JP5283459B2 - Heat-shrinkable laminated film, heat-shrinkable label using the film, and container equipped with the label - Google Patents

Heat-shrinkable laminated film, heat-shrinkable label using the film, and container equipped with the label Download PDF

Info

Publication number
JP5283459B2
JP5283459B2 JP2008230329A JP2008230329A JP5283459B2 JP 5283459 B2 JP5283459 B2 JP 5283459B2 JP 2008230329 A JP2008230329 A JP 2008230329A JP 2008230329 A JP2008230329 A JP 2008230329A JP 5283459 B2 JP5283459 B2 JP 5283459B2
Authority
JP
Japan
Prior art keywords
heat
shrinkage
film
component
shrinkable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008230329A
Other languages
Japanese (ja)
Other versions
JP2010064283A (en
Inventor
友幸 根本
隆敏 牟田
潤 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP2008230329A priority Critical patent/JP5283459B2/en
Publication of JP2010064283A publication Critical patent/JP2010064283A/en
Application granted granted Critical
Publication of JP5283459B2 publication Critical patent/JP5283459B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Landscapes

  • Wrappers (AREA)
  • Laminated Bodies (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Details Of Rigid Or Semi-Rigid Containers (AREA)
  • Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat-shrinkable laminated film having an excellent thermal shrinkage characteristic in a low temperature and a shrinkage stress value of 1 MPa or smaller. <P>SOLUTION: The heat-shrinkable laminated film is composed of at least three layers of an intermediate layer and surface layers laminated on both surfaces of the intermediate layer, that is, composed of the surface layer composed of a polylactate based resin composition as a main component, and the intermediate layer composed of an ethylene-vinyl acetate copolymer having a content of a rate of a vinyl acetate of 25 mass% or larger and 60 mass% or smaller. (a) the shrinkage rate in the main shrinkage direction when being immersed in hot water at 80&deg;C for 10 sec is 30% or higher, and the thermal shrinkage rate in the direction orthogonal to the main shrinkage direction is 10% or smaller, (b) maximum values of shrinkage stress value are 1 MPa or smaller in both the main shrinkage direction and the direction orthogonal to the main shrinkage direction, respectively, and (c) the shrinkage rate in the main shrinkage direction when being preserved for 30 days at 30&deg;C is 1.5% or smaller. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、植物由来の樹脂を用いた熱収縮性積層フィルムに関し、特に低温熱収縮特性が良好で、かつ収縮応力値が1MPa以下となる熱収縮性積層フィルム、該フィルムを用いた熱収縮ラベル、及び該ラベルを装着した容器に関する。   The present invention relates to a heat-shrinkable laminated film using a plant-derived resin, and in particular, a heat-shrinkable laminated film having good low-temperature heat-shrinkage characteristics and having a shrinkage stress value of 1 MPa or less, and a heat-shrinkable label using the film And a container equipped with the label.

現在、ジュース等の清涼飲料、ビール等のアルコール飲料等は、瓶、ペットボトル等の容器に充填された状態で販売されており、他商品との差異化や商品の視認性を向上させ商品価値を高める目的で、容器の外側に印刷を施した熱収縮性ラベルを装着することが多い。   Currently, soft drinks such as juices and alcoholic drinks such as beer are sold in bottles, plastic bottles, and other containers, which are differentiated from other products and improve product visibility. In order to increase the temperature, a heat-shrinkable label printed on the outside of the container is often attached.

上記分野において、需要の増大が見込まれるペットボトルラベル用途等では、比較的短時間、かつ低温において高度な収縮仕上がり外観が得られ、小さな自然収縮率を有する熱収縮性フィルムが要求されている。一方、最近のペットボトルラベル用途に用いられる熱収縮性フィルムにはペットボトルに装着されるシュリンクフィルムのラベリング工程における低温化のニーズが挙げられる。これは、現在主流となっている蒸気シュリンカーを用いて熱収縮性フィルムをシュリンクさせてラベリングする方法において、内容物の無菌充填や温度上昇による品質低下を回避するため、ラベリング時に蒸気シュリンカー内でできるだけ低温で収縮包装させたいためである。また、近年本用途では二酸化炭素排出量の削減の一環としてペットボトルの軽量化が図られており、ボトルの形状を最適化することで、約20〜30%の軽量化が実現されており、熱収縮性フィルムの収縮時における収縮応力の軽減が求められ始めている。   In the above-mentioned field, a heat-shrinkable film having a small shrinkage ratio is required for PET bottle label applications and the like, for which demand is expected to increase. On the other hand, heat shrinkable films used for recent PET bottle labeling have a need for a low temperature in the labeling process of shrink film to be attached to PET bottles. This is because, in the method of shrinking and labeling heat-shrinkable film using steam shrinker, which is currently the mainstream, in order to avoid aseptic filling of contents and deterioration of quality due to temperature rise, This is because it is desired to shrink-wrap at as low a temperature as possible. In recent years, the use of plastic bottles has been reduced in this application as part of the reduction of carbon dioxide emissions, and by optimizing the shape of the bottles, a weight reduction of about 20-30% has been realized. Reduction of shrinkage stress at the time of shrinkage of heat-shrinkable films has begun to be demanded.

熱収縮性ラベルの素材としては、例えば、ポリエチレンテレフタレート(以下「PET」と略する場合がある)。系樹脂やポリスチレン(以下「PS」と略する場合がある。)系樹脂が用いられている。これらの樹脂で形成された延伸フィルムは、高い透明性や光沢性、剛性を有し、かつ優れた低温収縮特性を有することから、熱収縮性フィルムとして好適に使用することができる。   As a material of the heat-shrinkable label, for example, polyethylene terephthalate (hereinafter may be abbreviated as “PET”). Resin and polystyrene (hereinafter sometimes abbreviated as “PS”) resin are used. A stretched film formed of these resins has high transparency, gloss, rigidity, and excellent low-temperature shrinkage characteristics, and therefore can be suitably used as a heat-shrinkable film.

一方、上記PET系樹脂やPS系樹脂はいずれも石油由来の樹脂であるため、石油枯渇問題から、熱収縮性ラベルの材料として石油由来樹脂の代替材料が求められているという実状がある。他方、最近の二酸化炭素排出量の問題から、少しでも環境に配慮された原料を用いた熱収縮性ラベルの開発の必要性が指摘されている。   On the other hand, since the PET-based resin and the PS-based resin are both petroleum-derived resins, there is a fact that an alternative material for petroleum-derived resins is required as a material for heat-shrinkable labels due to the problem of oil depletion. On the other hand, the recent problem of carbon dioxide emissions has pointed out the necessity of developing heat-shrinkable labels using raw materials that are environmentally friendly.

このような状況下、石油由来の代替樹脂の一例として、ポリ乳酸(以下「PLA」と略する場合がある。)系樹脂が知られている。このPLA系樹脂は、澱粉の発酵により得られる乳酸を原料とするいわゆる植物由来樹脂であり、化学工学的に量産可能であり、かつ透明性、剛性等に優れるという特徴を有する。さらに植物由来原料であるため二酸化炭素の排出抑制が可能となり、環境配慮型樹脂として注目を集めている。   Under such circumstances, a polylactic acid (hereinafter sometimes abbreviated as “PLA”) resin is known as an example of an alternative resin derived from petroleum. This PLA resin is a so-called plant-derived resin made from lactic acid obtained by fermentation of starch as a raw material, and can be mass-produced by chemical engineering, and has excellent characteristics such as transparency and rigidity. Furthermore, since it is a plant-derived material, it is possible to suppress carbon dioxide emissions, and is attracting attention as an environmentally friendly resin.

特許文献1には、屈折率が1.40以上1.55以下である樹脂を主成分とする(I)層と、少なくとも1種のポリ乳酸系樹脂を主成分とする(II)層の少なくとも2層からなる積層フィルムを少なくとも1方向に延伸してなる熱収縮性積層フィルムにおいて、80℃の温水中に10秒浸漬した時の主収縮方向の収縮率を30%以上、主収縮方向と直交する方向の収縮率が10%以下となる熱収縮性フィルムが開示されている。特許文献1に記載されたフィルムは、少なくとも1方向に延伸してなるため、熱収縮時の収縮応力値が1MPa以上となることがほとんどである。   Patent Document 1 discloses at least a (I) layer mainly composed of a resin having a refractive index of 1.40 to 1.55 and a (II) layer mainly composed of at least one polylactic acid resin. In a heat-shrinkable laminated film obtained by stretching a laminated film consisting of two layers in at least one direction, the shrinkage in the main shrinkage direction when immersed in warm water at 80 ° C. for 10 seconds is 30% or more, orthogonal to the main shrinkage direction. A heat-shrinkable film having a shrinkage ratio in the direction of 10% or less is disclosed. Since the film described in Patent Document 1 is stretched in at least one direction, the shrinkage stress value at the time of heat shrinkage is almost 1 MPa or more.

また、従来の熱収縮性フィルムの製造方法は、溶融押出された樹脂を一旦冷却固化することにより原反フィルムあるいは原反チューブを採取し、次いで再加熱して延伸する方式であるテンター法あるいはチューブラー法における方式が主に採用されている。これは、主に再加熱時の温度と延伸倍率及び延伸速度等を調節することにより比較的容易に所望の熱収縮特性やフィルム物性を付与することができるからであると考えられる。   In addition, a conventional heat shrinkable film manufacturing method is a tenter method or tube method in which a melt-extruded resin is once cooled and solidified, and then a raw film or raw tube is collected and then reheated and stretched. The method in the Ra method is mainly adopted. This is presumably because desired heat shrinkage characteristics and film properties can be imparted relatively easily by adjusting mainly the temperature at the time of reheating, the draw ratio and the draw speed.

一方、ラップフィルムなどの製造方法に主に用いられているインフレーション法は、溶融押出された樹脂を一旦冷却固化することなく、環状ダイから円筒状に押出し、この円筒の中にエアを吹き込み、溶融円筒を膨らませる方式である。一般的にインフレーション法はテンター法あるいはチューブラー法よりも条件設定範囲が比較的広く、また安定してできること、さらに製造設備の費用も安価であると思われる。   On the other hand, the inflation method, which is mainly used in the manufacturing method of wrap film, is to extrude the melt-extruded resin from the annular die into a cylindrical shape without cooling and solidifying it once. This is a method of inflating a cylinder. In general, the inflation method has a relatively wide range of conditions than the tenter method or the tubular method, and can be made stable, and the cost of manufacturing equipment is also cheap.

一般にインフレーション法では、原料樹脂を融点(Tm)以上の温度に加熱し、環状ダイから円筒状に押出し、溶融円筒状の樹脂の内部にエアを吹き込んで膨らませてフィルムを作製するが、この際、エアにより直径方向に、引き取りにより縦方向に延伸がなされている。しかし、この延伸時において、樹脂は高い温度領域にあり、弾性率や粘性が低いため、インフレーション成形したのみでは、熱収縮性歪の付与という点からは、実質未延伸のフィルムであり、若干の熱収縮性は発現するが、特に比較的低い温度(80℃程度)の収縮率(低温収縮性)が発現するような十分な配向きを持ったフィルムとは通常なりにくい。   In general, in the inflation method, a raw material resin is heated to a temperature equal to or higher than the melting point (Tm), extruded from a circular die into a cylindrical shape, and blown into the molten cylindrical resin to produce a film. Stretching is performed in the diameter direction by air and in the longitudinal direction by taking-up. However, at the time of stretching, since the resin is in a high temperature region and has a low elastic modulus and viscosity, it is a substantially unstretched film from the viewpoint of imparting heat-shrinkable strain only by inflation molding. Although heat shrinkability is exhibited, it is usually difficult to obtain a film having a sufficient orientation such that a shrinkage rate (low temperature shrinkability) at a relatively low temperature (about 80 ° C.) is exhibited.

また、インフレーション法では、上記したようにエアにより直径方向に、引き取りにより縦方向に同時に延伸がなされるため、フィルムの主収縮方向と主収縮方向と垂直の方向の熱収縮率の調整が困難となる場合が多く、主収縮方向と主収縮方向と垂直の方向の熱収縮率はほぼ同値をとるのが一般的である。   Further, in the inflation method, as described above, since the film is stretched in the diameter direction by air and in the longitudinal direction by taking-up, it is difficult to adjust the heat shrinkage rate in the main shrinkage direction and the direction perpendicular to the main shrinkage direction. In many cases, the heat shrinkage rate in the main shrinkage direction and the direction perpendicular to the main shrinkage direction is generally the same.

特許文献2には、ポリオレフィン系樹脂を主成分とする層、及びポリ乳酸を主成分とする層を積層してなる食品包装用ストレッチシュリンクフィルムが提案されている。具体的にはポリ乳酸として、D体量が4質量%であり、重量平均分子量が約20万の材料が使用され、フィルムの全厚さ中に閉めるポリ乳酸を主成分とする層の厚さが25%以上となるように多層インフレーション成形装置にて、ブローアップ比6倍でフィルムを得ている実施例が示されており、120℃における熱収縮率がフィルムの縦方向が30%以上、横方向の収縮率が40%以上となるフィルムが開示されている。本フィルムはオーバーラップシュリンク包装用とには好適なフィルムであるが、両方向とも熱収縮率が発現するため、本用途の収縮包装用途においては決して好適な特性を有しているものではない。
特開2008−023801号公報 特開2002−019053号公報
Patent Document 2 proposes a stretch shrink film for food packaging in which a layer mainly composed of a polyolefin resin and a layer mainly composed of polylactic acid are laminated. Specifically, as polylactic acid, a material having a D-form weight of 4% by mass and a weight average molecular weight of about 200,000 is used, and the thickness of the layer mainly composed of polylactic acid that is closed in the entire thickness of the film. In the multilayer inflation molding apparatus, an example in which a film is obtained with a blow-up ratio of 6 times is shown such that the thermal shrinkage rate at 120 ° C. is 30% or more in the longitudinal direction of the film, A film having a lateral shrinkage of 40% or more is disclosed. Although this film is a film suitable for overlap shrink packaging, it exhibits a heat shrinkage rate in both directions, and therefore has no suitable characteristics in the shrink packaging application of this application.
JP 2008-023801 A JP 2002-019053 A

本発明は、上記問題点を解決すべくなされたものであり、本発明の目的は、熱収縮特性に優れた熱収縮性フィルム、特に低温熱収縮特性が良好で、かつ収縮応力値が1MPa以下となる熱収縮性フィルム、該フィルムを用いた熱収縮性ラベル、及び該ラベルを装着した容器を提供することにある。   The present invention has been made to solve the above-mentioned problems, and the object of the present invention is a heat-shrinkable film excellent in heat-shrinkage characteristics, in particular, good low-temperature heat-shrinkage characteristics and a shrinkage stress value of 1 MPa or less. An object of the present invention is to provide a heat-shrinkable film, a heat-shrinkable label using the film, and a container equipped with the label.

本発明らは、鋭意検討を重ねた結果、エチレン−酢酸ビニル共重合体を主成分とする中間層上にポリ乳酸系樹脂組成物を主成分とする表面層を積層させることにより上記課題を解消できることを見出し、本発明を完成するに至った。
すなわち、本発明の課題は、中間層とこの中間層の両面上に積層される表面層の少なくとも3層で構成される積層フィルムであって、前記表面層はポリ乳酸系樹脂組成物[(A)成分]を主成分として構成され、前記中間層は酢酸ビニルの含有率が25質量%以上60質量%以下であるエチレン−酢酸ビニル共重合体[(B)成分]を主成分として構成され、かつ、以下の(a)から(c)の条件を満たすことを特徴とする熱収縮性積層フィルムにより達成される。
(a)80℃の温水中に10秒間浸漬した時の主収縮方向の収縮率が30%以上であり、主収縮方向と直交する方向の収縮率が10%以下
(b)収縮応力値の最大値が主収縮方向及び主収縮方向と直交する方向でのいずれの方向も1MPa以下
(c)30℃で30日間保存した時の主収縮方向の収縮率が1.5%以下
As a result of extensive studies, the present inventors have solved the above problem by laminating a surface layer mainly composed of a polylactic acid resin composition on an intermediate layer mainly composed of an ethylene-vinyl acetate copolymer. The present inventors have found that this can be done and have completed the present invention.
That is, an object of the present invention is a laminated film composed of at least three layers of an intermediate layer and a surface layer laminated on both surfaces of the intermediate layer, and the surface layer is a polylactic acid resin composition [(A ) Component] as a main component, and the intermediate layer is composed mainly of an ethylene-vinyl acetate copolymer [component (B)] having a vinyl acetate content of 25% by mass or more and 60% by mass or less, And it is achieved by the heat-shrinkable laminated film characterized by satisfying the following conditions (a) to (c).
(A) The shrinkage rate in the main shrinkage direction when immersed in warm water of 80 ° C. for 10 seconds is 30% or more, and the shrinkage rate in the direction orthogonal to the main shrinkage direction is 10% or less. (B) Maximum shrinkage stress value The value is 1 MPa or less in both the main shrinkage direction and the direction perpendicular to the main shrinkage direction. (C) The shrinkage rate in the main shrinkage direction when stored at 30 ° C. for 30 days is 1.5% or less.

本発明の熱収縮性積層フィルムは、前記(A)成分がD−乳酸及びL−乳酸の共重合体からなる樹脂組成物であることが好ましい。   The heat-shrinkable laminated film of the present invention is preferably a resin composition in which the component (A) is a copolymer of D-lactic acid and L-lactic acid.

本発明の熱収縮性積層フィルムは、中間層が前記(B)成分と、MFRが10〜100g/10分である高密度ポリエチレン[(C)成分]との混合樹脂組成物からなり、前記(B)成分と前記(C)成分との質量比が(B)/(C)=95/5〜80/20であることが好ましい。   The heat-shrinkable laminated film of the present invention comprises a mixed resin composition of the component (B) and high-density polyethylene (component (C)) having an MFR of 10 to 100 g / 10 min. The mass ratio of the component (B) to the component (C) is preferably (B) / (C) = 95/5 to 80/20.

また、本発明の熱収縮性積層フィルムは、中間層の厚み比が、フィルム全体の厚みに対して30%以上70%以下であることが好ましい。
また、本発明の熱収縮性積層フィルムは、インフレーション成形法で得られることが好ましい。
In the heat-shrinkable laminated film of the present invention, the thickness ratio of the intermediate layer is preferably 30% or more and 70% or less with respect to the thickness of the entire film.
The heat-shrinkable laminated film of the present invention is preferably obtained by an inflation molding method.

また、本発明の課題は、前記本発明の熱収縮性積層フィルムを基材として用いた熱収縮性ラベル、該ラベルを装着した容器により達成される。   Moreover, the subject of this invention is achieved by the heat-shrinkable label which used the heat-shrinkable laminated film of the said this invention as a base material, and the container equipped with this label.

本発明によれば、環境負荷が少なく、熱収縮特性、特に低温熱収縮特性が良好であり、かつ適度な収縮応力を有する、熱収縮性ラベルに好適な熱収縮性積層フィルムを提供することができる。また、本発明によれば、インフレーション法により得られるため、安定かつ製造コストで熱収縮性多層フィルムを提供することができる。   According to the present invention, it is possible to provide a heat-shrinkable laminated film suitable for a heat-shrinkable label that has a low environmental load, has good heat-shrinkage characteristics, particularly low-temperature heat-shrinkage characteristics, and has an appropriate shrinkage stress. it can. Moreover, according to this invention, since it is obtained by the inflation method, a heat-shrinkable multilayer film can be provided stably and at a manufacturing cost.

また、本発明によれば、環境負荷が少なく、収縮仕上がりの良好な熱収縮性ラベル、及び該ラベルを装着した容器を提供することができる。   In addition, according to the present invention, it is possible to provide a heat-shrinkable label with low environmental load and good shrinkage finish, and a container equipped with the label.

以下、本発明の熱収縮性積層フィルム、熱収縮性ラベル、及び該ラベルを装着した容器(以下、それぞれ「本発明のフィルム」、「本発明のラベル」及び「本発明の容器」という。)を詳細に説明する。   Hereinafter, the heat-shrinkable laminated film of the present invention, the heat-shrinkable label, and a container equipped with the label (hereinafter referred to as “the film of the present invention”, “the label of the present invention”, and “the container of the present invention”, respectively). Will be described in detail.

なお、本明細書において、「主成分とする」とは、各層を構成する樹脂の作用・効果を妨げない範囲で、他の成分を含むことを許容する趣旨である。さらに、この用語は、具体的な含有率を制限するものではないが、各層の構成成分全体の50質量%以上、好ましくは70質量%以上、より好ましくは80質量%以上、さらに好ましくは90質量%以上かつ100質量%以下を占める成分である。   In the present specification, “main component” is intended to allow other components to be included as long as the action and effect of the resin constituting each layer is not hindered. Further, this term does not limit the specific content, but it is 50% by mass or more, preferably 70% by mass or more, more preferably 80% by mass or more, and still more preferably 90% by mass with respect to the total components of each layer. It is a component that occupies no less than 100% and no more than 100% by mass.

また、本明細書において「主収縮方向」とは、フィルムの縦方向(長手方向)とフィルムの横方向(幅方向)のうち熱収縮率の大きい方向を意味し、例えば、ボトルに装着する場合にはその外周方向に相当する方向を意味し、「直交方向」とは主収縮方向と直交する方向を意味する。   Further, in this specification, the “main shrinkage direction” means a direction in which the thermal shrinkage rate is large between the longitudinal direction (longitudinal direction) of the film and the lateral direction (width direction) of the film. Means a direction corresponding to the outer circumferential direction, and “orthogonal direction” means a direction perpendicular to the main contraction direction.

また、本明細書において「中間層の両面上に表面層」とは、中間層の両面に直接表面層が積層される場合のほか、中間層と表面層の間に第三の層(例えば接着層)を介在させ、この第三の層上に表面層を積層させた状態をも意味する。   In this specification, “surface layer on both surfaces of the intermediate layer” means that the surface layer is directly laminated on both surfaces of the intermediate layer, as well as a third layer (for example, an adhesive layer) between the intermediate layer and the surface layer. It also means a state in which a surface layer is laminated on the third layer.

[熱収縮性積層フィルム]
本発明のフィルムは、中間層とこの中間層の両面上に積層される表面層の少なくとも3層で構成される積層フィルムであって、前記表面層がポリ乳酸系樹脂組成物[(A)成分]を主成分として構成され、前記中間層は酢酸ビニルの含有率が25質量%以上60質量%以下であるエチレン−酢酸ビニル共重合体[(B)成分]を主成分として構成される。
[Heat-shrinkable laminated film]
The film of the present invention is a laminated film composed of at least three layers of an intermediate layer and a surface layer laminated on both surfaces of the intermediate layer, wherein the surface layer is a polylactic acid resin composition [component (A) ], And the intermediate layer is composed mainly of an ethylene-vinyl acetate copolymer [component (B)] having a vinyl acetate content of 25% by mass to 60% by mass.

<ポリ乳酸系樹脂組成物[(A)成分]>
本発明のフィルムにおいて、表面層はポリ乳酸系樹脂組成物(以下、単に(A)成分という。)で構成される。表面層を(A)成分で構成することで、室温時におけるフィルムの剛性を向上させ被包装物に熱収縮性フィルムを装着する際の倒れ込み等の不具合の発生を抑え、また(耐溶剤性を付与できるため)製袋時にTHFなどの溶剤によるシール方式を採用することが可能となるため好ましい。また、(A)成分を用いることにより、ガラス転移温度が製膜押出温度から室温までの間に存在するため、例えば溶融状態からの延伸加工時に、ガラス転移温度近傍で延伸変形が止まり、ガラス転移温度よりも高い温度で受けた収縮歪を緩和させずに残すことが可能となるため、インフレーション法において好適な低温での収縮特性(低温収縮特性)を付与することが可能となる。
<Polylactic acid resin composition [component (A)]>
In the film of the present invention, the surface layer is composed of a polylactic acid resin composition (hereinafter simply referred to as component (A)). By constituting the surface layer with the component (A), the rigidity of the film at room temperature is improved, and the occurrence of problems such as falling down when the heat-shrinkable film is attached to the package is suppressed. This is preferable because a sealing method using a solvent such as THF can be adopted at the time of bag making. In addition, since the glass transition temperature exists between the film forming extrusion temperature and room temperature by using the component (A), for example, during stretching processing from a molten state, stretching deformation stops near the glass transition temperature, and the glass transition Since the shrinkage strain received at a temperature higher than the temperature can be left without being relaxed, it is possible to impart a low temperature shrinkage characteristic (low temperature shrinkage characteristic) suitable for the inflation method.

(A)成分は、構造単位がL−乳酸であるポリ(L−乳酸)、構造単位がD−乳酸であるポリ(D−乳酸)、構造単位がL−乳酸及びD−乳酸であるポリ(DL−乳酸)や、これらの混合体を用いることができる。(A)成分のD−乳酸(D体)とL−乳酸(L体)との構造比は、本来一般的な組成としてはL体:D体=100:0〜90:10、又はL体:D体=0:100〜10:90であることが好ましく、L体:D体=100:0〜94:6、又はL体:D体=0:100〜6:94であることがより好ましく、L体:D体=99.5:0.5〜94:6、又はL体:D体=0.5:99.5〜6:94であることが特に好ましい。D体とL体の構成比がこの範囲内であれば得られるフィルムの耐熱性が高く、用途が限定されることがない。   The component (A) includes poly (L-lactic acid) whose structural unit is L-lactic acid, poly (D-lactic acid) whose structural unit is D-lactic acid, and poly (L-lactic acid and D-lactic acid whose structural units are L-lactic acid and D-lactic acid. DL-lactic acid) or a mixture thereof. The structural ratio of D-lactic acid (D-form) and L-lactic acid (L-form) as component (A) is essentially L-form: D-form = 100: 0 to 90:10, or L-form as a general composition. : D-form = 0: 100 to 10:90, L-form: D-form = 100: 0 to 94: 6, or L-form: D-form = 0: 100 to 6:94 It is particularly preferable that L-form: D-form = 99.5: 0.5 to 94: 6, or L-form: D-form = 0.5: 99.5 to 6:94. If the composition ratio of D body and L body is within this range, the resulting film has high heat resistance, and its application is not limited.

但し、低温熱収縮特性の付与という観点から言えば、(A)成分中のポリ乳酸の結晶性は低い方が好ましく、L体:D体=50:50〜94:6、又はL体:D体=50:50〜6:94の方が低温熱収縮特性を発現させやすく好ましい。   However, from the viewpoint of imparting low-temperature heat shrinkage properties, the polylactic acid in the component (A) preferably has lower crystallinity, and L-form: D-form = 50: 50 to 94: 6, or L-form: D. The body = 50: 50 to 6:94 is preferable because the low temperature heat shrinkage property is easily developed.

(A)成分は、L体とD体の共重合比が異なるポリ乳酸系樹脂をブレンドしてもよい。この場合、複数のポリ乳酸系樹脂のL体とD体のホモポリマーと、L体とD体の共重合体とをブレンドすることにより、低温熱収縮特性と耐熱性の発現のバランスをとることができる。   The component (A) may be blended with polylactic acid resins having different copolymerization ratios between the L-form and the D-form. In this case, by blending a plurality of polylactic acid resin L-form and D-form homopolymers and L-form and D-form copolymers, the balance between low temperature heat shrinkage characteristics and the development of heat resistance should be balanced. Can do.

(A)成分の重合法としては、縮合重合法、開環重合法等の公知の方法を採用することができる。例えば、縮合重合法では、L−乳酸又はD−乳酸、あるいはこれらの混合物等を直接脱水縮合重合して任意の組成を有する(A)成分を得ることができる。また、開環重合法(ラクチド法)では、乳酸の環状ニ量体であるラクチドを、必要に応じて重合調節剤等を用いながら、適当な触媒を使用して任意の組成、結晶性を有する(A)成分を得ることができる。ラクチドには、L−乳酸とD−乳酸からなるDL−ラクチドがあり、これらを必要に応じて混合して重合することにより、所望の組成や結晶性を有する(A)成分を得ることができる。   As the polymerization method for the component (A), known methods such as a condensation polymerization method and a ring-opening polymerization method can be employed. For example, in the condensation polymerization method, component (A) having an arbitrary composition can be obtained by direct dehydration condensation polymerization of L-lactic acid, D-lactic acid, or a mixture thereof. In the ring-opening polymerization method (lactide method), lactide, which is a cyclic dimer of lactic acid, has an arbitrary composition and crystallinity using an appropriate catalyst while using a polymerization regulator or the like as necessary. Component (A) can be obtained. The lactide includes DL-lactide composed of L-lactic acid and D-lactic acid, and the component (A) having a desired composition and crystallinity can be obtained by mixing and polymerizing these as necessary. .

さらに、本実施形態に用いられる(A)成分は、本発明の性能を損なわない範囲、すなわち、ポリ乳酸系樹脂が組成物全体に対して90質量%以上含有され得るような範囲内であれば、少量の共重合成分として乳酸以外のα−ヒドロキシカルボン酸、脂肪族ジカルボン酸、非脂肪族ジカルボン酸、脂肪族ジオール、非脂肪族ジオールからなる群から選ばれる少なくとも1種を用いることができる。また分子量増大を目的として、少量の鎖延長剤、例えばジイソシアネート化合物、エポキシ化合物、酸無水物を使用することもできる。   Furthermore, the component (A) used in the present embodiment is within a range that does not impair the performance of the present invention, that is, within a range in which the polylactic acid resin can be contained in an amount of 90% by mass or more based on the entire composition. As a small amount of the copolymer component, at least one selected from the group consisting of α-hydroxycarboxylic acids other than lactic acid, aliphatic dicarboxylic acids, non-aliphatic dicarboxylic acids, aliphatic diols, and non-aliphatic diols can be used. For the purpose of increasing the molecular weight, a small amount of a chain extender such as a diisocyanate compound, an epoxy compound, or an acid anhydride can be used.

ポリ乳酸系樹脂乳酸以外のα−ヒドロキシカルボン酸としては、例えば、グリコール酸、3−ヒドロキシ酪酸、4−ヒドロキシ酪酸、2−ヒドロキシ−n−酪酸、2−ヒドロキシ−3,3−ジメチル酪酸、2−ヒドロキシ−3−メチル酪酸、2−メチル乳酸、2−ヒドロキシカプロン酸等の2 官能脂肪族ヒドロキシカルボン酸やカプロラクトン、ブチロラクトン、バレロラクトン等のラクトン類が挙げられる。   Examples of the α-hydroxycarboxylic acid other than the polylactic acid-based resin lactic acid include glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 2-hydroxy-n-butyric acid, 2-hydroxy-3,3-dimethylbutyric acid, 2 Examples include bifunctional aliphatic hydroxycarboxylic acids such as -hydroxy-3-methylbutyric acid, 2-methyllactic acid, and 2-hydroxycaproic acid, and lactones such as caprolactone, butyrolactone, and valerolactone.

ポリ乳酸系樹脂に共重合可能な脂肪族ジカルボン酸としては、コハク酸、アジピン酸、スベリン酸、セバシン酸、及び、ドデカン二酸等が挙げられる。   Examples of the aliphatic dicarboxylic acid copolymerizable with the polylactic acid-based resin include succinic acid, adipic acid, suberic acid, sebacic acid, and dodecanedioic acid.

ポリ乳酸系樹脂に共重合可能な非脂肪族ジカルボン酸としては、テレフタル酸、イソフタル酸等が挙げられる。   Examples of the non-aliphatic dicarboxylic acid copolymerizable with the polylactic acid resin include terephthalic acid and isophthalic acid.

また、ポリ乳酸系樹脂に共重合可能な脂肪族ジオールとしては、例えば、エチレングリコール、1,4−ブタンジオール、1,4−シクロヘキサンジメタノール等が挙げられる。   Examples of the aliphatic diol copolymerizable with the polylactic acid resin include ethylene glycol, 1,4-butanediol, and 1,4-cyclohexanedimethanol.

ポリ乳酸系樹脂に共重合可能な非脂肪族ジオールとしては、例えば、ビスフェノールAのエチレンオキサイド付加物等が挙げられる。   Examples of the non-aliphatic diol copolymerizable with the polylactic acid resin include an ethylene oxide adduct of bisphenol A.

乳酸と共重合させるα−ヒドロキシカルボン酸、脂肪族ジカルボン酸、非脂肪族ジカルボン酸、脂肪族ジオール、非脂肪族ジオールとの共重合比は、乳酸/α−ヒドロキシカルボン酸、脂肪族ジカルボン酸、非脂肪族ジカルボン酸、脂肪族ジオール、又は非脂肪族ジオール=90/10〜10/90の範囲であることが好ましく、より好ましくは80/20〜20/80であり、さらに好ましくは30/70〜70/30である。共重合比が上記範囲内であれば、機械特性や透明性などの物性バランスの良好な樹脂組成物を得ることができる。   The copolymerization ratio of α-hydroxycarboxylic acid, aliphatic dicarboxylic acid, non-aliphatic dicarboxylic acid, aliphatic diol, and non-aliphatic diol to be copolymerized with lactic acid is lactic acid / α-hydroxycarboxylic acid, aliphatic dicarboxylic acid, Non-aliphatic dicarboxylic acid, aliphatic diol, or non-aliphatic diol is preferably in the range of 90/10 to 10/90, more preferably 80/20 to 20/80, and even more preferably 30/70. ~ 70/30. When the copolymerization ratio is within the above range, a resin composition having a good balance of physical properties such as mechanical properties and transparency can be obtained.

(A)成分は、重量(質量)平均分子量が50,000以上、好ましくは100,000以上であり、かつ400,000以下、好ましくは300,000以下の範囲であることが望ましい。(A)成分の重合平均分子量が上記範囲内であれば、機械物性や耐熱性の実用物性を確保するとともに、適度な溶融粘度であるため良好な成形加工性を確保することができる。   The component (A) has a weight (mass) average molecular weight of 50,000 or more, preferably 100,000 or more, and 400,000 or less, preferably 300,000 or less. When the polymerization average molecular weight of the component (A) is within the above range, mechanical properties and heat-resistant practical physical properties can be secured, and good moldability can be secured because of an appropriate melt viscosity.

(A)成分のMFR(JIS K7210、190℃、荷重:21.18N)は0.2g/10分以上、好ましくは0.5g/10分以上、さらに好ましくは0.5g/10分以上であり、20g/10分以下、好ましくは10g/10分以下、さらに好ましくは3g/10分以下である。かかる範囲内であれば、押出成形時に背圧等が急激にあがることがなく成形加工性に優れ、例えばインフレーション成形ではバブルの安定性を得ることが可能となるため好ましい。   The MFR (JIS K7210, 190 ° C., load: 21.18 N) of the component (A) is 0.2 g / 10 minutes or more, preferably 0.5 g / 10 minutes or more, more preferably 0.5 g / 10 minutes or more. 20 g / 10 min or less, preferably 10 g / 10 min or less, more preferably 3 g / 10 min or less. Within such a range, the back pressure or the like does not increase suddenly during extrusion molding and is excellent in molding processability. For example, inflation molding is preferable because it is possible to obtain bubble stability.

(A)成分は、市販されているポリ乳酸系樹脂を用いることができ、例えば、商品名「レイシア」シリーズ(三井化学(株)製)、商品名「Nature Works」シリーズ(Nature Works LLC製))、商品名「U’zシリーズ」(豊田自動車(株)製)等を挙げることができる。   As the component (A), a commercially available polylactic acid resin can be used. For example, a trade name “Lacia” series (manufactured by Mitsui Chemicals), a trade name “Nature Works” series (manufactured by Nature Works LLC) ), Trade name "U'z series" (manufactured by Toyota Motor Corporation) and the like.

(A)成分には、さらに諸物性を調整する目的で、熱安定剤、光安定剤、光吸収剤、滑剤、無機充填剤、着色剤、顔料等を添加することもできる。   To the component (A), a heat stabilizer, a light stabilizer, a light absorber, a lubricant, an inorganic filler, a colorant, a pigment, and the like can be added for the purpose of adjusting various physical properties.

<エチレン−酢酸ビニル共重合体[(B)成分]>
次に、本発明の中間層で用いられるエチレン−酢酸ビニルン共重合体について説明する。本発明の中間層で用いられるエチレン−酢酸ビニル共重合体は、酢酸ビニル含有率が25質量%以上60質量%以下であるエチレン−酢酸ビニル共重合体である(以下、単に(B)成分という。)。本発明のフィルムにおける中間層は、成形加工時の製膜安定性(例えば、インフレーション成形におけるバブル安定性)や得られる積層フィルムの熱収縮率を調整する機能を担っている。
<Ethylene-vinyl acetate copolymer [component (B)]>
Next, the ethylene-vinyl acetate copolymer used in the intermediate layer of the present invention will be described. The ethylene-vinyl acetate copolymer used in the intermediate layer of the present invention is an ethylene-vinyl acetate copolymer having a vinyl acetate content of 25% by mass or more and 60% by mass or less (hereinafter simply referred to as component (B)). .) The intermediate layer in the film of the present invention has a function of adjusting film-forming stability during molding (for example, bubble stability in inflation molding) and the heat shrinkage rate of the resulting laminated film.

本発明における(B)成分は、酢酸ビニル含有率が25質量%以上、好ましくは30質量%以上、さらに好ましくは35質量%以上であり、60質量%以下、好ましくは55質量%以下、さらに好ましくは50質量%以下であることが重要である。酢酸ビニル含有率が25質量%以上であれば、結晶性が低いため得られるフィルム全体の透明性や低温収縮性が損なわれることがないため好ましい。一方、酢酸ビニル含有率が60質量%以下であれば、エチレン−酢酸ビニル共重合体単体の耐ブロッキング特性が良好であり、ハンドリング性に優れるため好ましい。   Component (B) in the present invention has a vinyl acetate content of 25% by mass or more, preferably 30% by mass or more, more preferably 35% by mass or more, and 60% by mass or less, preferably 55% by mass or less, more preferably. Is important to be 50% by mass or less. A vinyl acetate content of 25% by mass or more is preferable because the crystallinity is low and the transparency and low-temperature shrinkage of the entire film obtained are not impaired. On the other hand, a vinyl acetate content of 60% by mass or less is preferable because the ethylene-vinyl acetate copolymer itself has good blocking resistance and excellent handling properties.

また(B)成分のMFR(JIS K7210、190℃、荷重21.18N)は、0.2g/10分以上、好ましくは0.5g/10分以上、さらに好ましくは1.0g/10分以上であり、10g/10分以下、好まくは8.0g/10分以下、さらに好ましくは5g/10分以下である。かかる範囲内であれば、押出加工性は安定し、例えばインフレーション成形でも製膜安定性が得られるため好ましい。   The component (B) has an MFR (JIS K7210, 190 ° C., load 21.18 N) of 0.2 g / 10 min or more, preferably 0.5 g / 10 min or more, more preferably 1.0 g / 10 min or more. Yes, 10 g / 10 min or less, preferably 8.0 g / 10 min or less, more preferably 5 g / 10 min or less. Within such a range, extrusion processability is stable, and for example, film formation stability can be obtained even by inflation molding, which is preferable.

本発明の(B)成分は、酢酸ビニル含有率が25質量%以上である市販されているエチレン−酢酸ビニル共重合体を用いることができる。このようなエチレンー酢酸ビニル共重合体としては、例えば、商品名「エバフレックス」シリーズ(三井・デュポンポリケミカル(株)製)、商品名「ノバテックEVA」シリーズ(日本ポリエチ(株)製)、商品名「NUCコポリマー」シリーズ(日本ユニカー(株)製)等が挙げられる。   As the component (B) of the present invention, a commercially available ethylene-vinyl acetate copolymer having a vinyl acetate content of 25% by mass or more can be used. As such an ethylene-vinyl acetate copolymer, for example, the product name “Evaflex” series (manufactured by Mitsui DuPont Polychemical Co., Ltd.), the product name “Novatech EVA” series (manufactured by Nippon Polyethylene Co., Ltd.), product Name "NUC copolymer" series (manufactured by Nippon Unicar Co., Ltd.) and the like.

また、本発明における中間層は、上記したように成形加工時の製膜安定性(例えば、インフレーション成形におけるバブル安定性)や得られる積層フィルムの熱収縮率を調整する機能を担っており、主収縮方向と直交する方向(以下、「直交方向」ともいう。)の熱収縮率を軽減するためには、MFRが10g/10分以上100g/10分以下である高密度ポリエチレン(以下「(C)成分」という。)を含有する混合樹脂組成物を用いることが好ましい。   Further, the intermediate layer in the present invention has a function of adjusting the film-forming stability at the time of molding (for example, bubble stability in inflation molding) and the heat shrinkage rate of the obtained laminated film as described above. In order to reduce the thermal contraction rate in the direction orthogonal to the shrinkage direction (hereinafter also referred to as “orthogonal direction”), the high-density polyethylene (hereinafter referred to as “(C It is preferable to use a mixed resin composition containing “) component”.

上記混合樹脂組成物を中間層に配した場合、溶融状態の混合樹脂組成物が溶融変形しながら冷却される際に、(C)成分が縦方向(機械方向)に変形しながら結晶化する。一般にインフレーション成形法では、原料樹脂を融点以上の温度に加熱し、環状ダイから円筒状に押出し、溶融円筒にエアを吹き込んでバブル状に膨らませてフィルム化するが、この際、エアにより直径方向に、引き取りにより縦方向に延伸される。この延伸は、樹脂の温度が高い状態の時には縦方向(機械方向)が支配的であり、樹脂の温度がエアにより冷却されるにつれて横方向(機械方向に垂直な方向)が支配的となる。そのため、例えばインフレーション成形法で製膜した場合、(C)成分が縦方向(機械方向)に伸ばされた状態で結晶化し、その後に横方向(機械方向に垂直な方向)に延伸がなされる。そのため、主収縮方向と直交方向(機械方向)の熱収縮時には、(C)成分は収縮を抑制する一方、主収縮方向の収縮時には、(C)成分は結晶化してから延伸がなされるため、収縮の抑制にはならない。このような理由から、(C)成分を含むことにより、フィルムの主収縮方向の熱収縮率の軽減は必要最小限に軽減され、かつ、直交方向の熱収縮率は高密度ポリエチレンの融点まで軽減することが可能となる。   When the mixed resin composition is disposed in the intermediate layer, when the mixed resin composition in a molten state is cooled while being melted and deformed, the component (C) is crystallized while being deformed in the longitudinal direction (machine direction). In general, in the inflation molding method, a raw material resin is heated to a temperature equal to or higher than the melting point, extruded from a circular die into a cylindrical shape, and blown into a bubble by blowing air into a molten cylinder to form a film. The film is stretched in the longitudinal direction by pulling. In this stretching, the longitudinal direction (machine direction) is dominant when the temperature of the resin is high, and the lateral direction (direction perpendicular to the machine direction) becomes dominant as the resin temperature is cooled by air. Therefore, for example, when a film is formed by an inflation molding method, the component (C) is crystallized in a state stretched in the longitudinal direction (machine direction), and then stretched in the transverse direction (direction perpendicular to the machine direction). Therefore, at the time of heat shrinkage in the direction perpendicular to the main shrinkage direction (machine direction), the component (C) suppresses shrinkage, while at the time of shrinkage in the main shrinkage direction, the component (C) is stretched after crystallization, It does not suppress shrinkage. For this reason, the inclusion of component (C) reduces the heat shrinkage rate in the main shrinkage direction of the film to the minimum necessary, and reduces the heat shrinkage rate in the orthogonal direction to the melting point of high-density polyethylene. It becomes possible to do.

中間層に(C)成分を含有させ、上記の機能を発揮させるためには、(B)成分と(C)成分との質量比は、(B)成分/(C)成分=95/5〜80/20であり、好ましくは95/5〜85/15であることが望ましい。   In order for the intermediate layer to contain the component (C) and exhibit the above functions, the mass ratio of the component (B) to the component (C) is (B) component / (C) component = 95/5 80/20, preferably 95/5 to 85/15.

(C)成分は、市販されている商品名「ノバテックHD」(日本ポリエチ(株)製)、「サンテックHD」(旭化成ケミカルズ(株)製)、「ハイゼックス」(三井化学(株)製)等が挙げられる。   Component (C) includes commercially available product names “Novatech HD” (manufactured by Nippon Polytechnic Co., Ltd.), “Suntech HD” (manufactured by Asahi Kasei Chemicals Corporation), “Hi-X” (manufactured by Mitsui Chemicals, Inc.), etc. Is mentioned.

本発明のフィルムの中間層は、(B)成分を主成分として含有するが、(B)成分及び(C)成分以外に、上記した(A)成分を本発明の主旨を超えない範囲で混入してもかまわない。例えばトリミングロス等から発生する本発明のフィルムをリサイクル樹脂として中間層に添加できる、得られるフィルム全体における弾性率等の特性を向上できる、材料コストを軽減できる等の観点からは有効な手段となる。(A)成分を中間層に混合する場合の混合質量比は、(B)/(A)=99〜50/1〜50、好ましくは99〜70/1〜30、さらに好ましくは95〜80/5〜20である。   The intermediate layer of the film of the present invention contains the component (B) as a main component, but in addition to the component (B) and the component (C), the above-described component (A) is mixed within a range not exceeding the gist of the present invention. It doesn't matter. For example, the film of the present invention generated from trimming loss or the like can be added to the intermediate layer as a recycled resin, can be improved in properties such as elastic modulus in the entire film obtained, and can be an effective means from the viewpoint of reducing material costs. . (B) / (A) = 99-50 / 1-50, preferably 99-70 / 1-30, more preferably 95-80 /, when mixing the component (A) in the intermediate layer. 5-20.

本発明のフィルムは、(B)成分を主成分とする中間層(以下「M層」と略すことがある。)と、この中間層の両面上に積層される、(A)成分を主成分とする表面層(以下「S層」と略すことがある。)の少なくとも3層で構成される積層フィルムであるが、本発明の主旨を超えない範囲で、力学特性や層間接着性の改良など必要に応じて他の層(以下「P層」と略すことがある。)を適宜導入してもかまわない。また、S層は、S層以外にM層に同様の層を有してもかまわない。また、M層は、S層との間に少なくとも1層有していればよく、2層以上有していてもかまわない。例えば、(S層)/(M層)/(S層)からなる3層構成、(S層)/(P層)/(M層)/(S層)からなる4層構成、(S層)/(P層)/(M層)/(P層)/(S層)、(S層)/(M層)/(P層)/(M層)/(S層)、(S層)/(M層)/(S層)/(M層)/(S層)などからなる5層構成を代表的に挙げることができる。この場合、各層の樹脂組成や厚み比に関しては、同一であっても異なっていてもかまわない。   The film of the present invention comprises an intermediate layer containing component (B) as a main component (hereinafter sometimes abbreviated as “M layer”) and component (A) laminated on both sides of the intermediate layer as a main component. Although it is a laminated film composed of at least three surface layers (hereinafter sometimes abbreviated as “S layer”), the mechanical properties and interlayer adhesion are improved within the scope of the present invention. If necessary, other layers (hereinafter sometimes abbreviated as “P layer”) may be appropriately introduced. The S layer may have the same layer as the M layer in addition to the S layer. The M layer may have at least one layer between the S layer and two or more layers. For example, a three-layer configuration composed of (S layer) / (M layer) / (S layer), a four-layer configuration composed of (S layer) / (P layer) / (M layer) / (S layer), (S layer ) / (P layer) / (M layer) / (P layer) / (S layer), (S layer) / (M layer) / (P layer) / (M layer) / (S layer), (S layer) ) / (M layer) / (S layer) / (M layer) / (S layer). In this case, the resin composition and thickness ratio of each layer may be the same or different.

本発明において好適な積層構成は、(S層)/(M層)/(S層)からなる3層構成である。この層構成を採用することにより、本発明の目的である良好な熱収縮特性と適度な収縮応力を具備する熱収縮性フィルムを生産性、経済性よく得ることができる。   A preferred laminated structure in the present invention is a three-layer structure composed of (S layer) / (M layer) / (S layer). By adopting this layer structure, it is possible to obtain a heat-shrinkable film having good heat-shrink characteristics and an appropriate shrinkage stress, which are the objects of the present invention, with good productivity and economy.

本発明のフィルムは、フィルム全体の厚みに対する中間層の厚み比が30%以上、好ましくは35%以上であり、70%以下、好ましくは50%以下である。フィルム全体の厚みに対する中間層の厚み比が上記範囲内であれば、例えば製膜方法として、インフレーション法のような溶融状態からの冷却過程での延伸加工を用いても安定した製膜加工性が得られ、また好適な低温収縮性などの熱収縮特性や透明性を比較的容易に付与できるため好ましい。これらのことから該厚み比は、安定した製膜加工性をより重視する場合には、好ましくは50〜70%、インフレーション法のような溶融状態からの冷却過程での延伸加工で大きな熱収縮率をより重視する場合には、好ましくは30〜50%である。ここで、該中間層が上記したように積層構成中に2層以上ある場合には、全ての中間層の合計厚みを用いて厚み比を計算すればよい。なお、本発明のフィルムの全体の厚みは、特に制限されるものではないが、35〜60μm程度、代表的には35〜50μm程度の範囲にある。   In the film of the present invention, the thickness ratio of the intermediate layer to the thickness of the entire film is 30% or more, preferably 35% or more, and 70% or less, preferably 50% or less. If the thickness ratio of the intermediate layer to the thickness of the entire film is within the above range, for example, as a film forming method, a stable film forming processability can be achieved even if a drawing process in a cooling process from a molten state such as an inflation method is used. It is preferable because it can be obtained, and heat shrinkage properties such as suitable low-temperature shrinkability and transparency can be imparted relatively easily. From these facts, the thickness ratio is preferably 50 to 70% when more importance is attached to stable film forming processability, and a large thermal contraction rate in the drawing process in the cooling process from the molten state such as the inflation method. In the case where the emphasis is more important, it is preferably 30 to 50%. Here, when there are two or more intermediate layers in the laminated structure as described above, the thickness ratio may be calculated using the total thickness of all the intermediate layers. The overall thickness of the film of the present invention is not particularly limited, but is about 35 to 60 μm, typically about 35 to 50 μm.

<条件(a)>
本発明のフィルムは、80℃温水中で10秒間浸漬した時の主収縮方向の熱収縮率が30%以上であり、かつ直交方向の収縮率が10%以下であることが重要である。この熱収縮率はペットボトルの収縮ラベル用途等の比較的短時間(数秒から十数秒程度)での収縮加工工程への適応性を判断する指標となる。
<Condition (a)>
It is important that the film of the present invention has a heat shrinkage rate in the main shrinkage direction of 30% or more and a shrinkage rate in the orthogonal direction of 10% or less when immersed in warm water at 80 ° C. for 10 seconds. This heat shrinkage rate is an index for determining adaptability to a shrinking process in a relatively short time (several seconds to several tens of seconds), such as for use as a shrinkage label for a PET bottle.

現在、ペットボトルのラベル装着用途に工業的にもっとも多く用いられている収縮加工機は、収縮加工を行う加工媒体として水蒸気を用いる蒸気シュリンカーと一般に呼ばれているものである。熱収縮性フィルムは、この収縮加工機を用いた場合に、熱による被覆対象物への影響を考慮し、できる限り低い温度で十分熱収縮し、被覆対象物に密着可能であることが要求される。   At present, the shrinking machine most industrially used for labeling of plastic bottles is generally called a steam shrinker that uses steam as a processing medium for shrinking. When using this shrink processing machine, heat-shrinkable films are required to be sufficiently heat-shrinkable at the lowest possible temperature and to be able to adhere to the object to be coated, considering the effect of heat on the object to be coated. The

このような工業生産性も考慮し、上記条件における主収縮方向の熱収縮率が30%以上のフィルムであれば、収縮加工時間内に被覆対象物に充分密着することができる。好ましくは、80℃温水中で10秒浸漬した時の主収縮方向の熱収縮率は35%以上、より好ましくは40%以上であり、かつ85%以下、好ましくは75%以下、より好ましくは70%以下である。   In consideration of such industrial productivity, a film having a heat shrinkage rate of 30% or more in the main shrinkage direction under the above conditions can be sufficiently adhered to the object to be coated within the shrinkage processing time. Preferably, the heat shrinkage rate in the main shrinkage direction when immersed in warm water at 80 ° C. for 10 seconds is 35% or more, more preferably 40% or more, and 85% or less, preferably 75% or less, more preferably 70. % Or less.

また、本発明のフィルムが熱収縮性ラベルとして用いられる場合、直交方向の熱収縮率は80℃温水中で10秒間浸漬したときは10%以下であることが重要であり、好ましくは5%以下であり、特に好ましくは3%以下である。直交方向の熱収縮率が10%以下のフィルムであれば、収縮後の直交方向の寸法自体が短くなったり、収縮後の印刷柄や文字の歪み等が生じ易かったりすることなく、特に角型ボトルの場合においては縦ひけ等のトラブルが発生しにくく好ましい。   When the film of the present invention is used as a heat-shrinkable label, it is important that the heat shrinkage rate in the orthogonal direction is 10% or less when immersed in 80 ° C. warm water for 10 seconds, preferably 5% or less. And particularly preferably 3% or less. If the film has a heat shrinkage rate of 10% or less in the orthogonal direction, the rectangular shape is not particularly short, and the dimensions in the orthogonal direction after shrinkage are not shortened, and the printed pattern or characters are not easily distorted after shrinkage. In the case of a bottle, troubles such as vertical sink are unlikely to occur, which is preferable.

上記した熱収縮率は、主に表面層と中間層の厚み構成比と延伸倍率やブローアップ比(バブル直径/ダイ直径)、及び延伸温度や冷却条件などの温度条件を変化させることにより所望の範囲に調整できる。例えば、熱収縮率を増量したい場合には、より低温での熱収縮性歪を大きくするように、縦方向及び/又は横方向の延伸倍率を上げたり、外面冷却における冷却ブロアー量を増量したり、内面冷却を併用するなどの冷却効率を適宜調整すればよい。逆に、熱収縮率を減少したい場合には、より低温での熱収縮歪を小さくするように、縦方向及び/又は横方向の延伸倍率を下げたり、外面冷却における冷却ブロアー量を下げたり内面冷却を弱くするなどの冷却効率を適宜調整すればよい。   The above-described heat shrinkage ratio is mainly obtained by changing the thickness composition ratio of the surface layer and the intermediate layer, the stretching ratio, the blow-up ratio (bubble diameter / die diameter), and the temperature conditions such as the stretching temperature and the cooling condition. Can be adjusted to the range. For example, in order to increase the heat shrinkage rate, the stretching ratio in the machine direction and / or the transverse direction is increased so as to increase the heat shrinkage strain at a lower temperature, or the amount of cooling blower in the outer surface cooling is increased. Further, the cooling efficiency such as internal cooling may be adjusted as appropriate. Conversely, when it is desired to reduce the heat shrinkage rate, the stretching ratio in the machine direction and / or the transverse direction is decreased, the cooling blower amount in the outer surface cooling is decreased, or the inner surface is decreased so as to reduce the heat shrinkage strain at a lower temperature. What is necessary is just to adjust cooling efficiency suitably, such as weakening cooling.

<条件(b)>
また本発明のフィルムは、収縮応力値の最大値が主収縮方向及び直交方向のいずれの方向も1MPa以下であることが重要である。ここで、本発明における収縮応力とは、以下の測定方法によって求められる応力値を指す。すなわち、熱応力歪み測定装置(TMA)(例えば、セイコー電子工業(株)製、TMA/SS150C)とこれに連動した記録装置を用いて測定を行う。試料を断面積が0.2〜0.5mmの範囲になるようにサンプル幅を3mmに切り出し、チャック間が5cmの長さとなるように両端を挟み込み、TMAにセットし、試料に初期荷重をかけ、30℃に保ちながら30℃から160℃までの温度範囲を走査速度が3℃/分となるように測定する。ここで試料より発生する応力を記録計で記録し、試料断面積から応力値を算出する。
<Condition (b)>
In the film of the present invention, it is important that the maximum value of the shrinkage stress value is 1 MPa or less in both the main shrinkage direction and the orthogonal direction. Here, the shrinkage stress in the present invention refers to a stress value obtained by the following measurement method. That is, the measurement is performed using a thermal stress strain measuring device (TMA) (for example, TMA / SS150C, manufactured by Seiko Denshi Kogyo Co., Ltd.) and a recording device linked thereto. Cut the sample width to 3 mm so that the cross-sectional area is in the range of 0.2 to 0.5 mm 2 , sandwich both ends so that the length between the chucks is 5 cm, set to TMA, and apply the initial load to the sample The temperature range from 30 ° C. to 160 ° C. is measured while maintaining the temperature at 30 ° C. so that the scanning speed is 3 ° C./min. Here, the stress generated from the sample is recorded with a recorder, and the stress value is calculated from the cross-sectional area of the sample.

本発明のフィルムは、熱応力歪測定(TMA)による収縮応力の最大値が縦方向及び横方向それぞれ1MPa以下であるが、好ましくはそれぞれが0.2MPa以上0.95MPa以下、より好ましくは0.4MPa以上0.9MPa以下の範囲である。かかる範囲内に収縮応力を調整することで、熱収縮時に適度な収縮応力を有するフィルムとなるため、収縮包装時に該包装物を変形させることが無く好ましい。尚、収縮応力の温度分布は幅広いものの方が、収縮包装の温度条件を更に幅広く設定することできるため好ましい。   In the film of the present invention, the maximum value of the shrinkage stress by thermal stress strain measurement (TMA) is 1 MPa or less in each of the longitudinal direction and the transverse direction, preferably each is 0.2 MPa or more and 0.95 MPa or less, more preferably 0.00. The range is 4 MPa or more and 0.9 MPa or less. By adjusting the shrinkage stress within such a range, a film having an appropriate shrinkage stress at the time of thermal shrinkage is obtained, and therefore, the package is preferably not deformed at the time of shrinkage packaging. In addition, the one where the temperature distribution of shrinkage stress is wide is preferable because the temperature condition of the shrink wrapping can be set wider.

上記した収縮応力は、主に表面層と中間層の厚み構成と延伸倍率やブローアップ比(バブル直径/ダイ直径)及び延伸温度や冷却条件などの温度条件を変化させることにより所定の範囲に調整することができる。例えば、収縮応力を増加したい場合には、低温での熱収縮歪を大きくするように、縦方向及び/又は横方向の延伸倍率を上げたり、外面冷却における冷却ブロアー量の増加や内面冷却を併用するなどの冷却効率を適宜調整すればよい。逆に、収縮応力を減少させたい場合には、より低温での熱収縮歪を小さくするように、縦方向及び/又は横方向の延伸倍率を下げたり、外面冷却における冷却ブロアー量の減少や内面冷却を弱くするなどの冷却効率を適宜調整すればよい。   The above-mentioned shrinkage stress is adjusted to a predetermined range mainly by changing the thickness configuration of the surface layer and the intermediate layer, the draw ratio, the blow-up ratio (bubble diameter / die diameter), and the temperature conditions such as the draw temperature and the cooling condition. can do. For example, if you want to increase the shrinkage stress, increase the stretching ratio in the longitudinal direction and / or the transverse direction to increase the thermal shrinkage strain at low temperature, or increase the amount of cooling blower in the external surface cooling and internal cooling together What is necessary is just to adjust cooling efficiency suitably. Conversely, when it is desired to reduce the shrinkage stress, the stretching ratio in the machine direction and / or the transverse direction is lowered so as to reduce the heat shrinkage strain at a lower temperature, the amount of cooling blower in the outer surface cooling is reduced, or the inner surface is reduced. What is necessary is just to adjust cooling efficiency suitably, such as weakening cooling.

<条件(c)>
本発明のフィルムは、30℃で30日間保存した時の自然収縮率が3.0%以下であることが重要であり、好ましくは2.0%以下、より好ましくは1.5%以下である。上記条件下における自然収縮率が3.0%であれば、熱収縮性積層フィルムを長期保存後に使用した場合であっても容器等に安定して装着することができ、実用上問題を生じにくい。
<Condition (c)>
It is important that the film of the present invention has a natural shrinkage rate of 3.0% or less when stored at 30 ° C. for 30 days, preferably 2.0% or less, more preferably 1.5% or less. . If the natural shrinkage rate under the above conditions is 3.0%, even if the heat-shrinkable laminated film is used after long-term storage, it can be stably attached to a container or the like, and hardly causes problems in practice. .

自然収縮率を上記の範囲にするには、主に両表面層と中間層の厚み構成、ブローアップ比(バブルの直径/ダイ直径)、冷却条件などの温度条件などをバランスよく調整することが必要である。例えば自然収縮率が所望の値よりも大きい場合には冷却ブロア量を抑制したり、内面冷却を弱くしたりするなどして冷却効率を適宜調整したりすれば良い。   In order to make the natural shrinkage rate in the above range, it is mainly necessary to adjust the thickness configuration of both the surface layer and the intermediate layer, the blow-up ratio (bubble diameter / die diameter), temperature conditions such as cooling conditions, etc. in a well-balanced manner. is necessary. For example, when the natural shrinkage rate is larger than a desired value, the cooling efficiency may be appropriately adjusted by suppressing the cooling blower amount or weakening the inner surface cooling.

本発明のフィルムは、例えばフィルムの裏面に印刷された印刷面を表面から視認されるような用途においては、厚み50μmのフィルムをJIS K7105に準拠して測定した場合、ヘーズ値は好ましくは15%以下であり、より好ましくは10%以下であり、特に好ましくは5%以下である。ヘーズ値が15%以下であれば、熱収縮性ラベルとして用いた場合良好なディスプレー効果を奏することができる。   The film of the present invention has a haze value of preferably 15% when a film having a thickness of 50 μm is measured in accordance with JIS K7105, for example, when the printed surface printed on the back surface of the film is visually recognized from the front surface. Or less, more preferably 10% or less, and particularly preferably 5% or less. When the haze value is 15% or less, a good display effect can be obtained when used as a heat-shrinkable label.

次に、本発明のフィルムの製造方法について説明する。本発明のフィルムの製造方法としては、公知の各種の製造方法が適用でき、本発明の主旨を越えなければ特に制限されるものではない。フィルムの積層方法としては、例えば、共押出積層法、ラミネーション法、ドライラミネーション法などを挙げることができる。これらのうち、本発明のフィルムは、溶融接着する共押出積層法が好適に用いられる。具体的には、積層数に応じた複数の押出機を用いて溶融押出し、フィードブロックやマルチマニホールドなどにより溶融樹脂を展開、積層化する方法である。   Next, the manufacturing method of the film of this invention is demonstrated. As a method for producing the film of the present invention, various known production methods can be applied, and the film is not particularly limited as long as the gist of the present invention is not exceeded. Examples of the film lamination method include a coextrusion lamination method, a lamination method, and a dry lamination method. Among these, the film of the present invention is preferably used by a coextrusion lamination method in which the film is melt bonded. Specifically, it is a method of melt-extrusion using a plurality of extruders corresponding to the number of layers, and developing and laminating the molten resin with a feed block, a multi-manifold or the like.

本発明の主目的の一つである熱収縮性を付与するための方法としては、通常用いられるテンター法やチューブラー法などの溶融押出された樹脂を一旦急冷固化することにより原反フィルムあるいは原反チューブを採取し、次いで再加熱して延伸する方法も適用可能である。本発明においては、上記した積層樹脂構成を採用することにより、溶融押出された樹脂を一旦急冷固化することなく、環状ダイから円筒状に押出し、この円筒の中にエアー(空気)を吹き込み、溶融円筒を膨らませる方式である、いわゆるインフレーション成形法でも熱収縮性に優れた熱収縮性積層フィルムが得られることが見出されたものである。   As a method for imparting heat shrinkability, which is one of the main objects of the present invention, a melt-extruded resin such as a commonly used tenter method or a tubular method is once rapidly cooled and solidified to form a raw film or an original film. A method in which an antitube is collected and then reheated and stretched is also applicable. In the present invention, by adopting the above-described laminated resin configuration, the melt-extruded resin is extruded from a circular die into a cylindrical shape without being rapidly cooled and solidified, and air (air) is blown into the cylinder for melting. It has been found that a heat-shrinkable laminated film excellent in heat-shrinkability can be obtained even by a so-called inflation molding method in which a cylinder is expanded.

インフレーション成形法では、環状ダイより溶融樹脂を引き取り、薄膜化する過程で冷却効果が働き、フィルムを構成する分子が配向する。この配向の度合いは、用いる樹脂の溶融粘度と冷却過程における固化速度あるいは結晶化速度の相違やブローアップ比(バブル直径/ダイ直径)及びバブル形状等によって主に変化するものと考えられる。   In the inflation molding method, the cooling resin works in the process of drawing the molten resin from the annular die and making it into a thin film, and the molecules constituting the film are oriented. The degree of orientation is considered to change mainly depending on the melt viscosity of the resin used, the difference in the solidification rate or crystallization rate in the cooling process, the blow-up ratio (bubble diameter / die diameter), the bubble shape, and the like.

本発明においては、インフレーション成形する際に、冷風などの媒体で冷却量を調整しながら溶融円筒内に、一定量のエアを入れて加圧量を調整し、ブローアップ比を2以上、好ましくは2.5以上、さらに好ましくは3以上であり、10以下、好ましくは8以下とする。続いてフィルムの引取り速度を調整することによって環状ダイから円筒状に押出された樹脂の変形倍率がフィルム全体で10〜100倍程度、好適には20〜50倍に調整することが好ましい。ここで、変形倍率とは、環状ダイのリップギャップを得られるフィルムの厚みで除した値のことである。例えば、環状ダイのリップギャップが1mm(1000μm)で、得られるフィルムの厚みが50μmの場合の変形倍率は、20倍となる。また環状ダイのリップギャップが2mmで、得られるフィルムの厚みが50μmの場合の変形倍率は40倍となる。該変形倍率の計算には、ブローアップ比の影響を受けないものとする。その際の冷却方法としては、円筒状のフィルムの外面から内面側から冷却する方法、円筒状のフィルムの外面側と内面側の両面から同時に冷却する方法のどちらを採用してもかまわない。   In the present invention, at the time of inflation molding, while adjusting the amount of cooling with a medium such as cold air, a certain amount of air is introduced into the molten cylinder to adjust the amount of pressure, and the blow-up ratio is 2 or more, preferably 2.5 or more, more preferably 3 or more, 10 or less, preferably 8 or less. Subsequently, it is preferable to adjust the deformation ratio of the resin extruded in a cylindrical shape from the annular die to about 10 to 100 times, preferably 20 to 50 times by adjusting the film take-up speed. Here, the deformation magnification is a value obtained by dividing the lip gap of the annular die by the thickness of the film. For example, when the lip gap of the annular die is 1 mm (1000 μm) and the thickness of the obtained film is 50 μm, the deformation magnification is 20 times. Further, when the lip gap of the annular die is 2 mm and the thickness of the obtained film is 50 μm, the deformation ratio is 40 times. The calculation of the deformation magnification is not affected by the blow-up ratio. As a cooling method at that time, either a method of cooling from the outer surface side of the cylindrical film from the inner surface side or a method of simultaneously cooling from both the outer surface side and the inner surface side of the cylindrical film may be adopted.

[熱収縮性ラベル、該ラベルを装着した容器]
本発明のフィルムは、フィルムの熱収縮特性、透明性、自然収縮等に優れているため、その用途が特に制限されるものではないが、必要に応じて印刷層、蒸着層、その他機能層を形成することにより、ボトル(ブローボトル)、トレー、弁当箱、惣菜容器、乳製品容器等の様々な成形品として用いることができる。特に本発明のフィルムを食品容器(例えば清涼飲料水用又は食品用のPETボトル、ガラス瓶、好ましくはPETボトル)用熱収縮性ラベルとして用いる場合、複雑な形状(例えば中心がくびれた円柱、角のある四角柱、五角柱、六角柱など)であっても該形状に密着可能であり、シワやアバタ等のない綺麗なラベルが装着された容器が得られる。本発明の成形品又は容器は、通常の成形法を用いることにより作製することができる。
[Heat-shrinkable label, container equipped with the label]
The film of the present invention is excellent in heat shrink characteristics, transparency, natural shrinkage, etc. of the film, and its use is not particularly limited, but a printing layer, a vapor deposition layer, and other functional layers may be added as necessary. By forming, it can be used as various molded products such as bottles (blow bottles), trays, lunch boxes, sugar beet containers, dairy products containers and the like. In particular, when the film of the present invention is used as a heat-shrinkable label for food containers (for example, PET bottles, glass bottles, preferably PET bottles for soft drinks or foods), a complicated shape (for example, a cylinder with a narrow center, a corner Even a square column, pentagonal column, hexagonal column, etc.) can be adhered to the shape, and a container with a clean label without wrinkles or avatars can be obtained. The molded article or container of the present invention can be produced by using a normal molding method.

以下に本発明のフィルム、ラベル及び容器の内容を実施例でさらに詳しく説明するが、これらにより本発明は何ら制限を受けるものではない。なお、本明細書中に表示されるフィルムについての種々の測定値および評価は次のようにして行った。ここで、フィルムの押出機からの流れ方向を縦方向、その直交方向を横方向とよぶ。   The contents of the film, label, and container of the present invention will be described in more detail with reference to the following examples, but the present invention is not limited by these. In addition, the various measured value and evaluation about the film displayed in this specification were performed as follows. Here, the flow direction from the extruder of the film is called the vertical direction, and the orthogonal direction is called the horizontal direction.

(1)熱収縮率
得られたフィルムから縦方向および横方向からそれぞれ長さ140mm×幅10mmの短冊状にフィルムを切り出し、その中間に長さ100mm間隔の標線を記入した試験片を、80℃のオイルバスに10秒間浸漬し、取り出した後の標線間の長さを測定し、オイルバス浸漬前後の標線間の長さから収縮率を%値で求めた。なお、測定は各10回行い、その平均値を算出し、少数第一位を四捨五入した値を記載した。
(1) Heat shrinkage rate A test piece in which a film was cut into strips each having a length of 140 mm and a width of 10 mm from the obtained film in the longitudinal direction and the transverse direction, and marked lines at intervals of 100 mm in length were provided between the test pieces. The length between the marked lines after being immersed in an oil bath at 0 ° C. for 10 seconds and taken out was measured, and the shrinkage rate was determined in% from the length between the marked lines before and after immersion in the oil bath. In addition, the measurement was performed 10 times each, the average value was calculated, and the value rounded to the first decimal place was described.

(2)収縮応力
セイコー電子工業(株)製の熱応力歪測定装置(TMA)、TMA/SS150Cにより測定した。測定条件はサンプル幅3mm、チャック間5mm、昇温スピード3℃/min、荷重9.8kN/mで行った。
(2) Shrinkage stress Measured by a thermal stress strain measuring device (TMA) manufactured by Seiko Electronics Co., Ltd., TMA / SS150C. The measurement conditions were a sample width of 3 mm, a chuck distance of 5 mm, a temperature rising speed of 3 ° C./min, and a load of 9.8 kN / m 2 .

(3)自然収縮率
得られたフィルムを縦100mm、横1000mmの大きさに切り取り、30℃ の雰囲気の恒温槽に30日間放置し、主収縮方向について、収縮前の原寸に対する収縮量を測定し、その比率を%値で表示した。
(3) Natural shrinkage rate The obtained film was cut into a size of 100 mm in length and 1000 mm in width and left in a thermostatic bath at 30 ° C. for 30 days, and the amount of shrinkage relative to the original size before shrinkage was measured in the main shrinkage direction. The ratio was expressed as a% value.

(4)ヘーズ値
JISK7105に準拠してフィルム厚み50μmでフィルムのヘーズ値を測定した。
(4) Haze value Based on JISK7105, the haze value of the film was measured at a film thickness of 50 μm.

(5)収縮仕上がり性
10mm間隔の格子目を印刷したフィルムを縦100mm×横298mmの大きさに切り取り、横方向のフィルム両端を10mm重ねてテトロヒドロフラン(THF)溶剤で接着し、円筒状フィルムを作製した。この円筒状フィルムを、容量1.5 リットルの円筒型ペットボトルに装着し、蒸気加熱方式の長さ3.2m(3ゾーン)の収縮トンネル中を回転させずに、約4秒間で通過させた。各ゾーンでのトンネル内雰囲気温度は、蒸気量を蒸気バルブで調整し、70℃から85℃までの範囲とした。フィルム被覆後は下記基準で評価した。
◎:収縮が十分でシワ、アバタ、格子目の歪みが生じない。
○:収縮は十分であるが、所々シワ、アバタ又は格子目の歪みが生じている。
×:収縮は十分だがシワ、アバタ、格子目の歪みが顕著に生じる。又は、収縮が十分でなく、ボトルへの被覆が不十分である。
(5) Shrinkage finish A film printed with a 10 mm-interval grid is cut into a size of 100 mm in length and 298 mm in width, 10 mm on both sides of the film in the horizontal direction, and bonded with a Tetrohydrofuran (THF) solvent to form a cylindrical film Was made. This cylindrical film was attached to a cylindrical PET bottle having a capacity of 1.5 liters, and passed through the steam heating type 3.2 m (3 zones) shrink tunnel for about 4 seconds without rotating. . The atmospheric temperature in the tunnel in each zone was controlled in the range from 70 ° C to 85 ° C by adjusting the amount of steam with a steam valve. After film coating, the following criteria were evaluated.
A: Shrinkage is sufficient, and wrinkles, avatars and lattice distortion do not occur.
○: Shrinkage is sufficient, but wrinkles, avatars, or lattice distortions occur in some places.
X: Shrinkage is sufficient, but wrinkles, avatars, and lattice distortions are remarkable. Or shrinkage | contraction is not enough and the coating to a bottle is inadequate.

(実施例1)
乳酸系樹脂組成物である(A)成分として、NW4060(Nature Works LLC社製:Nature Works:D体含有量=2%、MFR=3.0g/10分)(以下、A−1と略する)100質量部に、アルミナシリカ0.1質量部を押出設定温度180〜200℃で溶融混練した樹脂組成物からなる両表面層を厚みが各々12.5μmとなるように、また、酢酸ビニル含有量が25%以上となるエチレン−酢酸ビニル共重合体である(B)成分として、EV360(三井・デュポンポリケミカル製:エバフレックス、酢酸ビニル含有量=25wt%、MFR=2.0g/10分)(以下、B−1と略する)からなる中間層を厚みが25μmとなるように、それぞれ別々の押出機から合流させ、環状三層ダイ温度200℃、リップギャップ1.0mm、ブローアップ比5.2、引取り速度=3.0m/min、外冷風温度=25℃、外冷周波数=36Hzで共押出インフレーション成形して、総厚み50μm(12.5μm/25.0μm/12.5μm)の熱収縮性積層フィルムを得た。得られたフィルムを評価した結果を表1に示す。
Example 1
As component (A) which is a lactic acid resin composition, NW4060 (manufactured by Nature Works LLC: Nature Works: D-form content = 2%, MFR = 3.0 g / 10 min) (hereinafter abbreviated as A-1) ) Both surface layers made of a resin composition obtained by melting and kneading 0.1 parts by mass of alumina silica at an extrusion set temperature of 180 to 200 ° C. to 100 parts by mass so as to have a thickness of 12.5 μm and containing vinyl acetate As component (B) which is an ethylene-vinyl acetate copolymer having an amount of 25% or more, EV360 (Mitsui / DuPont Polychemicals: Everflex, vinyl acetate content = 25 wt%, MFR = 2.0 g / 10 min) ) (Hereinafter abbreviated as B-1) are joined from separate extruders so that the thickness is 25 μm. Co-extrusion inflation molding at a gap of 1.0 mm, a blow-up ratio of 5.2, a take-up speed of 3.0 m / min, an external cooling air temperature of 25 ° C., an external cooling frequency of 36 Hz, and a total thickness of 50 μm (12.5 μm / A heat-shrinkable laminated film of 25.0 μm / 12.5 μm was obtained. The results of evaluating the obtained film are shown in Table 1.

(実施例2)
実施例1において、(B)成分として用いたB−1からEV40LX(三井・デュポンポリケミカル製:エバフレックス、酢酸ビニル含有量=41wt%、MFR=2.0g/10分)(以下、B−2と略する)とし、ブローアップ比5.0とした以外は同様にして総厚み50μm(12.5μm/25.0μm/12.5μm)の熱収縮性積層フィルムを得た。得られたフィルムを評価した結果を表1に示す。
(Example 2)
In Example 1, B-1 to EV40LX (Mitsui / DuPont Polychemicals: Everflex, vinyl acetate content = 41 wt%, MFR = 2.0 g / 10 min) used as component (B) (hereinafter referred to as B- The heat-shrinkable laminated film having a total thickness of 50 μm (12.5 μm / 25.0 μm / 12.5 μm) was obtained in the same manner except that the blow-up ratio was 5.0. The results of evaluating the obtained film are shown in Table 1.

(実施例3)
実施例1において、中間層を(B)成分として、B−1が90質量%、(C)成分として高密度ポリエチレンであるHJ490(日本ポリエチ製:ノバテックHD、MFR=20g/10分)(以下、C−1と略する)が10質量%となるようにし
た以外は同様にして総厚み50μm(12.5μm/25.0μm/12.5μm)の熱収縮性積層フィルムを得た。得られたフィルムを評価した結果を表1に示す。
(Example 3)
In Example 1, the intermediate layer is (B) component, B-1 is 90% by mass, and (C) component is high-density polyethylene HJ490 (manufactured by Nippon Polytechnics: Novatec HD, MFR = 20 g / 10 min) (below The heat-shrinkable laminated film having a total thickness of 50 μm (12.5 μm / 25.0 μm / 12.5 μm) was obtained in the same manner except that 10% by mass was abbreviated as C-1. The results of evaluating the obtained film are shown in Table 1.

(実施例4)
実施例1において、中間層を、B−1が90質量%、A−1が10質量%となるようにした以外は同様にして総厚み50μm(12.5μm/25.0μm/12.5μm)の熱収縮性積層フィルムを得た。得られたフィルムを評価した結果を表1に示す。
Example 4
In Example 1, the total thickness of the intermediate layer was 50 μm (12.5 μm / 25.0 μm / 12.5 μm) except that B-1 was 90% by mass and A-1 was 10% by mass. A heat-shrinkable laminated film was obtained. The results of evaluating the obtained film are shown in Table 1.

(実施例5)
実施例4において、B−1とA−1の質量割合をB−1/A−1=80質量%/20質量%となるようにした以外は、同様にして総厚み50μm(12.5μm/25.0μm/12.5μm)の熱収縮性積層フィルムを得た。得られたフィルムを評価した結果を表1に示す。
(Example 5)
In Example 4, the total thickness was 50 μm (12.5 μm / 1 m) except that the mass ratio of B-1 and A-1 was B-1 / A-1 = 80 mass% / 20 mass%. A heat-shrinkable laminated film of 25.0 μm / 12.5 μm was obtained. The results of evaluating the obtained film are shown in Table 1.

(比較例1)
実施例1において、(B)成分として、LV540(日本ポリエチ製:ノバテックEVA、酢酸ビニル含有量=20wt%、MFR=2.5g/10分)(以下、B−3と略する)とした以外は同様にして総厚み50μm(12.5μm/25.0μm/12.5μm)の熱収縮性積層フィルムを得た。得られたフィルムを評価した結果を表1に示す。
(Comparative Example 1)
In Example 1, as component (B), LV540 (manufactured by Nippon Polyethylene: Novatec EVA, vinyl acetate content = 20 wt%, MFR = 2.5 g / 10 min) (hereinafter abbreviated as B-3) was used. In the same manner, a heat-shrinkable laminated film having a total thickness of 50 μm (12.5 μm / 25.0 μm / 12.5 μm) was obtained. The results of evaluating the obtained film are shown in Table 1.

(比較例2)
実施例1において、中間層に(B)成分とした用いたB−1から両表面層に用いたA−1に変更し、実質的に単層フィルムとした以外は同様にして総厚み50μm(12.5μm/25.0μm/12.5μm)の熱収縮性積層フィルムを得た。得られたフィルムを評価した結果を表1に示す。
(Comparative Example 2)
In Example 1, the total thickness was changed to 50 μm (except that the intermediate layer was changed from B-1 used as the component (B) to A-1 used for both surface layers to make a substantially single layer film ( A heat-shrinkable laminated film of 12.5 μm / 25.0 μm / 12.5 μm was obtained. The results of evaluating the obtained film are shown in Table 1.

(比較例3)
実施例3と同様の構成にて、2種3層のマルチタイプのTダイから、ダイ温度200℃、リップギャップ1.0mm、で総厚みが200μm(50μm/100μm/50μm)となるように、キャスト温度=60℃で原シートを採取した。次いで、テンター設備を用い、予熱=80℃、延伸=80℃、熱処理温度=80℃でラインスピード=3m/minで横に4倍延伸を施し、総厚み50μm(12.5μm/25.0μm/12.5μm)の熱収縮性積層フィルムを得た。得られたフィルムを評価した結果を表1に示す。
(Comparative Example 3)
In the same configuration as in Example 3, from a multi-type T die of two types and three layers, a die temperature of 200 ° C., a lip gap of 1.0 mm, and a total thickness of 200 μm (50 μm / 100 μm / 50 μm) An original sheet was collected at a casting temperature = 60 ° C. Next, using a tenter facility, preheating = 80 ° C., stretching = 80 ° C., heat treatment temperature = 80 ° C., line speed = 3 m / min, and lateral stretching was performed 4 times, total thickness 50 μm (12.5 μm / 25.0 μm / 12.5 μm) heat-shrinkable laminated film was obtained. The results of evaluating the obtained film are shown in Table 1.

Figure 0005283459
Figure 0005283459

表1より、本発明で規定する熱収縮性積層フィルムは、特に低温熱収縮特性が良好で且つ収縮応力値が1MPa以下となる熱収縮性フィルムであることがわかる。また、インフレーション成形でも製造可能であることが確認できる(実施例1〜5)。これに対して、(B)成分の酢酸ビニル含有量が20%の場合(比較例1)、熱収縮性が乏しく包装仕上がり時にシワが残り問題があることが確認できる。また、乳酸系樹脂組成物を主成分とする両表面層を有さない層構成の場合(比較例2)には主収縮方向と垂直方向の熱収縮率が大きく、収縮後の格子目の歪みが多く、縦ひけが大きく問題があることが確認できる。また、テンター設備を用いて延伸した場合(比較例3)、同組成でも収縮応力値が1MPa以上となることが確認できる。   From Table 1, it can be seen that the heat-shrinkable laminated film defined in the present invention is a heat-shrinkable film having particularly good low-temperature heat-shrinkage characteristics and a shrinkage stress value of 1 MPa or less. Moreover, it can confirm that it can manufacture also by inflation molding (Examples 1-5). On the other hand, when the vinyl acetate content of the component (B) is 20% (Comparative Example 1), it can be confirmed that there is a problem that the heat shrinkage is poor and wrinkles remain when the packaging is finished. Further, in the case of a layer structure mainly composed of a lactic acid resin composition and not having both surface layers (Comparative Example 2), the thermal shrinkage rate in the direction perpendicular to the main shrinkage direction is large, and the lattice distortion after shrinkage is large. It can be confirmed that there are many problems with vertical sink marks. Moreover, when extending | stretching using a tenter equipment (comparative example 3), it can confirm that a shrinkage stress value will be 1 Mpa or more also with the same composition.

Claims (7)

中間層と該中間層の両面上に積層される表面層の少なくとも3層で構成される積層フィルムであって、前記表面層はポリ乳酸系樹脂組成物[(A)成分]を主成分として構成され、前記中間層は酢酸ビニルの含有率が25質量%以上60質量%以下であるエチレン−酢酸ビニル共重合体[(B)成分]を主成分として構成され、かつ、以下の(a)から(c)の条件を満たすことを特徴とする熱収縮性積層フィルム。
(a)80℃の温水中に10秒間浸漬した時の主収縮方向の収縮率が30%以上であり、主収縮方向と直交する方向の収縮率が10%以下
(b)収縮応力値の最大値が主収縮方向及び主収縮方向と直交する方向のいずれの方向も1MPa以下
(c)30℃で30日間保存した時の主収縮方向の収縮率が3.0%以下
A laminated film comprising at least three layers of an intermediate layer and a surface layer laminated on both surfaces of the intermediate layer, the surface layer comprising a polylactic acid resin composition [component (A)] as a main component The intermediate layer is composed mainly of an ethylene-vinyl acetate copolymer [component (B)] having a vinyl acetate content of 25% by mass or more and 60% by mass or less, and from the following (a): A heat-shrinkable laminated film characterized by satisfying the condition (c).
(A) The shrinkage rate in the main shrinkage direction when immersed in warm water of 80 ° C. for 10 seconds is 30% or more, and the shrinkage rate in the direction orthogonal to the main shrinkage direction is 10% or less. (B) Maximum shrinkage stress value 1 MPa or less in both the main shrinkage direction and the direction perpendicular to the main shrinkage direction (c) The shrinkage ratio in the main shrinkage direction when stored at 30 ° C. for 30 days is 3.0% or less.
前記(A)成分がD−乳酸及びL−乳酸の共重合体からなる樹脂組成物である請求項1に記載の熱収縮性積層フィルム。 The heat-shrinkable laminated film according to claim 1, wherein the component (A) is a resin composition comprising a copolymer of D-lactic acid and L-lactic acid. 前記中間層が、前記(B)成分と、メルトフローレート(MFR)が10g/10分以上100g/10分以下である高密度ポリエチレン[(C)成分]との混合樹脂組成物で構成され、前記(B)成分と前記(C)成分との質量比が(B)/(C)=95/5〜80/20である請求項1又は2に記載の熱収縮性積層フィルム。 The intermediate layer is composed of a mixed resin composition of the component (B) and high-density polyethylene (component (C)) having a melt flow rate (MFR) of 10 g / 10 min to 100 g / 10 min. The heat-shrinkable laminated film according to claim 1 or 2, wherein a mass ratio of the component (B) to the component (C) is (B) / (C) = 95/5 to 80/20. 前記中間層の厚み比が、フィルム全体の厚みに対して30%以上70%以下である請求項1から3のいずれかに記載の熱収縮性積層フィルム。The heat-shrinkable laminated film according to any one of claims 1 to 3, wherein a thickness ratio of the intermediate layer is 30% or more and 70% or less with respect to a thickness of the entire film. インフレーション成形法で得られる請求項1からのいずれかに記載の熱収縮性積層フィルム。 The heat-shrinkable laminated film according to any one of claims 1 to 4 , which is obtained by an inflation molding method. 請求項1からのいずれかに記載の熱収縮性積層フィルムを基材として用いた熱収縮性ラベル。 Heat-shrinkable label employing the heat-shrinkable laminate film according as the substrate in any one of claims 1 to 5. 請求項に記載の熱収縮性ラベルを装着した容器。 A container equipped with the heat-shrinkable label according to claim 6 .
JP2008230329A 2008-09-08 2008-09-08 Heat-shrinkable laminated film, heat-shrinkable label using the film, and container equipped with the label Active JP5283459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008230329A JP5283459B2 (en) 2008-09-08 2008-09-08 Heat-shrinkable laminated film, heat-shrinkable label using the film, and container equipped with the label

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008230329A JP5283459B2 (en) 2008-09-08 2008-09-08 Heat-shrinkable laminated film, heat-shrinkable label using the film, and container equipped with the label

Publications (2)

Publication Number Publication Date
JP2010064283A JP2010064283A (en) 2010-03-25
JP5283459B2 true JP5283459B2 (en) 2013-09-04

Family

ID=42190304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008230329A Active JP5283459B2 (en) 2008-09-08 2008-09-08 Heat-shrinkable laminated film, heat-shrinkable label using the film, and container equipped with the label

Country Status (1)

Country Link
JP (1) JP5283459B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007144906A (en) * 2005-11-30 2007-06-14 Mitsubishi Plastics Ind Ltd Heat-shrinkable laminated film, molding and heat-shrinkable label using the film, and container
JP4906085B2 (en) * 2006-09-28 2012-03-28 三菱樹脂株式会社 Stretch shrink laminated film and manufacturing method thereof

Also Published As

Publication number Publication date
JP2010064283A (en) 2010-03-25

Similar Documents

Publication Publication Date Title
TWI387534B (en) Heat-shrinkable film, and molded article and heat-shrinkable label using the same, and container using the molded articale or having the label attached thereto
JP4495535B2 (en) Polylactic acid biaxially stretched laminated film and use thereof
JP4953587B2 (en) Heat-shrinkable film and molded article and container using the film
JP5330740B2 (en) Polylactic acid resin composition, polylactic acid film, molded article using the film, stretched film, heat-shrinkable label, and container equipped with the label
JP4297911B2 (en) Heat-shrinkable laminated film, molded product using the film, heat-shrinkable label, and container
US20090074998A1 (en) Heat-shrinkable laminated film, molded product and heat-shrinkable label employing the film, and container
JP6759828B2 (en) A polylactic acid-based film, a heat-shrinkable film using the film, a molded product or a heat-shrinkable label using the heat-shrinkable film, and a container using the molded product or having the label attached.
JP4878837B2 (en) Heat-shrinkable film, molded article using the heat-shrinkable film, heat-shrinkable label, and container using or fitted with the molded article
JP5301783B2 (en) Heat-shrinkable film, molded article using the heat-shrinkable film, heat-shrinkable label, and container using or fitted with the molded article
JP5354848B2 (en) Heat-shrinkable pore-containing film, molded product based on the film, heat-shrinkable label, and container
JP4815214B2 (en) Heat-shrinkable film, molded article using the heat-shrinkable film, heat-shrinkable label, and container using or fitted with the molded article
JP4334555B2 (en) Heat-shrinkable laminated film, molded product using the film, heat-shrinkable label, and container equipped with the molded product or heat-shrinkable label
JP5269642B2 (en) Heat-shrinkable film, molded article using the heat-shrinkable film, heat-shrinkable label, and container using or fitted with the molded article
JP6354346B2 (en) Polylactic acid-based heat-shrinkable film, molded product using the film, heat-shrinkable label, and container using or mounting the molded product
JP5042730B2 (en) Heat-shrinkable laminated film, molded article using the film, heat-shrinkable label, and container
JP5037249B2 (en) Heat-shrinkable laminated film, molded product using the film, heat-shrinkable label, and container equipped with the molded product or heat-shrinkable label
JP4355257B2 (en) Heat-shrinkable polylactic acid film
JP5283459B2 (en) Heat-shrinkable laminated film, heat-shrinkable label using the film, and container equipped with the label
JP6551087B2 (en) Polylactic acid-based laminate film, heat-shrinkable laminate film using the laminate film, molded article using the heat-shrinkable laminate film, heat-shrinkable label, and using the molded article or the label container
JP5095168B2 (en) Heat-shrinkable film, molded article using the heat-shrinkable film, heat-shrinkable label, and container using or fitted with the molded article
JP5551003B2 (en) Heat-shrinkable film, molded product using the film, heat-shrinkable label, and container using the molded product or equipped with the label
JP5489878B2 (en) Heat-shrinkable laminated film, molded product using the film, heat-shrinkable label, and container using or mounting the molded product
JP2005007610A (en) Biodegradable multilayered heat-shrinkable film and package
JP5289674B2 (en) Heat-shrinkable film, heat-shrink label using the film, molded product, and container
JP5037250B2 (en) Heat-shrinkable laminated film, molded product using the film, heat-shrinkable label, and container equipped with the molded product or heat-shrinkable label

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130528

R150 Certificate of patent or registration of utility model

Ref document number: 5283459

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350