JP2012169666A - Wound iron core for static apparatus, and static apparatus with the same - Google Patents

Wound iron core for static apparatus, and static apparatus with the same Download PDF

Info

Publication number
JP2012169666A
JP2012169666A JP2012109075A JP2012109075A JP2012169666A JP 2012169666 A JP2012169666 A JP 2012169666A JP 2012109075 A JP2012109075 A JP 2012109075A JP 2012109075 A JP2012109075 A JP 2012109075A JP 2012169666 A JP2012169666 A JP 2012169666A
Authority
JP
Japan
Prior art keywords
magnetic
peripheral side
iron core
wound
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012109075A
Other languages
Japanese (ja)
Other versions
JP5544393B2 (en
Inventor
Hiroyuki Endo
博之 遠藤
Makoto Shinohara
誠 篠原
Masanao Kuwabara
正尚 桑原
Yoichi Amako
洋一 天兒
Toshiki Shirahata
年樹 白畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2012109075A priority Critical patent/JP5544393B2/en
Publication of JP2012169666A publication Critical patent/JP2012169666A/en
Application granted granted Critical
Publication of JP5544393B2 publication Critical patent/JP5544393B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a three phase leg wound iron core is provided by arranging with any lamination thickness ratio electromagnetic steel sheets with different magnetic characteristics to uniformize magnetic flux distribution within the same wound iron core, so as to prevent the increase in iron loss caused by the bias of magnetic fluxes within the wound iron core toward the inner peripheral side with shorter magnetic path and smaller magnetic resistance relative to the entire lamination thickness and by resulting higher magnetic density around the inner peripheral side.SOLUTION: In order to uniformize the magnetic flux distribution within wound iron core for a static apparatus, a structure with uniform magnetic flux distribution within the cross section of the iron core is provided by arranging, on the inner peripheral side having shorter magnetic path and smaller magnetic resistance, electromagnetic steel sheets with poorer magnetic characteristics than the outer peripheral side, and arranging, on the outer peripheral side having longer magnetic path and higher magnetic resistance, electromagnetic steel sheets with better magnetic characteristics than the inner peripheral side.

Description

本発明は変圧器やリアクトルなどの静止機器用巻鉄心に関り、磁気特性(以下、鉄損、
透磁率を示す)を有する電磁鋼板を任意の積厚配分比で同一鉄心内に積層した巻鉄心を有
する静止機器に関するものである。
The present invention relates to a wound core for a stationary device such as a transformer or a reactor, and magnetic characteristics (hereinafter referred to as iron loss,
The present invention relates to a stationary device having a wound core in which electrical steel sheets having a magnetic permeability are laminated in the same iron core at an arbitrary thickness distribution ratio.

変圧器用巻鉄心には、同一鉄心内に同一の磁気特性を有する同種の電磁鋼板を積層して
いる。近年、地球温暖化対策の一環として、変圧器は低損失化の方向に向かっており鉄心
で発生する鉄損(無負荷損)、またコイルで発生する銅損(負荷損)を低減するために、前者
は電磁鋼板投入量を増大し鉄心の断面積を多く確保することでの低磁束密度化、または高
価な低損失電磁鋼板を使用する設計となっており、鉄心の大形化、及びコストアップを招
いている。
The same type of electrical steel sheet having the same magnetic characteristics is laminated in the same iron core in the transformer core. In recent years, as part of global warming countermeasures, transformers are moving towards lowering losses, in order to reduce iron loss (no load loss) generated in the iron core and copper loss (load loss) generated in the coil. The former is designed to use low magnetic flux density by increasing the amount of electromagnetic steel sheet input and securing a large cross-sectional area of the iron core, or to use an expensive low-loss electromagnetic steel sheet. Invite up.

また特許文献1(特開平10−270263号公報)にはアモルファスシートブロック
材の成形において磁気特性の比較的低質の材料を内側に、比較的良質の材料を外側にした
アモルファスシートブロック材を用いてアモルファス鉄心を成形することが記載されてい
る。
Patent Document 1 (Japanese Patent Application Laid-Open No. 10-270263) uses an amorphous sheet block material in which a relatively low quality material having a relatively low magnetic property is formed inside and a relatively high quality material is disposed outside in forming an amorphous sheet block material. It describes that an amorphous iron core is formed.

特開平10−270263号公報JP-A-10-270263

静止機器用巻鉄心内の磁束分布は、積層される電磁鋼板の磁路長が短く磁気抵抗が小さ
い内周側に磁束が偏っていることが一般的に知られている。よって磁束が集中している巻
鉄心の内周側は高磁束密度となり鉄損が悪化することから、低損失化を図るには、巻鉄心
内の磁束分布を均一化することが重要である。
It is generally known that the magnetic flux distribution in the wound iron core for stationary equipment is such that the magnetic flux is biased toward the inner peripheral side where the magnetic path length of the laminated electrical steel sheet is short and the magnetic resistance is small. Therefore, since the inner peripheral side of the wound core where the magnetic flux is concentrated has a high magnetic flux density and the iron loss is deteriorated, it is important to make the magnetic flux distribution uniform in the wound core in order to reduce the loss.

本発明の目的は、同一巻鉄心内で磁束分布を均一化するため、磁気特性の異なる電磁鋼
板を任意の積厚比率で配置した三相三脚巻鉄心を提供することにある。
An object of the present invention is to provide a three-phase tripod wound core in which electromagnetic steel sheets having different magnetic properties are arranged at an arbitrary thickness ratio in order to make the magnetic flux distribution uniform within the same wound core.

上記課題を解決するために、本発明では、2脚の内鉄心、1脚の外鉄心からなる三相三
脚巻鉄心において、U脚、V脚、W脚のうち少なくとも1脚は、磁路長が短く磁気抵抗が小さ
い内周側に外周側よりも磁気特性の劣る電磁鋼板を、磁路長が長く磁気抵抗が大きい外周
側には内周側よりも磁気特性の優れた電磁鋼板を配置し、前記巻鉄心の内周側の電磁鋼板
を高配向性ケイ素鋼板とし、その外周側の電磁鋼板を磁区制御ケイ素鋼板とし、1脚の積
厚全厚さのうち、磁気特性の劣った磁性材料が50%以下となるように各鉄心を成形した
In order to solve the above-mentioned problems, in the present invention, in a three-phase tripod wound core consisting of two inner iron cores and one outer iron core, at least one of the U leg, V leg, and W leg has a magnetic path length. A magnetic steel sheet with a shorter magnetic resistance and an inferior magnetic property than the outer peripheral side is placed on the inner periphery side, and an electromagnetic steel plate with a magnetic property superior to the inner peripheral side is placed on the outer peripheral side with a long magnetic path length and a large magnetic resistance. The magnetic steel sheet on the inner peripheral side of the wound iron core is a highly oriented silicon steel sheet, the magnetic steel sheet on the outer peripheral side is a magnetic domain control silicon steel sheet, and the magnetic material has inferior magnetic properties out of the total thickness of one leg. Each iron core was molded so as to be 50% or less.

鉄心の鉄損は、各電磁鋼板固有の鉄損(W/Kg)特性と使用質量(Kg)の積で求まる。
同一鉄心内に磁気特性が異なる電磁鋼板を積層した場合においても、理論上では各電磁鋼
板固有の鉄損(W/Kg)特性と使用質量(Kg)の積の和で求まると考えられる。
The iron loss of the iron core is obtained by the product of the iron loss (W / Kg) characteristic unique to each electromagnetic steel sheet and the used mass (Kg).
Even when magnetic steel sheets having different magnetic properties are stacked in the same iron core, it is theoretically considered to be obtained by the sum of products of iron loss (W / Kg) characteristics inherent to each magnetic steel sheet and used mass (Kg).

しかし、本発明によれば巻鉄心内周側に、外周側よりも磁気特性の劣る電磁鋼板を任意
の積厚比率で配置することで、前記計算の鉄損理論値より小さい鉄損値を得ることができ
、安価で磁気特性の劣る電磁鋼板を使用しながらも鉄損増加率を抑えた低価格な巻鉄心を
製造することができる。
However, according to the present invention, the iron loss value smaller than the calculated iron loss theoretical value is obtained by arranging the magnetic steel sheet having a magnetic property inferior to the outer periphery side at an arbitrary thickness ratio on the inner peripheral side of the wound core. It is possible to manufacture a low-priced wound iron core that suppresses the rate of increase in iron loss while using an inexpensive steel sheet with inferior magnetic properties.

本発明の巻鉄心構造斜視図である。It is a wound iron core structure perspective view of the present invention. 従来の巻鉄心構造斜視図である。It is a conventional wound iron core structure perspective view. 従来の巻鉄心における磁束分布図である。It is a magnetic flux distribution figure in the conventional wound iron core. 本発明に関わる特性検証用鉄心の正面図である。It is a front view of the iron core for characteristic verification concerning this invention. 本発明に関わる鉄損特性検証結果である。It is an iron loss characteristic verification result in connection with the present invention. 本発明に関わる1.70Tにおける鉄損特性比較図である。It is a iron loss characteristic comparison figure in 1.70T in connection with this invention. 本発明に関わる三相三脚巻鉄心の一実施例を示す正面図である。It is a front view which shows one Example of the three-phase tripod winding iron core in connection with this invention. 本発明に関わる三相三脚巻鉄心の一実施例を示す正面図である。It is a front view which shows one Example of the three-phase tripod winding iron core in connection with this invention. 本発明に関わる三相三脚巻鉄心の一実施例を示す正面図である。It is a front view which shows one Example of the three-phase tripod winding iron core in connection with this invention.

以下、本発明に関わる巻鉄心構造の実施例について図を用いて説明する。   Hereinafter, the Example of the wound core structure in connection with this invention is described using figures.

従来、変圧器用巻鉄心は図2に示すように、同一鉄心内に同一の磁気特性を有する同種
の電磁鋼板を積層して製造され、この巻鉄心4内の磁束分布は、図3に示すように積層さ
れる電磁鋼板の磁路が短く磁気抵抗が小さい内周側に磁束が偏っている。よって磁束が集
中している巻鉄心の内周側は高磁束密度となり鉄損が増加する。
Conventionally, as shown in FIG. 2, a wound core for a transformer is manufactured by laminating the same kind of electrical steel sheets having the same magnetic characteristics in the same core, and the magnetic flux distribution in the wound core 4 is as shown in FIG. Magnetic fluxes are biased toward the inner peripheral side of the magnetic steel sheets laminated on the inner circumference with short magnetic paths and small magnetic resistance. Therefore, the inner peripheral side of the wound core where the magnetic flux is concentrated has a high magnetic flux density, and the iron loss increases.

そこで本発明では、巻鉄心において磁路長が短い内周側に磁気特性の劣る電磁鋼板を、
磁路長が長い外周側に内周側よりも磁気特性の優れた電磁鋼板を配置することで、鉄心の
断面積内の磁束分布を均一化する構造とする。
Therefore, in the present invention, an electromagnetic steel sheet having inferior magnetic properties on the inner peripheral side having a short magnetic path length in the wound iron core,
A magnetic flux distribution in the cross-sectional area of the iron core is made uniform by disposing an electromagnetic steel plate having better magnetic properties than the inner peripheral side on the outer peripheral side having a long magnetic path length.

図1は磁気特性の異なる2種類の電磁鋼板から製造した巻鉄心1であり、巻鉄心1の内
周側には高配向性けい素鋼板2を、外周側には高配向性けい素鋼板2より磁気特性の優れ
た磁区制御けい素鋼板3を配置した巻鉄心である。ここで高配向性けい素鋼板とは、材料
の圧延方向と磁束の通る方向が揃っているけい素鋼板である。磁区制御けい素鋼板とは、
高配向性けい素鋼板を素材とし、その表面に浅い溝を造り磁区を細分化したけい素鋼板で
あり、その磁気特性は高配向性けい素鋼板よりも優れている。この巻鉄心構造において、
各電磁鋼板2、3の積厚比率を変えたものを図4のNo.1〜No.4に示す。図4のN
o.1の巻鉄心は鉄損特性比較のために磁区制御けい素鋼板3のみより製造したものであ
る。これに対しNo.2の巻鉄心は内周側に高配向性けい素鋼板2を積厚比率25%にな
るように配置し、外周側には高配向性けい素鋼板2より磁気特性の優れた磁区制御けい素
鋼板bを積厚比率75%になるように配置したものである。No.3、No.4の巻鉄心
においては、No.2同様に内周側の高配向性けい素鋼板2の積厚比率がそれぞれ50%
、75%になるように配置したものである。以下にこれらの巻鉄心における鉄損特性を検
証した結果について説明する。
FIG. 1 shows a wound iron core 1 manufactured from two types of electromagnetic steel sheets having different magnetic properties. A highly oriented silicon steel sheet 2 is provided on the inner peripheral side of the wound iron core 1, and a highly oriented silicon steel sheet 2 is provided on the outer peripheral side. This is a wound iron core in which a magnetic domain control silicon steel plate 3 having more excellent magnetic properties is arranged. Here, the highly oriented silicon steel sheet is a silicon steel sheet in which the rolling direction of the material and the direction in which the magnetic flux passes are aligned. What is a magnetic domain control silicon steel sheet?
This is a silicon steel sheet made of a highly oriented silicon steel sheet, with shallow grooves formed on the surface thereof, and the magnetic domains are subdivided, and its magnetic properties are superior to those of the highly oriented silicon steel sheet. In this wound core structure,
4 in which the thickness ratio of each of the electromagnetic steel plates 2 and 3 is changed. 1-No. 4 shows. N in FIG.
o. The wound core 1 is manufactured only from the magnetic domain control silicon steel plate 3 for comparison of the iron loss characteristics. In contrast, no. In the wound iron core 2, a highly oriented silicon steel plate 2 is arranged on the inner peripheral side so that the thickness ratio is 25%, and on the outer peripheral side, the magnetic domain control silicon having better magnetic properties than the high oriented silicon steel plate 2 is arranged. The steel plates b are arranged so that the thickness ratio is 75%. No. 3, no. No. 4 in the wound iron core. Similarly, the thickness ratio of the highly oriented silicon steel sheet 2 on the inner circumference side is 50% respectively.
, 75%. The results of verifying the iron loss characteristics of these wound cores will be described below.

図5は、図4のNo.1〜No.4の各鉄心における鉄損の励磁特性試験結果を示し、
横軸は磁束密度、縦軸は鉄損の相対値である。図5において磁束密度1.55Tから1.
85Tまで変化させたとき、鉄損の特性は、No.2、No.1、No.3、No.4の
順に劣化していることが分かる。
FIG. 1-No. 4 shows the excitation characteristics test results of iron loss in each iron core
The horizontal axis is the magnetic flux density, and the vertical axis is the relative value of iron loss. In FIG.
When changed to 85T, the iron loss characteristics are No. 2, No. 1, no. 3, no. It turns out that it has deteriorated in order of 4.

また、図6は、磁束密度1.70Tにおける各鉄損値の比較で、No.1の鉄損値を1
00%とした場合の各鉄損の相対値(測定周波数50Hz)を示している。図6のおいて、
最も良好な鉄損値を示したのはNo.2の巻鉄心であり、No.1の磁区制御けい素鋼板
3のみから成る巻鉄心の鉄損値よりも磁束密度1.70Tで約2%改善されている。また
内周側の高配向性けい素鋼板2の積厚比率が50%以上になると鉄損は大きく増加傾向を
示している。
6 is a comparison of iron loss values at a magnetic flux density of 1.70 T. The iron loss value of 1 is 1
The relative value (measurement frequency 50 Hz) of each iron loss when it is set to 00% is shown. In FIG.
It was No. that showed the best iron loss value. No. 2 wound iron core. This is an improvement of about 2% at a magnetic flux density of 1.70 T compared to the iron loss value of a wound core consisting of only one magnetic domain control silicon steel plate 3. Further, when the thickness ratio of the highly oriented silicon steel sheet 2 on the inner peripheral side becomes 50% or more, the iron loss shows a large increasing tendency.

巻鉄心内の磁束は、全積厚に対し磁路が短く磁気抵抗が小さい内周側に偏ることが一般
的に知られている。本検証では巻鉄心の内周側に高配向性けい素鋼板2を配置し、外周側
には高配向性けい素鋼板2より磁気特性の優れたすなわち透磁率が高い磁区制御けい素鋼
板3を配置することにより、鉄心の断面積内の磁束分布が均一化され鉄損が改善されてい
る。しかし、本試験結果より内周側に外周側よりも磁気特性の劣る高配向性けい素鋼板2
を配置しても、その積厚比率を50%以上とした巻鉄心では、高配向性けい素鋼板2の投
入量が多くなり鉄損は増加傾向を示すことが確認できる。以上のことより内周側に配置す
る外周側よりも磁気特性の劣る高配向性けい素鋼板bの積厚比率は40%以下になること
が望ましい。
It is generally known that the magnetic flux in the wound iron core is biased toward the inner peripheral side with a short magnetic path and a small magnetic resistance with respect to the total thickness. In this verification, a highly oriented silicon steel plate 2 is arranged on the inner peripheral side of the wound iron core, and a magnetic domain control silicon steel plate 3 having a magnetic property superior to that of the high oriented silicon steel plate 2, that is, having a high permeability, is provided on the outer peripheral side. By arranging, the magnetic flux distribution in the cross-sectional area of the iron core is made uniform, and the iron loss is improved. However, a highly oriented silicon steel plate 2 having a magnetic property inferior to that of the outer peripheral side on the inner peripheral side from the result of this test.
Even in the case where the iron core is arranged, in the wound iron core whose thickness ratio is 50% or more, it can be confirmed that the amount of the highly oriented silicon steel sheet 2 is increased and the iron loss tends to increase. From the above, it is desirable that the thickness ratio of the highly oriented silicon steel sheet b having inferior magnetic properties as compared with the outer peripheral side disposed on the inner peripheral side is 40% or less.

鉄心の鉄損は、各電磁鋼板固有の鉄損(W/Kg)特性と使用質量(Kg)の積で求まる。
同一鉄心内に磁気特性が異なる電磁鋼板を積層した場合においても、理論上では各電磁鋼
板固有の鉄損(W/Kg)特性と使用質量(Kg)の積の和で求まると考えられる。しかし、
巻鉄心内周側に、外周側よりも磁気特性の劣る電磁鋼板を適切な積厚比率で配置すること
で、鉄心断面積内の磁束分布が均一化され、前記の鉄損理論値より小さい鉄損値を得るこ
とが検証できた。よって、巻鉄心の内周側には安価で磁気特性の劣る電磁鋼板を使用しな
がらも、鉄損増加率を抑えた低価格な巻鉄心を製造することが可能である。
The iron loss of the iron core is obtained by the product of the iron loss (W / Kg) characteristic unique to each electromagnetic steel sheet and the used mass (Kg).
Even when magnetic steel sheets having different magnetic properties are stacked in the same iron core, it is theoretically considered to be obtained by the sum of products of iron loss (W / Kg) characteristics inherent to each magnetic steel sheet and used mass (Kg). But,
The magnetic flux distribution in the cross-sectional area of the iron core is made uniform by arranging the magnetic steel sheets with inferior magnetic properties on the inner peripheral side of the wound core at the appropriate thickness ratio compared to the outer peripheral side. It was verified that the loss value was obtained. Therefore, it is possible to manufacture a low-price wound core with a reduced iron loss increase rate, while using an inexpensive steel sheet with inferior magnetic properties on the inner peripheral side of the wound core.

図7は2個の内側巻鉄心5aと、それらを囲むように配置された1個の外側巻鉄心6a
からなる三相三脚巻鉄心であり、各巻鉄心の内周側には方向性けい素鋼板7a、9aを、
外周側には方向性けい素鋼板よりも磁気特性の優れた高配向性けい素鋼板8a、10aを
配置した巻鉄心である。図7の三相三脚巻鉄心は内側鉄心5a、外側鉄心6a共に各巻鉄
心の内周側の方向性けい素鋼板7a、9aの積厚比率が25%になるように配置したもの
である。また図7の三相三脚巻鉄心においてのU脚、V脚、W脚全体での積厚比率は、ど
の脚においても方向性けい素鋼板が25%となる。
FIG. 7 shows two inner wound cores 5a and one outer wound core 6a arranged so as to surround them.
A three-phase tripod wound iron core, and directional silicon steel plates 7a and 9a on the inner peripheral side of each wound iron core,
On the outer peripheral side is a wound iron core in which highly oriented silicon steel plates 8a and 10a having better magnetic properties than directional silicon steel plates are arranged. The three-phase tripod wound core shown in FIG. 7 is arranged such that the inner and outer iron cores 5a and 6a have a thickness ratio of 25% of the directional silicon steel plates 7a and 9a on the inner peripheral side of each wound core. Further, in the three-phase tripod wound core shown in FIG. 7, the thickness ratio of the entire U, V, and W legs is 25% for the directional silicon steel plate in any leg.

図8の三相三脚巻鉄心は、2個の内側巻鉄心5bと、それらを囲むように配置された1
個の外側巻鉄心6bからなり、内側巻鉄心5bの内周側には方向性けい素鋼板7bを、外
周側には高配向性けい素鋼板8bを配置し、外側巻鉄心6bの内周側には高配向性けい素
鋼板配置10bを、外周側には方向性けい素鋼板9bを配置したものである。図8の三相
三脚巻鉄心は内側巻鉄心5bの内周側に配置された方向性けい素鋼板7bの積厚比率が2
5%に、外側巻鉄心6bの外周側に配置された方向性けい素鋼板9bの積厚比率が25%
になるように配置したものである。また図8の三相三脚巻鉄心においてのU脚、V脚、W
脚全体での積厚比率は、どの脚においても方向性けい素鋼板が25%となる。
The three-phase tripod wound core shown in FIG. 8 has two inner wound cores 5b and 1 arranged so as to surround them.
It consists of a single outer wound core 6b, a directional silicon steel plate 7b is disposed on the inner peripheral side of the inner wound core 5b, and a highly oriented silicon steel plate 8b is disposed on the outer peripheral side, and the inner peripheral side of the outer wound core 6b. Is a high-orientation silicon steel plate arrangement 10b, and a directional silicon steel plate 9b is arranged on the outer peripheral side. The three-phase tripod wound core of FIG. 8 has a thickness ratio of 2 for the directional silicon steel sheet 7b disposed on the inner peripheral side of the inner wound core 5b.
5%, the thickness ratio of the directional silicon steel sheet 9b arranged on the outer peripheral side of the outer wound core 6b is 25%.
It is arranged to become. Also, the U leg, V leg, W in the three-phase tripod wound core shown in FIG.
The thickness ratio of the entire leg is 25% for the directional silicon steel plate in any leg.

図9の三相三脚巻鉄心は、2個の内側巻鉄心5cと、それらを囲むように配置された1
個の外側巻鉄心6cからなり、内側巻鉄心5cの内周側には方向性けい素鋼板7cを、外
周側には高配向性けい素鋼板8cを配置し、外側巻鉄心6cには全て高配向性けい素鋼板
10cを配置したものである。尚、この内側巻鉄心5cは、内周側に配置された方向性け
い素鋼板7cの積厚比率が50%になるように配置したものである。また図9の三相三脚
巻鉄心においてのU脚、V脚、W脚全体での積厚比率は、方向性けい素鋼板の積厚比率で
U脚25%、V脚50%、W脚25%となる。
The three-phase tripod wound core shown in FIG. 9 includes two inner wound cores 5c and 1 arranged so as to surround them.
Each of the outer wound cores 6c is composed of a directional silicon steel plate 7c on the inner peripheral side of the inner wound core 5c and a highly oriented silicon steel plate 8c on the outer peripheral side. An oriented silicon steel plate 10c is disposed. In addition, this inner side wound iron core 5c is arrange | positioned so that the thickness ratio of the directionality silicon steel plate 7c arrange | positioned at the inner peripheral side may be 50%. The total thickness ratio of the U, V, and W legs in the three-phase three-leg wound core shown in FIG. 9 is the ratio of the thickness of the directional silicon steel sheet: 25% for the U leg, 50% for the V leg, and 25 for the W leg. %.

1・・巻鉄心
2・・高配向性けい素鋼板
3・・磁区制御けい素鋼板
4・・従来構造の巻鉄心
5a、5b、5c・・三相三脚巻鉄心の内側巻鉄心
6a、6b、6c・・三相三脚巻鉄心の外側巻鉄心
7a、7b、7c、9a、9b、9c・・方向性けい素鋼板
8a、8b、8c、10a、10b、10c・・高配向性けい素鋼板
1 .. Rolled iron core 2. Highly oriented silicon steel sheet
3. Magnetic domain control silicon steel plate 4. Conventional wound cores 5a, 5b, 5c .. Three-phase tripod core inner winding cores 6a, 6b, 6c .. Three-phase tripod core outer winding core 7a, 7b, 7c, 9a, 9b, 9c ··· Directional silicon steel plates 8a, 8b, 8c, 10a, 10b, 10c ··· Highly oriented silicon steel plates

本発明の目的は、同一巻鉄心内で磁束分布を均一化するため、磁気特性の異なる電磁鋼
板を任意の積厚比率で配置した静止機器用巻鉄心、及びそれを有する静止機器を提供することにある。
An object of the present invention is to provide a wound iron core for stationary equipment in which electromagnetic steel sheets having different magnetic properties are arranged at an arbitrary thickness ratio in order to make the magnetic flux distribution uniform within the same wound core, and a stationary equipment having the same. It is in.

上記課題を解決するために、本発明では、磁気特性の異なる電磁鋼板を任意の積厚配分比で鉄心内に積層した静止機器用巻鉄心において、前記静止機器用巻鉄心で磁路長が短い内周側に磁気特性の劣る電磁鋼板を配置し、磁路長が長い外周側に内周側よりも磁気特性の優れた電磁鋼板を配置し、前記静止機器用巻鉄心の内周側に、外周側よりも磁気特性の劣る電磁鋼板を任意の積厚比率で配置し、前記電磁鋼板固有の鉄損特性と使用質量の積で求まる鉄損理論値より小さい鉄損値を得るようにする。
また、磁気特性の異なる電磁鋼板を任意の積厚配分比で鉄心内に積層した静止機器用巻鉄心において、前記静止機器用巻鉄心で磁路長が短い内周側に磁気特性の劣る電磁鋼板を配置し、磁路長が長い外周側に内周側よりも磁気特性の優れた電磁鋼板を配置し、前記静止機器用巻鉄心の内周側に、外周側よりも磁気特性の劣る電磁鋼板を任意の積厚比率で配置し、鉄損の励磁特性試験結果として、前記静止機器用巻鉄心の鉄損値が磁気特性の優れた電磁鋼板のみからなる静止機器用巻鉄心の鉄損値よりも、改善されているようにする。
また、前記静止機器用巻鉄心における磁路長が短く磁気抵抗が小さい内周側に外周側よりも磁気特性の劣る電磁鋼板を静止機器用巻鉄心の積層全厚さの40%以下となるように配置し、その外周側に内周側よりも磁気特性の優れた電磁鋼板を配置するようにする。
また、前記静止機器用巻鉄心の内周側の電磁鋼板を高配向性けい素鋼板とし、その外周側の電磁鋼板を磁区制御けい素鋼板とする。
また、磁気特性の異なる電磁鋼板を任意の積厚配分比で鉄心内に積層した静止機器用巻鉄心を有する静止機器において、前記静止機器巻鉄心を有するようにする。
In order to solve the above problems, in the present invention, in a wound core for stationary equipment in which magnetic steel sheets having different magnetic properties are laminated in an iron core at an arbitrary thickness distribution ratio, the magnetic path length is short in the wound core for stationary equipment. An electromagnetic steel plate with inferior magnetic properties is arranged on the inner peripheral side, an electromagnetic steel plate with magnetic properties superior to the inner peripheral side is arranged on the outer peripheral side with a long magnetic path length, and the inner peripheral side of the wound core for stationary equipment, Magnetic steel sheets having inferior magnetic properties as compared with the outer peripheral side are arranged at an arbitrary thickness ratio so as to obtain an iron loss value smaller than a theoretical iron loss value obtained by the product of the iron loss characteristics inherent to the magnetic steel sheet and the used mass.
Moreover, in a wound core for stationary equipment in which electrical steel sheets having different magnetic properties are laminated in an iron core at an arbitrary thickness distribution ratio, the electrical steel sheet having inferior magnetic properties on the inner peripheral side having a short magnetic path length in the wound core for stationary equipment An electromagnetic steel sheet having a magnetic path length longer on the outer peripheral side than the inner peripheral side, and an electromagnetic steel sheet having inferior magnetic characteristics on the inner peripheral side of the wound core for stationary equipment than the outer peripheral side. As a result of the iron loss excitation characteristic test, the iron loss value of the static iron core is based on the iron loss value of the static iron core consisting only of a magnetic steel sheet with excellent magnetic properties. Also to be improved.
The magnetic steel sheet having a short magnetic path length and a small magnetic resistance in the wound core for stationary equipment has a magnetic property inferior to that of the outer circumferential side on the inner circumferential side so that the total thickness of the laminated cores for stationary equipment is 40% or less. And an electrical steel sheet having a magnetic property superior to that of the inner peripheral side is disposed on the outer peripheral side.
The electromagnetic steel plate on the inner peripheral side of the wound iron core for stationary equipment is a highly oriented silicon steel plate, and the magnetic steel plate on the outer peripheral side is a magnetic domain control silicon steel plate.
Further, in a stationary device having a wound core for stationary equipment in which magnetic steel sheets having different magnetic properties are laminated in an iron core at an arbitrary thickness distribution ratio, the stationary equipment wound core is provided.

Claims (1)

2脚の内鉄心、1脚の外鉄心からなる三相三脚巻鉄心において、
U脚、V脚、W脚のうち少なくとも1脚は、磁路長が短く磁気抵抗が小さい内周側に外周側よりも磁気特性の劣る電磁鋼板を、磁路長が長く磁気抵抗が大きい外周側には内周側よりも磁気特性の優れた電磁鋼板を配置し、
前記巻鉄心の内周側の電磁鋼板を高配向性ケイ素鋼板とし、その外周側の電磁鋼板を磁
区制御ケイ素鋼板とし、
1脚の積厚全厚さのうち、磁気特性の劣った磁性材料が50%以下となるように各鉄心を成形したことを特徴とする三相三脚巻鉄心。
In a three-phase tripod wound core consisting of two inner cores and one outer core,
At least one of the U, V, and W legs is made of an electromagnetic steel plate that has a short magnetic path length and a small magnetic resistance, and has an inferior magnetic property compared to the outer peripheral side. On the side, a magnetic steel sheet with better magnetic properties than the inner circumference is placed,
The magnetic steel sheet on the inner peripheral side of the wound iron core is a highly oriented silicon steel sheet, the magnetic steel sheet on the outer peripheral side is a magnetic domain control silicon steel sheet,
A three-phase tripod wound iron core, wherein each iron core is molded so that the magnetic material with inferior magnetic properties is 50% or less of the total thickness of one leg.
JP2012109075A 2005-07-08 2012-05-11 Winding iron core for stationary equipment and stationary equipment having the same Active JP5544393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012109075A JP5544393B2 (en) 2005-07-08 2012-05-11 Winding iron core for stationary equipment and stationary equipment having the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005199545 2005-07-08
JP2005199545 2005-07-08
JP2012109075A JP5544393B2 (en) 2005-07-08 2012-05-11 Winding iron core for stationary equipment and stationary equipment having the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010007698A Division JP5286292B2 (en) 2005-07-08 2010-01-18 Winding cores for stationary equipment and three-phase tripod winding cores

Publications (2)

Publication Number Publication Date
JP2012169666A true JP2012169666A (en) 2012-09-06
JP5544393B2 JP5544393B2 (en) 2014-07-09

Family

ID=37609653

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2010007698A Active JP5286292B2 (en) 2005-07-08 2010-01-18 Winding cores for stationary equipment and three-phase tripod winding cores
JP2012109075A Active JP5544393B2 (en) 2005-07-08 2012-05-11 Winding iron core for stationary equipment and stationary equipment having the same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2010007698A Active JP5286292B2 (en) 2005-07-08 2010-01-18 Winding cores for stationary equipment and three-phase tripod winding cores

Country Status (2)

Country Link
JP (2) JP5286292B2 (en)
CN (1) CN1897175B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1897175B (en) * 2005-07-08 2012-07-18 株式会社日立产机*** Iron core for stationary apparatus and stationary apparatus
WO2011158290A1 (en) 2010-06-16 2011-12-22 株式会社日立製作所 Static electromagnetic apparatus
CN102136358B (en) 2011-01-13 2012-12-19 上海诺雅克电气有限公司 Power supply current transformer for electronic protection
JP2012204745A (en) * 2011-03-28 2012-10-22 Kitashiba Electric Co Ltd Iron core reactor
MX2017006878A (en) 2014-11-25 2017-08-15 Aperam Basic module for magnetic core of an electrical transformer, magnetic core comprising said basic module, method for manufacturing said magnetic core, and transformer comprising said magnetic core.
US11984249B2 (en) 2018-01-31 2024-05-14 Jfe Steel Corporation Grain-oriented electrical steel sheet, wound transformer core using the same, and method for producing wound core
CN112313762B (en) * 2018-10-03 2024-02-09 日本制铁株式会社 Coiled iron core and transformer
WO2023007953A1 (en) 2021-07-30 2023-02-02 Jfeスチール株式会社 Wound core and wound core manufacturing method
KR20240021277A (en) 2021-07-30 2024-02-16 제이에프이 스틸 가부시키가이샤 Winding iron core and manufacturing method of the winding iron core
WO2023007952A1 (en) 2021-07-30 2023-02-02 Jfeスチール株式会社 Wound core and wound core manufacturing method
KR20240021276A (en) 2021-07-30 2024-02-16 제이에프이 스틸 가부시키가이샤 Winding iron core and manufacturing method of the winding iron core

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5552207A (en) * 1978-10-13 1980-04-16 Hitachi Ltd Coiled steel core for transformer
JPS5559705A (en) * 1978-10-27 1980-05-06 Westinghouse Electric Corp Transformer
JPS5926221U (en) * 1982-08-09 1984-02-18 三菱電機株式会社 wound iron core
JPS59175110A (en) * 1983-03-24 1984-10-03 Hitachi Ltd Wound core type stationary induction electric apparatus
JPH03198312A (en) * 1989-12-27 1991-08-29 Tamura Seisakusho Co Ltd Iron core for swinging choke coil and its manufacture
JPH03268311A (en) * 1990-03-19 1991-11-29 Toshiba Corp Iron core of transformer
JPH05101943A (en) * 1991-05-08 1993-04-23 Toshiba Corp Three-phase wound core
JPH06120044A (en) * 1991-04-17 1994-04-28 Nippon Steel Corp Low-noise transformer core
JP2003142318A (en) * 2001-11-01 2003-05-16 Hitachi Ltd Gas-insulated transformer
JP2006185999A (en) * 2004-12-27 2006-07-13 Nippon Steel Corp Method of manufacturing low-building factor iron core for transformer and reactor
JP2007043040A (en) * 2005-07-08 2007-02-15 Hitachi Industrial Equipment Systems Co Ltd Iron core for stillness apparatus
JP2010087536A (en) * 2005-07-08 2010-04-15 Hitachi Industrial Equipment Systems Co Ltd Three-phase tripod iron core

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6115309A (en) * 1984-07-02 1986-01-23 Kawasaki Steel Corp Wound core for transformer with low iron loss

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5552207A (en) * 1978-10-13 1980-04-16 Hitachi Ltd Coiled steel core for transformer
JPS5559705A (en) * 1978-10-27 1980-05-06 Westinghouse Electric Corp Transformer
JPS5926221U (en) * 1982-08-09 1984-02-18 三菱電機株式会社 wound iron core
JPS59175110A (en) * 1983-03-24 1984-10-03 Hitachi Ltd Wound core type stationary induction electric apparatus
JPH03198312A (en) * 1989-12-27 1991-08-29 Tamura Seisakusho Co Ltd Iron core for swinging choke coil and its manufacture
JPH03268311A (en) * 1990-03-19 1991-11-29 Toshiba Corp Iron core of transformer
JPH06120044A (en) * 1991-04-17 1994-04-28 Nippon Steel Corp Low-noise transformer core
JPH05101943A (en) * 1991-05-08 1993-04-23 Toshiba Corp Three-phase wound core
JP2003142318A (en) * 2001-11-01 2003-05-16 Hitachi Ltd Gas-insulated transformer
JP2006185999A (en) * 2004-12-27 2006-07-13 Nippon Steel Corp Method of manufacturing low-building factor iron core for transformer and reactor
JP2007043040A (en) * 2005-07-08 2007-02-15 Hitachi Industrial Equipment Systems Co Ltd Iron core for stillness apparatus
JP2010087536A (en) * 2005-07-08 2010-04-15 Hitachi Industrial Equipment Systems Co Ltd Three-phase tripod iron core
JP5286292B2 (en) * 2005-07-08 2013-09-11 株式会社日立産機システム Winding cores for stationary equipment and three-phase tripod winding cores

Also Published As

Publication number Publication date
JP5544393B2 (en) 2014-07-09
CN1897175A (en) 2007-01-17
JP2010087536A (en) 2010-04-15
CN1897175B (en) 2012-07-18
JP5286292B2 (en) 2013-09-11

Similar Documents

Publication Publication Date Title
JP5544393B2 (en) Winding iron core for stationary equipment and stationary equipment having the same
JP4959170B2 (en) Iron core for stationary equipment
WO2010026898A1 (en) Wound iron core for static apparatus, amorphous transformer and coil winding frame for transformer
JP6397349B2 (en) Three-phase five-legged iron core and stationary electromagnetic equipment
JP7047931B2 (en) Winding core and transformer
JP2007048897A (en) Noise filter
US7889040B2 (en) DC inductor
WO2011158290A1 (en) Static electromagnetic apparatus
US7471183B2 (en) Transformer
JP2729937B2 (en) Composite coil
JP2018117061A (en) Iron core for stationary induction electric appliance
US11430599B2 (en) Transformer iron core
JP2010114170A (en) Iron core for static apparatus
JP3189478U (en) Assembly structure of steel core
JP2005045133A (en) Electromagnetic device
JP2018117046A (en) Transformer
JPH03241719A (en) Ac reactor
JP2020096008A (en) Iron core with gap for stationary induction apparatus
JP5742175B2 (en) Low iron loss three-phase transformer
JP2011023630A (en) Stationary induction apparatus
JP7176306B2 (en) transformer
JP2009010253A (en) High-frequency reactor
JPH04250604A (en) Transformer core
JP2019102692A (en) Stacked core
JP2021052077A (en) Iron core for static induction electric appliance

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20131210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140512

R150 Certificate of patent or registration of utility model

Ref document number: 5544393

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150