチール株式会社 Directional electrical steel sheet, wound transformer core using the same, and method for manufacturing wound core
KR20200103090A (en) 2018-01-31 2020-09-01 제이에프이 스틸 가부시키가이샤 Directional electrical steel sheet and manufacturing method of winding core and core of transformer using the same
US11984249B2 (en) 2018-01-31 2024-05-14 Jfe Steel Corporation Grain-oriented electrical steel sheet, wound transformer core using the same, and method for producing wound core
WO2023007953A1 (en) 2021-07-30 2023-02-02 Jfeスチール株式会社 Wound core and wound core manufacturing method
WO2023007952A1 (en) 2021-07-30 2023-02-02 Jfeスチール株式会社 Wound core and wound core manufacturing method
KR20240021276A (en) 2021-07-30 2024-02-16 제이에프이 스틸 가부시키가이샤 Winding iron core and manufacturing method of the winding iron core
KR20240021277A (en) 2021-07-30 2024-02-16 제이에프이 스틸 가부시키가이샤 Winding iron core and manufacturing method of the winding iron core

Also Published As

Publication number Publication date
CN1897175A (en) 2007-01-17
JP2010087536A (en) 2010-04-15
JP2012169666A (en) 2012-09-06
CN1897175B (en) 2012-07-18
JP5544393B2 (en) 2014-07-09

Similar Documents

Publication Publication Date Title
JP5286292B2 (en) Winding cores for stationary equipment and three-phase tripod winding cores
JP4959170B2 (en) Iron core for stationary equipment
TWI529756B (en) Magnetic core
JP4404029B2 (en) Noise filter
JP6397349B2 (en) Three-phase five-legged iron core and stationary electromagnetic equipment
JP7047931B2 (en) Winding core and transformer
WO2021166314A1 (en) Stationary induction apparatus and transformer
WO2014208109A1 (en) Wound iron core for static electromagnetic device, three-phase transformer, and three-phase reactor
JP6490355B2 (en) Reactor parts and reactors
JP2019050327A (en) Iron core for core-type transformer
US20160240307A1 (en) Coil component, high current indcutor, high current reactor inlcuding the same
JP5216536B2 (en) Iron core for stationary equipment
JP2002208518A (en) Stationary induction electromagnetic apparatus
JP2009117442A (en) Compound reactor
KR101573813B1 (en) Low loss type hybrid transformer, and manufacturing method thereof
JP2008235525A (en) Reactor core and reactor
JP2018117046A (en) Transformer
JP7176306B2 (en) transformer
KR102325474B1 (en) A solid wound core for transformer with a low no-load losses and manufacturing method for the same
JP6253995B2 (en) Input converter and input conversion board of digital protection control device
JPH03241719A (en) Ac reactor
JP2020096008A (en) Iron core with gap for stationary induction apparatus
JP2006108477A (en) Dust core reactor
JPH04250604A (en) Transformer core
WO2017217332A1 (en) Structure of iron core joint portion of electromagnetic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130603

R150 Certificate of patent or registration of utility model

Ref document number: 5286292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150